
Supplementary Material:
Static and Sequential Malicious Attacks in the Context

of Selective Forgetting

Chenxu Zhao∗

Department of Computer Science
Iowa State University
cxzhao@iastate.edu

Wei Qian∗

Department of Computer Science
Iowa State University
wqi@iastate.edu

Rex Ying
Department of Computer Science

Yale University
rex.ying@yale.edu

Mengdi Huai
Department of Computer Science

Iowa State University
mdhuai@iastate.edu

1 Broad Impact

In order to study the vulnerabilities of machine learning models to malicious data update requests
during the unlearning process, we in this paper design the static and sequential selective forgetting
attack frameworks, which are different from traditional evasion and data poisoning attacks. Our
work shows that machine learning models are highly vulnerable to our proposed selective forgetting
attacks, thereby introducing a novel form of security threat. We believe that studying malicious
selective forgetting attacks (that happen during the unlearning process) has a great impact on the
field of computer security and has wide-ranging implications for privacy protection, AI security,
policy development, and user trust. Our research contributes to the ongoing enhancement of security
measures, fostering innovation, and ensuring the integrity and resilience of the unlearning systems in
different real-world applications.

2 Limitations and Future Work

We view our proposed selective forgetting attacks as an initial step towards understanding the
vulnerabilities and robustness of machine learning models to malicious data update requests during
the unlearning process. In the future, we will extend our research by applying our proposed selective
forgetting attacks to a broader range of machine learning models, diverse selective forgetting methods,
and larger datasets. Additionally, we want to emphasize that unscrupulous individuals may adopt our
methods to undermine real-world applications, which inevitably raises new concerns about AI safety.
Therefore, in the future, we will develop the robust unlearning systems to defend malicious selective
forgetting attacks.

3 Experiments for Fairness-aware Selective Forgetting Attacks

Note that in the main manuscript, we provide a toy example to illustrate the impact of malicious
data update requests on fairness using the COMPAS [16] dataset. We consider race (black/white) as
the sensitive feature and randomly unlearn varying percentages of samples from the minority group
(white). We measure the fairness gap using two well-known metrics, Demographic Parity [9] and

∗The first two authors contribute equally to this work.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Table 1: Fairness gap with static forgetting attacks on COMPAS.

Evaluation metric Percentage of unlearning samples

4% 12% 20%

Demographic Parity 0.28± 0.01 0.30± 0.01 0.31± 0.02
Equalized Odds 0.39± 0.02 0.42± 0.02 0.42± 0.03

Equalized Odds [12]. Demographic Parity measures equality in the rate of positive predictions, and
the fairness gap is defined as follows

|Pr(ŷ = 1|S = 1)− Pr(ŷ = 1|S = 0)|, (1)

where ŷ = {0, 1} is a binary prediction, and S ∈ {0, 1} is the binary sensitive feature. Equalized
Odds requires that the protected feature and predicted outcome be conditionally independent given
the true label, and the fairness gap is defined as

max
y∈{0,1}

|Pr(ŷ ̸= y|S = 0, Y = y)− Pr(ŷ ̸= y|S = 1, Y = y)|, (2)

where Y is the true label. These two fairness metrics enable us to quantitatively evaluate the impact
of fairness on the COMPAS dataset.

In the main manuscript, we degrade the fairness by randomly removing training samples from the
minority group. Here, we explore the application of our proposed static selective forgetting attacks to
target fairness. Similarly, we introduce indication parameters for training samples in the minority
group, which indicate whether the samples should be removed based on the impact of a fairness
loss. To define the fairness loss, [26] proposes a loss function for fair classification that includes a
constraint involving the covariance between the sensitive features {z}Ni=1 and the signed distance
from feature vectors to the decision boundary {dθ(xi)}Ni=1, formalized as

Cov(z, dθ(x)) ≈
1

N

N∑
i=1

(zi − z̄)dθ(xi), (3)

where z̄ represents the mean value of the sensitive attribute. By leveraging this formulation, we can
maximize the fairness loss using the selective forgetting attack strategy.

In Table 1, we unlearn different percentages of training samples from the COMPAS dataset. The
unlearning samples are selected from the minority group according to the impact of the fairness loss.
We train a logistic regression model on the COMPAS dataset with 100 epochs and a learning rate
of 0.01. The initial Demographic Parity is at 0.22, and the initial Equalized Odds is at 0.34. As
demonstrated in the table, the fairness gap widens as we unlearn different percentages of samples
from the minority group. Notably, by optimizing the fairness loss and assigning importance scores,
we achieve a fairness gap of 0.28 for Equalized Odds and 0.39 for Equalized Odds when unlearning
4% of the samples. This implies that our selective forgetting attacks can also be applied to desired
attack goals such as fairness.

4 Algorithms for Static Selective Forgetting Attacks

Algorithm 1 for selective forgetting attacks in the second-order unlearning case. Note that in the
main manuscript, we take the second-order unlearning strategy proposed in [25] as an illustrative
example to introduce our proposed selective forgetting attacks. Algorithm 1 illustrates the proce-
dure to solve the proposed optimization framework using the second-order [25] strategy described
in the manuscript. In this algorithm, we adopt the f6 function from [6] as our adversarial loss
Ladv(·; θu(Df)) in Eqn. (1) of the main manuscript, and consider the setting where the adversary
wants to generate malicious update requests to attack the targeted test samples {xs}Ss=1 and force the
targeted test sample xs to be assigned as the attack targeted label ȳs. Below, we give our adversarial
loss in detail

Ladv(·; θu(Df)) = max(max
c̸=ȳs

f cD\Df
(xs; θ

u)− f ȳs

D\Df
(xs; θ

u),−β), (4)

2

where xs denotes the targeted test sample, ȳs denotes the attack targeted label, f cD\Df
(·; θu) represents

the logit output of the unlearned model θu, and max(·,−β) corresponds the hinge loss. In the above,
the adversarial loss enforces the actual prediction of the targeted test sample xs that aligns with the
attack targeted label ȳs. In Algorithm 1, we first initialize the indication parameters from random
distributions. In each optimization step, we update the unlearned model with the indication parameters
of the targeted samples, the gradients difference between the targeted samples and their unlearned
versions, and the inverse Hessian matrix as defined in Eqn. (3) of the main manuscript. After that,
we compute the adversarial loss for all the targeted test samples using Eqn. (4) and the gradients of
the adversary loss with respect to the indication parameters. Finally, we perform one-step gradient
descent using Adam optimizer [14] and further clip the updated indication parameters to be within
the range of 0 to 1.

Algorithm 1 Selective forgetting attacks in the second-order unlearning case
Input: Well-trained model θ∗, training dataset D, target data {xs}Ss=1, attack targeted label ȳs,
targeted training data points Z = {zp}Pp=1 and Z̃ = {z̃p}Pp=1, optimization steps O
Output: Ω = {ωp}Pp=1

1: Randomly initialize Ω = {ωp}Pp=1
2: for o = 1, . . . , O optimization steps do
3: Update the unlearned model θu with Ω, ∆(Z, Z̃), and inverse Hessian matrix in Eqn. (3) of

the main manuscript
4: Compute adversarial loss L =

∑S
s=1 Ladv(xs, ȳs; θ

u)
5: Compute∇ΩL
6: Update Ω using Adam and project onto [0, 1] bound
7: end for

Selective forgetting attacks in SISA [4]. Here, we talk about our proposed selective forgetting
attacks in SISA [4]. Note that in SISA, the original training dataset D is randomly partitioned into M
disjoint shards (i.e., {Dm}Mm=1). For the m-th shard, we can train a shard model θ∗m by using Dm,
where θ∗m are the obtained model parameters. After that, the final prediction results are obtained from
the aggregation of the M submodels (i.e., {θ∗m}Mm=1). Upon receiving an unlearning request, the
model holder only needs to retrain the corresponding shard model. Following the same notations in
the main manuscript, we here use Dt = {(xp, yp)}Pp=1 ⊂ D to denote the targeted training samples,
which is accessible to the adversary. Based on the above, we change the constraint in Eqn. (2) of the
main manuscript into

θum = argmin
θ

∑
xp∈Dm,xp∈Dt

(1− ωp) ∗ ℓ(xp, yp; θ) +
∑

xp′∈Dm,xp′ ̸∈Dt

ℓ(xp′ , yp′ ; θ), (5)

where ωp ∈ {0, 1}, and ℓ is a training loss (e.g., cross-entropy). Note that ωp = 1 is equivalent to an
entire removal of xp from the training set. That is to say, its loss influence is zero since (1− ωp) = 0.
However, it is very difficult to solve the above formulated optimization problem due to the introduced
discrete indication parameters (i.e., {ωp}Pp=1) of the constraint in Eqn. (5). To address this challenge,
we propose to relax each discrete variable into a continuous one of range [0, 1], i.e., ωp ∈ [0, 1], and
then rewrite the loss in Eqn. (5) as

θum = argmin
θ

∑
xp∈Dm,xp∈Dt

1

2
(1− sgn(2 ∗ ωp − 1)) ∗ ℓ(xi, yi; θ) +

∑
xp′∈Dm,xp′ ̸∈Dt

ℓ(xp′ , yp′ ; θ),

(6)

where ωp is relaxed into a continuous one of range [0, 1], i.e., ωp ∈ [0, 1]. In the above, we rewrite
(1−ωp) as 1

2 (1− sgn(2∗ωp−1)). Note that if ωp ≥ 0.5, we will wholly delete sample xp, otherwise
not. Based on the above, we can approximate the objective in Eqn. (6) by the following one

θum = argmin
θ

∑
xp∈Dm,xp∈Dt

(1− 1

1 + exp(−φ(2 ∗ ωp − 1))
)

∗ ℓ(xi, yi; θ) +
∑

xp′∈Dm,xp′ ̸∈Dt

ℓ(xp′ , yp′ ; θ). (7)

3

Based on the fact that function h1(x) = 1
2 (1− sgn(x)) can be approximated by function h2(x) =

1− 1
1+exp(−φx) , we can obtain the above equation. The parameter φ in h1 represents the steepness of

the curve. Additionally, the continuous property of h1 allows us to solve the formulated optimization
based on the above objective in Eqn. (7). In Algorithm 2, we give the procedure for solving
the proposed static selective forgetting attack framework using SISA [4]. For simplicity, we use
ξ(Dm, Dt, {ωp}Pp=1; θ̃) to denote the model update in Eqn. (7).

Algorithm 2 Selective forgetting attacks in the SISA unlearning case
Input: Training dataset D, target data {xs}Ss=1, attack targeted label ȳs, targeted training data points
Dt, number of shards M , learning rate η, training epochs E, optimization steps O
Output: {Ωm}Mm=1

1: for m = 1, . . . , ⌈M/2⌉+ 1 shards do
2: Randomly initialize Ωm = {ωp}Pp=1

3: Initialize K surrogate models and pre-train θkm for ⌊kE/K⌋ epochs on shard data Dm

4: for o = 1, . . . , O optimization steps do
5: for k = 1, · · · ,K models do
6: Copy θ̃ = θkm
7: Optimize θ̃ = θ̃ − η∇θ̃ξ(Dm, Dt, {ωp}Pp=1; θ̃)

8: Compute adversarial loss Lk =
∑S

s=1 Ladv(xs, ȳs; θ̃)
9: end for

10: Average adversarial loss L =
∑K

k=1 Lk/K
11: Compute∇Ωm

L
12: Update Ωm using Adam and project onto [0, 1] bound
13: end for
14: end for

Selective forgetting attacks in the first-order unlearning case. Next, we introduce our proposed
malicious selective forgetting attacks against machine learning models in the first-order unlearning
case proposed in [25]. The first-order update strategy uses a first-order Taylor Series to change the
original model’s parameters to obtain the unlearned model [25]. For Dt = Z = {zp}Pp=1 ⊂ D, we
use D̃t = Z̃ = {z̃p}Pp=1 to denote its corresponding unlearned versions, where z̃p = (xp − ξp, yp)
and ξp is the unlearning modification for xp. Following [25], we calculate the change ∆(Z, Z̃) by
calculating all the gradients difference between Z and Z̃ as ∆(Z, Z̃) = (

∑
z̃p∈Z̃ ωp ∗ ∇θℓ(z̃p; θ

∗)−∑
zp∈Z ωp ∗∇θℓ(zp; θ

∗)), where ωp ∈ {0, 1} denotes whether zp should be completely erased. Then,
we can obtain the unlearned model as follows

θu ← θ∗ − τ [
P∑

p=1

ωp ∗ (∇θℓ(z̃p; θ
∗)−∇θℓ(zp; θ

∗))], (8)

where ωp ∈ {0, 1} denotes whether zp should be completely erased. Note that it is very difficult
to optimize the effective update requests due to the introduced discrete indication parameters (i.e.,
Ω = {ωp ∈ {0, 1}}Pp=1) of the constraint in Eqn. (2) of the main manuscript. To address the
aforementioned challenge, we propose to relax each discrete variable ωp into a continuous one of
range [0, 1], i.e., ωp ∈ [0, 1], and then approximate the original update objective for this first-order
strategy by the following one

θu ← θ∗ − τ [
P∑

p=1

(
1

1 + exp(−φ(2 ∗ ωp − 1))
) ∗ (∇θℓ(z̃p; θ

∗)−∇θℓ(zp; θ
∗))], (9)

where ℓ is a training loss, τ is a small unlearning rate, and ωp ∈ [0, 1]. Here, we rewrite ωp as
1
2 (1+ sgn(2 ∗ωp− 1)). Based on the fact that function h1(x) = 1

2 (1− sgn(x)) can be approximated
by function h2(x) = 1 − 1

1+exp(−φx) , we can obtain the above equation. The parameter φ in h2
represents the steepness of the curve. Additionally, the continuous property of h2 allows us to solve
the formulated optimization to perform selective forgetting attacks via the first-order unlearning
strategy in [25]. Note that from Section IV in [25], we can know that if Z̃ = ∅, the adversary has the

4

option to completely remove the targeted sample or retain it, based on whether ωp ≥ 0.5 or ωp < 0.5.
When Z̃ ̸= ∅, the adversary can intentionally and maliciously modify the targeted training samples
via partially unlearning some data information based on Eqn. (9). Algorithm 3 sketches the procedure
to solve the optimization of static selective forgetting attacks in the first-order case [25].

Algorithm 3 Selective forgetting attacks in the first-order unlearning case
Input: Well-trained model θ∗, training dataset D, target data {xs}Ss=1, attack targeted label ȳs,
targeted training data points Z = {zp}Pp=1 and Z̃ = {z̃p}Pp=1, unlearning rate τ , the number of
optimization steps O
Output: Ω = {ωp}Pp=1

1: Randomly initialize Ω = {ωp}Pp=1
2: for o = 1, . . . , O optimization steps do
3: Update the unlearned model θu with Ω, ∆(Z, Z̃), and τ in Eqn. (9)
4: Compute adversarial loss L =

∑S
s=1 Ladv(xs, ȳs; θ

u)
5: Compute∇ΩL
6: Update Ω using Adam and project onto [0, 1] bound
7: end for

5 Proof of Theorem 1

Definition 1 (Strongly convexity). A function ψ : Rd3 → Rd4 is said to be M -strongly convex
for some M ≥ 0 if for any z1 ∈ Rd3 , z2 ∈ Rd3 , and any q ∈ (0, 1), ψ(qz1 + (1 − q)z2) ≤
qψ(z1) + (1 − q)ψ(z1) − M

2 q(1 − q)||z1 − z2||
2
2. Note that if the above condition is satisfied for

M = 0, we refer to the function ψ as convex.
Definition 2 (Lipschitzness continuity). A general function ψ : Rd3 → Rd4 is L-globally Lipschitz
continuous if for all z1 ∈ Rd3 , z2 ∈ Rd3 , ||ψ(z1)− ψ(z2)|| ≤ L||z1 − z2||2.
Theorem 1. Let θ∗D = argminθ∈Θ ℓD(θ) for any given dataset D. Suppose that the loss function
ℓz is L-globally Lipschitz continuous and M -strongly convex for any z ∈ Z . For any integer N ,
dataset D of size N , and forget set Df , we can have that ||θ∗D − θ∗D\Df

||2 ≤ 2L
MN |Df |, where |Df |

represents the size of the forget set.

Proof. First, recall the definition of M -strong convexity: for any θ1, θ2 ∈ Θ, and any q ∈ (0, 1),

ℓ(qθ1 + (1− q)θ2) ≤ qℓ(θ1) + (1− q)ℓ(θ1)−
M

2
q(1− q)||θ1 − θ2||22. (10)

We use θ∗ to denote the minimizer of ℓ. Now fix some z ∈ Z . We have that for any q ∈ (0, 1),

ℓ(θ∗) ≤ ℓ(qθ + (1− q)θ∗) ≤ qℓ(θ) + (1− q)ℓ(θ∗)− M

2
q(1− q)||θ − θ∗||22, (11)

where the first inequality follows because θ∗ is the minimizer of ℓ, and the second is due to M -strong
convexity of ℓ. Based on the above equation, we can obtain the following

[ℓ(θ∗)− (1− q)ℓ(θ∗) + M

2
q(1− q)||θ − θ∗||22] ≤ qℓ(θ), (12)

=⇒ M

2
(1− q)||θ − θ∗||22 ≤ ℓ(θ)− ℓ(θ∗),

where q ∈ (0, 1). Then, we can have

sup
q∈(0,1)

M

2
(1− q)||θ − θ∗||22 ≤ ℓ(θ)− ℓ(θ∗), (13)

=⇒ M

2
||θ − θ∗||22 + ℓ(θ∗) ≤ ℓ(θ),

where θ∗ is the minimizer of ℓ. For the dataset D = {zi}Ni=1 that is of size N , we use Df = {z̃i}
|Df |
i=1

to denote the forget set, where Df ≥ 1. Next we discuss the case where |Df | = 1. We can easily see

5

that if z̃1 /∈ D, then the equation immediately follows. Below, we discuss the case where z̃1 ∈ D. In
this case, given D and Df , we can obtain the reminding dataset Dr = D \Df . Then we can derive
the following

ℓD(θ∗Dr
) =

N − 1

N
ℓDr

(θ∗Dr
) +

1

N
ℓz(θ

∗
Dr

) ≤ N − 1

N
ℓDr

(θ∗Dr
) +

1

N
ℓz(θ

∗
Dr

), (14)

where the above inequality is derived based on the optimality of θ∗Dr
for Dr = D \Df . Based on the

above, we can obtain the following
N − 1

N
ℓDr

(θ∗Dr
) +

1

N
ℓz(θ

∗
Dr

)

= ℓD(θ∗D) +
1

N
ℓz(θ

∗
Dr

)− 1

N
ℓz(θ

∗
D) (15)

≤ ℓD(θ∗D) +
L

N
||θ∗Dr

− θ∗D||2,

where Dr = D \Df . In the above, the inequality follows by L-Lipschitzness of ℓz . Note that ℓD is
M -strongly convex, based on the above, we can derive

ℓD(θ∗Dr
) ≥ ℓD(θ∗D) +

M

2
||θ∗D − θ∗Dr

||22. (16)

Combining Eqn. (15) and (16), we can complete the proof for the case when we want to delete
Df (that is of size 1) from dataset D. Next, we discuss the case where the size of Df = {z̃i}

|Df |
i=1

exceeds one (i.e., Df > 1). Here we use Dt
f = {z̃i}ti=1 to denote a subset of Df . When t = 1,

we in the above prove that ||θ∗D − θ∗D\Dt
f
||2 ≤ 2L

MN , where Dt
f = {z̃i}i=1. Then, we can obtain

||θ∗
D\Dt−1

f

− θ∗D\Dt
f
||2 ≤ 2L

MN , where Dt−1
f and Dt

f are adjacent datasets that differ by only one

sample. Based on the above, we have the following

||θ∗D − θ∗D\Df
||2 ≤

2L

MN
|Df |, (17)

where |Df | denotes the size of the forget set, and N is the size of the training dataset.

Therefore, we complete the proof.

6 Discussions on the Transition Functions

Note that in Section 3.2 of the main manuscript, we consider the modification step where ot corre-
sponds to the action “Modify” to talk about how to calculate the state transition function. Below, we
give the computation of the state transition function in other cases where we have the “Add” and
“Delete” update requests.

First, we consider the “Add” case, where the update instruction ot corresponds to the action “Add”.
In this case, the transition function can be derived as

T (st+1|st, at) = T (ut+1, θt+1|ut, θt, at)
= P (ut+1|ut, θt, at)Pr(θt+1 = g(ut, θt, at))

= P (ut+1|ut, θt, at)Pr(θt+1 = g′(ũt, θt)) = P (ut+1|ut, θt, at)Pr(θt+1 = RA(Dt−1,

θt, ũt)) = P (ut+1|ut, θt, at) = P (ut+1). (18)

Note that given the attack action at, we can obtain ũt = (ot, ∅, z̃newt = (znewt + at)).

Then, we present the derivation of the transition function for the “Delete”, where the update instruction
ot corresponds to the action “Delete” for the t-th time step. Here, we can calculate the transition
function as follows

T (st+1|st, at) = T (ut+1, θt+1|ut, θt, at)
= P (ut+1|ut, θt, at)Pr(θt+1 = g(ut, θt, at))

= P (ut+1|ut, θt, at)Pr(θt+1 = g′(ũt, θt)) = P (ut+1|ut, θt, at)Pr(θt+1 = RA(Dt−1,

θt, ũt)) = P (ut+1|ut, θt, at) = P (ut+1). (19)

Recall that given the attack action at, we can obtain ũt = (ot, z
tra
t , z̃newt = (ztrat + at)).

6

7 Algorithm for Sequential Selective Forgetting Attacks

Algorithm 4 Training adversarial policy
Input: Update sequence U , total attack times N , time step T , training episode E
Output: Adversarial policy Φadv

1: Initialize network parameters for policy Φadv

2: for e = 0, · · · , E episode do
3: attack_times = 0
4: for t = 0, . . . , T time steps do
5: ut = Ut = (ot, z

tra
t , znewt)

6: (pt, a
′
t) = Φadv(st)

7: if pt ≥ 0.5 and attack_times < N then
8: if ot == “Add” then
9: ũt = (ot, z

tra
t = ∅, z̃newt = znewt + a′t)

10: else if ot == “Modify” then
11: ũt = (ot, z

tra
t , z̃newt = znewt + a′t)

12: else
13: ũt = (õt = “Modify”, ztrat , z̃newt = ztrat + a′t)
14: end if
15: attack_times = attack_times+ 1
16: Perform ũt and receive reward rt and st+1

17: else
18: Perform ut and receive reward rt and st+1

19: end if
20: end for
21: Train policy Φadv and update network parameters
22: end for

Algorithm 4 describes the training procedure for the adversary policy. The adversary first initializes
the network parameters of this policy sampled from random distributions. During each step of an
episode, the adversary obtains an attack strategy (pt, a

′
t) from the adversarial policy. If pt ≥ 0.5, the

adversary designates step t as the critical point and introduces perturbations to mislead the model
owner into triggering action a′t and modifying the corresponding attacked update request. Otherwise,
the adversary does not attack the current time step and proceeds with the original update request.
The adversary then receives a reward and obtains the next state information from the environment.
Subsequently, these data are used to train the adversarial policy (e.g., using deep deterministic policy
gradient (DDPG) [18]) and update the network parameters.

8 Proof of Theorem 2

Theorem 2. Let Φ∗
M and Φ∗

M̂ be the optimal policies forM and M̂ respectively, with the same
initial state distribution µ0. We assume that the 1-Wasserstein distance between the estimated
distributions P̂ and the true distribution P satisfies W1

(
P̂ , P

)
≤ υ. Additionally, we assume the

loss function ℓ : S×Z → R exhibits Lipschitz continuity with respect to both s and z, with a constant
L1, and Lipschitz smoothness with respect to z, with a constant L2. Moreover, we assume the loss
function to possess strong convexity, strong smoothness, and twice continuous differentiability with
respect to s. Let JM(ΦM) be the cost in Eqn. 5. Then there exist two constants Ψ and Ω such that:∣∣JM (Φ∗

M)− JM
(
Φ∗

M̂

)∣∣ ≤ υΩ(L1(L2ζ + 2) + ΨL2ζ), (20)

where ζ is a constant related with updating the model.

Proof. We use W1

(
P̂ , P

)
to denote the 1-Wassertein distance to measure the distance between the

estimated distributions P̂ and the true distribution P . Then the transition distributions are T̂ and
T respectively. Let Ol be the expected return when Φ∗

M is applied to M̂ for the first l steps, then

7

switched toM for l to H − 1 [17]. That is,

Ol = E
at∼Φ∗

M(st)
t<l:st+1∼T̂(st,at)

[
H−1∑
t=0

R
(
st, at

)]
(21)

t ≥ l : st+1 ∼ T
(
st, at

)
. (22)

Based on the above definition of Ol, we have that JM (Φ∗
M) = O0 and JM̂ (Φ∗

M) = OH , which
implies that JM (Φ∗

M)−JM̂ (Φ∗
M) =

∑H−1
l=0 (Ol −Ol+1). In the above, without loss of generality,

we first assume the time step is H , and half of them are non-attack steps. Moreover, we adopt the
attack-pair setting, wherein two update requests are received simultaneously during each time step.
In this setting, the attack is conducted on the second request (k = 2), while the first request
(k = 1) is processed in the non-attack mode. Note that our result here can be easily generalized
to other settings. We denote the optimal value function for Φ∗

M and Φ∗
M̂ at time l as V ∗

M,l(s) and
V ∗
M̂,l

(s). We then assume V ∗
M,l(s) and V ∗

M̂,l
(s) are Lipschitz continuous with Ψ. Additionally,

we assume the loss function ℓ : S × Z → R exhibits Lipschitz continuity with respect to both
s and z, with a constant L1 and Lipschitz smoothness with respect to z, with a constant L2. We
also assume the loss function to possess strong convexity, strong smoothness, and twice continuous
differentiability with respect to s. We define ℓk(s) := Ezk∼P [ℓ (s, zk)] , ℓ

′
k(s) := Ezk∼P̂ [ℓ (s, zk)],

and G∗
M̂,l

(
sl, al

)
:= Esl+1∼T (sl,al)

[
V ∗
M,l

(
sl+1

)]
− Esl+1∼T̂ (sl,al)

[
V ∗
M,l

(
sl+1

)]
. Based on the

above, we can derive the following

JM (Φ∗
M)− JM̂ (Φ∗

M) =

H−1∑
l=0

(Ol −Ol+1) (23)

=

H−1∑
l=0

Esl,al∼T̂ ,Φ∗
M

(
Esl+1∼T (sl,al)

[
1

2

2∑
k=1

(
ℓk
(
sl+1

)
− ℓk

(
sl
))]

(24)

−Esl+1∼T̂ (sl,al)

[
1

2

2∑
k=1

ℓ′k
(
sl+1

)
− ℓ′k

(
sl
))])

+

H−1∑
l=0

Esl,al∼T̂ ,Φ∗
M

[
G∗

M̂,l

(
sl, al

)]
(25)

≤ HΨW1

(
T (· | s, a), T̂ (· | s, a)

)
+
H

2

2∑
k=1

∣∣∣Ezk∼P̂ ℓk (s, zk)− Ezk∼P ℓk (s, zk)
∣∣∣ (26)

+
H

2

2∑
k=1

∣∣∣Es′∼T (s,a),zk∼P [ℓk (s
′, zk)]− Es′∼T̂ (s,a),zk∼P̂ [ℓk (s

′, zk)]
∣∣∣ (27)

≤ HΨW1

(
T (· | s, a), T̂ (· | s, a)

)
+
H

2
L1υ +HL1W1

(
T (· | s, a), T̂ (· | s, a)

)
+
H

2
L1υ (28)

= H (Ψ + L1)W1

(
T (· | s, a), T̂ (· | s, a)

)
+HL1υ, (29)

where L1 is the Lipschitz continuity constant of the loss function ℓ. Similarly, we can get the bound
for JM̂

(
Φ∗

M̂

)
− JM

(
Φ∗

M̂

)
. Thus, we have the following∣∣JM (Φ∗

M)− JM
(
Φ∗

M̂

)∣∣ ≤ H (Ψ + L1)W1

(
T (· | s, a), T̂ (· | s, a)

)
+HL1υ. (30)

For the 1-Wassertein distance between the estimated distributions P̂ and the true distribution P , we
consider that W1

(
P̂ , P

)
belongs to the interval [0, υ]. Denoting the update rate as ζ, we can then

derive an upper bound for the 1-Wasserstein distance between T and T̂ [3, 17]. Specifically, the
1-Wasserstein distance between T (· | s, a) and T̂ (· | s, a) generated from the true and the estimated
environments, respectively, is bounded by ζL2υ, that is, W1

(
T (· | s, a), T̂ (· | s, a)

)
≤ 1

2ζL2υ.

Finally, by combining all the above, we have∣∣JM (Φ∗
M)− JM

(
Φ∗

M̂

)∣∣ ≤ υΩ(L1(L2ζ + 2) + ΨL2ζ). (31)
In the above, L2 denotes the Lipschitz smoothness constant of the loss function ℓ with respect to z,
L1 is the Lipschitz continuity constant of the loss function ℓ and Ω = 1

2H .

8

9 More Experimental Results

In this section, we first delve into further experimental details, providing a deeper understanding of
our research methodology. Then, we present additional experimental results for our proposed static
selective forgetting attacks. Next, we showcase additional experimental results pertaining to our
proposed sequential selective forgetting attacks.

Machine configuration. The experiments are implemented using the PyTorch [2] and run on a GPU
machine with Intel Xeon Gold 5218 2.30GHz CPUs and NVIDIA Quadro RTX 8000 GPUs.

Experimental setup and parameter settings for static forgetting attacks. In our experiments, we
evaluate the impact of static forgetting attacks on different datasets and models. Specifically, we
consider ResNet-18 [13], VGG-16 [22], and MobileNetV2 [21] on the CIFAR-10 [15] dataset and
a neural network with two fully connected layers on the Diabetes [1] dataset. Prior to the attacks,
we pre-train the models for 20 epochs with a learning rate of 0.01 and a batch size of 128 and then
perform selective forgetting attacks. The cross-entropy loss is used to optimize the models. In the
proposed optimization framework, we set the optimization steps to 30 and the steepness of the curve
to 100. We update the indication parameters of the training samples using the Adam optimizer
[14] with a learning rate of 0.01. For the first-order based [25] unlearning method, we initialize the
unlearning rate to 0.04; for the unrolling SGD [23] unlearning method, we initialize the fine-tuning
epoch to 1 and the learning rate to 0.01; for the amnesiac [11] unlearning method, we initialize the
fine-tuning epoch to 1 and the learning rate to 0.02; for SISA [4], we divide the training dataset into
5 disjoint shards, and we attack all the shards. Each shard is trained (retrained) for 20 epochs. We
use different random seeds for each experiment to sample the target class, the adversarial class, and
the test samples in the target class. We repeat the experiments 10 times and report the means and
standard errors of the results.

Experimental setup and parameter settings for sequential forgetting attacks. In experiments, we
consider a logistic regression model on the MNIST [7] dataset (digits 1 and 7), the Adult [8] dataset,
and the synthetic dataset. We pre-train the models for 200 epochs with a learning rate of 0.01 and
a batch size of 128. The target model is generated from static forgetting attacks in the untargeted
setting using the first-order based unlearning method with an unlearning rate of 0.008. In terms of
policy learning, we create a simulated environment using OpenAI Gym [5] and implement the deep
deterministic policy gradient (DDPG) algorithm using Stable Baseline3 [20]. For our experiments,
we set the length of pre-attack data (time step) to 300 and randomly sample update requests for add,
delete, and update. The DDPG algorithm is trained for 300 episodes, with a policy learning rate of
0.001, a batch size of 100, a discount factor of 0.995, and a normal action noise.

9.1 More Experimental Results for Static Selective Forgetting Attacks

Attack performance in the untargeted setting. Table 2 summarizes the attack success rate of mali-
cious selective forgetting attacks in the untargeted setting, where the adversary’s goal is to manipulate
the model into predicting any incorrect class. To calculate the adversarial loss in the untargeted setting,
we modify the loss function in Eqn. (4) to max(fys

D\Df
(xs; θ

u) − maxc̸=ys
f cD\Df

(xs; θ
u),−β),

where ys denotes the true label and f cD\Df
(·; θu) represents the logit output of the unlearned model

θu. This loss function ensures that the targeted test sample xs is predicted as a label different from
its true label ys. In this experiment, we adopt first-order, second-order, unrolling SGD, amnesiac,
and SISA unlearning methods. The experimental results demonstrate that our proposed methods
achieve high attack success rates across various datasets and unlearning procedures. For instance, our
proposed methods achieve attack success rates of 1.0 on both the Diabetes dataset and the CIFAR-10
dataset using first-order based, second-order based, unrolling SGD, and amnesiac unlearning methods.
Our proposed methods can assign importance scores to training samples based on the impact of
the untargeted loss and unlearn optimal samples, resulting in significant attack performance. In
contrast, the RandSearch baseline shows negligible effort to misclassify targeted test samples in an
untargeted manner. These experimental results also highlight the applicability and effectiveness of
our optimization framework to malicious selective forgetting attacks via various unlearning methods
to achieve untargeted attack goals.

Attack performance in the partial removal case against adversarially robust models. Here,
we investigate the attack performance of our proposed malicious selective forgetting attacks in the

9

Table 2: Attack success rate of our proposed static forgetting attacks in the untargeted setting.
Dataset Unlearning method RandSearch Ours

Diabetes

First-order 0.06± 0.03 1.00± 0.00
Second-order 0.06± 0.03 1.00± 0.00

Unrolling SGD 0.06± 0.06 1.00± 0.00
Amnesiac 0.04± 0.03 1.00± 0.00

SISA 0.33± 0.11 0.87± 0.05

CIFAR-10

First-order 0.28± 0.08 1.00± 0.00
Second-order 0.32± 0.10 1.00± 0.00

Unrolling SGD 0.22± 0.08 1.00± 0.00
Amnesiac 0.12± 0.04 1.00± 0.00

SISA 0.33± 0.10 0.75± 0.08

partial removal case, where the adversary aims to partially forget some data information on a batch
of targeted training samples and mislead the model into making wrong predictions on targeted test
samples. Specifically, we conduct experiments to verify the effectiveness of our proposed selective
forgetting attacks against adversarially robust models, which are trained in an adversarial way to
improve the models’ ability to resist being attacked. In experiments, we consider three widely adopted
adversarial training methods, FGSM (Fast Gradient Sign Method) [10], PGD (Projected Gradient
Descent) [19], and TRADES adversarial training [27]. We train the adversarially robust models
against L∞ norm-bounded perturbations of size 8/255. We perform selective forgetting attacks via
the first-order unlearning method with a modification bound of 8/255. As a baseline comparison, we
introduce uniform random noise within the same modification bound. In Figure 1, we present the
experimental results obtained on the MNIST dataset using the adversarially trained robust models.
The figure demonstrates that our proposed malicious selective forgetting attacks yield significantly
higher attack success rates compared to the baseline. For instance, when unlearning training samples
of 8%, our malicious selective forgetting attacks achieve an attack success rate of approximately 0.92
on the adversarially robust model with PGD adversarial training, whereas the baseline has an attack
success rate of 0. Similarly, we conduct experiments on the CIFAR-10 dataset, and the results are
illustrated in Figure 2. These results further demonstrate the high attack success rates achieved by our
selective forgetting attacks. From these experimental outcomes, we can conclude that our proposed
malicious selective forgetting attacks exhibit strong attacking performance in the partial removal case,
even against adversarially robust models.

2% 4% 6% 8% 10% 12%
Percentage of unlearning samples

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 s

uc
ce

ss
 r

at
e

First-order, ours
First-order, random noise

(a) PGD adversarial training

2% 4% 6% 8% 10% 12%
Percentage of unlearning samples

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 s

uc
ce

ss
 r

at
e

First-order, ours
First-order, random noise

(b) FGSM adversarial training

2% 4% 6% 8% 10% 12%
Percentage of unlearning samples

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 s

uc
ce

ss
 r

at
e First-order, ours

First-order, random noise

(c) TRADES adversarial training

Figure 1: Attack success rate of our proposed static forgetting attacks on the adversarially robust
models (which are trained using different adversarial training methods) on MNIST.

9.2 More Experimental Results for Sequential Selective Forgetting Attacks

Black-box experiments. In the black-box setting, we propose training a local substitute model
using a synthetic dataset. The adversary generates inputs from the synthetic dataset and observes
the corresponding outputs from the target black-box model [24]. By leveraging this information,
the adversary can gain insights into the vulnerabilities and decision boundary of the target black-
box model. The substitute model is then trained using pre-attack data to learn an optimal policy,
which is subsequently employed to attack the update requests on the target black-box model. In this
experiment, we adopt the MNIST (digits 1 and 7), Adult, and synthetic datasets. For each dataset,

10

1% 2% 4% 6% 8% 10%
Percentage of unlearning samples

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 s

uc
ce

ss
 r

at
e

First-order, ours
First-order, random noise

(a) PGD adversarial training

1% 2% 4% 6% 8% 10%
Percentage of unlearning samples

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 s

uc
ce

ss
 r

at
e First-order, ours

First-order, random noise

(b) FGSM adversarial training

1% 2% 4% 6% 8% 10%
Percentage of unlearning samples

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 s

uc
ce

ss
 r

at
e First-order, ours

First-order, random noise

(c) TRADES adversarial training

Figure 2: Attack success rate of our proposed static forgetting attacks on the adversarially robust
models (which are trained using different adversarial training methods) on CIFAR-10.

we train a substitute logistic regression model by creating a synthetic dataset and conducting 5000
queries on the black-box model. The resulting substitute model achieves a high equivalence of 99%
with the black-box model. Then, we train the optimal policy and employ it to attack the sequential
update requests, following a similar approach to the white-box setting. The experimental results are
shown in Figure 3. As we can see, the learned optimal policy from a substitute model also reduces the
Euclidean distance between the victim model and the target model over time steps on each adopted
dataset. In contrast, both the no attack baseline and the random attack baseline fail to approach the
target model. Therefore, our proposed malicious selective forgetting attacks are also applicable in a
sequential manner in the black-box setting and demonstrate efficient attack performance.

0 100 200 300
Time step

0.1

0.2

0.3

0.4

0.5

E
uc

lid
ea

n
di

st
an

ce

Our attack
Random attack
No attack

(a) MNIST

0 100 200 300
Time step

0.1

0.2

0.3

0.4

0.5

E
uc

lid
ea

n
di

st
an

ce

Our attack
Random attack
No attack

(b) Adult

0 100 200 300
Time step

0.1

0.2

0.3

0.4

0.5

E
uc

lid
ea

n
di

st
an

ce

Our attack
Random attack
No attack

(c) Synthetic

Figure 3: Euclidean distance of the victim model to the target model in the black-box setting.

References
[1] Behavioral risk factor surveillance system survey data, 2015.

[2] Pytorch: An imperative style, high-performance deep learning library, 2019.

[3] Kavosh Asadi, Dipendra Misra, and Michael Littman. Lipschitz continuity in model-based
reinforcement learning. In International Conference on Machine Learning, pages 264–273.
PMLR, 2018.

[4] Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin
Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In Proceedings
of the 42nd IEEE Symposium on Security and Privacy, May 2021.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym. OpenAI Technical Report, 2016.

[6] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 39–57. IEEE Computer Society, May 2017.

[7] Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[8] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

11

[9] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd innovations in theoretical computer science
conference, pages 214–226, 2012.

[10] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

[11] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 11516–11524, 2021.

[12] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpub-
lished manuscript, 40(7):1–9, 2010.

[16] Jeff Larson, Surya Mattu, Lauren Kirchner, and Julia Angwin. Compas dataset. 2017.

[17] Henger Li, Xiaolin Sun, and Zizhan Zheng. Learning to attack federated learning: A model-
based reinforcement learning attack framework. In Advances in Neural Information Processing
Systems, 2022.

[18] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning.
International Conference on Learning Representations, 2016.

[19] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

[20] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021.

[21] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 4510–4520, 2018.

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[23] Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling sgd:
Understanding factors influencing machine unlearning. In 2022 IEEE 7th European Symposium
on Security and Privacy (EuroS&P), pages 303–319. IEEE, 2022.

[24] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In USENIX security symposium, volume 16, pages
601–618, 2016.

[25] Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine un-
learning of features and labels. Network and Distributed System Security Symposium, 2023.

[26] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P Gummadi.
Fairness constraints: Mechanisms for fair classification. In Artificial intelligence and statistics,
pages 962–970. PMLR, 2017.

[27] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I.
Jordan. Theoretically principled trade-off between robustness and accuracy. In International
Conference on Machine Learning, 2019.

12

	Broad Impact
	Limitations and Future Work
	Experiments for Fairness-aware Selective Forgetting Attacks
	Algorithms for Static Selective Forgetting Attacks
	Proof of Theorem 1
	Discussions on the Transition Functions
	Algorithm for Sequential Selective Forgetting Attacks
	Proof of Theorem 2
	More Experimental Results
	More Experimental Results for Static Selective Forgetting Attacks
	More Experimental Results for Sequential Selective Forgetting Attacks

