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Abstract

Data quality is crucial for robust machine learning algorithms, with the recent
interest in data-centric AI emphasizing the importance of training data character-
ization. However, current data characterization methods are largely focused on
classification settings, with regression settings largely understudied. To address
this, we introduce TRIAGE, a novel data characterization framework tailored to
regression tasks and compatible with a broad class of regressors. TRIAGE utilizes
conformal predictive distributions to provide a model-agnostic scoring method, the
TRIAGE score. We operationalize the score to analyze individual samples’ training
dynamics and characterize samples as under-, over-, or well-estimated by the model.
We show that TRIAGE’s characterization is consistent and highlight its utility to
improve performance via data sculpting/filtering, in multiple regression settings.
Additionally, beyond sample level, we show TRIAGE enables new approaches to
dataset selection and feature acquisition. Overall, TRIAGE highlights the value
unlocked by data characterization in real-world regression applications.

1 Introduction

Data characterization, an important problem. Over a decade ago, it was recognized that “more
data beats clever algorithms, but better data beats more data”[1], emphasizing the key role of training
data in the performance and robustness of ML algorithms [2–4]. In particular, training data from the
“wild” may have various errors or lack coverage, rendering it unsuitable for the ML task [5].

These observations motivate the need for data characterization, which aims to score each training
sample based on its impact on the performance of the ML task. The training data can then be
partitioned or rank ordered according to the score to give a high-level description of the sample and
its utility. Data characterization provides a natural way for data sculpting [6, 7], which filters training
samples that have a low or even detrimental effect on the ML task. The goal is that models built on
the sculpted/filtered (and smaller) training data have improved performance.

In this work, we address the understudied data characterization problem in regression settings. In
contrast, existing works on data characterization have primarily focused on the classification setting
[8–13]. These methods leverage the probability distribution over discrete labels (softmax or logits)
for scoring. However, in the equally important regression setting, the probability distribution over
the continuous labels are not typically given by standard regression models. In fact, the majority
of the regression models only output a point estimate, e.g. the predicted mean. Without access
to probabilistic estimates, one cannot simply apply the existing classification-tailored methods for
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Figure 1: TRIAGE systematically characterizes data in regression settings via a 3-step pipeline. (i) Compute
TRIAGE scores: of each sample in the dataset, for each regression checkpoint, via a Conformal Predictive
System (CPS). Over the training epochs/iterations, we (ii) Analyze the per-sample training dynamics, studying
the trajectory of CPS probability scores for each training sample, with the scoring method operationalized
to characterize the samples. (iii) Characterize samples, assigning them to different groups (over-, under- and
well-estimated) based on the TRIAGE scores. These groups inform sculpting & other use-cases.

discrete labels to the regression setting. We provide further details why classification-tailored methods
are inapplicable to the regression setting in Sec. 2 and Table 1. This non-applicability motivates the
need for regression-tailored methods for data characterization, which are “not only principled, but
also practical for a larger collection (...) of ML models” [4].

To anchor the need for data characterization in regression, let’s consider a few concrete examples. In
predicting house prices, an outlier might be a house with an extremely high price due to a unique
or under-represented feature in the data. This could affect the model’s performance, causing it to
overestimate prices for similar houses without the unique feature. Alternatively, imagine predicting
patient length of stay based on clinical features. If the dataset contains some erroneous features, the
regression predictions may be suboptimal, potentially leading to incorrect clinical decisions.

In designing a data characterization framework for regression, we outline the following desired prop-
erties, drawing motivation from the capabilities of works in the classification setting [8–13]:

(P1) Consistency: The characterization of data examples should be stable and consistent across
runs and for similar performing models with different parametrizations.
(P2) Improve performance: The characterization should guide the improvements to model
performance. For instance, via data sculpting/filtering.
(P3) Informative for data collection: The characterization score should be informative to
enable selection between datasets, as well as, feature collection/acquisition.
(P4) Regressor versatility: The characterization should be principled and practical for a large
collection of ML models (e.g. not just neural networks).

To fulfill P1-P4, we propose a framework to characterize data in regression settings, called TRIAGE
(s.f. TRaining Identification & Auditing of Good Examples) — see Fig.1. TRIAGE introduces a
novel regression scoring method—TRIAGE score, building on the recent development of Conformal
Predictive Systems (CPS) [14]. CPS is a model-agnostic method that can turn the output of any
regressor into a probability distribution for continuous labels, termed conformal predictive distribution
(CPD). Unlike point estimates such as errors/residuals or conventional conformal prediction intervals,
the CPD provides richer information through a full predictive distribution. This enables us to assess
the probability of a prediction being over- or under- estimated.

We then operationalize the CPD (and TRIAGE score) in a novel way for data characterization,
computing the trajectory of TRIAGE scores over training checkpoints, as a measure of how samples
are learned differently during training. Such training dynamics, shown in Fig 1 and have been shown
to contain a salient signal about the value of the sample to a learner [15–17]. By analyzing the
training dynamics, we then categorize training samples as: under-, over- or well-estimated by the
model. This is useful going back to our motivating example — where erroneous values could cause
the model to overestimate house price. Using the TRIAGE score, we can identify such a sample, as
it would likely have a low probability of being correct based on the model’s predictive distribution.
Such identification unlocks a variety of use cases. For instance, sculpting/filtering such samples can
improve model performance (even with less data), as we empirically show in Sec. 5.

Contributions. 1⃝ Conceptually, we present TRIAGE, the first data characterization framework
tailored to regression settings, addressing the need for an ML-aware data quality that is principled
and practical across a large collection of ML regressors. 2⃝ Technically, we introduce a principled
regression scoring method called TRIAGE score, that leverages conformal predictive distributions in a
novel way for data characterization. We operationalize the score to analyze how different samples are
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Table 1: Comparing data characterization for classification to TRIAGE (a tailored regression method)

Type of method Approaches Scoring
method

Can be repurposed
for regression

Applicable to any ML
model trained iteratively

Reason for
non-applicability

Tailored regression TRIAGE (Ours) CPS probability ✔ ✔ -

Tailored classification

Data Maps [8] Model uncertainty ✗ ✔ Needs label probability distribution
Data-IQ [9] Data uncertainty ✗ ✔ Needs label probability distribution
SSFT [10] Forgetting scores ✗ ✔ Needs discrete class changes
AUM [12] Logit margin ✗ ✗ Needs logit output

General-purpose
Metadata Archaelogy [18] Per-sample losses ✔ ✔ -

VoG [11] Variance of gradient ✔ ✗ Needs differentiable model (e.g. NN)
GraNd [13] Gradient Norm ✔ ✗ Needs differentiable model (e.g. NN)

learned during training, thereby permitting characterization of individual samples as: under-, over- or
well-estimated by the model. 3⃝ Empirically, we demonstrate the utility of TRIAGE across multiple
use cases satisfying P1-P4, including consistent characterization, sculpting to improve performance
in a variety of settings, as well as, guiding dataset selection and feature acquisition.

2 Related work

This work engages with recent efforts in data-centric AI [6, 7, 19, 20] on data characterization.
However, prior methods have focused on classification settings. In contrast, TRIAGE addresses the
regression setting where tailored data characterization has not been explored. We now discuss related
works and outline the challenges of applying prior classification focussed methods to regression, for
an overview see Table 1. Prior classification scoring methods can be divided into two groups:
■ Tailored methods, assign scores based on aspects specific to classification, including logits [12],
probabilities over labels [8, 9] or changes to predictions on discrete labels [10, 21]. However, these
methods are inapplicable to our regression setting because these aspects are not present in regression.
■ General purpose methods, while focussed on classification, they assign scores using generic
measures and can be repurposed for regression. However, these general methods based on backpropa-
gated gradients [11, 13] or losses [18] have two limitations. Firstly, scores like gradients can only
be used with differentiable models (e.g. neural networks) and are not compatible with many widely
used regressors, such as XGBoost — i.e. does not satisfy (P4) Versatility. Secondly, even if they can
be used, general-purpose scores may not distinguish between samples that have similar magnitude
scores (e.g. high loss scores), even if the underlying reasons for these scores may be different with
respect to the task. We show the value of such a differentiation between samples in Sec.5.2.

Data valuation. A related area to data characterization is that of data valuation, for example: Shapley
based valuation methods [22, 23]. We first outline some conceptual differences: (a) TRIAGE unlocks
other data-centric tasks beyond just data selection, e.g. feature-level acquisition/collection and
selection between datasets. These are out of scope for data “sample” selection; (b) Unlike TRIAGE,
these methods are not tailored to regression; (c) method differences: computationally Shapley-based
methods need to assess multiple sample permutations and need to retrain the model many times.
Hence, they struggle to scale to very high-samples sizes (e.g. 100k), unlike TRIAGE where the cost
is cheap comparatively. Recently, a valuation method LAVA [24] has been introduced to address this
which uses an additional embedding model to reduce dimensionality before the optimal transport step.
Beyond conceptual differences, we compare TRIAGE experimentally and in terms of computation
time in Appendix C.

3 Data Characterization Preliminaries

In this section, we formulate the data characterization problem for regression settings. Consider
the standard regression setting, where the aim is to assign an input x ∈ X ⊆ RdX to a continuous
valued label y ∈ R (often a point estimate for y). This is done using a regressor fθ : X → Y ,
parameterized by θ ∈ Θ. We assume fθ is trained on a dataset D with M ∈ M∗ observations,
i.e. D = {(xm, ym) | m ∈ [M ]}. For the purposes of later notation, we consider a sample space
Z := X × R, where each observation zm = (xm, ym) ∈ Z . Typically, parameters θ are learned
in regression, via empirical risk minimization (ERM) with a mean squared error (MSE) loss, i.e.
ERM(θ) = argminθ∈Θ

1
M

∑M
m=1 ℓ(x

m, ym; θ), with loss function ℓ : X × Y ×Θ → R+.

ERM ensures regressor fθ performs well on average, however it goes without saying that the model is
unlikely to perform equally well for all samples in the dataset. Consequently, we desire to characterize
such types of samples. Formally, for each sample xm, we aim to assign a group label gm ∈G, where

3



G = {Over-estimated, Well-Estimated, Under-estimated}. We then use these groups for downstream
tasks, or to sculpt/filter samples in the dataset D based on their group assignment. Before giving a
precise description of how the group labels are assigned, we provide some context.

Prior works have shown the behavior of samples over the course of model training, called training
dynamics contains signal about the nature of a sample itself [15–17]. For instance, some samples
are easily learned and stable through training, whereas other samples might be challenging and have
high variance. Many classification-based methods leverage this concept and assign gm by analyzing
training dynamics e.g. Data-IQ, Data Maps, AUM etc. However, as discussed in Secs. 1 and 2, the
aforementioned classification methods do not apply to regression. Consequently, this requires us
to formalize a new principled scoring method for regression. After that, we can operationalize the
scoring method to analyze the training dynamics and assign group labels gm to each xm.

For regression, such a principled scoring method could evaluate the probability that the true target y
is less than or equal to observation f(x), where the categories of samples are: 1⃝ Under-estimated:
P (y ≤ f(x)) ≫ 0.5, 2⃝ Well-estimated: P (y ≤ f(x)) ∼ 0.5, 3⃝ Over-estimated: P (y ≤
f(x)) ≪ 0.5. In the next section, we discuss how we design TRIAGE to achieve this, with the final
goal in mind — assigning group labels gm to each sample xm.

4 TRIAGE: characterizing data for regression settings
We now introduce TRIAGE, a regression-focused data characterization framework, compatible with
any iteratively trained ML regressor (Sec. 4.4). TRIAGE follows a three-step procedure:
1. Compute TRIAGE scores (Sec 4.1): Compute the TRIAGE score for every sample xm using
conformal predictive distributions. Do this for every regression checkpoint to obtain a trajectory.
2. Analyze TRIAGE score training dynamics (Sec 4.2): Operationalize the TRIAGE score for data
characterization by analyzing the TRIAGE score’s trajectory for each training sample.
3. Characterize & assign groups (Sec 4.3): Characterize samples based on their training dynamics,
assigning each sample xm to a group gm. The groups inform filtering/sculpting or other use cases.

4.1 Computing TRIAGE scores via Conformal Predictive Systems (Step 1).

Recall, we want to compute P (y ≤ f(x)) as a principled scoring method to characterize samples.
We want to do so without changing the chosen regressor type, i.e. P4: Regressor versatility. Of
course, the full information of an uncertain label exists in its probability distribution, allowing us
to compute probabilities of various outcomes. Unfortunately, regular regressors (point predictions)
or conventional conformal regressors (prediction intervals) do not provide this distribution. While
Bayesian methods offer distributions, they require fundamentally changing the regressor.

These challenges motivate defining TRIAGE around Conformal Predictive Systems (CPS)[14]. CPS
combines predictive distributions [25, 26] with conformal prediction [27], crucially enabling us to
compute the required probability distribution of a continuous variable—called Conformal Predictive
Distribution (CPD). CPS also fulfills our versatility goal (i.e. P4) as it applies to any regressor.
To clarify Conformal Predictive Systems output valid cumulative distribution functions, which are
termed Conformal Predictive Distributions (CPD). This is the cumulative probability with respect
to a label y , given some x and regressor f . With CPDs denoted as Q , the conformal p-values
get arranged into a probability distribution which has the properties of a CDF — thus essentially
becoming probabilities, see [28]. Since the CPD has the properties of a CDF, we use the CPD to
estimate probabilities that the true target is less than or equal to a specified threshold/value.

Computing CPDs. TRIAGE formalizes the CPD computation in the framework of the com-
putationally efficient Split Conformal Predictive Systems [28]. A proper training set Dtr =
{(xi

tr, y
i
tr) = zitr | i ∈ [M ]} is used to train regressor f . A separate, often smaller, calibra-

tion set Dcal = {(xi
cal, y

i
cal) = zical | i ∈ [q]}, is used for conformal calibration. Finally, we define

a conformity measure µ, where µ : Z → R ∪ {−∞,∞}, quantifies the dataset’s agreement with
the observation. For each label yical | i ∈ [q], we compute q conformity scores αi = µ(zical). We
define the conformity measure (µ) as per Eq. 1, which is a balanced isotonic conformity measure.
We discuss this choice in Appendix A.3, a necessary condition s.t the CPD can be interpreted as a
probability distribution [28] 1.

µ(x, y) = (y−f(x))/σ(x) (1)
1Under the standard conformal exchangeability assumption (see Appendix A.3), the CPDs are valid.
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Algorithm 1 Computing a CPD

Require: Training set (xi
tr, y

i
tr) ∈ Dtrain, i ∈ [M ] and

Calibration set (xi
cal, y

i
cal) ∈ Dcal, i ∈ [q].

1: Regressor f is trained on Dtrain. ▷ Training
2: Compute residuals on Dcal: Ri=yi

cal−f(xi
cal),i∈[q]

3: Define σ(x); which finds the average residuals of
the k-nearest neighbors x, where KNN is fit on Dcal.
4: Calculate conformity scores α1,α2...αq over Dcal

using µ; i.e. αi=µ(xi
cal,y

i
cal),i∈[q]. ▷ Calibration

5: Sort α1,...αq in ascending order ; s.t α(1)<...<α(q)

for eval sample x ∈ Xtrain do ▷ Evaluation
Let S(i) := f(x) + αiσ(x) for i ∈ [q].
Let S(0) := −∞ and S(q+1) := ∞.

end for
Return the CPD as per Equation (2).

where y is the label, f(x) a predicted label,
σ an estimate of prediction quality, com-
puted with a separate normalization model,
enabling CPDs to reflect task difficulty. σ
is kNN fitted on the residuals of Dcal, sim-
ilar to [29].

We compute the CPD denoted Qm (Eq. 2)
for each sample xm via Algorithm 1, where
the CPD is defined for y∗ ∈ R [28]. We ex-
tract the TRIAGE score using the CPD. We
repeat the CPD computation for all sam-
ples. Next, we describe our novel approach
to operationalize the TRIAGE scores, for
the purpose of data characterization.

Q(y∗, τ) :=

{
i+τ
q+1

if y∗ ∈ (S(i), S(i+1)); i ∈ [0 : q]
i′−1+(i′′−i′+2)τ

q+1
if y∗ = S(i); i ∈ [1 : q]

(2)

where τ ∈ [0, 1], i′ := min{j | S(j) = S(i)} and
i′′ := max{j | S(j) = S(i)} to account for ties.

4.2 Analyzing TRIAGE score trajectories — training dynamics (Step 2)

Novel use of CPD’s for data characterization. The TRIAGE score, denoted as T (x, y, θ) =
P (y ≤ fθ(x)), represents a novel use of CPDs for data characterization, diverging from their original
predictive uncertainty use. Additionally, while CPDs are normally calculated post-model fitting, we
observe from Fig.1(ii) that samples’ learning varies, leading to different convergence rates of scores.
As discussed in Sec. 3, such dynamics reveal sample characteristics [15–17]. Hence, we propose to
examine TRIAGE score trajectories to capture the learning dynamics of different samples.

To enable this analysis, we utilize the model checkpoints of any ML regressor trained over iterations
(e.g. neural networks, XGBoost etc). Specifically, during iterative training, the model parameters θ
vary over E ∈ N∗ iterations, taking E different parameter values at each checkpoint, i.e. θ1, θ2, ..., θE .
We wish to account for the impact of these changing parameters. At each checkpoint θe, we compute
the CPD to obtain the TRIAGE score for each sample xm. We repeat the computation for every
checkpoint to obtain a TRIAGE score trajectory over checkpoints per-sample of dimensionality E.
i.e. we evaluate the function Q for a specific fθe(x) to get the estimated probability P (y ≤ fθe(x)).
We repeat for all fθe(x) checkpoints where e ∈ E to get the trajectory of TRIAGE scores for sample.

To quantify and contrast the behavior of the different sample trajectories, we compute two metrics
to summarize the per-sample trajectory (see Fig. 2), namely (1) Confidence: reflects the degree of
confidence wrt to P (y ≤ fθ(x)). It is computed as the mean of the TRIAGE score over training,
i.e. C(xi, yi) = 1

E

∑E
e=1 T (x

i, yi, θe). (2) Variability: reflects the consistency or fluctuation of
the score for a specific sample. It is computed as the standard deviation of the TRIAGE score over

training, i.e. V (xi, yi) =

√∑E
e=1(T (xi,yi,θe)−C(xi,yi))2

E . We describe next how these two metrics
form the basis of sample characterization and group assignment.

4.3 Characterization & group assignment (Step 3)

We now discuss how the two characterizing metrics, C and V , are used to assign a group label g ∈ G
to each training sample xm. Let’s intuitively define each group. 1⃝ Under-estimated (UE): low
variability V (i.e. decisive about) and HIGH average TRIAGE score C, i.e. P (y ≤ f(x)) ≫ 0.5,
2⃝ Over-estimated (OE): low variability V (i.e. decisive about) and LOW average TRIAGE score
C, i.e. P (y ≤ f(x)) ≪ 0.5, and 3⃝ Well-estimated (WE): average TRIAGE score C is uncertain
P (y ≤ f(x)) ∼ 0.5. In addition, these samples are often linked to high variability, implying
uncertainty about P (y ≤ f(x)). We empirically observe samples with these different traits per group,
depicted in the characteristic curve, see Fig. 2.

5



Well-estimated Over-estimatedUnder-estimated

Figure 2: Training dynamics of samples
(above) are summarized in a characteristic
curve (below-grey)

We take a threshold-based approach to assign gm, similar to
previous characterization works [8, 9]:

gm =

UE if C(xm, ym) ≥ Cup ∧ V (xm, ym) < P
V (Dtrain)
n

OE if C(xm, ym) ≤ Clow ∧ V (xm, ym) < P
V (Dtrain)
n

WE otherwise
(3)

where Cup and Clow are upper and lower confidence thresh-
old resp. and Pn the n-th percentile. We discuss the selection
of Cup and Clow in Appendix A.

In Sec. 5, we empirically show how the groups assigned to
each sample can be used to sculpt/filter the training dataset
or for other downstream tasks such as dataset selection or
feature acquisition.

4.4 Using TRIAGE with a variety of regressors (P4)

The general-purpose characterization methods discussed are largely compatible with differentiable
models (neural networks). However, in real-world settings (e.g., healthcare, finance), practitioners
often employ other iterative algorithms, like XGBoost/GBDTs [30]. TRIAGE addresses this limita-
tion, offering a model-agnostic approach using CPS — as the conformity scores can be computed
for any regressor. Of course, our use of training dynamics assumes regressor f can be checkpointed.
This still confers compatibility with a broader class of models: neural nets, XGBoost, GBDTs, linear
regression — satisfying P4. We underscore TRIAGE’s versatility beyond neural networks, allowing
practitioners to use TRIAGE with their preferred model for a specific application. Appendix A.2
details the ease of usage and space and time considerations.

5 Empirical investigation

This section presents an empirical evaluation demonstrating TRIAGE 2 satisfies (P1) Consistency,
(P2) Improved regression performance and (P3) Informative for data collection. Recall (P4) Regressor
versatility is satisfied by TRIAGE’s design. Additional use-cases and results are in Appendix C.

Datasets. We conduct experiments on 10 real-world regression datasets with varying characteristics.
i.e. different sample sizes (500-100k), dimensionality (8-85), and task difficulty. The datasets are
drawn from diverse domains, including safety-critical medical regression: (i) Prostate cancer from the
US [31] and UK [32], (ii) Hospital Length of Stay [33] and (iii) MIMIC Antibiotics [34]. Additionally,
we analyze general UCI regression datasets [35], including Bike, Boston Housing, Bio, Concrete,
Protein and Star. The datasets are detailed in Appendix B, along with further experimental details.
We observe similar performance across different datasets. However, due to space limitations, we
sometimes highlight results for a subset and include results for the remainder in Appendix C.

5.1 (P1) Consistent characterization

Figure 3: Stability of scoring meth-
ods. TRIAGE is most consistent
(highest Spearman correlation of 0.91
& lowest variation) averaged across
datasets. Results on all 10 datasets
are in Appendix C.1.

A key aspect of data characterization is: the ordering of samples
matter [9, 10]. This is important when the scores are utilized for
data sculpting/filtering. For example, if we rank sort samples by
their scores and filter a subset of samples. Consequently, it is cru-
cial to ensure the scoring method used for data characterization is
stable and consistent. This consistency is desired across different
seeds, but also different practitioners may adopt diverse model
architectures/parameterizations for data characterization.

Consistency of TRIAGE. We compare the consistency and ro-
bustness to variation of TRIAGE vs baseline general purpose
methods: VoG [11], GradN [13], Loss [18]. We also consider
simply computing the end of training Residual Errors (used in the

2Code: https://github.com/seedatnabeel/TRIAGE or https://github.com/vanderschaarlab/TRIAGE
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TRIAGE conformity score). We assess the consistency of the scores across different model architec-
tures/parameterizations (described in Appendix B.3). All models are trained to convergence with early
stopping. Similar to prior classification-based characterization methods [9, 10], we assess consistency
based on the Spearman rank correlation of the scores evaluated for all model combinations.

Fig. 3, shows TRIAGE is the most consistent compared to baselines, with the highest Spearman
correlation (0.91), satisfying P1. This consistency means insights derived using TRIAGE scores will
also remain consistent. Analyzing each of the 10 datasets (see Appendix C.1), further shows that
TRIAGE is stable in magnitude and rank order, whereas the baselines do not have such consistency
both in magnitude or ordering across datasets, making the baselines challenging to use in practice.

Takeaway 1. TRIAGE has the most consistent scoring method compared to baselines over different
datasets and model combinations, satisfying P1.

Examples w/ same
error magnitude can
be differentiated via 

Triage scores

Figure 4: Samples with the same error, have
different Triage scores, highlighting the po-
tential to differentiate samples

TRIAGE v Errors/Residuals. We note that TRIAGE and
Errors/Residuals (considered an ablation of TRIAGE’s dy-
namics component) have similar correlations. This raises
two questions: (i) are the samples identified the same? We
stratify the samples in Dtrain into three equal sized groups
ordered by TRIAGE or Error scores. The overlap is ∼0.77,
highlighting a difference. This leads us to ask (ii) what
added value does TRIAGE offer? Consider the case of
different samples that have the same error magnitude. Er-
rors/Residuals treat these samples the same, based solely
on magnitude. Can TRIAGE offer greater precision to
further differentiate samples with the same magnitude?
As shown in Fig.4, TRIAGE scores evidently offer a way to handle samples differently, showing
that samples with similar residuals/errors are associated with different TRIAGE scores. We show
the phenomena holds across other general-purpose scoring rules in Appendix C.10. This result
demonstrates the added value of the training dynamics aspect, to differentiate samples with the same
error magnitude at a more granular level. This contrasts, errors/residuals which are an ablation of
TRIAGE, computing the conformity score only at the final training checkpoint, instead of for all
checkpoints. We explore the value of this differentiation to improve regressor performance next.

5.2 (P2) Improve regression performance

We now evaluate the ability of TRIAGE to improve regression performance by sculpting/filtering the
data — by keeping only well-estimated samples. We study two setups using TRIAGE: (1) fine-grained
filter (as described above) and (2) sculpting the data based on a deployment purpose.

5.2.1 Fine-grained filtering
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(b) Loss
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 *Triage is applied on top (i.e. less data)
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(c) Grad

0.0 0.2 0.4 0.6 0.8 1.0
Baseline proportion of data retained. 

 *Triage is applied on top (i.e. less data)
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0.100
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0.150

0.175
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SE

Baseline (vog filter)
Triage Filter

(d) VoG

Figure 5: TRIAGE improves test MSE, as a fine-grained filter. For
each baseline proportion retained, TRIAGE is applied on top — such
that TRIAGE has less data (DTriage ⊂ DBaseline), only keeping well-
estimated samples for each proportion p.

In the previous section, we
showed TRIAGE’s ability to dif-
ferentiate samples with more pre-
cision. Does this differentia-
tion with TRIAGE scores bene-
fit model performance? To find
out, we sort the training sam-
ples from least to most challeng-
ing based on the baseline com-
puted scores: Residuals/Errors,
Loss, VoG, GradN. We then eval-
uate test MSE performance, as
we increase the proportion p
of samples retained for training.
i.e. increasingly retain more
challenging samples with higher
loss/VoG etc. As expected, the
baselines (shown in Fig 5, blue)
have lower MSE with more sam-
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ples retained for training. However, the elbow around p = 0.5, after which MSE does not decrease,
shows that the added high-magnitude samples are not beneficial.

We now assess the benefit of differentiating these scores using TRIAGE. To do so, we apply TRIAGE
as an additional filter on top of the baseline retained samples — only keeping the well-estimated
subset of samples. i.e. at each baseline proportion p, TRIAGE reduces the number of samples
retained compared to the baseline s.t. DTriage ⊂ DBaseline. Fig 5 shows, for all proportions
p, we improve MSE performance over baselines simply by differentiating between samples using
TRIAGE and filtering to keep only well-estimated samples. This performance benefit holds for all 4
general-purpose scoring methods, illustrating the value of TRIAGE as a fine-grained filter, where
even with less data than baselines, the careful selection of samples by TRIAGE leads to improved
regression performance. Results on more datasets mirroring the above are in Appendix C.11.

Takeaway 2. TRIAGE’s differentiation of samples can be used to augment other approaches as a
fine-grained filter; improving regressor test performance, simply by keeping well-estimated samples.

5.2.2 Data sculpting to fit a deployment purpose.

In many situations, we might want to take a regressor trained on a large Dtrain and deploy it in an
area with limited labeled data. For instance, repurposing a regressor in a low-resource healthcare
setting. This raises the question, instead of acquiring new data - which in some cases might be
impossible - could we sculpt the existing large Dtrain to be more “fit for purpose”. The goal is to
enable better regressor performance. Our setup assumes limited access to a small amount of data from
the deployment environment, which is insufficient in sample size to directly train a highly performant
regression model, yet we could use this data for calibration Dcal purposes. Can TRIAGE help?

As a case-study, we consider a regression task similar to [36–38], using patient covariates to predict
PSA blood levels, a known predictor of prostate cancer mortality. This task has utility in low-resource
areas with limited medical funds [38]. We use multi-country prostate cancer data in which their is a
distribution shift and train a regressor on data from the US (SEER)[31]. We evaluate performance on
data from the UK (CUTRACT)[32], where the smaller Dcal is also drawn from. In addition to the
normal train-large, test-small baseline, we evaluate the utility of sculpting Dtrain from the US using
TRIAGE — only keeping well-estimated samples (DWE=DTriage), s.t DTriage ⊂ Dtrain. Conformal
calibration uses Dcal from the UK.

We compare TRIAGE to several methods, as detailed in Appendix B.3, including: (i) data-driven
training: training a model directly on the Dcal or combining the two datasets (Dtrain ∪ Dcal). (ii)
prediction-based sculpting: train on Dcal (UK data) and then subsequently filter Dtrain (US data) based
on predictive uncertainty scores 3. We assess NGBoost, Bayesian Neural Network, Gaussian Process,
Bayesian ridge regression, conformal intervals and residuals/errors. We only consider general purpose
methods whose criteria allow us to leverage Dcal and are compatible beyond neural nets for flexibility.

We then evaluate MSE test performance of regressors trained on the different “sculpted” Dtrain. We
test sensitivity to varying sizes of Dcal, as in many settings, we might not have access to many
calibration samples. Table 2 shows that TRIAGE consistently outperforms model-driven methods
across the board. This suggests that predictive uncertainty scores are insufficient to select the samples
with the highest utility in Dtrain. This contrast implies TRIAGE’s scoring method better selects
samples in Dtrain with greater utility, leading to improved performance on Dtest.

Compared to data-driven approaches, we find that TRIAGE has the best MSE, specifically, in the
small sample regime, where Dcal only contains a limited number of samples n=10-200. Of course,
when sufficient data is available (≥300 samples), sculpting has a reduced benefit. Rather, training
directly on the sufficient Dcal is preferable. The result highlights the viability of sculpting a larger
Dtrain with respect to a small Dcal to improve regression in settings with limited data access — with
TRIAGE offering the best performance benefits.

In addition, sculpting especially in healthcare settings should account for both (i) imbalanced feature
subgroups and (ii) long-tailed outcomes. We assess this in Appendix C.7 and show that TRIAGE
does retains strong performance on minority subgroups and long-tailed outcomes by virtue of the
calibration dataset.

3Model-driven methods are fit on Dcal, such that we assess how uncertain samples in Dtrain are with respect
to Dcal
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Table 2: Comparison of test MSE for different approaches, changing the size of Dcal. TRIAGE’s approach to
data sculpting of the large Dtrain with respect to a small Dcal in shown to outperform alternatives with lower test
MSE, especially when Dcal from the target domain has small sample sizes. (↓ better). Note |Dtrain| ≫ |Dcal|

.
Dcal sample size 10 20 30 40 50 100 200 300 400 500

Ours (Sculpting) TRIAGE (WE) 0.051+-0.003 0.050+-0.003 0.047+-0.002 0.046+-0.002 0.046+-0.001 0.046+-0.002 0.046+-0.001 0.045+-0.001 0.045+-0.002 0.046+-0.002
Not TRIAGE (OE ∪ UE) 0.088+-0.014 0.068+-0.005 0.066+-0.003 0.066+-0.005 0.068+-0.006 0.080+-0.011 0.087+-0.015 0.093+-0.015 0.082+-0.012 0.078+-0.009

Data-driven
Baseline (Dtrain) 0.064+-0.002 0.064+-0.002 0.064+-0.002 0.064+-0.002 0.064+-0.002 0.064+-0.002 0.064+-0.002 0.064+-0.002 0.064+-0.002 0.064+-0.002
Baseline (Dcal) 0.092+-0.023 0.070+-0.012 0.070+-0.010 0.064+-0.003 0.066+-0.009 0.052+-0.004 0.047+-0.001 0.043+-0.001 0.043+-0.001 0.041+-0.001
Baseline (Dtrain ∪ Dcal) 0.060+-0.002 0.059+-0.002 0.058+-0.002 0.056+-0.002 0.055+-0.001 0.049+-0.001 0.047+-0.001 0.044+-0.001 0.044+-0.001 0.042+-0.001

Prediction based
sculpting of Dtrain

Error Sculpt 0.066+-0.010 0.058+-0.010 0.060+-0.010 0.060+-0.010 0.057+-0.010 0.058+-0.010 0.055+-0.011 0.055+-0.011 0.057+-0.010 0.057+-0.010
CP Intervals Sculpt 0.064+-0.006 0.081+-0.023 0.082+-0.008 0.106+-0.043 0.073+-0.013 0.059+-0.005 0.055+-0.002 0.063+-0.011 0.054+-0.002 0.051+-0.003
NGBoost 0.066+-0.006 0.121+-0.041 0.085+-0.015 0.080+-0.008 0.094+-0.008 0.196+-0.030 0.132+-0.010 0.096+-0.011 0.095+-0.006 0.103+-0.008
Bayesian ridge 0.080+-0.008 0.118+-0.023 0.111+-0.012 0.129+-0.011 0.129+-0.016 0.111+-0.017 0.106+-0.006 0.110+-0.010 0.114+-0.009 0.103+-0.009
BNN 0.068+-0.005 0.063+-0.006 0.066+-0.004 0.066+-0.004 0.064+-0.005 0.057+-0.006 0.072+-0.010 0.056+-0.006 0.064+-0.003 0.068+-0.008
GP 0.051+-0.006 0.066+-0.008 0.069+-0.005 0.077+-0.008 0.072+-0.006 0.071+-0.009 0.085+-0.011 0.085+-0.003 0.095+-0.004 0.089+-0.006

Data insights from sculpting. We seek to understand what types of samples are “sculpted”. Such
insights are especially useful in clinical settings. We see that US patients (Dtrain) typically have higher
cancer stages and higher PSA scores than their UK counterparts (Dcal/Dtest). It is precisely these
dichotomous samples that are filtered by TRIAGE to improve predictive performance. These insights
can be illustrated to stakeholders via a radial diagram, as in Appendix C.5.

Additionally, given the potential data shift (around exchangeability), Appendix C.6 analyzes CPS
calibration, along with continuous ranked probability score (CRPS) quantifying the quality of the
predictive distribution.

Beyond predictive performance to fairness. We also show that sculpting the data has potential
beyond simply improving predictive performance. In Appendix C.4, we illustrate how TRIAGE can
be used to sculpt data to improve fairness of regressors based on access to a limited set of samples.

Takeaway 3. TRIAGE can help to improve regression performance by sculpting a larger dataset to
be fit-for-purpose, simply by leveraging a small number of calibration samples.

5.3 (P3) Informative for data collection
We now demonstrate the value of TRIAGE for dataset selection and feature collection/acquisition.

5.3.1 Dataset selection: From sample-level to dataset level.
In real-world applications, we might want entire dataset characterization, rather than just sample-level
characterization. An understudied scenario is how to compare and select between different datasets.
This need arises in organizations where data is stored in isolated silos and it is difficult to access; with
synthetic data a common solution [39, 40] or alternatively when purchasing data via data marketplaces
[41]. We study the former scenario, where we have multiple ’synthetic’ data versions, produced by
different ML models or data vendors. However, our assessment could easily apply to the latter of
data marketplaces.

We explore the setting where the real Dtrain is not accessible to calculate statistical similarity measures,
yet we still wish to compare synthetic datasets and select a version to train on. The underlying
assumption is that the synthetic datasets reflect the true underlying distribution. However, depending
on the generation process, some synthetic datasets might prove superior to others.

The question we address is: Can TRIAGE’s data characterization allow us to compare and select the
synthetic training dataset that yields the best test performance on real data?

Table 3: Comparing performance & (Triage retention).
Training on synthetic data w/ better utility (↑ retained)
has the lowest real test data MAE across datasets.

Dataset (V1) CTGAN (V2) TVAE

Bike 0.13 (45% Retained) 0.09 (58% Retained):
Bio 0.24 (45% Retained) 0.21(52% Retained)

Boston 0.16 (38% Retained) 0.13(60% Retained)
Concrete 0.19 (46% Retained) 0.11 (48% Retained)

LOS 0.16 (47% Retained) 0.09(56% Retained)
MIMIC 0.05 (41% Retained) 0.08 (48% Retained)
Prostate 0.21 (46% Retained) 0.18 (52% Retained)
Protein 0.22 (52% Retained) 0.20 (54% Retained)

Star 0.18 (38% Retained) 0.14 (51% Retained)

We simulate this scenario by generating synthetic
training data using (V1) CTGAN and (V2) TVAE
[42], representing 2 synthetic data vendors. We
employ TRIAGE to analyze and compare them,
based on the percentage of well-estimated exam-
ples recommended for retention. As is standard,
we train a regressor on synthetic data and test it
on real data (TSTR) [43, 44]. The best synthetic
data should yield the lowest MAE on real test
data. Table 3 shows that where TRIAGE’s rec-
ommendation has a higher retention percentage
(i.e. more well-estimated samples), that training
with that dataset, leads to lower MAE on real test
data. This illustrates that even if the real data is
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unavailable, TRIAGE’s characterization can be used by practitioners to select the synthetic training
dataset that will give the best real test performance.

Takeaway 4. TRIAGE scores allow us to assess utility between different synthetic datasets in a
principled manner. We show that synthetic datasets that TRIAGE suggests retaining more samples
(i.e. more well-estimated), allow for better generalization when testing on real-data (i.e. MAE).

5.3.2 Value of feature collection/acquisition.

Previous settings considered assume a fixed dataset. What if we can actively improve the data’s utility
by acquiring features? e.g., a doctor runs extra tests to improve a regressor. Understanding the value
of features one might acquire is useful, especially if acquisition is costly. We note feature acquisition
differs from feature selection (e.g. [45]), where all features are present and we select useful ones. It
also differs from active learning, which quantifies sample acquisition value, not features.
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Figure 6: The value of acquiring a feature
can be quantified by its ability to increase the
proportion of well-estimated samples.

We now show that TRIAGE enables a principled approach
to assess the benefit of acquiring a specific feature. We
posit that acquiring a valuable feature wrt. the task should
increase the proportion of well-estimated samples (which
we’ve shown is linked to better performance).

To illustrate the potential of TRIAGE scores, we set up
an experiment where we rank the features based on their
correlation to the target (i.e. increasing utility). We then
simulate the sequential "acquisition" of features with in-
creasing utility (based on correlation). Concurrently, we
observe how the groups change as features are acquired.

Fig. 6 shows that as we acquire “valuable” features, the
proportion of the well-estimated samples increases, with
the over- and under-estimated proportions dropping. This
result, repeated on other datasets in Appendix C.12, shows
TRIAGE scores are sensitive to the value of a feature, quantified by the increase in the proportion of
well-estimated samples.

Takeaway 5. TRIAGE offers a principled way to assess active dataset improvement when we acquire
new features. The feature’s value links to the ability to increase the well-estimated proportion.

6 Discussion

We present TRIAGE, a regression-focused data characterization framework, an understudied area in
data-centric AI. TRIAGE offers a new scoring method to overcome the limitations of classification-
centric scores. We show TRIAGE’s characterization can unlock a variety of use cases to enhance
regression, with minimal effort, beyond standard training on a dataset and exchangeability assump-
tions. We highlight that a key aspect of ensuring good performance of TRIAGE is careful construction
of the calibration set — which should be as representative as possible. Rather than automating or
replacing a data scientist’s role, TRIAGE as a “data-centric AI” tool aims to empower data scientists
to perform the “data” work in a more principled manner.

Limitations and future opportunities: (1) understanding the attributes contributing to characteriza-
tion, (2) provide theoretical guarantees taking into account the challenging interaction between the
CPD and Triage trajectory (for more see Appendix C.9), (3) in high-stakes settings, to prevent harm
we could leverage domain expertise, where a human-in-the-loop could audit the samples surfaced by
TRIAGE, before sculpting.
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