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Abstract

We consider offline safe imitation learning (IL), where the agent aims to learn the
safe policy that mimics preferred behavior while avoiding non-preferred behavior
from non-preferred demonstrations and unlabeled demonstrations. This problem
setting corresponds to various real-world scenarios, where satisfying safety con-
straints is more important than maximizing the expected return. However, it is very
challenging to learn the policy to avoid constraint-violating (i.e. non-preferred)
behavior, as opposed to standard imitation learning which learns the policy to
mimic given demonstrations. In this paper, we present a hyperparameter-free
offline safe IL algorithm, SafeDICE, that learns safe policy by leveraging the
non-preferred demonstrations in the space of stationary distributions. Our algo-
rithm directly estimates the stationary distribution corrections of the policy that
imitate the demonstrations excluding the non-preferred behavior. In the experi-
ments, we demonstrate that our algorithm learns a more safe policy that satisfies the
cost constraint without degrading the reward performance, compared to baseline
algorithms.

1 Introduction

Reinforcement learning (RL) [28] aims to learn the optimal policy that maximizes the expected
cumulative rewards through interacting with the environment. Recently, RL has achieved remarkable
successes in various domains, but its application to real-world tasks is yet challenging mainly due
to the following two reasons: First, since the interaction with the environment is costly in most
real-world tasks, the policy should be learned solely from the pre-collected dataset (i.e. offline
learning). Second, reward annotation, which is essential for applying the RL algorithm, is a very
strong requirement that is difficult to obtain in real-world tasks.

Imitation learning (IL) [26, 1, 25] is a more realistic framework to deal with real-world tasks, where
the expert’s demonstrations are solely given without reward annotations. Standard IL aims to mimic
the expert’s demonstrations generated from the optimal policy in terms of expected return. However,
in most real-world tasks, additional constraints should be considered in addition to maximizing
the expected return such as the safe driving for autonomous driving and toxicity degree for the
conversational agent. Fortunately, non-preferred demonstrations that violate constraints are often
naturally collected. For example, black box data of an accident vehicle and toxic content reported
by chatbot users are separately collected as non-preferred demonstrations. However, most existing
studies have focused only on imitating expert (i.e. preferred) behavior, and a safe imitation learning
method that avoids non-preferred behavior has not yet been explored.

In this paper, we are particularly interested in solving safe imitation learning in an offline setting:
Given scarce but labeled non-preferred demonstrations, and abundant but unlabeled demonstrations
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Figure 1: Illustrative example of our problem setting and the position of work among the prior
methods and problem settings. First, prior offline imitation learning algorithms (DemoDICE [13],
DWBC [31]), which aim to imitate expert demonstrations, assume labeled preferred demonstrations
and unlabeled demonstrations. Second, preference-based policy learning (PPL) algorithms and
DExperts [19] require both labels of preferred and non-preferred demonstrations. Unlike the problem
settings of prior works, our work focuses on the problem of safe imitation learning assuming only the
labels of non-preferred demonstration that can deal with safety more importantly.

of both preferred and non-preferred behavior, we aim to learn a safe policy that follows the preferred
behavior while avoiding the non-preferred behavior (see Figure 1). This problem setting has been
mostly unexplored, and cannot be completely addressed by existing methods. One of the existing
applicable approaches is the preference-based policy learning algorithm [4, 35, 17], which optimizes
a policy based on preference rankings over demonstrations. This method can learn the policy to
prefer unlabeled demonstrations to non-preferred demonstrations, but it also prefers non-preferred
demonstrations mixed in the unlabeled demonstrations, which can lead to learning suboptimal policy.
One of the approaches effectively using the unlabeled dataset is DWBC [31], a weighted behavior
cloning based on a discriminator, which adopts the positive-unlabeled learning [9, 36, 30] for training
the discriminator. This method requires an additional cost of hyperparameter search for training
the discriminator, and its performance is hyperparameter sensitive. Another notable approach in the
natural language processing domains is DExperts [19], a decoding-time method, which combines
trained models with preferred and non-preferred demonstrations. This method is also hyperparameter
sensitive and prone to the degeneration issue that leads to abnormal behavior. Both DWBC and
DExperts, which require hyperparameter search, are unsuitable for real-world tasks where interaction
with the real environment is costly and risky.

We present an offline safe IL algorithm that learns safe policy by leveraging the non-preferred demon-
strations in the space of stationary distributions. Our algorithm, offline Safe imitation learning by
avoiding non-preferred demonstrations via DIstribution Correction Estimation (SafeDICE), directly
estimates the stationary distribution corrections of the policy that imitate the demonstrations excluding
the non-preferred behavior. SafeDICE essentially leverages the non-preferred demonstrations in the
space of stationary distributions, unlike existing algorithms that leverage it in the space of policy [19]
or the learning process of the discriminator [31]. We show that our algorithm can be reduced to
a single convex minimization problem without additional hyperparameter search, unlike existing
algorithms that are highly sensitive to the hyperparameter. In the experiments, we demonstrate
that our algorithm learns a more preferred (i.e. constraint-satisfying) policy compared to baseline
algorithms in constrained RL benchmarks including RWRL [8] and Safety Gym [24].

2 Preliminaries

2.1 Markov Decision Process (MDP)

We consider an environment modeled as a Markov Decision Process (MDP), defined by M =
⟨S,A, T,R, p0, γ⟩ [28], where S is the set of states, A is the set of actions, T : S × A → ∆(S) is
the transition probability, R : S × A → R is the reward function, p0 ∈ ∆(S) is the distribution of
the initial state, and γ ∈ [0, 1) is the discount factor. For the given policy π, its stationary distribution
dπ(s, a) is defined as follows:

dπ(s, a) := (1− γ)
∞∑
t=0

γt Pr(st = s, at = a)
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where s0 ∼ p0, at ∼ π(·|st), and st+1 ∼ T (·|st, at) for all timesteps t ≥ 0. For brevity, dπ will be
used to denote the stationary distribution dπ(s, a).

We consider the offline imitation learning setting, where the policy should be optimized from
solely a pre-collected dataset without reward annotation and any additional online environment
interaction. In our problem setting, preferred and non-preferred behaviors are defined by satisfying
or violating constraints. We denote the preferred policy by πP , the non-preferred policy by πN , and
the corresponding stationary distribution of πP and πN by dP and dN , respectively. We assume a
pre-collected dataset that consists of scarce but labeled dataset DN generated by the non-preferred
policy, and a abundant but unlabeled dataset DU generated by both preferred and non-preferred
policies. We denote the corresponding stationary distribution of DU by dU , which can be regarded
as convex combination of dP and dN with unknown ratio α (i.e. dU := (1− α)dP + αdN ). In this
setting, we aim to learn a safe policy from unlabeled demonstrations while avoiding non-preferred
demonstrations that are labeled as non-preferred behavior.

2.2 Preference-based Offline Imitation Learning

Imitation learning (IL) aims to imitate the behavior of expert policy solely from state-action demon-
strations without reward annotations. The standard IL is naturally formulated as minimizing the KL
divergence between stationary distributions of preferred policy (i.e. expert policy) and target policy
[14, 11]:

π∗ := argmin
π

DKL(d
π∥dP ). (1)

However, it requires a large amount of annotated preferred demonstrations, which may be a too strong
requirement for various real-world scenarios. Recent offline IL method [13] relaxes this requirement
for preferred demonstrations by leveraging the unlabeled dataset which may contain both preferred
and non-preferred demonstrations:

π∗ := argmin
π

DKL(d
π∥dP ) + αDKL(d

π∥dU ), (2)

where α ≥ 0 is a hyperparameter that controls the balance between minimizing the KL divergence
with dU and dP . This offline imitation learning method can learn the preferred policy from a large
number of unlabeled demonstrations with only a small amount of labeled preferred demonstrations.

In contrast to the mainstream of recent IL approaches focusing on mimicking expert (i.e. preferred)
behavior, avoiding dangerous (i.e. non-preferred) behavior is a more important problem in many
real-world tasks, which has been unexplored yet. In the same manner as Eq. (2), we can naively
consider the penalty for the non-preferred behavior by maximizing the KL divergence with dN :

π∗ := argmin
π

−DKL(d
π∥dN ) + αDKL(d

π∥dU ), (3)

where α ≥ 0 is a hyperparameter that controls the balance between minimizing the KL divergence
with dU and maximizing the KL divergence with dN . However, since the KL divergence has no
upper bound, optimizing Eq. (3) is very unstable and challenging, where the DKL(d

π∥dN ) can blow
up to infinity. Therefore, safe imitation learning while avoiding non-preferred behavior is not a
straightforward problem and has not yet been studied.

3 SafeDICE

In this section, we present offline Safe imitation learning by avoiding the non-preferred demonstrations
via DIstribution Correction Estimation (SafeDICE), an offline IL algorithm that can learn the safe
policy using labeled non-preferred demonstrations. SafeDICE optimizes the stationary distributions
of the target policy to match the stationary distribution of the preferred policy from the unlabeled
dataset by excluding non-preferred demonstrations.

3.1 Offline Safe Imitation Learning with Non-Preferred Demonstrations

Similar to standard IL approaches, the derivation of our algorithm starts from KL divergence mini-
mization between dπ and dP , which can be estimated by dU and dN as follows:

π∗ = argmin
π

DKL

(
dπ

∥∥∥∥ dU − αdN

1− α

)
, (4)
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where α is unknown ratio between the stationary distributions of preferred policy and non-preferred
policy (i.e. dU := (1 − α)dP + αdN ). Optimizing the Eq. (4) is sensitive to α, and selecting the
α with hyperparameter search is not suitable for real-world tasks where the interaction with the
real environment is very costly and risky. Therefore, it is not straightforward to learn the preferred
policy using non-preferred demonstrations with existing imitation learning algorithms. The main
contribution of our paper is to present an algorithm that theoretically determines α and learns the
preferred policy only with the labels of non-preferred demonstrations without any hyperparameter
search. In the following description, we first consider the α as a known ratio in our derivation, then
present the way to select the α while providing the theoretical guarantees on the error bound of
optimized stationary distribution with selected α. All the proofs can be found in Appendix A.

The main flow of our derivation follows prior DICE-based offline imitation learning methods [12, 13],
but it is clearly different from the existing methods that require hyperparameter search to deal with
unknown α. First, we consider a problem equivalent to Eq. (4) in terms of stationary distribution d:

max
d≥0

−DKL

(
d

∥∥∥∥ dU − αdN

1− α

)
(5)

s.t. (B∗d)(s) = (1− γ)p0(s) + γ(T∗d)(s) ∀s, (6)

where (B∗d)(s) :=
∑
a d(s, a) is the marginalization operator, and (T∗d)(s) :=∑

s̄,ā T (s|s̄, ā)d(s̄, ā) is the transposed Bellman operator. The Bellman flow constraint (6) en-
sures that d(s, a) is a valid stationary distribution of some policy, where d(s, a) can be interpreted as
a normalized occupancy measure of (s, a). Therefore, if we find optimal d∗(s, a) that satisfies Eq. (5)
and (6), then its corresponding policy can be easily obtained by π∗(a|s) = d∗(s,a)∑

a d
∗(s,a) .

The Lagrangian dual formulation of the above constrained optimization problem is

max
d≥0

min
ν

−DKL

(
d

∥∥∥∥ dU − αdN

1− α

)
+
∑
s

ν(s)
(
(1− γ)p0(s) + γ(T∗d)(s)− (B∗d)(s)

)
, (7)

where ν(s) are the Lagrange multipliers for the Bellman flow constraints (6). However, directly
optimizing the Eq. (7) is challenging in an offline manner, where further environment interactions are
not available. To obtain a tractable objective, we introduce the following derivations:

−DKL

(
d

∥∥∥∥ dU − αdN

1− α

)
+
∑
s

ν(s)
(
(1− γ)p0(s) + γ(T∗d)(s)− (B∗d)(s)

)
= (1− γ)Ep0 [ν(s)] + Ed

[
γ(T ν)(s, a)− ν(s)− log

(1− α)d(s, a)

dU (s, a)− αdN (s, a)

]
= (1− γ)Ep0 [ν(s)] + Ed

[
γ(T ν)(s, a)− ν(s)− log

d(s, a)

dU (s, a)︸ ︷︷ ︸
:=w(s,a)

+ log
dU (s, a)− αdN (s, a)

(1− α)dU (s, a)︸ ︷︷ ︸
:=r(s,a)

]

= (1− γ)Ep0 [ν(s)] + Ed
[
rα(s, a) + γ(T ν)(s, a)− ν(s)︸ ︷︷ ︸

:=Aν(s,a)

− logw(s, a)

]

= (1− γ)Ep0 [ν(s)] + EdU
[
w(s, a)

(
Aν(s, a)− logw(s, a)

)]
=: L(w, ν; rα),

where rα(s, a) corresponds to the preference-based reward function in the context of RL, which will
be trained by the pre-collected dataset.

In summary, our goal is reduced to solve the following maximin optimization:

max
w≥0

min
ν

L(w, ν; rα), (8)

where the optimal solution w∗ of Eq. (8) represents the stationary distribution correction of an optimal

policy π∗ (i.e. w∗(s, a) = dπ
∗
(s,a)

dU (s,a)
).
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3.2 Pretraining the Preference-based Reward Function rα(s, a)

To optimize the Eq. (8), we pretrain the discriminator to estimate the log ratio of dN (s, a) and
dU (s, a), which is required to estimate for the rα(s, a):

c∗ = argmax
c

EdN [log c(s, a)] + EdU [log(1− c(s, a))]. (9)

With the optimal discriminator c∗(s, a) = dN (s,a)
dU (s,a)+dN (s,a)

trained by Eq. (9), the preference-based
reward function rα(s, a) can also be obtained as:

rα(s, a) = log

(
1− (1 + α)c∗(s, a)

(1− α)(1− c∗(s, a))

)
. (10)

However, according to the value of α, the reward function rα(s, a) defined by Eq. (10) cannot
guarantee that the value inside the log function always becomes a positive. Therefore, finding the
optimal α through hyperparameter search is infeasible.

3.3 Reduction to the Single Min Optimization

Since the optimization Eq. (7) is a convex optimization, we can change the order of operator from
maximin optimization to minimax optimization [2]:

min
ν

max
w≥0

L(w, ν; r). (11)

Then, we can replace the inner maximization of Eq. (11) with a closed-form solution for w, which
can be easily obtained by exploiting the convexity.

Proposition 3.1. For any ν, the closed-form solution to the inner maximization of Eq. (11), i.e.
w∗
ν = argmaxw≥0 L(w, ν; r), is given by:

w∗
ν(s, a) = exp(Aν(s, a)− 1). (12)

By using the closed-form solution w∗
ν of Eq. (12), our derivation can be reduced to a single minimiza-

tion as follows:

min
ν

L(w∗
ν , ν; r) =(1− γ)Ep0 [ν(s)] + EdU

[
exp(Aν(s, a)− 1)

]
. (13)

Finally, by optimizing the single minimization problem of Eq. (13), we can obtain the optimal
stationary distribution correction w∗ which can easily extract the corresponding optimal policy π∗.
To extract a policy from the optimal stationary distribution correction w∗(s, a), we adopt weighted
behavior cloning on the offline dataset as follows:

min
π

− E(s,a)∼dπ∗ [log π(a|s)] = −E(s,a)∼dU [w
∗(s, a) log π(a|s)], (14)

where w∗(s, a) = dπ
∗
(s,a)

dU (s,a)
.

3.4 Hyperparameter α Selection

In the previous sections, we have derived our algorithm under the assumption that α is a known
ratio. The remaining question is how we select the suitable α without additional hyperparameter
search. Fortunately, in contrast to the existing methods [19, 31] that require the additional cost of
hyperparameter search, we can specify the α with providing the theoretical guarantees on the error
bound of the estimated stationary distribution.

Proposition 3.2. Suppose min(s,a)
dP (s,a)
dN (s,a)

≤ ϵ. If we obtain the estimated stationary distribution by
optimizing the Eq. (7) with α set to α̂ as follows:

α̂ = min
(s,a)

dU (s, a)

dN (s, a)
, (15)
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then the total variation distance of true and estimated stationary distribution of preferred policy is
bounded as follows:

DTV(d
P (s, a), d̂P (s, a)) ≤ ϵ

1 + ϵ
, (16)

where DTV is total variation distance, dP (s, a) is true stationary distribution of the preferred
policy and d̂P (s, a) is estimated stationary distribution which is defined by α̂ as d̂P (s, a) =
dU (s,a)−α̂dN (s,a)

1−α̂ . (Proof in Appendix A.)

Intuitively, since the behavior of the non-preferred and preferred policies are different, there must
exist state-action spaces that are rarely visited by the preferred policy but are frequently visited by the
non-preferred policy. Therefore ϵ may be a very small positive value, then the total variation distance
of the true and estimated stationary distribution is close to zero:

lim
ϵ→0

DTV(d
P (s, a), d̂P (s, a)) = 0. (17)

We also provide proof in Appendix A.3 that rα(s, a) of Eq. (10), defined by the α selected by Eq. (15),
is always well-defined with positive value inside the log-function in Eq. (10).

Finally, our algorithm optimizes the Eq. (7) with the α obtained by Eq. (15), where α is no longer an
unknown hyperparameter. In short, by leveraging the non-preferred demonstrations in the space of
stationary distributions, this problem can be resolved by solving a single convex minimization problem
for a specific α. This is in contrast to the existing methods, which directly leverage the non-preferred
demonstrations for training the policy [19] or discriminator [31] that require the additional cost
of hyperparameter search. The pseudocode for the whole process of SafeDICE can be found in
Appendix B.

4 Related Work

Stationary distribution correction estimation (DICE) Since the introduction of DICE for off-
policy evaluation in DualDICE [21], various DICE-family algorithms have been developed for off-
policy evaluation [33, 34, 32, 7]. In addition to these studies, two algorithms, AlgaeDICE [22] and
ValueDICE [14], have been proposed to address the challenges of off-policy RL and IL, respectively.
However, they may encounter issues with numerical instability in an offline setting due to the nested
min-max optimization and out-of-distribution action evaluation.

To overcome the issues of numerical instability in offline settings, recent DICE-based offline RL [15,
16] and IL algorithms [13, 20, 12] have adopted a strategy of directly optimizing stationary distribution
correction ratios, similar to the approach used in our work. Additionally, these offline IL algorithms
utilize unlabeled demonstrations in an effort to address the problem of distribution drift [25]. They
share a similarity with our algorithm in that they all aim to recover the expert’s behavior through
direct optimization of the stationary distribution correction ratios. However, these algorithms rely on
the availability of clean expert demonstrations, which can make them difficult to use in situations
where expert demonstrations are not available.

Policy Learning from Suboptimal Demonstrations Preference-based policy learning algorithms
use ranked suboptimal demonstrations to learn a reward function. Many of these algorithms, such as
T-REX [4], PrefPPO [18], and PEBBLE [17], utilize Bradley-Terry model [3] to model the reward
function. Once the reward function is learned, T-REX and PrefPPO use PPO [27] to train a policy,
while PEBBLE employs SAC [10]. While preference-based policy learning algorithms allow for
learning from unlabeled demonstrations and potentially disregarding the negative influence of non-
preferred demonstrations, it is important to note that they may also give preference to non-preferred
demonstrations mixed in the unlabeled demonstrations.

On the other hand, there are also many studies that utilize suboptimal demonstrations, even though
they are not preference-based policy learning algorithms. D-REX [5] and SSRR [6] both learn a
policy by using given suboptimal demonstrations, and then generate trajectories with varying levels
of optimality using this policy with injected noise. But, both algorithms require online sampling,
which is not feasible in offline settings. Wu et al. [29] proposed two algorithms that utilize positive-
unlabeled learning [9, 36, 30] to train a discriminator for constructing a reward function. However,
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both algorithms require ground-truth labels for uniformly sampled trajectories from unlabeled
demonstrations. DWBC [31] uses positive-unlabeled learning to train a discriminator, which is then
used to construct weights for weighted BC. DExperts [19], a decoding-time method in the natural
language processing domain, combines models for preferred and non-preferred demonstrations.
Unfortunately, both DWBC and DExperts may not be suitable for offline safe imitation learning tasks
due to their sensitivity to hyperparameter settings.

5 Experiments

In this section, we show the experimental results on various tasks from constrained RL benchmarks.
First, we conduct the evaluation on domains from Real-World RL (RWRL) suite [8], which pro-
vides challenges in real-world scenarios including safety constraints. Second, we also conduct
the experiment on continuous control tasks from Safety Gym environment [24], which provides
practical scenarios of safety issues. In order to show the motivation of our work and the limitation of
existing algorithms, we also provide qualitative results on tabular MDP environments. The illustrative
examples and qualitative analysis on tabular MDP environments can be found in Appendix G.

Baselines Since offline safe IL, which we consider in this paper, has not been explored yet much, it
lacks directly applicable baseline algorithms. Therefore, we consider the following four algorithms as
baselines. First, BC denotes simple behavior cloning on unlabeled demonstrations. Second, DWBC
denotes a variant of the original discriminator-weighted behavior cloning algorithm [31] that adopts
the positive-unlabeled learning for training the discriminator. To apply it to our setting, we modified
positive-unlabeled learning to negative-unlabeled learning. Third, PPL denotes a preference-based
policy learning algorithm that adopts the preference-based reward learning algorithm based on the
Bradley-Terry model [3] and weighted behavior cloning for policy learning. Lastly, we also compare
with DExperts [19], a decoding-time method that combines trained models with unlabeled and
non-preferred demonstrations. The details of baseline algorithms are provided in Appendix C.

Evaluation metrics We compare the performance of SafeDICE and baseline algorithms in terms of
task performance (i.e. expected return) and safety (i.e. cost constraints). We report the results with the
following metrics: 1) Normalized Return: evaluates the normalized task performance of the policy, 2)
Average Cost: evaluates the mean cost of the policy, 3) Cost-Violating Ratio: evaluates the ratio of
cost-violating behavior of the policy, 4) Conditional Value at Risk performance (CVaR) 10% Cost:
evaluates the mean cost of the worst 10% runs. We also provide CVaR k% Cost for various values
of k in Appendix E.1. Here, our main focus of the comparison is to evaluate the safety (Average
Cost, Cost-Violating Ratio, and CVaR 10% Cost), and we use the Normalized Return to examine the
degeneration issue, whether the agents fall into abnormal behaviors or not. All metrics are measured
as the average value of 500 trajectories generated from the learned policy, and we report the results
that are averaged over 5 runs.

5.1 Real-World Reinforcement Learning (RWRL) Suite

Now, we present the results of SafeDICE on a set of continuous control benchmarks from Real-World
RL (RWRL) suite [8], where the safety constraints are also provided by environments.

Task setup We conduct the experiments for three tasks from RWRL environment with safety
constraints: Cartpole, Walker, and Quadruped. Since there is no standard dataset for offline IL
considering the safety constraints, we collected data by training the online RL agents. To obtain an
preferred and non-preferred policy, we trained the SAC [10] in different two ways that solve the RL
problem with respect to reward penalized by the cost or not. Among these two policies which are both
optimal in terms of return maximization, we define the preferred policy as a policy that satisfies the
constraint (i.e. high-return-low-cost behavior) and the non-preferred policy as a policy that violates
the constraint (i.e. high-return-high-cost behavior). This experimental setting is representative of
many real-world scenarios, where the data is collected by high-return behavior without consideration
of the cost. Then, we generated scarce but labeled non-preferred demonstrations DN from the
non-preferred policy, and abundant but unlabeled demonstrations DU from both preferred and non-
preferred policies. We collected diverse trajectories by sampling with a stochastic policy from
randomly initialized initial states. Our goal is to recover the low-cost behavior by avoiding the
high-cost demonstrations while not hurting the high-return behavior of unlabeled demonstrations.
The details for the experimental settings can be found in Appendix D.
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Figure 2: Experimental results on RWRL control tasks. All results are averaged over 5 runs, and the
shaded area represents the standard error.

Main results Figure 2 summarizes the overall performance of SafeDICE and baseline algorithms
in RWRL tasks. The results show that SafeDICE significantly outperforms baseline algorithms in
all metrics related to safety across all domains (except for CVaR 10% Cost in the Cartpole domain),
while not hurting the performance of normalized return. In the case of the Cartpole domain, since
there are cases where the cost is unavoidably violated depending on the initial position of cart
that is initialized randomly, CVaR 10% Cost which measures the worst 10% performance shows
similar performance to other algorithms. We have also evaluated the CVaR k% Cost with various
k and are provided in Appendix E.1. PPL outperforms BC on Walker and Quadruped domains but
suffers from degeneration issues on the Cartpole domain. DWBC outperforms or matches the other
baseline algorithms on all domains, but performs poorly compared to SafeDICE despite the best
results obtained through the additional hyperparameter search. Similar to DWBC, DExperts shows
results that are sensitive to hyperparameters, and are vulnerable to degeneration issues depending on
hyperparameters. Additional experimental results according to various hyperparameters for DWBC
and DExperts are provided in Appendix E.2.

Results with varying amount ofDN To study the dependence on the amount of labeled non-preferred
demonstrations, we experiment with different numbers of labeled non-preferred demonstrations
|DN | on Walker domain. (The results are provided in Appendix E.3.) Figure 8 summarizes the
performance of SafeDICE and baseline algorithms with varying the number of labeled non-preferred
demonstrations (|DN | ∈ {50, 20, 10, 5}). In this experiment, it is expected that performance in terms
of safety gradually degrades as |DN | decreases. As shown in Figure 8, as |DN | decreases, SafeDICE
shows a greater difference from other baseline algorithms, significantly outperforming. PPL works
similarly to SafeDICE when |DN | is large but shows sensitive performance depending on |DN |.
DWBC is not sensitive to |DN |, but it performs poorly compared to SafeDICE. DExperts easily
suffers from degeneration issues when |DN | is small and performs poorly even when |DN | is large.
These results represent that our algorithm SafeDICE can be applied more effectively in real-world
scenarios where labeled non-preferred demonstrations are not provided in large quantities.

5.2 Safety Gym Environment

To show that our algorithm robustly works in various environments, we additionally conduct experi-
ments on Safety Gym[24], which is one of the representative benchmarks for safety in RL.

Task setup We conduct the experiments for Goal and Button tasks from the Safety Gym environment.
For each task, the agent aims to maximize task performance while satisfying the constraints by
avoiding the dangerous area (see Figure 3). Since there is no standard dataset for offline IL considering
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Goal Button

Figure 3: Tasks of Safety Gym environment. For each task, the agent (red robot) aims to achieve
the objective while satisfying the cost constraints. The agents receive costs when entering hazards
indicated by blue circles or when touching the obstacles. The objectives of each task are as follows:
Goal: Move to a series of green goal positions Button: Press a series of highlighted goal buttons.
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Figure 4: Experimental results on Safety Gym control tasks. All results are averaged over 5 runs, and
the shaded area represents the standard error.

the safety constraints, we collected data by training the online RL agents. To obtain non-preferred
and preferred policies, we trained PPO [27] and PPO-Lagrangian [24], which is combined with the
Lagrangian approach to PPO, respectively. Here, we define the non-preferred policy as a policy that
violates the constraint and the preferred policy as a policy that satisfies the constraint. Then, we
generated scarce but labeled non-preferred demonstrations DN from the PPO-Lagrangian policy,
and abundant but unlabeled demonstrations DU from both PPO and PPO-Lagrangian policies. We
collected diverse trajectories by sampling with a stochastic policy from randomly initialized initial
states. In this setting, our goal is to learn a safe policy (i.e. preferred policy) that satisfies the cost
constraints by avoiding the cost-violating (i.e. non-preferred) demonstrations. The details for the
experimental settings can be found in Appendix D.

Results Figure 4 summarizes the overall performance of SafeDICE and baseline algorithms in Safety
Gym tasks. The results show that SafeDICE significantly outperforms baseline algorithms in all
metrics related to safety across all domains. In the result of the Button task, SafeDICE shows low
performance in Return, but it is a desirable result because the non-preferred demonstrations were
collected from a safe policy with relatively low returns and very low costs (see Appendix D).

6 Conclusion

In this work, we presented SafeDICE, an offline safe IL algorithm, which can learn safe policy by
leveraging the non-preferred demonstrations in the space of stationary distributions. We formulated
this problem as a stationary distribution matching problem, which can be reduced to a single convex
minimization problem without additional hyperparameter search, unlike existing algorithms that
are highly sensitive to the hyperparameter. In the experiments, we demonstrated that SafeDICE
learns a more safe policy that satisfies the cost constraint in constrained RL benchmarks including
RWRL and Safety Gym. As the future work, we will consider an extension to the problem settings
where preference information is given as a real value rather than binary value. There are no potential
negative societal impacts of our work.
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A Theoretical Analysis

A.1 Closed-form solutions

Proposition 3.1. For any ν, the closed-form solution to the inner maximization of Eq. (11), i.e.
w∗
ν = argmaxw≥0 L(w, ν; r), is given by:

w∗
ν(s, a) = exp(Aν(s, a)− 1). (12)

Proof. For (s, a) with dU (s, a) > 0, we can compute the derivative ∂L(w,ν;r)
∂w(s,a) of L(w, ν; r) w.r.t.

w(s, a) as follows:

∂L(w, ν; r)
∂w(s, a)

=
∑
(s,a)

dU (s, a)

(
Aν(s, a)− logw(s, a) + w(s, a) · − 1

w(s, a)

)
= 0

⇔ Aν(s, a)− logw(s, a)− 1 = 0

⇔ logw(s, a) = Aν(s, a)− 1

⇔ w(s, a) = exp(Aν(s, a)− 1).

A.2 Theoretical analysis of error bound between dP and d̂P

Proposition 3.2. Suppose min(s,a)
dP (s,a)
dN (s,a)

≤ ϵ. If we obtain the estimated stationary distribution by
optimizing the Eq. (7) with α set to α̂ as follows:

α̂ = min
(s,a)

dU (s, a)

dN (s, a)
, (15)

then the total variation distance of true and estimated stationary distribution of preferred policy is
bounded as follows:

DTV(d
P (s, a), d̂P (s, a)) ≤ ϵ

1 + ϵ
, (16)

where DTV is total variation distance, dP (s, a) is true stationary distribution of the preferred
policy and d̂P (s, a) is estimated stationary distribution which is defined by α̂ as d̂P (s, a) =
dU (s,a)−α̂dN (s,a)

1−α̂ . (Proof in Appendix A.)

Proof. Let, α∗ is a true ratio between the stationary distribution of expert and anti-expert policy:

dU (s, a) = (1− α∗)dP (s, a) + α∗dN (s, a). (18)

Then, α̂ can be represented by using α∗ as follows:

α̂ = min
(s,a)

dU (s, a)

dN (s, a)
(19)

= min
(s,a)

(1− α∗)dP (s, a) + α∗dN (s, a)

dN (s, a)
(20)

= α∗ + (1− α∗)min
(s,a)

dP (s, a)

dN (s, a)
. (21)
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The estimated stationary distribution d̂P with α̂ can be derived as follows:

d̂P (s, a) =
dU (s, a)− α̂dN (s, a)

1− α̂
(22)

=
dU (s, a)− (α∗ + (1− α∗)min(s,a)

dP (s,a)
dN (s,a)

)dN (s, a)

1− α∗ + (1− α∗)min(s,a)
dP (s,a)
dN (s,a)

(23)

=
(1− α∗)dP (s, a)− (1− α∗)min(s,a)

dP (s,a)
dN (s,a)

dN (s, a)

(1− α∗) + (1− α∗)min(s,a)
dP (s,a)
dN (s,a)

(24)

=
dP (s, a)−min(s,a)

dP (s,a)
dN (s,a)

dN (s, a)

1 + min(s,a)
dP (s,a)
dN (s,a)

(25)

= dP (s, a)−
min(s,a)

dP (s,a)
dN (s,a)

(dP (s, a) + dN (s, a))

1 + min(s,a)
dP (s,a)
dN (s,a)

(26)

= dP (s, a)−
min(s,a)

dP (s,a)
dN (s,a)

(dP (s, a) + dN (s, a)) + (dP (s, a) + dN (s, a))− (dP (s, a) + dN (s, a))

1 + min(s,a)
dP (s,a)
dN (s,a)

(27)

= dP (s, a)−
(1 + min(s,a)

dP (s,a)
dN (s,a)

)(dP (s, a) + dN (s, a))− (dP (s, a) + dN (s, a))

1 + min(s,a)
dP (s,a)
dN (s,a)

(28)

= −dN (s, a) +
dP (s, a) + dN (s, a)

1 + min(s,a)
dP (s,a)
dN (s,a)

(29)

Finally, we can derive the total variation distance of the true and estimated stationary distribution of
the expert policy:

DTV(d
P , d̂P ) =

1

2
||dP − d̂P ||1 (30)

=
1

2

∑
(s,a)

∣∣∣∣dP (s, a) + dN (s, a)− dP (s, a) + dN (s, a)

1 + min(s,a)
dP (s,a)
dN (s,a)

∣∣∣∣ (31)

=
1

2

∑
(s,a)

(
dP (s, a) + dN (s, a)− dP (s, a) + dN (s, a)

1 + min(s,a)
dP (s,a)
dN (s,a)

)
(32)

=
1

2

( min(s,a)
dP (s,a)
dN (s,a)

1 + min(s,a)
dP (s,a)
dN (s,a)

) ∑
(s,a)

(dP (s, a) + dN (s, a)) (33)

=
min(s,a)

dP (s,a)
dN (s,a)

1 + min(s,a)
dP (s,a)
dN (s,a)

(34)

≤ ϵ

1 + ϵ
. (35)

A.3 Proof that the reward function is well defined with selected α

Proposition A.1. If we select α as α̂ = min(s,a)
dU (s,a)
dN (s,a)

, then the value inside the log function in
Eq. (10) is always non-negative:

1− (1 + α)c∗(s, a)

(1− α)(1− c∗(s, a))
≥ 0,
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where c∗(s, a) = dN (s,a)
dU (s,a)+dN (s,a)

.

Proof. From the α selection rule, α̂ ≤ dU (s,a)
dN (s,a)

for all (s, a). We can reformulate this inequation
as dU (s, a)− α̂dN (s, a) ≥ 0. Then the value inside the log function in Eq. (10) can be derived as
follows:

1− (1 + α)c∗(s, a)

(1− α)(1− c∗(s, a))
=

1− (1 + α) dN (s,a)
dU (s,a)+dN (s,a)

(1− α)(1− dN (s,a)
dU (s,a)+dN (s,a)

)

=
1− (1 + α) dN (s,a)

dU (s,a)+dN (s,a)

(1− α) dU (s,a)
dU (s,a)+dN (s,a)

=
dU (s, a) + dN (s, a)− (1 + α)dN (s, a)

(1− α)dU (s, a)

=
dU (s, a)− αdN (s, a)

(1− α)dU (s, a)

=
dU (s, a)− αdN (s, a)

(1− α)dU (s, a)

≥ 0

To avoid the case where this value is 0, in practical implementation, we select the α as α̂ =

min(s,a)
dU (s,a)
dN (s,a)

− ϵ, where the ϵ is a small positive value (ϵ = 10−5).
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B Pseudocode of SafeDICE

Algorithm 1 SafeDICE
Input: A labeled non-preferred demonstrations DN , an unlabeled demonstrations DU , a discrimina-
tor cθ with parameter θ, a neural network νϕ with parameter ϕ, a policy network πψ with parameter
ψ

1: Pretrain the discriminator by optimizing the Eq. (9):

θ∗ = argmax
θ

EdN [log cθ(s, a)] + EdU [log(1− cθ(s, a))]

2: Set the α as α̂ from Eq. (15) on DU :

α̂ = min
(s,a)∈DU

( 1

cθ∗(s, a)
− 1

)
3: for each iteration i do
4: Update νϕ by optimizing the Eq. (13):

min
ϕ

(1− γ)Ep0 [νϕ(s)] + EdU
[
exp(Aνϕ(s, a)− 1)

]
5: Update policy πψ by weighted behavior cloning of unlabeled demonstrations DU :

min
ψ

−E(s,a)∼DU [w∗(s, a) log πψ(a|s)]

6: end for
Output: πψ ≈ π∗

C Implementation Details of SafeDICE and Baseline Algorithms

In this section, we provide the implementation details of SafeDICE and baseline algorithms. Our
code is available on https://github.com/jys5609/SafeDICE.

C.1 SafeDICE

We implement SafeDICE based on the Real-World RL (RWRL) suite [8] and codebase of DemoDICE
[13], which is one of recent DICE-based offline IL algorithms. Similar to DemoDICE [13], due to
the instability issue of Eq. (13), we implemented an alternative objective that is more numerically
stable while having the same optimal solution:

min
ν

L(w∗
ν , ν; r) =(1− γ)Ep0 [ν(s)] + logEdU

[
exp (Aν(s, a))

]
. (36)

Then, we estimate Eq. (14) using self-normalized importance sampling [23] as follows:

min
π

−
E(s,a)∼DU [w̃ν̃∗(s, a) log πψ(a|s)]

E(s,a)∼DU [w̃ν̃∗(s, a)]
, (37)

where ν̃∗ is optimal solution of Eq. (36) and w̃ν̃∗ := exp(Aν̃∗(s, a)).

C.2 Discriminator-Weighted Behavior Cloning (DWBC)

We modified DWBC, which adopted positive-unlabeled learning, to be considered as a baseline
algorithm in our experimental settings. Similar to positive-unlabeled learning, we adopted negative-
unlabeled learning to the objective of discriminator learning as follows:

min
θ

η E(s,a)∼DN [− log dθ(s, a, log π)]

+E(s,a)∼DU [− log(1− dθ(s, a, log π))]

−η E(s,a)∼DN [− log(1− dθ(s, a, log π))], (38)
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where dθ is a discriminator with parameter θ, and η is a hyperparameter that corresponds to the
proportion of negative samples to unlabeled samples.

Based on the trained discriminator by Eq. (38), we adopted weighted behavior cloning on the
unlabeled demonstrations for the policy learning as follows:

min
ψ

−E(s,a)∼DU [(1− dθ(s, a)) log πψ(a|s)]. (39)

C.3 Preference-based Policy Learning (PPL)

We trained the reward function with the following loss function follows from the Bradley-Terry model
[3] which is commonly used in preference-based policy learning approaches [4, 18]:

min
θ

−
∑

(i,j)∈P

log
exp

(∑
(s,a)∈τi Rθ(s, a)

)
exp

(∑
(s,a)∈τi Rθ(s, a)

)
+ exp

(∑
(s,a)∈τj Rθ(s, a)

) , (40)

where τi and τj represent trajectories, and P = {(i, j) : τi ≻ τj}. In our problem setting, we adopt
this model assuming that unlabeled demonstrations are better than anti-expert demonstrations (i.e.
τi ≻ τj for all τi ∈ DU and τj ∈ DN ).

Based on the trained reward model by Eq. (40), we adopt weighted behavior cloning on the unlabeled
demonstrations for the policy learning as follows:

min
ψ

−E(s,a)∼DU [Rθ(s, a) log πψ(a|s)]. (41)

C.4 DExperts

Tabular MDPs For the tabular MDPs, we separately trained unlabeled policy πU and non-preferred
policy πN with a behavior cloning model using unlabeled demonstrations and non-preferred demon-
strations as follows:

min
πU

−E(s,a)∼DU [log πU (a|s)], (42)

min
πN

−E(s,a)∼DN [log πN (a|s)]. (43)

Then, as the final policy, the ensemble of πU and πN at decoding-time is used:

π(a|s) = πU (a|s)− απN (a|s), (44)

where α is a hyperparameter that controls the degree of leveraging the non-preferred policy.

Continuous MDPs For the continuous MDPs, it is not straightforward to apply DExperts as a
decoding-time method. Therefore, we implemented DExperts with the following objective that is
similarly considered at training time:

min
ψ

−E(s,a)∼DU [log πψ(a|s)] + αE(s,a)∼DN [log πψ(a|s)], (45)

where α is a hyperparameter that controls the degree of leveraging the non-preferred demonstrations.
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D Experimental Details

D.1 Experimental details for RWRL suite

Task specification We conduct experiments on the RWRL suite with safety constraints. Table 1
shows the tasks, safety constraint settings, and the information of dataset for each domain that we
used in our experiments.

Task specification Cartpole Walker Quadruped

name of the used task realworld_swingup realworld_walk realworld_walk
name of the used safety constraint slider_pos_constraint joint_velocity_constraint joint_velocity_constraint
safety coefficient 0.2 0.2 0.35

# of unlabeled demonstrations 5000 2000 2000
# of labeled non-preferred demonstrations 80 10 50
mean cost of preferred demonstrations 71.95 56.14 97.01
mean cost of non-preferred demonstrations 316.75 377.58 323.60
mean return of preferred demonstrations 516.28 939.74 991.11
mean return of non-preferred demonstrations 519.82 940.06 989.59

Table 1: Task specification of each domain used in our experimental results on RWRL environment.

Hyperparameter configurations For a fair comparison, we use the same architecture and learn-
ing rate to train the policy networks, discriminators, and reward models of each algorithm. Ta-
ble 2 summarizes the hyperparameter settings that we used in our experiments. The additional
hyperparameters η and α of DWBC and DExperts were selected by the best performance among
{0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8}.

Hyperparameters BC DWBC PPL DExperts SafeDICE

γ (discount factor) 0.99 0.99 0.99 0.99 0.99

learning rate (actor) 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

network size (actor) [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
learning rate (critic) - - - - 3× 10−4

network size (critic) - - - - [256, 256]
learning rate (discriminator / reward model) - 3× 10−4 3× 10−4 - 3× 10−4

network size (discriminator / reward model) - [256,256] [256,256] - [256, 256]
gradient penalty coefficient (discriminator) - 0.1 - - 0.1

batch size 512 512 512 512 512
# of training iterations 1,200,000 1,200,000 1,200,000 1,200,000 1,200,000

Table 2: Configurations of hyperparameters used in our experimental results on RWRL environment.
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D.2 Experimental details for Safety Gym

Task specification We conduct experiments on the Safety Gym with safety constraints. Table 3
shows the tasks, safety constraint settings, and the information of dataset for each domain that we
used in our experiments.

Task specification Goal Button

type of robot Point Point
level of difficulty 1 1

# of unlabeled demonstrations 2000 2000
# of labeled non-preferred demonstrations 50 50
mean cost of preferred demonstrations 13.798 12.085
mean cost of non-preferred demonstrations 107.977 166.099
mean return of preferred demonstrations 19.911 8.286
mean return of non-preferred demonstrations 20.018 21.933

Table 3: Task specification of each domain used in our experimental results on Safety Gym environ-
ment.

Hyperparameter configurations For a fair comparison, we use the same architecture and learn-
ing rate to train the policy networks, discriminators, and reward models of each algorithm. Ta-
ble 4 summarizes the hyperparameter settings that we used in our experiments. The additional
hyperparameters η and α of DWBC and DExperts were selected by the best performance among
{0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8}.

Hyperparameters BC DWBC PPL DExperts SafeDICE

γ (discount factor) 0.99 0.99 0.99 0.99 0.99

learning rate (actor) 3× 10−4 3× 10−4 3× 10−4 3× 10−4 3× 10−4

network size (actor) [256, 256] [256, 256] [256, 256] [256, 256] [256, 256]
learning rate (critic) - - - - 3× 10−4

network size (critic) - - - - [256, 256]
learning rate (discriminator / reward model) - 3× 10−4 3× 10−4 - 3× 10−4

network size (discriminator / reward model) - [256,256] [256,256] - [256, 256]
gradient penalty coefficient (discriminator) - 0.1 - - 0.1

batch size 512 512 512 512 512
# of training iterations 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000

Table 4: Configurations of hyperparameters used in our experimental results on Safety Gym environ-
ment.
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E Additional Results on RWRL suite

E.1 Results of CVaR k% Cost on RWRL suite
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Figure 5: Additional experimental results of Figure 2 on metrics of CVaR k% Cost .
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E.2 Results of DWBC and DExperts with various hyperparameters on RWRL Walker
domain

To study the hyperparameter sensitivity of DWBC and DExperts, we demonstrate the results of DWBC
and DExperts with various hyperparameter settings. For DWBC, we compare the performance of
DWBC with different values of η ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8} and DWBC without η
(i.e. naive discriminator training without negative-unlabeled learning). As shown in Figure 6, DWBC
shows very sensitive performance to hyperparameter η and unstable learning that sometimes even
suffers from degeneration issues.
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Figure 6: Additional experimental results of DWBC with various hyperparameters on Walker domain.

We also compare the performance of DExperts with different values of α ∈
{0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8}. Here, DExperts(α = 0) is reduced to the naive
behavior cloning model on unlabeled demonstrations. As shown in Figure 7, DExperts shows very
sensitive performance to hyperparameter α and is vulnerable to degeneration issues.
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Figure 7: Additional experimental results of DExperts with various hyperparameters on Walker
domain.
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E.3 Results with varying amount of labeled non-preferred demonstrations
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Figure 8: Experimental results on RWRL Walker domain with different numbers of labeled non-
preferred demonstrations (|DN | ∈ {50, 20, 10, 5}). All results are averaged over 5 runs, and the
shaded area represents the standard error.
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Figure 9: Additional experimental results of Figure 8 on metrics of CVaR k% Cost.
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E.4 Results of SafeDICE with various α

To show the importance of theoretically determining α, we show additional results of SafeDICE with
various values of α. According to the value of α, the reward function rα(s, a) defined by Eq. (10)
cannot guarantee that the value inside the log function always becomes a positive. Therefore, we
simply performed learning with a reward function that artificially clipped the value inside the log
function of Eq. (10). As shown in Figure 10 and 11, the results show various performance depending
on the value of α, and result with α value selected by Eq. (15) shows the best performance.
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Figure 10: Additional experimental results of SafeDICE with various hyperparameters on Walker
domain.
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Figure 11: Additional experimental results of SafeDICE with various hyperparameters on Walker
domain.

E.5 Impact of the stationary distribution constraint and labeled non-preferred
demonstrations

We conducted additional experiments to evaluate the impact of the stationary distribution constraint
and labeled non-preferred demonstrations. As can be seen from the Figure 12, the performance is
degraded both in the absence of stationary distribution constraints and in the case of not using labeled
non-preferred demonstrations.
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Figure 12: Experimental results on RWRL Walker domain without stationary distribution constraint
and labeled non-preferred demonstrations. All results are averaged over 5 independent runs, and the
shaded area represents the standard error.
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E.6 Results with various configurations of unlabeled demonstrations

In order to evaluate our algorithm with more various configurations of unlabeled demonstrations,
we also conducted additional experiments for various configurations of unlabeled demonstra-
tions consisting of different ratios of preferred and non-preferred demonstrations ((DU

P , D
U
N ) ∈

{(250, 1000), (500, 1000), (1000, 500), (1000, 250)}, where |DU
P | and |DU

N | denote the number of
preferred and non-preferred demonstrations in DU , respectively). As can be seen from the Figure 13,
the results show that SafeDICE outperforms baselines in all settings with various configurations
of unlabeled demonstrations. These results show that SafeDICE can be applied more effectively
in various real-world scenarios regardless of the preferred and non-preferred ratio of unlabeled
demonstrations.
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Figure 13: Experimental results on RWRL Walker domain with different numbers of pre-
ferred and non-preferred demonstrations in unlabeled demonstrations DU . |DU

P | and |DU
N |

denote the number of preferred and non-preferred demonstrations in DU ((DU
P , D

U
N ) ∈

{(250, 1000), (500, 1000), (1000, 500), (1000, 250)}). All results are averaged over 5 independent
runs, and the shaded area represents the standard error.
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F Comparison with constrained RL algorithm

To compare with the safe RL algorithm as an oracle agent, we conducted additional experiments for
an offline-constrained RL method. We run COptiDICE [16], the state-of-the-art offline constrained
RL algorithm, using the datasets that are augmented with additional (ground-truth) reward and
cost annotations. Table 5-9 summarize overall performance of SafeDICE and baseline algorithms
including COptiDICE. The results show that SafeDICE is competitive with (or even outperforms in
some domains) the constrained offline RL algorithm COptiDICE, even though SafeDICE uses only a
much smaller amount of annotation information.

F.1 Experimental results on RWRL control tasks

CARTPOLE Normalized Return Average Cost Cost Violation CVaR 10% Cost
BC 100.24 ± 0.40 184.44 ± 0.94 0.48 ± 0.00 392.75 ± 2.72

DWBC 99.78 ± 0.55 189.97 ± 3.21 0.47 ± 0.00 408.71 ± 4.01
PPL 83.70 ± 0.87 229.80 ± 1.64 0.48 ± 0.01 440.68 ± 3.49

DExperts 100.28 ± 0.38 186.15 ± 2.29 0.48 ± 0.01 397.05 ± 3.11
SafeDICE 99.91 ± 0.60 154.88 ± 1.79 0.34 ± 0.00 404.22 ± 1.56

COptiDICE 107.95 ± 2.10 97.59 ± 7.21 0.06 ± 0.01 183.63 ± 6.18

Table 5: Experimental results on Cartpole domain. All results indicate averages and standard errors
over 5 independent runs.

WALKER Normalized Return Average Cost Cost Violation CVaR 10% Cost
BC 98.41 ± 0.11 152.25 ± 5.33 0.22 ± 0.01 531.07 ± 7.53

DWBC 98.99 ± 0.10 105.63 ± 3.85 0.11 ± 0.01 378.01 ± 20.88
PPL 99.02 ± 0.10 128.46 ± 4.84 0.17 ± 0.01 478.75 ± 12.53

DExperts 95.21 ± 0.75 173.20 ± 11.22 0.27 ± 0.03 518.38 ± 5.25
SafeDICE 99.67 ± 0.13 68.90 ± 0.83 0.00 ± 0.00 124.54 ± 2.56

COptiDICE 98.07 ± 0.34 77.86 ± 2.14 0.01 ± 0.00 159.91 ± 8.90

Table 6: Experimental results on Walker domain. All results indicate averages and standard errors
over 5 independent runs.

QUADRUPED Normalized Return Average Cost Cost Violation CVaR 10% Cost
BC 100.19 ± 0.08 178.10 ± 5.20 0.38 ± 0.02 328.10 ± 1.83

DWBC 99.87 ± 0.16 167.15 ± 3.32 0.34 ± 0.02 316.86 ± 1.74
PPL 99.87 ± 0.09 169.93 ± 5.06 0.35 ± 0.03 319.77 ± 1.70

DExperts 97.05 ± 2.62 178.75 ± 4.78 0.38 ± 0.03 317.55 ± 4.40
SafeDICE 99.68 ± 0.25 148.21 ± 2.84 0.24 ± 0.01 308.71 ± 2.90

COptiDICE 87.37 ± 3.19 130.21 ± 5.20 0.16 ± 0.03 263.41 ± 17.00

Table 7: Experimental results on Quadruped domain. All results indicate averages and standard errors
over 5 independent runs.
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F.2 Experimental results on Safety Gym control tasks

GOAL Normalized Return Average Cost Cost Violation CVaR 10% Cost
BC 94.08 ± 0.60 51.47 ± 1.49 0.38 ± 0.02 109.66 ± 1.63

DWBC 93.93 ± 0.53 47.96 ± 1.77 0.31 ± 0.02 108.79 ± 2.12
PPL 94.43 ± 0.66 52.31 ± 1.52 0.37 ± 0.02 111.41 ± 2.37

DExperts 87.76 ± 4.41 50.82 ± 1.55 0.36 ± 0.02 112.62 ± 1.54
SafeDICE 92.04 ± 0.44 39.49 ± 0.94 0.21 ± 0.02 93.35 ± 1.45

COptiDICE 92.98 ± 1.13 48.79 ± 0.80 0.32 ± 0.01 107.25 ± 0.78

Table 8: Experimental results on Goal task. All results indicate averages and standard errors over 5
independent runs.

BUTTON Normalized Return Average Cost Cost Violation CVaR 10% Cost
BC 88.64 ± 1.08 98.18 ± 2.19 0.49 ± 0.01 220.87 ± 3.48

DWBC 85.53 ± 0.80 96.31 ± 2.38 0.47 ± 0.02 225.49 ± 3.52
PPL 86.76 ± 1.06 99.97 ± 2.19 0.50 ± 0.02 229.46 ± 3.30

DExperts 86.28 ± 1.35 97.30 ± 1.70 0.49 ± 0.01 225.93 ± 5.34
SafeDICE 71.48 ± 1.33 70.67 ± 1.61 0.30 ± 0.01 185.64 ± 1.54

COptiDICE 94.09 ± 1.68 111.10 ± 3.53 0.58 ± 0.02 238.46 ± 3.44

Table 9: Experimental results on Button task. All results indicate averages and standard errors over 5
independent runs.
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G Tabular MDPs Results

In order to show the motivation of the paper and the limitation of existing algorithms through
illustrative examples, we conducted the experiment in tabular MDPs, which extends the Four Rooms
environment [28, 22].

Unlabeled (𝑫𝑼) Preferred (𝟏 − 𝜶) Non-preferred (𝜶)

= +

Non-preferred (𝑫𝑵)

Figure 14: Illustrative examples of experimental settings on Six Rooms environment. We assume
the pre-collected dataset which consists of scarce but labeled non-preferred demonstrations DN , and
abundant but unlabeled demonstrations DU from both preferred and non-preferred policies.

SafeDICE

DWBC (𝜼=0.1) DWBC (𝜼=0.2) DWBC (𝜼=0.4) DWBC (𝜼=0.6) DWBC (𝜼=0.8)

BC PPL

DExperts (𝜶=0.1) DExperts (𝜶=0.2) DExperts (𝜶=0.4) DExperts (𝜶=0.6) DExperts (𝜶=0.8)

Figure 15: Experimental results on Six Room environment. We demonstrate the qualitative results of
each algorithm learned using the dataset given in Figure 14. For DWBC and DExperts that require
additional hyperparameter search, we show the results with various hyperparameter settings. η and α
represent hyperparameters that control the degree of leveraging the non-preferred demonstrations of
DWBC and DExperts, respectively.

Task setup We consider the Six Rooms environment, a variant of the Four Rooms environment [28,
22], in which an agent aims to navigate to a goal location within a gridworld. Figure 14 demonstrates
our experimental settings on the Six Rooms environment. The orange and green squares denote
the initial state and goal state, respectively. The arrows for each action at the square represent
the policy, where the opacity of the arrow is determined by the probability π(a|s). The opacity
of each square represents the state marginals of each stationary distribution. In order to compose
the task naturally, we assume that the preferred and non-preferred policies have both similar and
different behaviors in some state-action spaces. We define the policy that reaches the goal state
from the initial state through the downward direction as an non-preferred policy, which represents
constraint-violating behavior, and the policy that reaches the goal state through the right direction as
an preferred policy. In this task, the agent aims to learn the policy that recovers the preferred policy
from unlabeled demonstrations while avoiding the constraint-violating behavior using labeled non-
preferred demonstrations. Figure 14 shows a given dataset to the agent for learning, which consists of
scarce but labeled non-preferred demonstrations DN and abundant but unlabeled demonstrations
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DU from both preferred and non-preferred policy. The details for the experimental settings can be
found in Appendix D.

Results Figure 15 summarizes the qualitative results of SafeDICE and baseline algorithms on Six
Rooms environment. Naive BC on unlabeled demonstrations follows both preferred and non-preferred
behavior since it does not consider avoiding the non-preferred demonstrations. On the other hand,
PPL and SafeDICE show safe behaviors in which non-preferred demonstrations are completely
avoided while following preferred demonstrations. For DWBC and DExperts that require additional
hyperparameter search, we show the behaviors of learned policies with different hyperparameter
settings. Among various hyperparameter settings, there are cases where an agent learns a policy
close to an preferred behavior at a specific hyperparameter. However, the results show that both
DWBC and DExperts are hyperparameter sensitive, which is unsuitable for real-world tasks where
the deployment is costly or risky. In addition, DExperts not only have cost-violating behaviors
but also cause degeneration issues that fall into abnormal behaviors that are completely different
from given demonstrations. To show that SafeDICE robustly works in various problem settings, we
also provide additional results including cases where the distributions of labeled and unlabeled non-
preferred demonstrations are dissimilar (see Appendix G.1), and more complex environments (see
Appendix G.2). As shown in Appendix G.1, SafeDICE learns a safe policy in which non-preferred
behaviors are completely avoided while following preferred behavior, even when the distributions of
labeled and unlabeled non-preferred demonstrations are dissimilar.
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G.1 Experimental results with the dissimilar distribution of labeled and unlabeled
non-preferred demonstrations

To show that SafeDICE works robustly, we conduct the experiment considering a problem setting
more similar to real-world tasks, where the distributions of unlabeled and labeled non-preferred
demonstrations are dissimilar. In this experimental setting, we define the non-preferred policy is a
multimodal policy that consists of a mixture of two different policies πA1 and πA2 . We assume that
non-preferred demonstrations of labeled and unlabeled are sampled from policies πA1 and πA2 with
different ratios. As shown in Figure 16, baseline algorithms fail to completely recover the preferred
behavior or follow the non-preferred behavior. On the other hand, SafeDICE shows safe behavior
in which non-preferred behaviors are completely avoided while following preferred behavior, even
when the distributions of labeled and unlabeled non-preferred demonstrations are dissimilar.

Unlabeled (𝑫𝑼) Preferred (𝟏 − 𝜶) Non-preferred (𝜶)

= +

Non-preferred (𝑫𝑵)

True preferred (𝝅𝑷 ) True non- preferred (𝝅𝑵𝟏) True non-preferred (𝝅𝑵𝟐)

Figure 16: Illustrative examples of additional experimental settings on the tabular environment. We
assume the pre-collected dataset which consists of scarce but labeled non-preferred demonstrations
DN and abundant but unlabeled demonstrations DU from both preferred and non-preferred policies.
In this experiment, we consider a more challenging problem setting where the distributions of labeled
and unlabeled non-preferred demonstrations are dissimilar.

SafeDICE

DWBC (𝜼=0.1) DWBC (𝜼=0.2) DWBC (𝜼=0.4) DWBC (𝜼=0.6) DWBC (𝜼=0.8)

BC PPL

DExperts (𝜶=0.1) DExperts (𝜶=0.2) DExperts (𝜶=0.4) DExperts (𝜶=0.6) DExperts (𝜶=0.8)

Figure 17: Experimental results on the tabular environment. We demonstrate the qualitative results of
each algorithm learned using the dataset given in Figure 16.
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G.2 Additional results for various Tabular MDPs

Unlabeled (𝑫𝑼) Preferred (𝟏 − 𝜶) Non-preferred (𝜶)

= +

Non-preferred (𝑫𝑵)

Figure 18: Illustrative examples of additional experimental settings on the tabular environment. We
assume the pre-collected dataset which consists of scarce but labeled non-preferred demonstrations
DN and abundant but unlabeled demonstrations DU from both preferred and non-preferred policies.

SafeDICE

DWBC (𝜼=0.1) DWBC (𝜼=0.2) DWBC (𝜼=0.4) DWBC (𝜼=0.6) DWBC (𝜼=0.8)

BC PPL

DExperts (𝜶=0.1) DExperts (𝜶=0.2) DExperts (𝜶=0.4) DExperts (𝜶=0.6) DExperts (𝜶=0.8)

Figure 19: Experimental results on the tabular environment. We demonstrate the qualitative results of
each algorithm learned using the dataset given in Figure 18. For DWBC and DExperts that require
additional hyperparameter search, we show the results with various hyperparameter settings. η and α
represent hyperparameters that control the degree of leveraging the non-preferred demonstrations of
DWBC and DExperts, respectively.
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Unlabeled (𝑫𝑼) Preferred (𝟏 − 𝜶) Non-preferred (𝜶)

= +

Non-preferred (𝑫𝑵)

Figure 20: Illustrative examples of additional experimental settings on the tabular environment. We
assume the pre-collected dataset which consists of scarce but labeled non-preferred demonstrations
DN and abundant but unlabeled demonstrations DU from both preferred and non-preferred policies.

SafeDICE

DWBC (𝜼=0.1) DWBC (𝜼=0.2) DWBC (𝜼=0.4) DWBC (𝜼=0.6) DWBC (𝜼=0.8)

BC PPL

DExperts (𝜶=0.1) DExperts (𝜶=0.2) DExperts (𝜶=0.4) DExperts (𝜶=0.6) DExperts (𝜶=0.8)

Figure 21: Experimental results on the tabular environment. We demonstrate the qualitative results of
each algorithm learned using the dataset given in Figure 20. For DWBC and DExperts that require
additional hyperparameter search, we show the results with various hyperparameter settings. η and α
represent hyperparameters that control the degree of leveraging the non-preferred demonstrations of
DWBC and DExperts, respectively.
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