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Abstract

Matrix factorization (MF) mechanisms for differential privacy (DP) have substan-
tially improved the state-of-the-art in privacy-utility-computation tradeoffs for ML
applications in a variety of scenarios, but in both the centralized and federated
settings there remain instances where either MF cannot be easily applied, or other
algorithms provide better tradeoffs (typically, as ε becomes small). In this work,
we show how MF can subsume prior state-of-the-art algorithms in both federated
and centralized training settings, across all privacy budgets. The key technique
throughout is the construction of MF mechanisms with banded matrices (lower-
triangular matrices with at most b̂ nonzero bands including the main diagonal). For
cross-device federated learning (FL), this enables multiple-participations with a
relaxed device participation schema compatible with practical FL infrastructure
(as demonstrated by a production deployment). In the centralized setting, we
prove that banded matrices enjoy the same privacy amplification results as the
ubiquitous DP-SGD algorithm, but can provide strictly better performance in most
scenarios—this lets us always at least match DP-SGD, and often outperform it.

1 Introduction

We consider machine learning (ML) with DP in the centralized (datacenter) setting and the cross-
device FL setting, extending and improving matrix factorization (MF) mechanisms1 to advance the
state-of-the-art in both. Given bounded-sensitivity batch gradients xi ∈ Rd for i ∈ [n] steps, the
MF-DP-FTRL algorithm uses a noise generation matrix C−1 ∈ Rn×n to return DP gradient estimates
x̂i = xi + [C−1z][i,∶] where z ∈ Rn×d has IID entries N (0, σ2) for suitable σ > 0. The noise
correlation induced by C−1 is key to the success of MF-DP-FTRL. Alg. 1 and Sec. 2 provide details
and intuition, and Table 1 in App. A summarizes notation and symbols.

1We use matrix factorization for the algorithmic design of DP mechanisms, and then use these mechanisms
in general-purpose gradient-based private optimization algorithms. This use of matrix factorization is unrelated
to machine learning settings such as collaborative filtering or recommender systems where the ML problem
itself involves matrix factorization [37, 41, 51].
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Figure 1: In the centralized setting, our BANDMF mechanism consistently performs at least as
well as the best prior methods. LEFT, (A): At ε ≥ 0.5, our BANDMF mechanism offers consistent
utility benefits of around 1 − 4 percentage points over either DP-SGD [1] or MULTI-EPOCH MF [15].
RIGHT, (B): BANDMF (bands b̂ = 9,18,32, and 64 for ε = 1−8 respectively) significantly outperform
both (unamplified) MULTI-EPOCH MF and amplified DP-SGD.

In datacenter applications, precise control of the sampling/shuffling of training data is possible, and
so DP-SGD with privacy amplification [1] is one of the most popular ways to train machine learning
models with formal privacy guarantees. However, Choquette-Choo et al. [15] recently demonstrated
that a multi-epoch extension of the MF-DP-FTRL algorithm can outperform amplified DP-SGD in some
settings, depending on the privacy and computational budget (typically larger budgets above ε ≈ 2
and a small number of training epochs). This leaves the state-of-the-art for centralized DP training in
the unsatisfactory state where one must try both algorithms to be assured of the best performance.

In cross-device federated learning, devices choose when they are available to participate in training,
and so precise sampling and shuffling is generally not possible (see Sec. 3 for more details). Motivated
by these limitations which make amplified DP-SGD infeasible, Kairouz et al. [35] developed the (tree-
aggregation-based) DP-FTRL algorithm. Their DP-FTRL does not rely on (or benefit from) privacy
amplification and instead adds carefully correlated noise to the gradients to boost utility. Denisov
et al. [17] proposed MF-DP-FTRL, replacing the tree-aggregation scheme of Kairouz et al. [35] with
a general matrix-factorization mechanism. By optimizing over this space to find mechanisms with
optimal error, substantial performance improvements were possible. However, the work of Denisov
et al. [17] applies only to the single participation (single epoch) setting. Hence, for cross-device FL
the state-of-the-art also requires considering multiple algorithms: tree-aggregation-based DP-FTRL
when devices may participate more than one time, or MF-DP-FTRL when devices participate only
once. Importantly, the extension of MF-DP-FTRL to multiple epochs of Choquette-Choo et al. [15]
only applies in the centralized setting, as it again requires precise control of the participation pattern.

In this work, we address the limitations of MF-DP-FTRL (MF for short) noted above, and show that it
can, in fact, achieve across-the-board state-of-the-art performance in both settings across all ε. To
accomplish this, we define a family of banded MF mechanisms, shown in Fig. 4 (c.f. Fig. 8 of App. D
for visualizations of other factorization structures). We summarize our main contributions below.

Contributions for cross-device FL Here, the (k, b)-participation schema of Choquette-Choo et al.
[15] cannot be enforced. We propose a strict generalization, b-min-sep-participation, which can be
practically enforced by FL infrastructure. We show how to efficiently and exactly bound the sensitivity
for banded matrices in Thm. 2, allowing formal DP guarantees and the numerical optimization of
optimal mechanisms (Sec. 4). These innovations lead to significant privacy-utility benefits in a
production deployment (Fig. 6 of Sec. 6). Our work also generalizes the sensitivity calculations of
Choquette-Choo et al. [15] to provide a general upper-bound on b-min-sep-participation sensitivity
(Thm. 3), which allows the matrices of Choquette-Choo et al. [15] to be used in the FL setting, as
well as removing the need to exactly bound b before training (see Sec. 6 and App. K).

Contributions for centralized training The existing privacy amplification analysis of DP-SGD
does not allow for the correlated noise that is applied in MF-DP-FTRL. Our paper introduces a novel
partitioning of the BANDMF iterates into independent queries. This allows us to prove in Thm. 4
of Sec. 5 that banded matrices enjoy the benefits of privacy amplification, and show that DP-SGD
is a special case, giving us the best of both algorithms. This enables us to always pareto-dominate
DP-SGD, unlike Choquette-Choo et al. [15] which only does so for large enough ε as observed in
Fig. 1. Further, this allows us to improve on both baselines, between 1 − 4%-points. Informally:
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Figure 2: MF-DP-FTRL (Alg. 1) enables noise cancelling across steps, where DP-SGD does not.
The entries C−1

i,j are mostly negative (in [0,−1)) in matrices C−1 we consider (see Fig. 8). Thus, the
red terms show that MF-DP-FTRL “cancels out” noise added on earlier iterations. For simplicity, we
assume C−1 has 1s on the main diagonal and entries C−1

i,j otherwise, with zi ∶= z[i,∶] the rows of z.

Theorem 1 (Informal version of Theorems 4 and 5). Suppose we partition the dataset into b equal-
size subsets, and in step i each example in the i (mod b)-th subset participates with probability Bb

m

where there are m examples and the batch size is B. Then, a b̂-banded n-iteration matrix mechanism
with b̂ ≤ b satisfies the same privacy guarantees as answering n/b queries on a dataset, where each
element of the dataset is independently included in each query with probability Bb

m
.

As an example of Thm. 1, consider doing n = 2,000 iterations of DP-SGD on CIFAR-10, which has
m = 50,000 examples, using a minibatch of B = 500 examples in each round. This has the same
DP guarantees as answering 2,000 queries using a subsampled Gaussian mechanism with sampling
probability p = 500/50,000 = 0.01. If we instead use, e.g., BANDMF with b̂ = b = 10, our suggested
sampling scheme is the following: Partition CIFAR-10 into 10 subsets of 5,000 examples each,
D1,D2, . . .D10. In rounds 1, 11, 21... we sample 500 examples from D1, in rounds 2, 12, 22... we
sample 500 examples from D2, and so on. We sample from each Di a total of 2000/10 = 200 times,
and each time our sampling probability is 500/5000 = 0.1 within the subset. So Theorem 1 shows
b̂ = 10 BANDMF satisfies the same DP guarantees as answering 200 queries with p = 0.1. As a
special case of Theorem 1, DP-SGD is simply MF with a suitable diagonal matrix with b̂ = 1, and thus
Thm. 1 recovers the privacy guarantees of DP-SGD with amplification by sampling. Empirically, we
show that MF with amplification has privacy-utility tradeoffs that are no worse than DP-SGD for all ε,
and often significantly better as can be seen in Fig. 1.

Finally, we explore the computational tradeoffs of our approach. We find that banded matrices
with b-min-sep-participation are equally efficient to optimize as those under (k, b)-participation but
significantly reduce the memory and time complexity of the per-iteration noise generation fromO(n)

to a constant O(b̂) (where often total steps n≫ d). We will release all code with the final manuscript.

Related work The matrix mechanism (MF mechanism or MF) [40] has a rich history in offline,
statistical queries [22, 28, 42, 62], with many applications including to online PCA [21], estimating
marginals [22], and top-k selection [17]. Recently, this has been studied under the adaptive streaming
setting, where privacy analysis must account for an adversary adaptively defining the inputs at each
step [17, 24]. Denisov et al. [17] showed a connection with the DP-FTRL algorithm of Kairouz et al.
[35] and with DP ML broadly; they showed that computing optimal MF significantly improves the
privacy-utility-computation tradeoffs when making only a single pass (epoch) over the training data.
Choquette-Choo et al. [15] showed that MF achieves state-of-the-art results in DP ML by showing
how to optimize MF under arbitrary passes over the training data. Henzinger and Upadhyay [29]
study the problem of DP-continual observation [13, 20] and the explicit factorization of the workload
matrix A that minimizes the completely bounded norm, which is only off from the optimal by an
additive constant. The connection between DP empirical risk minimization [3, 4, 5, 7, 8, 9, 14, 16,
23, 25, 32, 36, 39, 45, 52, 53, 54, 57] and DP online regret minimization [2, 4, 5, 26, 33, 35] has
been studied for a long time. Asi et al. [5] demonstrated that DP-FTRL style algorithms [15, 17, 35]
achieve the best known regret in certain classes of online learning problems (a.k.a. the realizable
regime). An important question that still remains open is whether DP-FTRL style algorithms can
obtain optimal population risk guarantees under DP [9].
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Algorithm 1 MF-DP-FTRL and DP-SGD

Inputs: Initial model θ1 ∈ Rd, dataset D examples, matrix C−1 ∈ Rn×n, noise z ∈ Rn×d with
entries i.i.d. N (0, σ2), clipnorm ζ
▷ DP-SGD is simply the case C−1 = I, the n × n identity matrix.
for i = 1,2, . . . , n do

Select a set Si = {d1, . . . ,dB} ⊆D ▷ Respecting schema Π, possibly sampling, Alg. 2
gj = clip(∇θloss(dj ,θi), ζ) for j ∈ [B], where clip(d, ζ) = min(1, ζ/∥d∥)d

xi = ∑
B
j=1 gj

x̂i = xi + ζ[C
−1z][i,∶] ▷ x̂i is now a DP estimate of xi

θi+1 = SGDM(θi, x̂i) ▷ Any first-order optimizer can be used in place of SGDM

2 Matrix Factorization, Sensitivity, and Efficient Implementations

Let x ∈ Rn×d be a stream of model gradients, and let A ∈ Rn×n be an appropriate linear query work-
load (prefix-sums, or a matrix encoding of stochastic gradient descent with momentum (SGDM) [17]).
Matrix mechanisms use a factorization A = BC to privately estimate the quantity Ax as

Âx = B (Cx + z) , (1)

where z is suitably calibrated noise to the sensitivity of the so-called ‘query matrix’ C.

Efficiently implementing MF-DP-FTRL Eq. (1) can be re-arranged as A(x+C−1z). The multipli-
cation by the linear operator A can now be viewed as post-processing of the noisy mechanism outputs
x +C−1z; in many cases, this postprocessing has an efficient streaming implementation, e.g., simply
passing gradients into a SGDM implementation. Thus, implementing MF-DP-FTRL is essentially
equivalent to DP-SGD. The only difference is that the per-iteration gradient xi is protected with noise
[C−1z][i,∶] rather than z[i,∶]. Indeed, we see DP-SGD is a special case simply by taking C =C−1 = I.
Further, as long as the noise C−1z is computed correctly, the privacy guarantee holds, independent of
the choice of A. Alg. 1 gives the complete algorithm; with an appropriate choice of the matrix C−1,
this algorithm captures DP-SGD, tree-aggregation DP-FTRL2 [35], as well as MF-DP-FTRL [15, 17].
The multiplication of C−1 by Gaussian noise z ∈ Rn×d (which need never be fully materialized at
once) is the critical step in the efficient implementation of MF. In App. J, we note this multiplication
can be completed online for b̂-banded matrices (defined formally in Sec. 3) in time and memory
O(b̂d) per training iteration compared to O(nd) for a non-banded matrix.

Multiple participations We adopt the formalisms for multiple-participations of Choquette-Choo
et al. [15]. We assume there are m examples (or users in FL) in the database where B examples
are selected on each step i ∈ [n]. These B chosen examples are said to participate on this step i.
The examples at each step are processed via any adaptive function, e.g., computing a gradient of the
current model (which depends on the model parameter values) as in Alg. 1. The per-example output
vectors g ∈ Rd are each bounded to `2 norm at most ζ (noting that our notions of sensitivity scale
linearly in ζ, without loss of generality (WLOG) we take to be 1 in analysis below). These clipped
vectors are then summed to yield xi = ∑

B
j=1 gj . The MF-DP-FTRL mechanism releases the privatized

estimates of xi in a streaming fashion. The multi-epoch setting occurs when m < n ⋅B, so that every
example necessarily participates more than once.

Intuition for (anti-)correlated noise in MF-DP-FTRL Fig. 2 compares DP-SGD and MF-DP-FTRL.
To gain an intuition for why MF-DP-FTRL can perform better than DP-SGD, observe that vanilla SGD
has iterates θt = θ0 − η∑

t
i=1 x̂i, and hence when the noisy gradients x̂i are added, the C−1

[i,j]z[i,∶]
terms in MF-DP-FTRL serve to cancel out some of the noise introduced on previous rounds. This
reduces the total error in the final model (i.e., the prefix sums). However, this worsens the sensitivity
of the mechanism to >1 (as it is for DP-SGD). This is because an adversary trying to learn x1 via x̂1

can partially learn the value of z1 from x̂2, whereas in DP-SGD x̂1 and x̂2 are uncorrelated. This
tradeoff is what MF-DP-FTRL aims to minimize. More details on this intuition are in App. A.1.

2In this case we use a suitable pseudo-inverse C† ∈ Rn×2n−1 with noise z ∈ R2n−1×n.
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Adjacency and participation schemas DP requires a notion of adjacent datasets. Two data
streams x and x̃ are adjacent if the data associated with any single example is altered, but not when
this example participated. Thus, any xi where example dj participated can be changed subject to the
constraint ∥g(i)

j ∥ ≤ ζ. However, the participation pattern does not change. A participation schema
Π gives the set of possible participation patterns π ∈ Π, with each π ⊆ [n] indicating a set of steps
in which a single example might participate. Let N be the set of all pairs of neighboring streams
x and D ∶= {x − x̃ ∣ (x, x̃) ∈N} represent the set of all possible deltas between neighboring x, x̃.
We say a D satisfies the participation schema Π if the indices of all nonzero rows in each Rn×d
matrix u ∈ D are a subset of some π ∈ Π. To illustrate this, single-participation is represented as
Π = {{1},{2}, . . .{n}}) and full-batch gradient descent (every-step) as Π = {[n]}). Choquette-Choo
et al. [15] studied fixed-epoch-order participation, denoted (k, b)-participation, where each example
participates at most k times, with any adjacent participations exactly b steps apart: formally, Π
is the set of all π such that ∣π∣ ≤ k, and if π = {i1, . . . , ik} indexed in increasing order, we have
∀j ∈ {2, . . . , k}, ij − ij−1 = b. For example (k=2, b=3)-participation has Π = {{1,4},{2,5},{3,6}}.
As discussed in Choquette-Choo et al. [15], this setting faithfully captures centralized multi-epoch
ML training setups with single and every-step as special cases. We can now define the sensitivity of
the matrix factorization mechanism as

sensΠ(C) = sup
(x,x̃)∈N

∥Cx −Cx̃∥F = sup
u∈D

∥Cu∥F . (2)

Optimizing factorizations Different factorizations A = BC can have very different performance
in practice. Thus, in MF applications it is common to optimize over the space of factorizations, where
the objective function is the expected total squared error on A, given as L(B,C) = sens2

Π(C) ∥B∥
2
F .

We define the expected root-mean-squared error (RMSE) as σ
√
L(B,C)/n, where σ is the standard

deviation of the Gaussian noise. We take σ = 1 when simply comparing mechanisms, or (in Sec. 6),
calibrate σ to achieve specific (ε, δ)-DP guarantees.

To facilitate optimization, utilizing the fact that the optimal-for-squared-error decoder B is AC†

[17], we note L(B,C) = L(AC†,C). The expected total squared error is invariant to scaling C by
a constant, and hence it is sufficient to optimize under a sensitivity 1 constraint. Further expressing
the sensitivity and error in terms of X =C⊺C (note X is unrelated to the data x), we have

L(B,C) = L(AC†,C) = ∥AC†
∥
2
F = tr[A⊺AX−1

], (3)

assuming sensΠ(C) = 1 and A is in the rowspace of C. Thus, we arrive at:
Problem 1. The matrix factorization optimization problem is to solve the convex optimization

minimize
X∈Sn+

tr[A⊺AX−1
] subject to sens2

Π(X) ≤ 1, (4)

and then find C so that C⊺C =X, e.g., via Cholesky decomposition.

3 A Participation Schema for FL and the Sensitivity of Banded Matrices
In cross-device FL, devices locally evaluate eligibility criteria to deterimine when they might par-
ticipate in training [10, 34], for example only checking-in to the coordinating server when they are
plugged in, on unmetered wifi, and idle. This makes it practically difficult to enforce the (k, b)-
participation of Choquette-Choo et al. [15], where devices are assumed to participate at the same
relative position in each epoch: devices are unlikely to meet the eligibility criteria during the nar-
row windows of both step i and i + b. Further, precise sampling cannot provide the same level of
privacy amplification as in the centralized setting. Consider if 6500 devices are needed to complete a
round [59]. An extreme (but realistic depending on time of day) setting may have only 6500 devices
meeting eligibility criteria. Thus, either the protocol proceed without any sampling/amplification
or wait until more devices are available; neither are desirable. We avoid amplification in the cross-
device setting and instead proceed by addressing the question: Can MF-DP-FTRL be extended to the
cross-device federated learning setting with multiple client participations?

With (k, b)-participation difficult to enforce in practice, our first challenge is to define a new par-
ticipation schema with several properties: (a) the sensitivity of any matrix mechanism under this
query can be bounded; (b) this bound is tight over an expressive class of matrices; (c) this bound
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can be efficiently represented as a constraint in a mathematical program so as to be able to find a
near-optimal factorization A = BC. In Defn. 1, we propose b-min-sep-participation, a generalization
of (k, b)-participation which can be practically enforced by cross-device FL systems, thus enabling
us to leverage BANDMF in this setting (see Sec. 6).3 In b-min-sep-participation, the distance between
any two participations is at least b, rather than exactly b as in (k, b)-participation:

Definition 1. The b-min-sep-participation schema is given by

Πb = {π ⊆ [n] ∣ {i, j} ⊆ π, i ≠ j ⇒ ∣i − j∣ ≥ b} .

Observe this participation schema is easy for devices to enforce: each device remembers the last
step i in which it participated, and when it again becomes eligible, it checks in to the server, and
participates in training as long as the current step is at least i+ b; it does not need to check in during a
narrow (and unknown to the device) time window for a specific step.

We now turn to computing sensitivity under b-min-sep-participation. For (k, b)-participation,
∣Π(k,b)∣ = b, a fact Choquette-Choo et al. [15, Eq. 3] critically exploited when computing sensitivity
via brute force computation of a maximum over the elements in Π. With b-min-sep-participation, we
have ∣Πb∣ = O(exp(n)), and hence any brute force approach which requires checking some value for
all π ∈ Πb will be impractical. Following the formalism of [15, Section 2], a participation schema Π
(plus a specification of model dimension d) yields an expression for the sensitivity of the function
x↦Cx assuming that the contributions of any given user to the data structure x are restricted to the
rows in x indexed by some π ∈ Π. By Prop. E.1 of App. E.2, independent of model dimension d, we
show sensitivity for any schema Π may be bounded by

sensΠ (C)
2
≤ max
π∈Π

∑
i,j∈π

∣X[i,j]∣. (5)

Eq. (5) highlights several subtleties in computing sensitivity. First, is the challenge presented by the
exponentially large number of patterns in Πb. Second is the question of tightness of the inequality
in Eq. (5): how much are we losing by effectively ignoring any cancellation in the matrix X?

Banded matrices Fortunately, banded matrices render Eq. (5) both exactly computable and tight
(independent of dimension d), showing that Πb satisfies the requirements of (b) and (c) above. We
say a (general) matrix X is b̂-banded if for all i, j ∈ [n], ∣i − j∣ ≥ b̂ implies X[i,j] = 0. While this is
off-by-one from the bandwidth (X has bandwidth b − 1), our definition will be useful as it will be
natural to match b̂-banded matrices with b-min-separation. Further, for b̂-banded lower-triangular
matrices (which will play a central role), b̂ intuitively gives the number of bands in the matrix.

For non-banded matrices, the right-hand side of Eq. (5) remains efficiently computable (but not easily
expressible in a mathematical program), enabling us to provide nontrivial privacy guarantees for
matrices which are not b banded under b-min-sep, showing that Πb satisfies (a) as well. The key
subroutine is Alg. 3, which gives an efficient dynamic program for solving linear optimization over
Πb. Define u(π) ∈ {0,1}n by u(π)i = 1 if i ∈ π and 0 otherwise. Then, Alg. 3 solves

min
π∈Πb

⟨v,u(π)⟩.

This is the key subroutine in Alg. 4 and Alg. 5. Proofs for Thm. 2 and Thm. 3 are deferred to App. E.2.

Theorem 2. Let C ∈ Rn×n be a lower-triangular matrix, and Πb the b-min-sep-participation schema.
Further, suppose k′ upper-bounds the actual maximum number of participations that occurred in
a data stream x (at worst, we may take k′ ≤ ⌈n

b
⌉): Then: (1) If κ is an upper-bound on the column

norms of C, that is ∀j ∈ [n], ∥C[∶,j]∥ ≤ κ, and C is b-banded, then the sensitivity is bounded by
κ
√
k′. (2) If C is b-banded, Alg. 5 invoked with Gram matrix X = C⊺C and b, k′ as in the setup,

exactly computes sens(C) under schema Πb in polynomial time for any dimension d.

Theorem 3. For an arbitrary (non-banded) C, let X =C⊺C and b, k′ as in Thm. 2. Then Alg. 4 of
App. E upper-bounds sens(C) under schema Πb in polynomial time for any dimension d.

3While b-min-sep-participation is required for the cross-device FL setting, (k, b)-participation is preferred
in centralized settings where it can be enforced and will also satisfy our BANDMF amplification guarantees
leading to the empirical results we show in Fig. 1.
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4 Optimizing Banded Matrices

To enjoy the benefits of banded matrices within the framework of MF-DP-FTRL, we need to design an
algorithm that can efficiently optimize over the space of b̂-banded C matrices. To solve this problem,
we will work in the domain of X =C⊺C, and utilize the following fact:

Proposition 4.1. Let X ∈ Rn×n be a b̂-banded symmetric positive definite matrix. Then there exists
a lower triangular b̂-banded matrix C ∈ Rn×n such that X =C⊺C.

Utilizing Prop. 4.1, we can modify Problem 1 by introducing the constraint X[i,j] = 0 if ∣i − j∣ ≥ b̂.
This additional linear constraint preserves convexity of the optimization problem, and makes the
sensitivity calculation tractable as well. However, it is still not immediately obvious how to solve
the optimization problem, since we need to run the dynamic program defined in Alg. 5 of App. E
to compute sensitivity. For this reason, we impose the additional constraint that diag (X) = 1. This
constraint, together with bandedness, ensures that the squared sensitivity is equal to k for all X by
Thm. 2. The final optimization problem we seek to solve is stated below:

Problem 2. The matrix factorization optimization problem for banded matrices is to solve

minimize
X∈Sn+

tr[A⊺AX−1
] subject to diag (X) = 1 and X[i,j] = 0 if ∣i − j∣ ≥ b̂, (6)

and then find C so that C⊺C =X via Prop. 4.1.

We would like to remark on the similarity between Problem 2 and the single-participation version of
Problem 1. The two problems are identical modulo the bandedness constraint, which is an equality
constraint on individual entries of X. Therefore, existing primal-optimization based solvers [43]
for the single-participation matrix mechanism can be extended to optimize over this new space of
matrices with little modification. Specifically, the only modification necessary is to initialize to an
appropriately banded feasible X matrix, like X = I, and to post-process the gradient w.r.t X by setting
∂L

∂X[i,j]
= 0 if ∣i − j∣ ≥ b̂ in each step. Since the equality constraints exactly specify individual entries

of X, Problem 2 can be solved as an unconstrained optimization problem (over the remaining entries
in X), using any number of off-the-shelf unconstrained optimization algorithms.4 As recommended
by McKenna et al. [43], we use the LBFGS algorithm [12] to solve this problem.

Remarks on the diag (X) = 1 constraint The constraint on diag (X) serves multiple purposes.
First, diag (X) = 1 implies that ∥C[∶,i]∥2 = 1 for all i, i.e., that C has equal column norms. This
ensures that BANDMF reduces to DP-SGD when b̂ = 1, which is desirable. Second diag (X) = 1
simplifies the optimization problem greatly, as the sensitivity computation for both (k, b)-participation
and b-min-sep are trivial and tight under this constraint (Thm. 2 Claim (1)). Third, imposing this
constraint does not drastically change the search landscape, or cost much in terms of RMSE; see
Table 2 for a comparison of matrices with and without this constraint, and Fig. 8 for a visualization.
Fourth, this constraint allows us to solve a single optimization problem that is simultaneously
tailored for (k, b)-participation and b-min-sep-participation. In Appendices B and C, we formulate
an optimization problem without the diag (X) = 1 constraint, discuss how we solve it, and compare
matrices generated with and without this constraint empirically.

5 Amplification for Banded Matrix Mechanisms

In the centralized setting where we can control the participation patterns of individual examples, the
privacy guarantees of BANDMF can be amplified. We focus on amplification by sampling with fixed
batch size in this section, but give a more general statement in App. F.

Existing privacy analysis of MF-DP-FTRL is based on the reduction to the batch release of the entire
Cx + z as a single Gaussian mechanism event [15, 17] so standard amplification techniques don’t
directly apply. Instead, for each participation by an example, we consider the set of rows in Cx
affected by this participation as a Gaussian mechanism (see the groups of rows in Fig. 4). Then as

4Note that the constraint that X is positive definite is typically handled implicitly by taking sufficiently small
step sizes to avoid violating that constraint [43, 62].
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Algorithm 2 Sampling scheme
D1, . . . ,Db ← arbitrary partition of D.
for i = 1,2, . . . , n do

j = i (mod b) (b if i/b is integer).
Si ← random size B subset of Dj .
Compute xi on Si.

Release Cx + z.

Figure 3: An example of our sampling scheme
that gives privacy amplification for BANDMF.

Figure 4: Visualization of how we can decom-
pose BANDMF into independent queries when
using Alg. 2. Larger view in Fig. 10 of App. F.

long as the sets of rows corresponding to different participations do not interact, which is ensured by
the bandedness of C, we can apply amplification to them separately.

Observe from Fig. 4 that the structure of BANDMF guarantees that the set of rows of Cx which
depend on each of xj ,xb̂+j ,x2b̂+j , . . . are disjoint sets. Thus, we use the following sampling scheme
for determining which examples participate in each step which is made formal as Alg. 2. Let
D1,D2, . . . ,Db̂ be an arbitrary partition of D into b̂ indexed subsets of size m̌ ∶= ⌊m/b̂⌋ (for
simplicity, we discard extra examples so all Dj have size exactly m̌). In steps j, b̂ + j,2b̂ + j, . . ., we
will only use examples in Dj . Hence, participation follows (k, b)-participation for b = b̂;5 because it
is optimal for (k, b)-participation to have the number of bands b̂ equal the min-seperation b, in the
remainder of this section and the associated appendices we simply write b instead of b̂. Within each
of these steps, we sample a size B subset of Dj uniformly at random to use in computing x.

Roughly speaking, Thm. 4 below shows that if we use Alg. 2, BANDMF satisfies any standard privacy
guarantees satisfied by DP-SGD run for k rounds, where in each round we sample B examples from a
dataset of size m̌. In other words, it is equivalent to running DP-SGD for 1/b times as many rounds,
but with the sampling probability multiplied by b.

Theorem 4. Suppose C is b-banded and lower triangular, and the examples participating in each
step are chosen according to Alg. 2. Then BANDMF satisfies any standard DP guarantee6 satisfied
by performing k sensitivity-κ queries on a dataset of size m̌ using the Gaussian mechanism, where
each query is run on a random subset of examples of size B. κ is the maximum column norm of C.

The key idea behind Thm. 4 is the following: assume we have two datasets D,D′ that differ in an
example inD1 (WLOG), i.e., the differing example can only participate in steps 1, b+1, . . . , (k−1)b+1.
Then by the banded structure of C and the standard technique of reducing adaptive queries to non-
adaptive queries (see e.g. Claim D.1 in [17]), the first b rows of Cx (i.e., all the rows where examples
in step 1 influence the output) can be viewed as a query on the examples in D1 that were included
in step 1, the next b rows can be viewed as an adaptively chosen query on the examples included in
steps b + 1, and so on. See Fig. 4 for a visualization.

Generalization to other privacy amplification techniques Thm. 5 in App. F.3 provides a strong
a generalization of Thm. 4. It shows that shuffling, another common amplification technique often
used for DP-SGD, can also be applied to our BANDMF. We also provide an explicit algorithm for
accounting for amplification via sampling in terms of the dp_accounting library [18], along with
examples of concrete privacy parameters derived from these corollaries.

Optimizing the number of bands Thm. 4 shows that different numbers of bands (with a corre-
sponding sampling scheme) give different privacy amplification guarantees. This implies given a
particular privacy (or RMSE) target, one should optimize the number of bands to get the best RMSE
(or privacy) possible. This can be done efficiently. Generally, for large values of ε larger numbers of
bands perform better, and as ε → 0, eventually amplification dominates so b̂ = 1 becomes optimal.
Details are in App. F.4.

5and in our case, k = 1 always.
6Standard DP includes ε-DP, (ε, δ)-DP, Rényi DP, zCDP, and Gaussian DP.
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Figure 5: Comparison between DP-SGD, MULTI-EPOCH MF, and BANDMF in terms of RMSE on
the prefix-sum queries, for n = 1024 iterations, ε ∈ [ 1

32
,16], δ = 10−6, and epochs ∈ [1,1024]. Color

indicates the ratio in RMSE between two mechanisms. Additional details in App. G.

6 Experiments

Our experiments on example-level DP for image classification (of CIFAR10) and user-level DP for
next word prediction (NWP) (of Stack Overflow NWP) focus on comparing our BANDMF with
the existing state-of-the-art MULTI-EPOCH MF [15] and DP-SGD [1]. We finish by showing that
BANDMF improves over state-of-the-art [35] for a production mobile keyboard next word prediction
model. In all cases, noise σ is calibrated using privacy loss distributions [38] to achieve the stated
privacy guarantees for zero-out adjacency [35, 48], as implemented in [18]. Following the common
convention, amplified results are based on privacy accounting for Poisson sampling, though shuffling
was used in non-production training. We find BANDMF can outperform both mechanisms across
a wide range of privacy budgets to as low as ε ≈ 0.5. Past this, it is no worse than either.

RMSE We begin by comparing DP-SGD with MULTI-EPOCH MF and BANDMF in terms of their
RMSE (Sec. 2) on the prefix workload. This is one measure for how much noise these mechanisms
add during training, and is a reasonable proxy for learning performance.Observe in Fig. 5(a) that
there are regimes where DP-SGD outperforms MULTI-EPOCH MF and vice versa in terms of RMSE.
When then number of epochs equals n, DP-SGD reduces to full gradient descent (GD) (and there is
no amplification benefit), and the optimal MF mechanism is close to the identity matrix (that is, GD),
and so the algorithms become almost identical (MF has a very small advantage, as the identity matrix
is not quite optimal for RMSE). However, as shown in Fig. 5(b), we see that BANDMF is always at
least as good as DP-SGD in terms of RMSE. The improvement is most potent in the lower number of
epochs and higher ε regime, which is standard for large model training. In Fig. 5(c), we see that for
fixed n as the number of epochs increases, all mechanisms enjoy improved RMSE, and BANDMF
in fact reduces to DP-SGD in that regime (though BANDMF may be outperformed in RMSE by
MULTI-EPOCH MF due to our imposed optimization constraint of constant diagonals in X).

Centralized training with amplification Our full experimental setup is described in App. H, and
closely follows prior work [15]. We train for 20 epochs on CIFAR-10, and tune all mechanisms to
achieve their best performance for each ε, using 12 repeated runs. Fig. 1(a) shows that BANDMF
with amplification and an optimized number of bands b̂ can obtain utility benefits over both prior
mechanisms. We find that for ε ∈ [2,5], BANDMF achieves a consistent ≈ 1 percentage point boost
in performance over MULTI-EPOCH MF. Below ε ≈ 2, where DP-SGD previously dominated, we find
that BANDMF obtains a benefit around 3 percentage points. These two findings show that BANDMF
is able to balance and leverage the benefits of both amplification and correlated noise effectively. As
the budget ε gets smaller, we find that BANDMF is equivalent to DP-SGD.

We next consider the now-standard StackOverflow next-word-prediction (NWP) task with user-level
differential privacy, again following [15] (full details in App. I), in particular 2052 steps and 6
epochs, with B = 1000. The previous state-of-the-art for centralized training at ε ≥ 2 corresponds
to their MULTI-EPOCH MF.7 We again tune b̂ under amplification for optimal RMSE, selecting
b̂ = 9,18,32,64 for ε = 1,2,4,8 respectively. At ε = 16 we find MULTI-EPOCH MF is optimal.
Fig. 1(b) shows substantial improvements for combining amplification with MF for ε ∈ [1,8]; Table 5
of App. I gives the hyperparameters and accuracy values for this figure.

7All StackOverflow experiments use the b̂=2052 matrices optimized with equal-column-norms via Eq. (6)
for MULTI-EPOCH MF, which we observed to be minimally different in terms of RMSE and accuracy.
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Figure 6: BOTH: Amplification is infeasible as outlined in Sec. 6 and App. K. LEFT, (A): Cross-
device FL results under b=342-min-sep-participation. BANDMF, and MULTI-EPOCH MF (with the
application to FL made possible by Thm. 3) outperform all prior work. RIGHT, (B): Evaluation
accuracy of a language model trained in a real-world FL system. BANDMF achieves higher utility and
a stronger (4.35,10−10)-DP compared to the (6.69,10−10)-DP achieved by ONLINE TREEAGG [35].

Cross-device federated learning We consider SO NWP again, but now assuming each user’s data
corresponds to the data on one device. We assume 2052 rounds and 6 epochs as above. Amplification
is generally not possible in the cross-device setting, and so the prior state-of-the-art was (1) SINGLE-
EPOCH MF of Denisov et al. [17] for single-epoch training (using B = 167 rather than B = 1000),
and (2) OPTIMAL TREEAGG, which essentially takes the binary-tree matrix CT , and instead of using
the less-efficient “online” estimator of Honaker [30], uses the pseudo-inverse C†

T for noise generation
(see Sec. 2). The b-min-sep-participation sensitivity of CT can still be calculated using the dynamic
program of Kairouz et al. [35], while the use of C†

T requires the machinery of Denisov et al. [17]; see
e.g. the OPTDECODERHONAKER results of Choquette-Choo et al. [15, Fig. 6]. Our Thm. 3 further
enables an upper-bound on the b-min-sep-participation sensitivity of the MULTI-EPOCH MF matrices
of Choquette-Choo et al. [15]; this incurs a penalty of about 15% (see Table 2 in App. C) compared
to (k, b)-sensitivity. Fig. 6(a) shows that our BANDMF and MULTI-EPOCH MF again outperform
prior baselines (though the previously untested multi-epoch OPTIMAL TREEAGG performs quite
well); Table 4 gives the hyperparameters and accuracy values for this figure.

Application in production cross-device FL We fine-tune a Spanish next word prediction model,
pretrained on the multilingual C4 dataset [49, 60], with on-device user data using FL. Our setup
follows [59], and is described in full in App. K. We compared to an existing implementation of the
ONLINE TREEAGG algorithm of Kairouz et al. [35] (not the optimal version using C†

T in simulation).
Both algorithms ran for n = 2000 training rounds. The BANDMF matrix was optimized for b̂ = 400
bands; however, the production system only allows approximate control of the separation between
participations, and post-hoc we could only bound b by 390 rounds for ONLINE TREEAGG and 385
for BANDMF, necessitating the use of Thm. 3 for the analysis of BANDMF as b < b̂.

We used the same clients/round goal of 6500 for both, and tuned noise multipliers to achieve compa-
rable RMSE, hence tuning for a stronger privacy guarantee rather than improved accuracy. Fig. 6(b)
shows our results, and we see BANDMF actually achieves a slight improvement in accuracy, possibly
due to learning-rate cooldown (which was only implemented for BANDMF). Our primary re-
sult is then that we are able to improve the privacy guarantee from ρ=0.52-zCDP for ONLINE
TREEAGG to ρ=0.24-zCDP for BANDMF, or (ε=6.69, δ=10−10)-DP to (ε=4.35, δ=10−10)-DP. De-
tails of the privacy guarantee following the best practices of Ponomareva et al. [48] are in App. K.1.

7 Discussion and Limitations

In this paper, we proposed the BANDMF mechanism, which extends MF-DP-FTRL and enjoys the
benefits of privacy amplification. This allows it to solely operate above the previous Pareto frontier
defined by both amplified DP-SGD and MF-DP-FTRL in centralized training scenarios. Moreover,
BANDMF is well-suited to federated training scenarios, and improves state-of-the-art there as well.
Additionally, the computational overhead of BANDMF is less than MF-DP-FTRL by a factor of b/n. It
still has a b× time and space overhead compared to DP-SGD, which can be prohibitive for very large
models with billions of parameters. This is an interesting and important future research direction.
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A Notation summary

n Number of steps of the streaming linear query (SGD steps or FL
rounds)

m Total number of records (examples or users) in the database/dataset

b Minimum separation between participations; b = 1 allows participation
in every step

b̂-banded matrix A (general) matrix X is b̂-banded if for all i, j ∈ [n], ∣i− j∣ ≥ b̂ implies
X[i,j] = 0. We use b to refer to min-separation, and for example
write b-banded when we set the number of bands equal to the min-
separation; we use b̂-banded for a number of bands possibly different
than b.

k The maximum number of times any user might participate in training

d Dimension of per-step user contributions (e.g., model size)

xi ∈ R or Rd Sum of per-example gradients (or per-user model updates) on step i

x ∈ Rn×d Stream of inputs xi, equiv. matrix with rows xi (so xi = x[i,∶])

ζ Clipping norm that limits the size of per-example contributions to xi

π ⊆ [n] Participation pattern, the set of steps that an example participates in

Π Participation schema, set of sets of steps (set of all π) an example
could participate in

D = {x − x̃ ∣ (x, x̃) ∈N}, the set of deltas between neighboring input
streams x, x̃.

D Corners of D when assumed to be a polytope, D = conv(D).

(k, b)-participation participation schema Π with at most k participations, separated by
exactly b steps

b-min-sep-participation Relaxation of of (k, b)-participation where participations have separa-
tion at least b

A ∈ Rn×n Lower-triangular linear query matrix to be factorized as A = BC

M† Moore-Penrose pseudoinverse of matrix M

M⊺ Transpose of M

M[i,j] The (i, j)th entry of matrix A

M[i,∶] and M[∶,j] The ith row and jth column of M (numpy-style indexing)

conv (S) Convex hull of the set S

[n] = {1, . . . , n}

∥X∥F The Frobenius norm of a matrix X

Table 1: Summary of notation

A.1 Intuition behind MF-DP-FTRL

Fig. 7 compares DP-SGD and MF-DP-FTRL. To gain an intuition for why MF-DP-FTRL can perform
better than DP-SGD, observe that vanilla SGD has iterates θt = θ0 − η∑

t
i=1 x̂i, and hence when the

noisy gradients x̂i are added, the C−1
[i,j]z[i,∶] terms in MF-DP-FTRL serve to cancel out some of the

noise introduced on previous rounds. The noise cancellation reduces the total error in all the prefix
sums of gradients ∑ti=1 x̂i for t ∈ [n], but also worsens the privacy guarantee of the mechanism,
i.e. increases its sensitivity. The privacy worsens as e.g., an adversary trying to learn x1 via x̂1 can
partially learn the value of z1 from x̂2, whereas in DP-SGD x̂1 and x̂2 are uncorrelated. Hence there
is a tradeoff between the total error and sensitivity (see next paragraph): DP-SGD sets C−1

[i,j] = 0
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Figure 7: MF-DP-FTRL (Alg. 1) enables noise cancelling across steps, where DP-SGD does not.
The entries C−1

i,j are mostly negative (in [0,−1)) in matrices C−1 we consider (see Fig. 8). Thus, the
red terms show that MF-DP-FTRL “cancels out” noise added on earlier iterations. For simplicity, we
assume C−1 has 1s on the main diagonal and entries C−1

i,j otherwise, with zi ∶= z[i,∶] the rows of z.

below the main diagonal, effectively minimizing sensitivity (assuming a fixed normalization of
the main diagonal), but with a large total error due to no noise cancellation. On the other hand,
MF-DP-FTRL can arrive at a better compromise between mechanism sensitivity and the total error.
This is formalized in the optimization problem of Sec. 4.

Without a sampling assumption, the implied DP adversary knows which examples participated in
batch Si, and for DP-SGD with uncorrelated noise, knows they only need to “attack” x̂i. However,
with MF-DP-FTRL, the information from Si can potentially be masked with a larger amount of initial
noise in x̂i, which is then canceled out over subsequent rounds. “Spreading out” the release of
information about batch Si over a larger number of iterations in this way can intuitively provide better
privacy, while still allowing for accurate partial sums of gradients (and hence SGD iterates). This
is, in a loose sense, similar to the way SGD with sampling “hides” information about a particular
example at randomly chosen iterations.

B Dropping the diag (X) = 1 constraint

As discussed in Sec. 4, BANDMF by default imposes an equal column norm constraint on the
generated factorization. In the optimization problem, this is accomplished by imposing the constraint
diag (X) = 1. In this section we show how we can solve the optimization problem without this
constraint for (k, b)-participation. This optimization problem is formulated to minimize total squared
error with respect to (k, b)-participation, although in principle the optimized matrices could be used
in the b-min-sep-participation setting with some degradation in solution quality. Prop. B.1 provides
an expression for efficiently computing the sensitivity of a b-banded matrix.

Proposition B.1. Let X ∈ Sn+ be a b-banded matrix, and let Π denote the (k, b)-participation schema.
Then

sensΠ(X) = max
i=1,...,b

k−1

∑
j=0

diag (X)i+jb.

To integrate this expression into the optimization problem, we can replace the diag (X) = 1 constraint
with b linear constraints on diag (X). This modification does not affect the convexity of the problem,
although it does slightly complicate the algorithms needed to solve it. To handle this new problem, our
approach is to replace the gradient with respect to X at each iteration, with a projected gradient, which
is obtained by setting vi = ∑k−1

j=0 diag(∆X)i+jb for all i = 1, . . . , b, and setting diag(∆X)i+jb =

diag(∆X)i+jb−vi/k. This ensures that sensitivity does not change between iterations of the numerical
optimization procedure.

For the reasons mentioned in Sec. 4, by default we impose the simpler constraint diag(X) = 1. In
App. C, we provide some numerical comparisons between these two approaches. Specifically, the
rows of Table 2 with Equal column norms? (F)alse correspond to the approach described here; observe
this results in slightly improved RMSE under (k, b)-participation compared to the corresponding
rows with Equal column norms? (T)rue.
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OPTIMAL TREEAGG [30, 35] - F 0.32 1.00 1.00 1.53 1.53

DP-SGD [1] 1 T 0.41 1.00 1.00 9.63 9.63

MF (b=128) (Ours) 128 F 0.52 1.00 1.04 1.23 1.29

MF (b=128) (Ours) 128 T 0.41 1.00 1.00 1.27 1.27

MF (b=342) (Ours) 342 F 0.52 1.00 1.04 1.04 1.08

MF (b=342) (Ours) 342 T 0.41 1.00 1.00 1.05 1.05
MF [15] - F 0.50 1.00 ≤1.15 1.00 1.15

MF [15] - T 0.41 1.00 ≤1.13 1.01 1.14

Table 2: A comparison of matrix mechanisms for n = 2052 under different participation pat-
terns. Banded matrices are near-optimal under (k, b)-participation and best under b-min-sep-
participation. Each error is computed under the indicated measure of sensitivity. Thus, the error in
column (B) can be obtained by multiplying the error in column (A) by the corresponding entry under
b≥342 sensitivity.

C Empirical evaluation of banded matrices

Table 2 compares the matrix mechanisms studied under different participation patterns but normalized
to have sensitivity sens(C) = 1 under (k=6, b=342)-participation. The sensitivity under single
participation k = 1 is lowest as expected. With column normalization, sensitivity is also 1 under
b≥342-min-sep-participation. We make the following observations:

• For the MF mechanisms, column normalization hurts RMSE for (k, b)-participation com-
pared to the approach of App. B (as it is an additional constraint), but actually improves
RMSE under b-min-sep-participation.

• We conjecture that the (k, b)-participation optimized matrices (MF without column nor-
malization, App. B) are optimal for the prefix-sum workload8; With this in mind, we see
there is at most a small increase in RMSE for switching to the more challenging b-min-sep-
participation schema (1.00→ 1.05) . If (as we further conjecture) the optimal matrices for
prefix-sum in fact are k-banded, the gap is even smaller (at most 1.04→ 1.05). Hence, at
least for the prefix-sum workload A, there is limited room for improvement in develop-
ing optimization procedures that directly optimize over the larger feasible set offered by
b-min-sep-participation.

• Using fewer than b bands does degrade performance on the RMSE metric, with DP-SGD
being the extreme case, yielding prefix sum estimates almost 10× worse than the MF
mechanisms.

• The results of Denisov et al. [17] imply that the binary-tree C matrix can in fact be used
in the online setting, with the Moore-Penrose pseudo-inverse giving the optimal decoder
for RMSE [15], corresponding to the ‘full’ estimator of Honaker [30]. We include this in
the table as a baseline, and see that it is in general outperformed by our MF mechanisms by
about 1.5× in RMSE.

8This conjecture is not trivially true, as we still enforce a non-negativity or orthogonality constraint; see
Choquette-Choo et al. [15, Appendix I.3]. Hence the conjecture is that these constraints are already satisfied by
the optimal matrix for this workload.
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D Example structures of MF

Figs. 8 and 9 show the structure of some of the key matrix factorization approaches considered in this
work. One can immediately see the impact of the (k, b)-participation schema in the optimal matrices,
in particular for the non-banded MULTI-EPOCH MF matrices (the two top-right matrices), where
C contains diagonals of negative entries separated by b steps. In the bottom two rows, we see that
requiring equal column norms (“EN-” for equal norms) has a relatively minor impact on the structure
of the matrices.
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Figure 8: Factorizations for n = 64 of the prefix-sum workload (A taken to be the lower-triangular
matrix of 1s). For each factorization A = BC, we show C and its inverse C−1, as the inverse is
the matrix used in noise generation. Single-epoch is the approach of Denisov et al. [17], SGD is
simply the identity matrix I (shown for completeness), and (k=8)-epoch MF and (k=4)-epoch are
the MULTI-EPOCH MF approach of Choquette-Choo et al. [15] for 8 and 4 epochs, respectively. For
our banded matrices (3rd and 4th rows), we fix 4 epochs (b = 16), and show b̂=8 and b̂=16 bands,
with column normalization (“EN-”) and without.

18



0 16 32 48 64 80 96 112 128

0

16

32

48

64

Optimal TreeAgg C

0 16 32 48 64 80 96 112 128

0

16

32

48

64

Optimal TreeAgg C

0.0
0.2
0.4
0.6
0.8
1.0

0.25

0.00
0.25
0.50

Figure 9: The transpose of binary-tree encoder matrix CT , and its pseudoinverse C†
T , which

corresponds to the “full” or optimal decoder of Honaker [30]. This is the matrix used in OPTIMAL
TREEAGG in Fig. 6[a].

E Algorithms and Analysis for Sec. 3

E.1 Algorithms

Algorithm 3 (VECSENS): Maximum of ⟨v,u⟩ where u is a vector in the `∞ unit ball satisfying Πb.
Inputs: min-separation b, vector v, max participations k
Initialize F ∈ Rn×k
for m = 1, . . . , k do

for i = n, . . . ,1 do ▷ We use the convention that F [s, t] = 0 if s, t are out-of-bounds.
F [i,m] = max (vi + F [i + b,m − 1], F [i + 1,m])

return F [1, k]

Algorithm 4 Efficient sensitivity upper bound for b-min-sep-participation
Inputs: min-separation b, matrix X, max participations k
Initialize F ∈ Rn×k, v ∈ Rn.
for j = 1, . . . , n do

vi = VECSENS(b, ∣X[i,∶]∣, k)

return
√

VECSENS(b,v, k)

Algorithm 5 Efficient sensitivity calculation for b-min-sep-participation, assuming X is b-banded.
Inputs: min-separation b, b-banded matrix X, max participations k.
return

√
VECSENS(b,diag(X), k)

E.2 Analysis

Proposition E.1. The sensitivity of C for a given participation schema Π may be expressed as:

sensΠ (C)
2
= max
π∈Π

sup
u∈D

tr ([PπC
⊺CPπ] [uu

⊺]) , (7)

where Pπ represent the axis-aligned projection onto the set of rows indexed by π; that is, Pπ[i, i] = 1
for i ∈ π, and 0 otherwise. Assuming that D represents a set of matrices with rows bounded by `2
norm 1, this can be upper bounded by:

max
π∈Π

∑
i,j∈π

∣X[i,j]∣.

where X =C⊺C. This upper bound is tight when PπC
⊺CPπ ≥ 0∀π ∈ Π, and is independent of the

dimension d of the rows of u.
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Proof. Recall that Π determines the rows of u which may be nonzero in the definition Eq. (2). Take
some u ∈ D, an element of Rn×d, which therefore has nonzero rows only at some set of indices
π ∈ Π.Note, clearly u = Pπu, P⊺

π = Pπ , and Pπ = PπPπ .

Therefore

∥Cu∥2
F = tr ([CPπu]

⊺
CPπu) = tr (u⊺P⊺

πC
⊺CPπu)

= tr (PπPπC
⊺CPπPπuu

⊺) = tr ([PπC
⊺CPπ] [Pπuu

⊺Pπ])

= tr ([PπC
⊺CPπ] [uu

⊺]) .

(8)

This implies the statement Eq. (7) by the definition of sensitivity and neighboring in our setting.

Now, let Xπ ∶= PπC
⊺CPπ be the matrix formed by zeroing out the rows and columns not indexed

by π from X. Assume that every u ∈D has row norms bounded by 1. Expanding the trace in Eq. (7),
writing xij for the elements of Xπ and u[j,∶] for the jth row of u, we have

tr (Xπuu
⊺) =

k

∑
i=1

k

∑
j=1

xij⟨u[i,∶],u[j,∶]⟩ ≤
k

∑
i=1

k

∑
j=1

∣xij ∣

which yields the claimed bound. When Xπ is elementwise nonnegative, taking u[i,∶] = u[j,∶] for any
unit vector shows the claimed tightness in this case.

Remark. This statement can be viewed as a partial extension of [15, Theorem G.1]. It does not
imply every case handled there, but also implies results which cannot be derived from that Theorem.

Proof of Thm. 2. Conclusion (1) is implied by (2), noting that the conditions on C imply that Alg. 5
will return a value at most κ

√
k′ in this setting.

For (2), let c ∈ Rn with entries ci = ∥C[∶,i]∥
2 for i ∈ {0, . . . , n − 1}. We have

sens1
Π(C) = max

π∈Πb

∥Cu(π)∥ = max
π∈Πb

∥∑
i∈π

C[∶,i]∥ = max
π∈Πb

√

∑
i∈π
ci (9)

where u(π) ∈ {0,1}n is given by u(π)i = 1 if i ∈ π and 0 otherwise. The last equality follows from
the orthogonality condition on sufficiently separated columns of C trivially implied by bandedness.
It is straightforward to verify the dynamic program of Alg. 3 constructs a feasible π which attains the
maximum.

Proof of Thm. 3. Via Prop. E.1, the result follows from showing that Alg. 4 outputs a value at least
as large as ∑(i,j)∈π ∣Xij ∣ for any π ∈ Πb. So let π̂ be an element of Πb. Note that VECSENS is
monotonically increasing in values of the vector v if v is nonnegative, and therefore Alg. 4 is
monotonically increasing in absolute values of X. Therefore we will have our conclusion (3) if we
can show that, for Xπ̂ the matrix formed by zeroing out all rows and columns of X not indexed
by π̂, Alg. 4 returns the value ∑(i,j)∈π ∣Xij ∣. Yet this is straightforward by the characterization of
VECSENS as an oracle for computing the maximum of ⟨v,u⟩, where u is a vector in the `∞ unit
ball.

Proof of Prop. 4.1. The proof will be constructive. Let J be the n × n exchange matrix defined as

J =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

⋰

1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let Y = JXJ and note that Y is symmetric and positive definite. Let H = Cholesky(Y)⊺ and note
that (1) H⊺H =Y by definition of Cholesky decomposition, (2) H is upper triangular, and (3) H is
b̂-banded by Du Croz et al. [19].
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We will show that for C = JHJ, we have (1) X = C⊺C, (2) C is lower triangular, and (3) C is
b̂-banded.

For Claim (1) observe that:

C⊺C = (JHJ)⊺(JHJ)

= J⊺H⊺J⊺JHJ

= J(H⊺H)J

= JYJ

= JJXJJ

=X

For Claim (2) and (3), note that left-multiplying by J reverses the rows and right-multiplying by J
reverses the columns, and therefore C[i,j] =Hn−i+1,n−j+1.

For Claim (2), we need to show C[i,j] = 0 if i < j. If i < j then n − i + 1 > n − j + 1, and since H is
upper triangular, we know H[n−i+1,n−j+1] = 0, as desired.

For Claim (3), we need to show that C[i,j] = 0if ∣i−j∣ ≥ b̂. Observe that if ∣(n−i+1)−(n−j+1)∣ = ∣i−j∣

and therefore since H is b̂-banded, so is C.

This completes the proof.

F Additional Analysis for Sec. 5

In this section we prove our general amplification statement Theorem 5, of which Theorem 4 is a
corollary. Recall that we use b instead of b̂ in this appendix since our sampling scheme enforces
(k, b)-participation. Throughout this section, we slightly abuse notation by letting i (mod b) = b
instead of 0 if i/b is integer.

F.1 Algorithms for Sampling

We first give the general sampling scheme (Alg. 6) as well as sequence of queries (Alg. 7) that
provides an upper bound on the privacy guarantees of DP-MF using this sampling scheme.

Algorithm 6 Sampling scheme for banded DP-MF

Inputs: Dataset D, sampling distribution S over (2[m̌])k, noise standard deviation σ.
D1, . . . ,Db ← arbitrary partition of D such that ∀j ∶ ∣Dj ∣ = m̌.
Let Dj = {dj,1, dj,2, . . . , dj,m̌} for each j.
for j = 1,2, . . . , b do

Sample k sets to index Dj as (Sj , Sb+j , . . . , S(k−1)b+j) ∼ S, with Sj ⊆ [m̌].
for i = 1,2, . . . , n do

Let j = i (mod b); compute xi by querying {dj,` ∶ ` ∈ Si}.
Let x = [x1, . . . ,xn]

⊺ ∈ Rn×d, release Cx + z with each entry of z[i,j] ∼ N (0, σ2).
▷ If C is lower-triangular, results can also be released in streaming fashion

Algorithm 7 Sequence of queries that bounds privacy of Alg. 6

Inputs: Dataset D̃ = {d1, d2, . . . , dm̌}, sampling distribution S over (2[m̌])k.
Sample (S1, S2, . . . , Sk) ∼ S.
for i = 1,2, . . . , k do

D̃i ← {dj ∶ j ∈ Si}.
Perform (adaptively chosen) sensitivity ∆ query on D̃i with noise N (0, σ2).
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Figure 10: A visualization of how we can decompose a banded matrix mechanism into independent
queries on Dj (as in Alg. 7) under our sampling scheme.

F.2 General Amplification Statement and Proof

Given the sampling scheme and query sequence, we can now state our general amplification statement:
Theorem 5. Suppose C is b-banded and lower triangular, and the examples participating in each
step are chosen according to Alg. 6 with a given choice of S . Then BANDMF satisfies any standard
DP guarantee9 satisfied by Alg. 7 in App. F.1 with κ = maxi∈[n] ∥Cei∥2 = maxi∈[n]

√
Xi,i and the

same choice of S.

Proof. Consider two datasets D,D′ that differ by an example contained in the partition subset Dj .
We argue about the privacy of Cx + z. For simplicity we assume j is such that (k − 1)b + j ≤ n;
elements in Dj such that j does not satisfy this condition can potentially participate k − 1 times
instead of k, and in turn the privacy guarantee we can prove for these elements can only be stronger.

Since C is b-banded, we can partition the rows of C into k + 1 subsets

Rj ,Rb+j ,R2b+j . . .R(k−1)b+j ,R∅,

where Rj (resp. Rb+j ,R2b+j . . .R(k−1)b+j) denotes the set of rows in C for which the jth entry is
non-zero, and R∅ = [n] ∖ (Rj ∪Rb+j ∪ . . .), i.e., R∅ are the rows not included in any of these sets,
i.e., rows of C where entries j, b+ j, . . . are all zero. The fact that C is lower-triangular and b-banded
ensures that these subsets do not overlap, i.e., this is a valid partition as can be observed in Fig. 4.

Let CR denote C restricted to the set of rows in R. From the perspective of an adversary dis-
tinguishing D from D′, each row of (Cx + z)R∅ = CR∅x + zR∅ has a distribution indepen-
dent of whether D or D′ was used. So it suffices to give privacy guarantees for outputting only
(Cx + z)Rj , (Cx + z)Rb+j , . . . , (Cx + z)R(k−1)b+j .

We can decompose rows Rj of Cx + z as follows:

(Cx + z)Rj =CRjx + zRj =CRjxj +CRjx−j + zRj . (10)

Where xj denotes x with all rows except j zeroed out, and x−j denotes x − xj , i.e., x with row j
zeroed out. By the b-banded property of C, CRjx−j has 0 sensitivity to the examples inD∖Dj . Then,

9Standard DP includes ε-DP, (ε, δ)-DP, Rényi DP, zCDP, and Gaussian DP.
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by Eq. (10), for i ∈ Rj , we observe that the ith row of (Cx+ z)Rj corresponds to an (adaptive) query
made with `2-sensitivity e⊺iCej to the examples used in step j, i.e., those given by Dj and Sj , and
noise N(0, σ2)d. So (Cx+z)Rj corresponds to a sequence of adaptive queries on the examples used
in step j, and answering this sequence of queries satisfies any standard privacy guarantee satisfied by
answering a single (scalar, adaptively chosen) query with sensitivity ∥Cej∥2 to the example chosen
in step j and noise N(0, σ2) by Claim D.1 in [17].

The same logic applies to each of (Cx + z)Rb+j , . . . , (Cx + z)R(k−1)b+j . Putting it all together
and taking a max over the sensitivity of the individual queries, releasing Cx + z satisfies any
standard privacy guarantee satisfied by answering k adaptively chosen queries, with sensitivity
maxi∈[n] ∥Cei∥2 to the examples used in steps j, b + j, . . . , (k − 1)b + j respectively. This is exactly
Alg. 7 with the specified choice of ∆,S .

F.3 Corollaries of Thm. 5

We give here several corollaries of Thm. 5 that are of interest.

Equivalence to DP-SGD: Note that when b = 1, the partition contains a single subset, i.e., is the
the entire dataset. In particular, in this setting Thm. 5 recovers the privacy guarantees of amplified
DP-SGD under any amplification scheme, e.g. including the ones discussed below.

Amplification via sampling: To recover Thm. 4 from Thm. 5, we take the distribution over
2[m̌] corresponding to the uniform distribution over subsets of size B, and let S be the product
of this distribution with itself k times. This is equivalent to the following: in step i, we include
each element of Di (mod b) independently with probability q. For this choice of S, Alg. 6 reduces
to Alg. 2 and Thm. 4. We next make the amplified privacy guarantee explicit in terms of the
dp_accounting Python library [18]. Given n,m, b and a target per-step batch size B, we could
write a dp_accounting.DpEvent capturing the privacy guarantees of the matrix factorization
mechanism as follows:

Example F.1.
gaussian_event = dp_accounting.GaussianDpEvent(noise_multiplier)
q = B / math.floor(n / b)
sampled_event = dp_accounting.PoissonSampledDpEvent(

q, gaussian_event
)
composed_event = dp_accounting.SelfComposedDpEvent(

sampled_event, math.ceil(m / b)
)

Example F.2. To give an example of the amplification guarantee, for simplicity assume n/b,m/b
are integer. If all column norms in C are 1, each row of x has sensitivity 1, and each entry of z has
standard deviation σ, then outputting Cx + z satisfies (α, αn

2σ2b
)-RDP.

Using Theorem 11 of [46] and Thm. 4, for appropriate choice of α and q, this improves to (α, q2 ⋅ 2αn
σ2b

)-
RDP with amplification by sampling. In particular, if we have a target per-step batch size B, then
we should choose q = Bb

m
, and if this choice of q satisfies the conditions in [46] plugging this in

gives (α, 2αB2bn
σ2m2 )-RDP. Notice that b = 1 recovers the privacy guarantees of DP-SGD with sampling

probability B/m, and this privacy guarantee weakens as b increases.

Amplification via shuffling: Fix a per-step batch size B. Then, suppose we shuffle the list of
examples, and cyclically iterate over batches of size B in this list as the sets of examples to use in
each step of matrix factorization. That is, we shuffle D into an ordered list d1, d2, . . ., and in step i
use examples d(i−1)B+1 (mod m), d(i−1)B+2 (mod m), . . . , diB (mod m).

For simplicity let’s consider the case where m/(Bb) is integer. In particular, this means in this
shuffling scheme, each example appears once every m/B steps, and for each of these steps i, i
(mod b) is the same. Then this shuffling scheme is equivalent to the following: First, rather than
choose an arbitrary partition to apply Thm. 5, we choose a uniformly random partition into b subsets
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of size m/b. Then, we choose S to be the distribution giving by shuffling [m/b] and then cyclically
iterating over the shuffled list in batches of size B. Given this equivalence, we get the following:
Corollary F.1. Suppose the examples in matrix factorization are chosen by shuffling D and then
iterating over batches of size B. If n/(Bb) is integer, then the matrix factorization mechanism
satisfies any standard privacy guarantee satisfied by k adaptive scalar queries with sensitivity
maxi∈[n] ∥Cei∥2 and noise N(0, σ2), with the examples in each query given by shuffling a dataset
of size m/b and cyclically iterating over this list in batches of size B.
Example F.3. Consider the simplified case where m = n, we choose a random permutation π, and in
step i query example dπ(i). In this case, if all the column norms of C are 1, x’s rows have sensitivity 1,

and z’s entries have standard deviation σ = O (

√
ln(1/δ)
ε

), we get that Cx+z satisfies (ε, δ)-DP. With

e.g., the amplification for shuffled (ε, δ)-DP mechanisms given by Theorem 5.1 of [6] and Cor. F.1, if

ε is a constant, we instead get that Cx + z satisfies (ε ⋅O (

√
b log(1/δ)

n
) , δ ⋅O (

n ln(1/δ)
b

))-DP.

F.4 Optimizing the number of bands

Let σε,δ(b) be the required Gaussian noise magnitude for a b-banded MF run for n iterations using
e.g. Alg. 2 to achieve (ε, δ)-DP with per-step batch size B. Then, the expected total squared error
introduced while achieving (ε, δ)-DP with amplification can be calculated as

σε,δ(b)
2
L(AC−1

b ,Cb)

where Cb is a b-banded lower triangular matrix optimized via Problem 2. Generally, smaller values
of b will allow for more amplification, and hence a smaller σ; however, this introduces a stronger
set of constraints on the optimization problem, likely increasing the L term. Hence, the choice of b
should be optimized. Fortunately, σε,δ(⋅) can be computed efficiently: Thm. 4 implies a procedure to
compute ε given σ, δ, b, and then one can use binary search10 and this procedure to find the σ giving a
desired ε. In addition, one can pre-compute the optimal matrices Cb for different numbers of bands.
The search can be restricted to b ∈ {1,2, . . . , m

B
, n} since for b = m

B
we have ∣Dj ∣ = B, i.e. Alg. 2 and

Thm. 4 provide no privacy amplification.

Unlike the un-amplified version of MF, now the best factorization depends on the privacy parameters
(ε, δ). The benefits of amplification are generally stronger for small ε: For example, amplification by
sampling with probability p roughly improves ε to log(1 + p(eε − 1)) (see e.g. Section 6 of [55]),
which is approximately pε for ε ≤ 1, and approximately ε− log(1/p) if eε ≫ 1/p. Hence, with smaller
values of ε, we expect the benefits of amplification to outweigh the benefits of correlated noise, in
which case b = 1 will be optimal. With larger values of ε, we expect the benefits of correlated noise to
outweigh the benefits of amplification, and in this regime b = n will be optimal. For moderate values
of ε, we expect the optimal b to be somewhere in the middle.

F.5 Applying BANDMF with Privacy Amplification

Consider the setup of Sec. 5 with our CIFAR10 setting described fully in App. H. As mentioned in that
section, we use the convention that our privacy analysis will assume Poisson sampling, even though
we are using passes over a shuffled dataset. We have m = 50,000 and train for k = 20 epochs with a
batch size B = 500. Choquette-Choo et al. [15] lets us bound the sensitivity and optimize matrices
for this setting, however, without privacy amplification. Suppose we choose b̂ = 100. Because
m/b̂ = 500 = B, we get that the sampling probability is 100% (see Example F.1) and thus get no
benefits from amplification. For all b̂ ∈ [1,100) we get amplification benefits which can be seen
intuitively as follows.

If b̂ = 2, we get that there are two partitionsD1,D2. Then or first event will be the simultaneous release
of x1,x2, our second of x3,x4, and so on. Because each partition is of size ∣Dj ∣ = m/b̂ = 25,000
and B = 500, we have a sampling probability q = 2%. Given our parameters, we also have
d = k ⋅m/B = 2,000, and so we must compose d/b̂ = 1,000 events (as seen in Example F.1). Because
in this setting each event is the batch release of b̂ steps of x, where each example participates at most

10See for example the calibrate_dp_mechanism function of DP Team [18].
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once on each release, observe that we need only normalize the sensitivity of this mechanism under
(k = 1, b = b̂ = 2)-participation. Generally, as b̂ increases we have a higher sampling probability, but
fewer events to compose, and vice versa. As can be seen, when b̂ = 1, this reduces to the standard
accounting for DP-SGD. It can also be seen that we desire each Dj to be a non-overlapping partition
of D, as otherwise, a single example may participate multiple times in the same event (and thus have
a higher sampling probability).

G Additional RMSE Experiment Details

G.1 Optimal Number of Bands

In this section, we provide supplementary data surrounding the RMSE experiments in Fig. 5. Table 3
shows the optimal number of bands for each (ε, k) pair considered in the RMSE experiments. It
shows the general trend that as ε decreases, or k increases, the optimal number of bands decreases.

G.2 Explaining many-epoch setting

Observe in Fig. 5 that as BANDMF and MULTI-EPOCH MF incur similar RMSE as DP-SGD when
the number of epochs increases.

This phenomenon occurs because as the number of epochs changes, so does the sensitivity of the
X matrix, and subsequently the geometry of the optimization problem. By Eq. (5), we see that
sensitivity can be calculated as a sum of absolute values of entries of X corresponding to iterations
where a single user might participate. As the number of epochs increases, the number of entries of X
that we have to sum up also increases. It turns out that under the constraint of constant sensitivity,
it is better to put more weight on the diagonal of X than the off-diagonal. This is an observation
we have made by solving this optimization problem numerically in a number of settings. Hence,
as the number of epochs increases, X becomes more and more diagonally dominant, making the
mechanism closer to DP-SGD (X = Identity).

ε/k 1 2 4 8 16 32 64 128 256 512 1024

0.03125 2 2 1 1 1 1 1 1 1 1 1
0.0625 4 2 1 1 1 1 1 1 1 1 1
0.125 8 4 2 1 1 1 1 1 1 1 1
0.25 8 4 4 2 1 1 1 1 1 1 1
0.5 16 8 4 4 2 1 1 1 1 1 1
1.0 32 16 8 4 2 2 1 1 1 1 1
2.0 64 32 16 8 4 2 2 1 1 1 1
4.0 128 64 32 16 8 4 2 2 1 1 1
8.0 1024 512 256 32 16 8 4 2 2 1 1
16.0 1024 512 256 128 64 32 8 4 4 2 1

Table 3: Optimal number of bands for each (ε, k) pair, when n = 1024 and δ = 10−6.

H Additional CIFAR-10 Experiment Details

H.1 Setup and Tuning

We tune all jobs on a learning rate grid of coefficients in {1, 2, 5} on powers in [-2, 3]. We find that no
momentum works best for DP-SGD and momentum=0.95 works best for MF-DP-FTRL mechanisms
on average in tuning; though initial tuning found that tuning momentum as well could lead to slightly
better results at some ε budgets, we found that a more refined grid of learning rates nearly always led
to a fixed momentum being optimal, and so we fix this parameter. We also found that a learning rate
cooldown to 0.05× the initial learning rate over the last 500 steps of training improved all runs and so
we fix this parameter. All models trained for 20 epochs on CIFAR10 with a batch size of 500. We
repeat each setting 12 times and show 95% bootstrapped confidence intervals.
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H.2 Additional Figures
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Figure 11: On CIFAR-10, BANDMF is at least as good as DP-SGD across all ε, and often signifi-
cantly better. BANDMF is better than the prior MF-DP-FTRL from Choquette-Choo et al. [15] up to
ε ≈ 5. We compare the ratio of the total error (see Sec. 4) of BANDMF with either mechanism. Lower
values indicate that BANDMF is better. The yellow markers indicate the best BANDMF mechanism
that was better for that ε budget if one existed. Unlike in Fig. 5(b), We only optimize the Band
MF over b̂ ∈ [0, n/k] which leads to a regime around ε > 5 where the it performs worse than the
Multi-epoch MF of Choquette-Choo et al. [15].
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Figure 12: Our banded matrices consistently perform at least as well as the best prior method
in each range of ε. Around ε ≈ 1, we observe significant utility benefits from the banded mechanism
around 2− 3 percentage points over DP-SGD. We only optimize the Band MF over b̂ ∈ [0, n/k] which
leads to a regime around ε > 5 where the it performs worse than the Multi-epoch MF of Choquette-
Choo et al. [15]; b̂ = n is equivalent to this approach modulo the sensitivity definition which we
exclude to emphasize the regime we improve on. Empirical setup is in App. H.

I Additional StackOverflow Next-Word-Prediction Experiment Details

We follow the experimental setup for StackOverflow NWP from Denisov et al. [17] and Choquette-
Choo et al. [15]. Except for SINGLE-EPOCH MF (which uses B = 167 clients/round for 1 epoch), all
privacy guarantees and accuracy results are for 6 epochs of training using B = 1000 clients/round for
2052 rounds (also 1 epoch). The matrices used in these experiments are included in Table 2.

For computational efficiency in estimating model accuracy at a given privacy guarantee, we actually
compute in simulation updates from only 100 clients/round, and scale the noise multiplier by a
corresponding factor ( 100

1000
for 6 epoch experiments, 100

167
for SINGLE-EPOCH MF). This approach

has been used previously [35, 44], and we independently verified it has a negligible impact on the
estimates of accuracy figures we report. Tables 4 and 5 include the unscaled noise multipliers σ for
our experiments.
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Figure 13: Correlation between optimal server learning rates ηs and the effective RMSE during
training, see Eq. (11).

Optimizer and learning-rate tuning For all SO NWP experiments we use the FedSGDM opti-
mizer [50]. This optimization approach first takes multiple local SGD steps (with learning rate 1.0
in our experiments) on the training data of each user in the batch (cohort) before clipping to ζ = 1,
summing, and passing the result xi into the DP mechanism which adds noise [C†z][i,∶] ∈ Rd on each
iteration i. The resulting privatized sum is then divided by the batch size B and passed to the “server”
(post-aggregation) optimizer, in our case SGDM with momentum parameter β = 0.95 and learning
rate ηs. We find tuning ηs depending on the noise level is critical. By using the computationally
efficient approach mentioned above, we were able to conduct rigorous tuning over a learning rate
grid of 1.7i for powers i in {−9, . . . ,4}, estimating good initial guesses based on prior work. Table 6
gives the full set of results, and Fig. 14 shows convergence as a function of the number of rounds
(iters).

Learning rate warmup and cooldown Denisov et al. [17] found learning rate cooldown was
effective, and Choquette-Choo et al. [15] found that zeroing-out client updates with large `∞ norms
was critical to stability in early training. We find that additionally introduing a learning-rate warmup
schedule reduces the need for this zeroing-out (though we still enable it), and generally decreases the
variance in training results. Hence, all of our experiments (for all algorithms) using a linear learning
rate warmup from 0.05ηs to 1.0ηs over the first 15% of rounds (309), and a linear decay from 1.0ηs
to 0.05ηs over the last 25% of rounds (513).

Using RMSE to tune optimal server learning rates Fig. 13 plots the server learning rates ηs
from Table 6 on the y-axis (with the optimal rates shown as larger symbols, and sub-optimal rates
as small symbols, versus two different measures of the error for the DP mechanism on the x-axis:
The left plot gives uses the effective prefix-sum RMSE (the objective we use for optimizing (banded)
matrices C),

(Mechanism error) × noise-multiplier/(clients-per-round) =
√
L(SC−1,C)/n × σ/B, (11)

where S is the prefix-sum workload (lower-triangular matrix of ones) and σ and B are as given in
Table 4. The right plot uses the RMSE in error of individual gradients, computed by replacing the L
term in the above with L(IC−1,C) where we take the workload A to be the identity matrix I rather
than the prefix sum matrix S.

We see a strong linear correlation between the prefix-sum RMSE and optimal learning rate in the left
plot; this does not hold for individual gradient errors (right plot). Based on this, we use the following
linear regression to choose learning rates for the non-federated (amplified) SO NWP experiments
(still rounding to the nearest 1.7i for consistency):

log(ηs) = −0.95 ⋅ log(Le) − 4.64

This allowed us to estimate learning rates for the amplified experiments with a high degree of
accuracy; Table 7 gives the final selected learning rates.
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Figure 14: Convergence plots for all cross-device federated learning simulation experiments.
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Mechanism clients per
round B

ε noise
mult. σ

server
lr ηs

Eval Accuracy
(%, Smoothed)

Test Accuracy
(%)

DP-SGD 1000 1 4.22468 0.0244 16.82 16.69

Single-epoch MF 167 1 4.22468 0.1197 20.29 20.44

Optimal TreeAgg 1000 1 4.22468 0.2035 21.15 21.25

Multi-epoch MF 1000 1 4.76079 0.2035 21.96 21.92

Band MF (Ours) 1000 1 4.22468 0.2035 22.12 22.05

DP-SGD 1000 2 2.23048 0.0414 18.70 18.42

Single-epoch MF 167 2 2.23048 0.2035 21.66 21.70

Optimal TreeAgg 1000 2 2.23048 0.3460 22.52 22.59

Multi-epoch MF 1000 2 2.51352 0.3460 23.15 23.04

Band MF (Ours) 1000 2 2.23048 0.5882 23.31 23.19

DP-SGD 1000 4 1.19352 0.0704 20.07 19.81

Single-epoch MF 167 4 1.19352 0.3460 22.94 22.90

Optimal TreeAgg 1000 4 1.19352 0.5882 23.66 23.62

Multi-epoch MF 1000 4 1.34498 0.5882 24.19 24.02

Band MF (Ours) 1000 4 1.19352 1.0000 24.35 24.16

DP-SGD 1000 8 0.65294 0.1197 21.26 21.08

Single-epoch MF 167 8 0.65293 0.5882 24.03 23.88

Optimal TreeAgg 1000 8 0.65294 1.0000 24.54 24.45

Multi-epoch MF 1000 8 0.73579 1.0000 24.95 -

Band MF (Ours) 1000 8 0.65294 1.0000 25.06 24.88

DP-SGD 1000 16 0.36861 0.3460 22.51 22.26

Single-epoch MF 167 16 0.36861 1.0000 24.80 24.62

Optimal TreeAgg 1000 16 0.36861 1.7000 25.15 25.14

Multi-epoch MF 1000 16 0.41539 1.7000 25.50 25.33

Band MF (Ours) 1000 16 0.36861 1.7000 25.59 25.41

Table 4: Parameters and metrics for simulated cross-device FL, Fig. 6[a]. The noise multipliers σ
are calibrated to achieve the given ε guarantees at δ=10−6 under b=342-min-separation. The matrices
are scaled to have sensitivity 1 under (k=6, b=342), see Table 2, and so a larger noise multiplier
σ is necessary for the MULTI-EPOCH MF matrices. Test-set accuracy for MULTI-EPOCH MF at
ε = 8 was unavailable. All BANDMF matrices use b̂=342. Note that σ is reported for reproducibility
purposes (it is the parameter passed to Alg. 1), but it does not directly capture the noise added in
either gradients x̂i or their cumulative sums as the noise z is linearly transformed by C−1 which
varies across the mechanisms above.
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Mechanism clients per
round B

ε noise
mult. σ

server
lr ηs

Eval Accuracy
(%, Smoothed)

Test Accuracy
(%)

DP-SGD, w/ ampl. 1000 1 0.37313 0.3460 22.50 22.22

Multi-epoch MF, no ampl. 1000 1 4.22468 0.2035 22.11 22.10

(Band) MF, w/ ampl. (Ours) 1000 1 0.79118 0.3460 23.11 22.83

DP-SGD, w/ ampl. 1000 2 0.30481 0.3460 22.89 22.62

Multi-epoch MF, no ampl. 1000 2 2.23048 0.3460 23.36 23.24

(Band) MF, w/ ampl. (Ours) 1000 2 0.64708 0.5882 24.01 23.71

DP-SGD, w/ ampl. 1000 4 0.25136 0.3460 23.27 22.94

Multi-epoch MF, no ampl. 1000 4 1.19352 0.5882 24.36 24.16

(Band) MF, w/ ampl. (Ours) 1000 4 0.52224 1.0000 24.67 24.42

DP-SGD, w/ ampl. 1000 8 0.20567 0.5882 23.59 23.30

Multi-epoch MF, no ampl. 1000 8 0.65294 1.0000 25.08 24.88

(Band) MF, w/ ampl. (Ours) 1000 8 0.43490 1.7000 25.26 24.99

DP-SGD, w/ ampl. 1000 16 0.16876 0.5882 23.96 23.61

Multi-epoch MF, no ampl. 1000 16 0.36861 1.7000 25.59 25.43

(Band) MF, w/ ampl. (Ours) 1000 16 0.36861 1.7000 25.59 25.43

Table 5: Parameters and metrics for centralized StackOverflow, Fig. 1(b). The noise multipliers are
calibrated to achieve the given ε guarantees at δ=10−6 under (k=6, b=342)-participation, assuming
Poisson sampling for DP-SGD and BANDMF. For BANDMF, we tune b̂ under amplification for
optimal RMSE, selecting b̂ = 9,18,32,64,2052 for ε = 1,2,4,8,16 respectively. For ε = 16, we have
n = b̂, and hence BANDMF is identical to MULTI-EPOCH MF optimized with Eq. (6). Values of σ
are provided for reproducibility only, see comments on σ from Table 4.
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Eval Accuracy (%, Smoothed)

server lr ηs 0.0084 0.0143 0.0244 0.0414 0.0704 0.1197 0.2035 0.3460 0.5882 1.0000 1.7000 2.8900 4.9130 8.3521

ε Mechanism

1.0

DP-SGD 14.31 15.98 16.82 16.53 15.46 4.67 - - - - - - - -

Single-epoch MF - - - - 20.16 20.29 19.68 - - - - - - -

Optimal TreeAgg - - - - - 21.08 21.15 20.34 - - - - - -

Multi-epoch MF - - - - - 21.56 21.96 21.60 - - - - - -

Band MF, b=342 (Ours) - - - - - 21.70 22.12 21.96 - - - - - -

2.0

DP-SGD - 16.20 17.88 18.70 18.22 17.75 15.52 - - - - - - -

Single-epoch MF - - - - - 21.46 21.66 21.26 - - - - - -

Optimal TreeAgg - - - - - - 22.40 22.52 21.87 - - - - -

Multi-epoch MF - - - - - - 22.80 23.15 22.96 - - - - -

Band MF, b=342 (Ours) - - - - - - - 23.27 23.31 22.57 - - - -

4.0

DP-SGD - - 18.08 19.45 20.07 19.97 19.48 18.08 - - - - - -

Single-epoch MF - - - - - - 22.66 22.94 22.60 - - - - -

Optimal TreeAgg - - - - - - - 23.57 23.66 23.27 - - - -

Multi-epoch MF - - - - - - - 23.87 24.19 24.01 - - - -

Band MF, b=342 (Ours) - - - - - - - - 24.26 24.35 23.74 - - -

8.0

DP-SGD - - - - 20.61 21.26 21.24 20.89 20.00 - - - - -

Single-epoch MF - - - - - - - 23.73 24.03 23.71 - - - -

Optimal TreeAgg - - - - - - - - 24.52 24.54 24.15 - - -

Multi-epoch MF - - - - - - - - 24.72 24.95 24.77 24.17 - -

Band MF, b=342 (Ours) - - - - - - - - 24.76 25.06 24.92 - - -

16.0

DP-SGD - - - - - - 22.39 22.51 22.17 - - - - -

Single-epoch MF - - - - - - - - 24.66 24.80 24.50 - - -

Optimal TreeAgg - - - - - - - - 24.89 25.15 25.15 - - -

Multi-epoch MF - - - - - - - - - 25.38 25.50 25.34 - -

Band MF, b=342 (Ours) - - - - - - - - - 25.38 25.59 25.47 - -

inf DP-SGD - - - - - - - - - - 25.96 26.23 26.24 8.03

Table 6: Federated learning rate tuning for StackOverflow NWP. Validation accuracy smoothed over the final 400 rounds of training, used to select the best
server learning rates for the comparison of test-set accuracy presented in Fig. 6[a].
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Eval Accuracy (%, Smoothed)
server lr ηs 0.1197 0.2035 0.3460 0.5882 1.0000 1.7000 2.8900 4.9130

ε Mechanism

1.0
DP-SGD - 22.39 22.50 22.03 - - - -
Multi-epoch MF 21.75 22.11 21.95 - - - - -
Band MF, b=9 (Ours) - 22.83 23.11 23.03 - - - -

2.0
DP-SGD - 22.70 22.89 22.66 - - - -
Multi-epoch MF - 22.89 23.36 23.26 - - - -
Band MF, b=18 (Ours) - - 23.80 24.01 23.77 - - -

4.0
DP-SGD - 22.88 23.27 23.20 - - - -
Multi-epoch MF - - 23.96 24.36 24.22 23.71 - -
Band MF, b=32 (Ours) - - - 24.52 24.67 24.43 - -

8.0
DP-SGD - - 23.48 23.59 23.28 - - -
Multi-epoch MF - - - 24.79 25.08 24.98 24.55 -
Band MF, b=64 (Ours) - - - - 25.15 25.26 24.79 -

16.0

DP-SGD - - 23.85 23.96 23.72 - - -
Multi-epoch MF - - - - 25.42 25.59 25.50 24.92
Band MF, b=342 (Ours) - - - - 25.37 25.55 25.45 24.90
Band MF, b=64 (Ours) - - - - 25.38 25.54 25.40 -

Table 7: Centralized learning rate tuning for StackOverflow NWP.. Validation accuracy smoothed over the final 400 rounds of training, used to select the best
server learning rates for the comparison of test-set accuracy presented in Fig. 1(b). DP-SGD and BANDMF use amplification.
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Algorithm 8 Banded Matrix Multiplication

Input: b̂-Banded lower triangular matrix
C ∈ Rn×n, vector x ∈ Rn
Output: Cx
for i = 1, . . . , n do

yi = ∑
i
j=i−b̂+1

C[i,j]xj
return y

Algorithm 9 Banded Inverse Multiplication

Input: b̂-Banded lower triangular matrix
C ∈ Rn×n, vector y ∈ Rn
Output: C−1y
for i = 1, . . . , n do

xi = (yi −∑
i−1
j=i−b̂+1

C[i,j]xj)/C[i,i]
return x

Figure 15: Algorithms for matrix-vector and inverse matrix-vector multiplication by a banded matrix.
To simplify the presentation, we use the convention that out-of-bounds indexing into a matrix or
vector returns 0.

J Efficient Multiplication and Inverse of Banded Matrices

Algorithms 8 and 9 (Fig. 15) give algorithms for lower triangular banded matrix-vector multiplication
and inverse banded matrix-vector multiplication. Note that both algorithms are compatible with the
streaming nature of gradients. As soon as the next input xi is received, the algorithm can immediately
output yi. Both algorithms require storing a state of size b̂, and run in O(n ⋅ b̂) time. While the
algorithms are described with respect to computing matrix-vector products, they can also be used to
compute matrix-matrix products where the right-hand-side is a n × d matrix by multiplying by each
column independently. In this setting, these algorithms require O(b̂ ⋅ d) space and O(n ⋅ b̂ ⋅ d) time.
Both algorithms have appeared previously in the literature on Monte Carlo methods, which have a
similar problem at their core to that of noise generation for MF; see e.g. [56, Section 2].

K Application to a Real-World Cross-Device FL System

We train a one-layer LSTM language model of ∼2.4 million parameters in a practical cross-device FL
system following [58] . The model is used for predicting the next word of Spanish in a mobile virtual
keyboard. We pretrain the model on public multilingual C4 dataset [49, 60], and then fine-tune with
on-device user data in FL. In a common practical FL system, clients have to satisfy criteria like being
charged, idle and connected to unmetered network to participate in a round [10, 27, 31, 47], hence
only a subset of clients can be reached and there is a strong diurnal pattern of client participation
[61, 63]. It is very challenging to hold a fixed set of clients for evaluation, or develop random sampling
for privacy amplification. Though the current implementation of client participation control is feasible
through the client timer, the tuning of separation b in practice can be challenging. Therefore, the
training of Fig. 6 (b) can achieve smaller separation b than in [58].

K.1 Reporting privacy guarantees

We follow the guidelines outlined in [48, Sec. 5.3] to report privacy guarantees.

1. DP setting. This a central DP guarantee where the service provider is trusted to correctly
implement the mechanism.

2. Instantiating the DP Definition
(a) Data accesses covered: The DP guarantee applies to all well-behaved clients 11 in a

single training run. We do not account for hyperparameter tuning, or the selection of
the final model checkpoint using evaluation metrics or A/B testing in our guarantees.
Public multilingual C4 data [49, 60] is used for pre-training.

(b) Final mechanism output: Only the final model checkpoint is released for use in pro-
duction, however the mechanism’s output is technically the full sequence of privatized
gradients, and so the guarantee also applies at this level, and hence all intermedi-
ate models are protected (including those sent to devices participating in federated
learning).

11Clients that faithfully follow the algorithm including participation limits. Due to the design of the algorithm,
a mis-behaved client does not adversely affect the DP guarantee of any well-behaved clients.
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(c) Unit of privacy. Device-level DP is considered, i.e., the notion of adjacency is with
respect to arbitrary training datasets on each client device, and the device might have
an arbitrarily large local dataset containing arbitrary training examples. For user’s with
a single device, this corresponds directly to user-level DP; for devices shared with
multiple users, this provides a stronger notion of DP than user-level; for a user with
multiple devices that happen to both participate in training the model, the notion is
weaker, but group privacy can be used to obtain a user-level guarantee.

(d) Adjacency definition for “neigbouring” datasets: We use the zero-out definition [35].
This is a a special form of the add-or-remove definition, where neighboring data sets
differ by addition/removal of a single client. In the absence of a client at any training
step, we assume that the client’s model update gets replaced with the all zeros vector.
This assumption enforces a subtle modification to the traditional definition of the
add/remove notion of DP which allows neighboring data sets to have the same number
of records.

3. Privacy accounting details
(a) Type of accounting used: Both ρ−zCDP [11] accounting, and PLD accounting [18] for

(ε, δ)−DP are used.
(b) Accounting assumptions : Each client only participates limited times during the training,

and there are at least a min-separation of b rounds between two consecutive participation
of a client. This is enforced by a timer on clients in the cross-device FL system.

(c) The formal DP statement: The privacy guarantees are ρ=0.52-zCDP and
(ε=6.69, δ=10−10)-DP for ONLINE TREEAGG, while BANDMF achieves ρ=0.24-
zCDP and (ε=4.35, δ=10−10)-DP.

(d) Transparency and verifiability: We are going to open source our code based on Tensor-
Flow Federated and Tensorflow Privacy. Key portions of the cross-device FL system
will also open sourced.
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