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Abstract

We study a decentralized multi-agent multi-armed bandit problem in which mul-
tiple clients are connected by time dependent random graphs provided by an
environment. The reward distributions of each arm vary across clients and rewards
are generated independently over time by an environment based on distributions
that include both sub-exponential and sub-Gaussian distributions. Each client
pulls an arm and communicates with neighbors based on the graph provided by
the environment. The goal is to minimize the overall regret of the entire system
through collaborations. To this end, we introduce a novel algorithmic framework,
which first provides robust simulation methods for generating random graphs using
rapidly mixing Markov chains or the random graph model, and then combines an
averaging-based consensus approach with a newly proposed weighting technique
and the upper confidence bound to deliver a UCB-type solution. Our algorithms
account for the randomness in the graphs, removing the conventional doubly
stochasticity assumption, and only require the knowledge of the number of clients
at initialization. We derive optimal instance-dependent regret upper bounds of
order log T in both sub-Gaussian and sub-exponential environments, and a nearly
optimal mean-gap independent regret upper bound of order

√
T log T up to a log T

factor. Importantly, our regret bounds hold with high probability and capture graph
randomness, whereas prior works consider expected regret under assumptions and
require more stringent reward distributions.

1 Introduction
Multi-armed Bandit (MAB) [Auer et al., 2002a,b] is an online sequential decision-making process
that balances exploration and exploitation while given partial information. In this process, a single
player (agent, client) aims to maximize a cumulative reward or, equivalently, minimize the cumulative
loss, known as regret, by pulling an arm and observing the reward of that arm at each time step.
The two variants of MAB are adversarial and stochastic MAB, depending on whether rewards are
chosen arbitrarily or follow a time-invariant distribution, respectively. Recently, motivated by the
development of federated learning [McMahan et al., 2017], multi-agent stochastic multi-armed
bandit has been drawing increasing attention (commonly referred to as multi-agent MAB). In this
variant, multiple clients collaboratively work with multiple stochastic MABs to maximize the overall
performance of the entire system. Likewise, regret is an important performance measure, which is the
difference between the cumulative reward of always pulling the global optimal arm by all clients and
the actual cumulative reward gained by the clients at the end of the game, where global optimality is
defined with respect to the average expected reward values of arms across clients. Thereafter, the
question for each client to answer is essentially how to guarantee an optimal regret with limited
observations of arms and insufficient information of other clients. Assuming the existence of a central
server, also known as the controller, [Bistritz and Leshem, 2018, Zhu et al., 2021b, Huang et al., 2021,
Mitra et al., 2021, Réda et al., 2022, Yan et al., 2022], allow a controller-client framework where the
controller integrates and distributes the inputs from and to clients, adequately addressing the challenge
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posed by the lack of information of other clients. However, this centralization implicitly requires all
clients to communicate with one another through the central server and may fail to include common
networks with graph structures where clients perform only pair-wise communications within the
neighborhoods on the given graphs. Non-complete graphs capture the reality of failed communication
links. Removing the centralization assumption leads to a decentralized multi-agent MAB problem,
which is a challenging but attracting direction as it connects the bandit problem and graph theory, and
precludes traditional centralized processing.

In the field of decentralized multi-agent MAB, it is commonly assumed that the mean reward value of
an arm for different clients is the same, or equivalently, homogeneous. This assumption is encountered
in [Landgren et al., 2016a,b, 2021, Zhu et al., 2020, Martínez-Rubio et al., 2019, Agarwal et al.,
2022, Wang et al., 2022, 2020, Li and Song, 2022, Sankararaman et al., 2019, Chawla et al., 2020].
However, this assumption may not always hold in practical scenarios. In recent years, there has been
an increasing emphasis on heterogeneous reward settings, where clients can retain different mean
values for the rewards of the same arm. The transition to heterogeneous reward settings presents
additional technical challenges. Clients are unable to infer the global optimal arms without sequential
communications regarding the rewards of the same arm at other clients. Such communications,
however, are limited by the partially observed rewards, as other clients may not pull the same arm,
and constrained by the underlying graph structure. We study the heterogeneous setting with time
varying graphs.

Traditionally, rewards are assumed to be sub-Gaussian distributed. However, there has been a
recent focus on MAB with heavy-tailed reward distributions. This presents a non-trivial challenge
as it is harder to concentrate reward observations in sublinear time compared to the light-tailed
counterpart [Tao et al., 2022]. In the work of [Jia et al., 2021], sub-exponential rewards are considered
and analyzed in the single-agent MAB setting with newly proposed upper confidence bounds.
Meanwhile, for multi-agent MAB, heavy-tailed distributions are examined in a homogeneous setting
in [Dubey et al., 2020]. However, the heterogeneous setting studied herein has not yet been formulated
or analyzed, posing more challenges compared to the homogeneous setting, as discussed earlier.

Besides rewards, the underlying graph assumptions are essential to the decentralized multi-agent
MAB problem, as increased communication among clients leads to better identification of global
optimal arms and smaller regret. The existing works [Sankararaman et al., 2019, Chawla et al.,
2020] relate regret with graph structures and characterize the dependency of regret on the graph
complexity with respect to conductance. When considering two special cases, [Chawla et al., 2020]
demonstrates the theoretical improvement achieved by circular ring graphs compared to complete
graphs, and [Li and Song, 2022] numerically shows that the circular ring graph presents the most
challenging scenario with the largest regret, while the complete graph is the simplest. There are two
types of graphs from a time perspective: time-invariant graphs, which remain constant over time,
and time-varying graphs, which depend on time steps and are more challenging but more general.
Assumptions on time-invariant graphs include complete graphs [Wang et al., 2021] where all clients
can communicate, regular graphs [Jiang and Cheng, 2023] where each client has the same number
of neighbors, and connected graphs under the doubly stochasticity assumption [Zhu et al., 2020,
2021a,b]. Independently from our work, recent work [Zhu and Liu, 2023] has focused on time-varying
B-connected graphs, where the composition of every l consecutive graphs is a strongly connected
graph. However, their doubly stochasticity assumption, where all elements of edge probability also
called weight matrices are uniformly bounded by a positive constant, can be violated in several
cases. Additionally, their graphs may be strongly correlated to meet the connectivity condition when
l > 1, which may not always hold in practice. No research has been conducted on time-varying
graphs with only connectivity constraints or without constraints on connectivity. Additionally, current
time-varying graphs do not provide insight into how the graphs change over time. As the graphs
are generated by the environment, similar to the generation of rewards, it remained unexplored
considering random graphs in an i.i.d manner, such as random edge failures or random realizations as
pointed out for future research in [Martínez-Rubio et al., 2019]. We also address this situation.

Traditionally, random graphs have often been formulated using the Erdős–Rényi (E-R) model, which
has been widely adopted in various research domains. The model, described by G(M, c), consists of
M vertices with each pair of vertices being connected with probability c. Notably, the E-R model is
1) not necessarily connected and 2) stochastic that allows for random edge failures, and has found
applications in mean-field game [Delarue, 2017] and majority vote settings [Lima et al., 2008].
Though it has only been used in numerical experiments for the decentralized multi-agent MAB
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setting with homogeneous rewards [Dubey et al., 2020], the theoretical study of this model in this
context remained unexplored until this work, let alone with heterogeneous rewards and time-varying
graphs. Alternatively, one can consider all connected graphs (there are exponentially many of them),
and the environment can randomly sample a connected graph and produce i.i.d. samples of such
random connected graphs. This approach mimics the behavior of stochastic rewards and allows the
environment to exhaust the sample space of connected graphs independently, without the doubly
stochasticity assumption, which, however, has not yet been studied and it is also addressed herein.

For the multi-agent MAB framework, methods in MAB are a natural extension. [Zhu et al., 2021b]
adapt the UCB algorithm to the multi-agent setting. This algorithm uses weighted averages to achieve
consensus among clients and is shown to have a regret of order log T for time-invariant graphs. A
follow-up study in [Zhu and Liu, 2023] re-analyzes this algorithm for time-varying B-connected
graphs under the aforementioned assumptions under the doubly stochasticity assumption by adding
an additional term compared to UCB. An effective UCB-based method for random graphs without
doubly stochasticity assumption and for sub-exponential distributed rewards remained unexplored.

This paper presents a novel contribution to the decentralized multi-agent MAB problem by studying
both heterogeneous rewards and time-varying random graphs, where the distributions of rewards
and graphs are independent of time. To the best of our knowledge, this is the first work to consider
this problem and to investigate it with heavy-tailed reward distributions. Specifically, the paper
investigates 1) heterogeneous sub-exponential and sub-Gaussian distributed rewards and 2) random
graphs including the possibly disconnected E-R model and random connected graphs, and applies
them to the decentralized multi-agent MAB framework. This work bridges the gap between large-
deviation theories for sub-exponential distributions and multi-agent MAB with heterogeneous rewards,
and the gap between random graphs and decentralized multi-agent MAB.

To this end, we propose a brand new algorithmic framework consisting of three main components:
graph generation, DrFed-UCB: burn-in period, and DrFed-UCB: learning period. For the learning
period, we modify the algorithm by [Zhu et al., 2021b] by introducing new UCB quantities that
are consistent with the conventional UCB algorithm and generalize to sub-exponential settings.
We also introduce a newly proposed stopping time and a new weight matrix without the doubly
stochasticity assumption to leverage more information in random graphs. A burn-in period is crucial
in estimating the graph distribution and initializing the weight matrix. We embed and analyze
techniques from random graphs since the number of connected graphs is exponentially large in the
number of vertices, and directly sampling such a graph is an NP-hard problem. In particular, we use
the Metropolis-Hastings method with rapidly mixing Markov chains, as proposed in [Gray et al.,
2019], to approximately generate random connected graphs in polynomial time. We additionally
demonstrate its theoretical convergence rate, making it feasible to consider random connected graphs
in the era of large-scale inference.

We present comprehensive analyses of the regret of the proposed algorithm, using the same regret
definition as in existing literature. Firstly, we show that algorithm DrFed-UCB achieves optimal
instance-dependent regret upper bounds of order log T with high probability, in both sub-Gaussian
and sub-exponential settings, consistent with prior works. We add that although both [Zhu et al.,
2020] and our analyses use the UCB framework, the important algorithmic steps are different and thus
also the analyses. Secondly, we demonstrate that with high probability, the regret is universally upper
bounded by O(

√
T log T ) in sub-exponential settings, including sub-Gaussian settings. This upper

bound matches the upper and lower bounds in single-agent settings up to a log T factor, establishing
its tightness.

The paper is organized as follows. We first introduce the notations used throughout the paper, present
the problem formulation, and propose algorithms for solving the problem. Following that, we provide
theoretical results on the regret of the proposed algorithm in various settings.

2 Problem Formulation and Methodologies
2.1 Problem Formulation
Throughout, we consider a decentralized system with M clients that are labeled as nodes 1, 2, . . . ,M
on a time-varying network, which is described by an undirected graph Gt for 1 ≤ t ≤ T where
parameter T denotes the time horizon of the problem. Formally, at time step t, Gt = (V,Et) where
V = {1, 2, . . . ,M} and Et denotes the edge set consisting of pair-wise nodes and representing the
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neighborhood information in Gt. The neighbor set Nm(t) include all neighbors of client m based on
Gt. Equivalently, the graph Gt can be represented by the adjacency matrix (Xt

i,j)1≤i,j≤M where the
element Xt

i,j = 1 if there is an edge between clients i and j and Xt
i,j = 0 otherwise. We let Xi,i = 1

for any 1 ≤ i ≤ M . With this notation at hand, we define the empirical graph (adjacency matrix) Pt

as Pt =
(
∑t

s=1 Xs
i,j)1≤i,j≤M

t . It is worth emphasizing that 1) the matrix Pt is not necessarily doubly
stochastic, 2) the matrix captures more information about Gt than the prior works based on |Nm(t)|,
and 3) each client m only knows the m-th row of Pt without knowledge of Gt, i.e. {Pt(m, j)}j are
known to client m, while {Pt(k, j)}j for k ̸= m are always unknown. Let us denote the set of all
possible connected graphs on M nodes as GM.

We next consider the bandit problems faced by the clients. In the MAB setting, the environment
generates rewards. Likewise, we again use the term, the environment, to represent the source of
graphs Gt and rewards rmi (t) in the decentralized multi-agent MAB setting. Formally, there are
K arms faced by each client. At each time step t, for each client 1 ≤ m ≤ M , let the reward of
arm 1 ≤ i ≤ K be rmi (t), which is i.i.d. distributed across time with the mean value µm

i , and is
drawn independently across the clients. Here we consider a heterogeneous setting where µm

i is not
necessarily the same as µj

i for m ̸= j. At each time step t, client m pulls an arm atm, only observes
the reward of that arm rmat

m
(t) from the environment, and exchanges information with neighbors in

Gt given by the environment. In other words, two clients communicate only when there is an edge
between them.

By taking the average over clients as in the existing literature, we define the global reward of arm i at
each time step t as ri(t) = 1

M

∑M
m=1 r

m
i (t) and the subsequent expected value of the global reward

as µi =
1
M

∑M
m=1 µ

m
i . We define the global optimal arm as i∗ = argmaxi µi and arm i ̸= i∗ is

called global sub-optimal. Let ∆i = µi∗ − µi be the sub-optimality gap. This enables us to quantify
the regret of the action sequence (policy) {atm}1≤t≤T

1≤m≤M as follows. Ideally, clients would like to pull
arm i∗ if knowledge of {µi}i were available. Given the partially observed rewards due to bandits
(dimension i) and limited accesses to information from other clients (dimension m), the regret is
defined as RT = Tµi∗ − 1

M

∑T
t=1

∑M
m=1 µ

m
at
m

which measures the difference of the cumulative
expected reward between the global optimal arm and the action sequence. The main objective of this
paper is to develop theoretically robust solutions to minimize RT for clients operating on time-varying
random graphs that are vulnerable to random communication failures, which only require knowledge
of M .

2.2 Algorithms
In this section, we introduce a new algorithmic framework that incorporates two graph generation
algorithms, one for the E-R model and the other for uniformly distributed connected graphs. More
importantly, the framework includes a UCB-variant algorithm that runs a learning period after a
burn-in period, which is commonly referred to as a warm-up phase in statistical procedures.

2.2.1 Graph Generation
We investigate two types of graph dynamics as follows, for which we propose simulation methods
that enable us to generate and analyze the resulting random graphs.

E-R random graphs At each time step t, the adjacency matrix of graph Gt is generated by the
environment by element-wise sampling Xt

i,j according to a Bernoulli distribution. Specifically, Xt
i,j

follows a Bernoulli distribution with parameter c.

Uniformly distributed connected graphs At each time step t, the random graph Gt is generated
by the environment by uniformly sampling a graph from the sample space of all connected graphs
GM , which yields the adjacency matrix (Xt

i,j)1≤i ̸=j≤M corresponding to Gt. Generating uniformly
distributed connected graphs is presented in Algorithm 3 as in Appendix. It is computationally
infeasible to exhaust the sample space GM since the number of connected graphs is exponentially
large. To this end, we import the Metropolis-Hastings method in [Gray et al., 2019] and leverage
rapidly mixing Markov chains. Remarkably, by adapting the algorithm into our setting which yields
a new algorithm, we construct a Markov chain that converges to the target distribution after a finite
number of burn-in steps. This essentially traverses graphs in GM through step-wise transitions, with a
complexity of O(M2) from previous states. More precisely, at time step s with connected graph Gs,
we randomly choose a pair of nodes and check whether it exists in the edge set. If this is the case, we
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remove the edge from Gs and check whether the remaining graph is connected, and only accept the
graph as Gs+1 in the connected case. If the edge does not exist in the edge set, we add it to Gs and get
Gs+1. In this setting, let c = c(M) be the number of times an edge is present among all connected
graphs divided by the total number of connected graphs. It is known that c = 2 logM

M−1 (1) [Trevisan].
The distribution of Gs eventually converges to the uniform distribution in GM . The formal statements
are in Appendix.

2.2.2 Main Algorithm
In the following, we present the proposed algorithm, DrFed-UCB, which comprises of a burn-in
period and a learning period described in Algorithm 1 and Algorithm 2, respectively.

We start by introducing the variables used in the algorithm with respect to client m. We use
µ̄m
i (t), nm,i(t) to denote reward estimators and counters based on client m’s own pulls of arm i,

respectively, and use µ̃m
i , Nm,i(t) to denote reward estimators and counters based on the network-

wide pulls of arm i, respectively. By network-wide, we refer to the clients in Nm(t). Denote
the stopping time for the filtration {Gs}ts=1 as ht

m,j = maxs≤t{(m, j) ∈ Es}; it represents the
most recent communication between clients m and j. The weights for the network-wide and local
estimators are P ′

t (m, j) and dm,t defined later, respectively.

There are two stages in Algorithm 1 where t ≤ L as follows. For the first τ1 steps, the environment
generates graphs based on one of the aforementioned graph generation algorithms to arrive at the
steady state, while client m pulls arms randomly and updates local estimators {µ̄m

i , nm
i }i. Afterwards,

the environment generates the graph Gt that follows the distribution of interest, while client m updates
{µ̄m

i , nm
i }i and row m of Pt by exchanging information with its neighbors in the graph Gt. Note

that client m does not have any global information about Gt. At the end of the burn-in period, client
m computes the network-wide estimator µ̃m

i by taking the weighted average of local estimators of
other clients (including itself), where the weights are given by the m-th row of weight matrix P ′ and
d, which depend on P and knowledge of M and satisfy

∑M
j=1 P

′
t (m, j) + dm,tM = 1.

Subsequently, we describe Algorithm 2 where t ≥ L + 1. There are four phases in one iteration
enumerated below in the order indicated. A flowchart of this algorithm is provided in Appendix.

UCB Given the estimators µ̃m
i (t), nm,i(t), Nm,i(t), µ̄

m
i (t), client m either randomly samples an

arm or pulls the arm that maximizes the upper confidence bound using µ̃m
i (t), nm,i(t), depending on

whether nm,i(t) ≤ Nm,i(t)−K holds for some arm i. This additional condition ensures consensus
among clients regarding which arm to pull. The upper confidence bound F (m, i, t) is specified

as F (m, i, t) =
√

C1 ln t
nm,i(t)

and F (m, i, t) =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

in settings with sub-Gaussian and
sub-exponential rewards, respectively. Constants C1 and C2 are determined in the analyses and they
depend on σ which is an upper bound of standard deviations of the reward values (it is formally
defined later).

Environment and client interaction After client m pulls arm atm, the environment sends the
reward rtm,at

m
and the neighbor set Nm(t) in Gt to client m. Client m does not know the whole Gt

and obtains only the neighbor set Nm(t).

Transmission Client m sends the maintained local and network-wide estimators
{µ̄m

i (t), µ̃m
i (t), nm,i(t), Nm,i(t)}i to all clients in Nm(t) and receives the ones from them.

Update estimators At the end of an iteration, client m first updates the m-th row of matrix Pt.
Subsequently, client m updates the quantities{µ̄m

i (t), µ̃m
i (t), nm,i(t), Nm,i(t)}1≤i≤K adhereing to:

tm,j = maxs≥τ1{(m, j) ∈ Es)} and 0 if such an s does not exist
nm,i(t+ 1) = nm,i(t) + 1at

m=i, Nm,i(t+ 1) = max{nm,i(t+ 1), ˆ̄Nm
i,j(t), j ∈ Nm(t)} (2)

µ̄m
i (t+ 1) =

µ̄m
i (t)·nm,i(t)+rm,i(t)·1at

m=i

nm,i(t+1) , P ′
t (m, j) = M−1

M2 if Pt(m, j) > 0 and 0 otherwise

µ̃m
i (t + 1) =

∑M
j=1 P

′
t (m, j)ˆ̃µm

i,j(tm,j) + dm,t

∑
j∈Nm(t)

ˆ̄µm
i,j(t) + dm,t

∑
j ̸∈Nm(t)

ˆ̄µm
i,j(tm,j)

with dm,t = (1−
∑M

j=1 P
′
t (m, j))/M

Similar to [Zhu et al., 2021b, Zhu and Liu, 2023], the algorithm balances between exploration and
exploitation by the upper confidence bound and a criterion on nm,i(t) and Nm,i(t) that ensures that
all clients explore arms at similar rates and thereby “staying on the same page.” After interacting
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Algorithm 1: DrFed-UCB: Burn-in period
Initialization: The length of the burn-in period is L and we are also given τ1 < L; In the time
step t = 0, the estimates are initialized as µ̄m

i (0) = 0, nm,i(0) = 0, ˆ̄µm
i,j(0) = 0, and

P0(m, j) = for any arm i and clients m, j;
for 1 ≤ t ≤ τ1 do

The environment generates a sample graph Gt = (V,Et) based on either E-R or Algorithm 3;
end
for 1 ≤ t ≤ τ1 do

for each client m do
Sample arm amt = (t mod K);
Receive reward rmam

t
(t) and update nm,i(t) = nm,i(t− 1) + 1at

m=i;

Update the local estimate for any arm i: µ̄m
i (t) =

nm,i(t−1)µ̄m
i (t−1)+rmam

t
(t)·1am

t =i

nm,i(t−1)+1am
t =i

;

end
end
for τ1 < t ≤ L do

The environment generates a sample graph Gt = (V,Et) based on either E-R or Algorithm 3;
for each client m do

Sample arm amt = (t mod K);
Receive rewards rmam

t
(t) and update nm,i(t) = nm,i(t− 1) + 1at

m=i;

Update the local estimates for any arm i: µ̄m
i (t) =

nm,i(t−1)µ̄m
i (t−1)+rmam

t
(t)·1am

t =i

nm,i(t−1)+1am
t =i

;

Update the maintained matrix Pt(m, j) =
(t−1)Pt−1(m,j)+Xt

m,j

t for each j ∈ V ;
Send {µ̄m

i (t)}i=K
i=1 to all clients in Nm(t);

Receive {µ̄j
i (t)}i=K

i=1 from all clients j ∈ Nm(t) and store them as ˆ̄µm
i,j(t).

end
end
for each client m and arm i do

For client 1 ≤ j ≤ M , set hL(m, j) = maxs≥τ1{(m, j) ∈ Es} or 0 if such s does not exist

µ̃m
i (L+ 1) =

∑M
j=1 P

′
m,j(L)ˆ̄µ

m
i,j(h

L
m,j) where P ′

m,j(L) =

{
1
M if PL(m, j) > 0

0 otherwise
;

end

with the environment, clients move to the transmission stage, where they share information with the
neighbors on Gt, as a preparation for the update stage.

Different from the upper confidence bound approach in [Zhu and Liu, 2023], which has an extra term
of 1

t in the UCB criterion, our proposal is aligned with the conventional UCB algorithm. Meanwhile,
our update rule differs from that in [Zhu et al., 2021b, Zhu and Liu, 2023] in three key aspects:
(1) maintaining a stopping time tm,j that tracks the most recent communication to client j, and (2)
updating µ̃m

i based on both µ̃j
i and µ̄j

i for j ∈ Nm(t), and (3) using a weight matrix based on P ′
t and

Pt computed from the trajectory {Gs}s≤t in the previous steps. The first point ensures that the latest
information from other clients is leveraged, in case there is no communication at the current time step.
The second point ensures proper integration of both network-wide and local information, smoothing
out biases from local estimators and reducing variances through averaging. The third point distills the
information carried by the time-varying graphs and determines the weights of the available local and
network-wide estimators, removing the need for the doubly stochasticity assumption. The algorithm
assumes that the clients know M and σ2.

We note that tm,j is the stopping time by definition and that µ̄m
i is an unbiased estimator for µm

i
with a decaying variance proxy. Meanwhile, the matrices P ′

t and Pt are not doubly stochastic and
keep track of the history of the random graphs. By introducing tm,j and Pt, we can show that the
global estimator µ̃m

i (t) behaves similarly to a sub-Gaussian/sub-exponential random variable with an
expectation of µi and a time-decaying variance proxy proportional to 1

minj nj,i(t)
. This ensures that

the concentration inequality holds for µ̃m
i (t) with respect to µi and that client m tends to identify the
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Algorithm 2: DrFed-UCB: Learning period
Initialization: For each client m and arm i ∈ {1, 2, . . . ,K}, we have µ̃m

i (L+ 1),
Nm,i(L+ 1) = nm,i(L); all other values at L+ 1 are initialized as 0;

for t = L+ 1, L+ 2, . . . , T do
for each client m do // UCB

if there is no arm i such that nm,i(t) ≤ Nm,i(t)−K then
atm = argmaxi µ̃m,i(t) + F (m, i, t)

else
Randomly sample an arm atm.

end
Pull arm atm and receive reward rm,at

m
(t);

end
The environment generates a sample graph Gt = (V,Et)
based on E-R or Algorithm 3; // Env

Each client m sends µm
i (t), Nj,i(t), µ̄

m
i (t), µ̃m

i (t) to each client in Nm(t);
Each client m receives µj

i (t), Nj,i(t), µ̄
j
i (t), µ̃

j
i (t) from all clients j ∈ Nm(t) and stores

them as µ̂m
i,j(t), N̂

m
i,j(t), ˆ̄µ

m
i,j(t), ˆ̃µ

m
i,j(t); // Transmission

for each client m do
for i = 1, . . . ,K do

Update Pt for 1 ≤ j ≤ M by Pt(m, j) =
(t−1)Pt−1(m,j)+Xt

m,j

t ;

Update P ′
t for 1 ≤ j ≤ M by P ′

t (m, j) =

{
1 if Pt(m, j) > 0

0 if Pt(m, j) = 0
;

Update nm,i(t), Nm,i(t) and µ̃m
i (t) based on equations (2);

end
end

end

global optimal arms with high probability, which plays an important role in minimizing regret. The
formal statements are presented in the next section.

3 Regret Analyses
In this section, we show the theoretical guarantees of the proposed algorithm, assuming mild
conditions on the environment. Specifically, we consider various settings with different model
assumptions. We prove that the regret of Algorithm 2 has different instance-dependent upper bounds
of order log T for settings with sub-Gaussian and sub-exponential distributed rewards, and a mean-
gap independent upper bound of order

√
T log T across settings. Many researchers call such a bound

instance independent but we believe such a terminology is misleading and thus we prefer to call it
man-gap independent, given that it still has dependency on parameters pertaining to the problem
instance. The results are consistent with the regret bounds in prior works.

3.1 Model Assumptions
By definition, the environment is determined by how the graphs (E-R or uniform) and rewards are
generated. For reward we consider two cases.

Sub-g At time step t, the reward of arm i at client m has bounded support [0, 1], and is drawn from
a sub-Gaussian distribution with mean 0 ≤ µm

i ≤ 1 and variance proxy 0 ≤ (σm
i )2 ≤ σ2.

Sub-e At time step t, the reward of arm i at client m has bounded support [0, 1], and follows a
sub-exponential distribution with mean 0 ≤ µm

i ≤ 1 and parameters 0 ≤ (σm
i )2 ≤ σ2, 0 ≤ αm

i ≤ α.

With these considerations, we investigate four different environments (settings) based on the two
graph assumptions and the two reward assumptions: Setting 1.1 corresponds to E-R and Sub-g,
Setting 1.2 to Uniform and Sub-g, Setting 2.1 to E-R and Sub-e, and Setting 2.2 to Uniform and
Sub-e. For each setting, we derive upper bounds on the regret in the next section.
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3.2 Regret Analyses
In this section, we establish the regret bounds formally when clients adhere to Algorithm 2 in various
settings. We denote Setting 1.1, Setting 1.2 with M < 11, and Setting 1.2 with M ≥ 11 as s1, s2
and s3, respectively. Likewise, we denote Setting 2.1, Setting 2.2 with M < 11, and Setting 2.2 with
M ≥ 11 as S1, S2 and S3, respectively. See Table 1 in Appendix for a tabular view of the various
settings.

Note that the randomness of RT arises from both the reward and graph observations. Considering
S1, S2, S3 differ in the reward assumptions compared to s1, s2, s3, we define an event A that preserves
the properties of the variables with respect to the random graphs. Given the length of the burn-
in period Li for i ∈ {s1, s2, s3} and the fact that Lsi = LSi

since it only relies on the graph
assumptions, we use L to denote maxi Lsi . Parameters 0 < δ, ϵ < 1 are any constants, and the
parameter c = c(M) represents the mean value of the Bernoulli distribution in s1, S1 and the
probability of an edge in s2, S2, s3, and S3 among all connected graphs (see (1)). We define events
A1 = {∀t ≥ L, ||Pt − cE||∞ ≤ δ}, A2 = {∃t0,∀t ≥ L,∀j,∀m, t + 1 − minj tm,j ≤ t0 ≤
c0 minl nl,i(t + 1)}, and A3 = {∀t ≥ L,Gt is connected}. Here E is the matrix with all values
of 1. Constant c0 = c0(K,mini ̸=i∗ ∆i,M, ϵ, δ) is defined later. Since c = c(M) this implies that
Gt depends on M . We define A = Aϵ,δ = A1 ∩ A2 ∩ A3, which yields A ∈ Σ with Σ being
the sub-σ-algebra formed by {Ω, ∅, A,Ac}. This implies E[·|Aϵ,δ] and P [·|Aϵ,δ] are well-defined,
since A only relies on the graphs and removes the differences among s1, s2, s3 (S1, S2, S3), enabling
universal regret upper bounds.

Next, we demonstrate that event A holds with high probability.

Theorem 1. For event Aϵ,δ and any 1 > ϵ, δ > 0, we have P (Aϵ,δ) ≥ 1− 7ϵ.

Proof Sketch. The complete proof is deferred to Appendix; we discuss the main logic here. The
proof relies on bounding the probabilities of A1, A2, A3 separately. For A1, its upper bound holds by
the analysis of the mixing time of the Markov chain underlying Gt and on the matrix-form Hoeffding
inequality. We obtain an upper bound on P (A2) by analyzing the stopping time tm,j and the counter
nm,i(t). For the last term P (A3), we show that the minimum degree of Gt has a high probability
lower bound that is sufficient for claiming the connectivity of Gt. To put all together, we use the
Bonferroni’s inequality and reach the lower bound of P (Aϵ,δ).

Subsequently, we have the following general upper bound on the regret RT of Algorithm 2 in the
high probability sense, which holds on A in any of the settings s1, s2, s3 with sub-Gaussian rewards.

Theorem 2. Let f be a function specific to a setting and detailed later. For every 0 < ϵ < 1

and 0 < δ < f(ϵ,M, T ), in setting s1 with c ≥ 1
2 + 1

2

√
1− ( ϵ

MT )
2

M−1 , s2 and s3, with

the time horizon T satisfying T ≥ L, the regret of Algorithm 2 with F (m, i, t) =
√

C1 ln t
nm,i(t)

satisfies that E[RT |Aϵ,δ] ≤ L +
∑

i ̸=i∗(max {[ 4C1 log T
∆2

i
], 2(K2 +MK)} + 2π2

3P (Aϵ,δ)
+

K2 + (2M − 1)K) = O(lnT ) where the length of the burn-in period is explicitly L =

max

{
ln T

2ϵ

2δ2
,
4K log2 T

c0︸ ︷︷ ︸
Ls1

,
ln δ

10

ln p∗
+ 25

1 + λ

1− λ

ln T
2ϵ

2δ2
,
4K log2 T

c0︸ ︷︷ ︸
Ls2

,
ln δ

10

ln p∗
+ 25

1 + λ

1− λ

ln T
2ϵ

2δ2
,

K ln(MT
ϵ )

ln( 1

1− 2 log M
M−1

)

c0︸ ︷︷ ︸
Ls3

}

with λ being the spectral gap of the Markov chain in s2, s3 that satisfies 1 − λ ≥ 1
2 ln 2

ln 2p∗ ln 4+1
,

p∗ = p∗(M) < 1 and c0 = c0(K,mini ̸=i∗ ∆i,M, ϵ, δ), and the instance-dependent constant
C1 = 8σ2 max{12M(M+2)

M4 }.

Proof Sketch. The proof is carried out in Appendix; here we describe the main ideas as follows. We
note that the regret is proportional to the total number of pulling global sub-optimal arms by the end
of round T . We fix client m for illustration without loss of generality. We tackle all the possible
cases when clients pull such a sub-optimal arm - (i) the condition nm,i(t) ≤ Nm,i(t)−K is met, (ii)
the upper confidence bounds of global sub-optimal arms deviate from the true means, (iii) the upper
confidence bounds of global optimal arms deviate from the true means, and (iv) the mean values
of global sub-optimal arms are greater than the mean values of global optimal arms. The technical
novelty of our proof is in that 1) we deduce that the total number of events (ii) and (iii) occurring can
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be bounded by some constants using newly derived conditional concentration inequalities that hold
by our upper bounds on the conditional moment generating functions and by the unbiasedness of the
network-wide estimators and 2) we control (i) by analyzing the scenarios where the criteria are met,
which do not occur frequently.
Remark (Specification of the parameters). Note that the choice of f depends on the problem

settings. Specifically, in setting s1, we set f(ϵ,M, T ) = 1
2 + 1

4

√
1− ( ϵ

MT )
2

M−1 . By the definition
of c, we have f(ϵ,M, T ) < c. In setting s2 with M < 11, we specify f(ϵ,M, T ) = 1

2 which meets
f < c due to (1). Lastly, in setting s3 with M ≥ 11, we choose f(ϵ,M, T ) = 1

2
2 logM
M−1 and again

we have f < c due to (1). We observe that the regret bound is dependent on the transition kernel
π and the spectral gap λ of the underlying Markov chain associated with π. This indicates the
significance of graph complexities and distributions within the framework of the random graph model
when deriving the regret bounds, in a similar manner as the role of graph conductance in the regret
bounds established in [Sankararaman et al., 2019, Chawla et al., 2020] for time-invariant graphs.

To proceed, we show a high probability upper bound on the regret E[RT |Aϵ,δ] of Algorithm 2 for
settings S1, S2, S3 with sub-exponential rewards.

Theorem 3. Let f be a function specific to a setting and defined in the above remark. For every 0 <

ϵ < 1 and 0 < δ < f(ϵ,M, T ), in settings S1 with c ≥ 1
2 + 1

2

√
1− ( ϵ

MT )
2

M−1 ,S2, S3 with the time

horizon T satisfying T ≥ L, the regret of Algorithm 2 with F (m, i, t) =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

satisfies

E[RT |Aϵ,δ] ≤ L +
∑

i ̸=i∗(∆i + 1) · (max([ 16C1 log T
∆2

i
], [ 4C2 log T

∆i
], 2(K2 +MK)) + 4

P (Aϵ,δ)T 3 +

K2 + (2M − 1)K) = O(lnT ) where L,C1 are specified as in Theorem 2 and C2

C1
≥ 3

2 .

Proof Sketch. The proof is detailed in Appendix. The proof logic is similar to that of Theorem 2.
However, the main differences lie in the upper confidence bounds, which require proving new
concentration inequalities and moment generating functions for the network-wide estimators.

In addition to the instance-dependent regret bounds of order O( log T
∆i

) that depend on the sub-
optimality gap ∆i which may be arbitrarily small and thereby leading to large regret, we also
establish a universal, mean-gap independent regret bound that applies to settings with sub-exponential
and sub-Gaussian rewards. A formal proof is deferred to Appendix.

Theorem 4. Assume the same conditions as in Theorems 2 and 3. The regret of Algorithm 2
satisfies that E[RT |Aϵ,δ] ≤ L1+

4
P (Aϵ,δ)T 3 +(

√
max (C1, C2) lnT+1) 4M

P (Aϵ,δ)T 3 +K(C2(lnT )
2+

C2 lnT+
√
C1 lnT

√
T (lnT + 1)) = O(

√
T lnT ). where L1 = max(L,K(2(K2+MK))), L,C1

is specified as in Theorem 2, and C2

C1
≥ 3

2 . The involved constants depend on σ2 but not on ∆i.

3.3 Other Performance Measures
Communication cost Assuming a constant cost of establishing a communication link, as defined in
[Wang et al., 2020, Li and Song, 2022], denoted as c1, the communication cost CT can be calculated
as CT = c1 ·

∑T
t=1 |Et|, which is proportional to

∑T
t=1 |Et|. Alternatively, following the framework

proposed in [Wang et al., 2022, Li and Wang, 2022, Sankararaman et al., 2019, Chawla et al., 2020],
the communication cost can be defined as the total number of communications among clients, which
can be represented as CT =

∑T
t=1 |Et|, similar to the previous definition. Regarding the quantity

CT =
∑T

t=1 |Et|, the number of edges Et could be O(M) for sparse graphs, and at most O(M2).
In the random graph model, the expected number of edges is M(M−1)

2 c, which implies O(M2)
in the worst case scenario and the total communication cost, in a worst-case scenario, is of order
O(TM2). This analysis holds also for the random connected graph case where c represents the
probability of having an edge. This cost aligns with the existing work of research on decentralized
distributed multi-agent MAB problems without a focus on the communication cost, where edge-wise
communication is a standard practice. Optimizing communication costs to achieve sublinearity, as
discussed in [Sankararaman et al., 2019, Chawla et al., 2020], is a subject for future research.

Complexity and privacy guarantee At each time step, the time complexity of the graph generation
algorithm is O(M2 +M + |Et|) ≤ O(M2), where the first term accounts for edge selection, and the
second and third terms are for graph connectivity verification using Algorithm 1 (benefitting from the
use of Markov chains for graph generation). The main algorithm comprises various stages involving
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multiple agents. The overall time complexity is calculated as O(MK + M2 + MK + M2) =
O(M2 +MK), consistent with that of [Zhu et al., 2021b, Dubey et al., 2020]. It is noteworthy that
most procedures can operate in parallel (synchronously), such as arm pulling, broadcasting, estimator
updating, and E-R model generation, with the exception being random connected graph generation
due to the Markovian property. Privacy guarantees are also important. Here, we note that clients only
communicate aggregated values of raw rewards. Differential privacy is not the focus of this work but
may be considered in future research.

4 Numerical Results
In this section, we present a numerical study of the proposed algorithm. Specifically, we first
demonstrate the regret performance of Algorithms 2 and 3, in comparison with existing benchmark
methods from the literature, in a setting with time-invariant graphs. Moreover, we conduct a numerical
experiment with respect to time-varying graphs, comparing the proposed algorithm with the most
recent work [Zhu and Liu, 2023]. Furthermore, the theoretical regret bounds of the proposed algorithm,
as discussed in the previous section, exhibit different dependencies on the parameters that determine
the underlying problem settings. Therefore, we examine these dependencies through simulations to
gain insights into the exact regret incurred by the algorithm in practice. The benchmark algorithms
include GoSInE [Chawla et al., 2020], Gossip_UCB [Zhu et al., 2021b], and Dist_UCB [Zhu and Liu,
2023]. Notably, GoSInE and Gossip_UCB are designed for time-invariant graphs, while Dist_UCB
and the proposed algorithm (referred to as DrFed-UCB) are tailored for time-varying graphs. Details
about numerical experiments are refered to Appendix.

Benchmark comparison results The visualizations for both time-invariant and time-varying
graphs are in Appendix. We evaluated regret by averaging over 50 runs, along with the corresponding
95% confidence intervals. In time-invariant graphs, DrFed-UCB consistently demonstrates the
lowest average regret, showcasing significant improvements. Dist_UCB and DrFed-UCB exhibit
larger variances (Dist_UCB having the largest variances), which might have resulted from the
communication mechanisms designed for time-varying graphs. In time-varying graphs, our regret is
substantially lower compared to that of Dist_UCB. In terms of time complexity, DrFed-UCB and
GoSInE are approximately six times faster than Dist_UCB.

Regret dependency results Additionally, we illustrate how the regret of DrFed-UCB depends on
several factors, including the number of clients M , the number of arms K, the Bernoulli parameter
c for the E-R model, and heterogeneity measured by maxi,j,k |µk

i − µk
j |. The visualizations are

available in Appendix. We observe that regret monotonically increases with the level of heterogeneity
and the number of arms, while it monotonically decreases with connectivity, which is equivalent to
an increase in graph complexity. However, this monotonic dependency does not hold with respect to
M due to the accumulation of the information gain.

5 Conclusions
In this paper, we consider a decentralized multi-agent multi-armed bandit problem in a fully stochastic
environment that generates time-varying random graphs and heterogeneous rewards following sub-
gaussian and sub-exponential distributions, which has not yet been studied in existing works. To
the best of our knowledge, this is the first theoretical work on random graphs including the E-R
model and random connected graphs, and the first work on heterogeneous rewards with heavy tailed
rewards. To tackle this problem, we develop a series of new algorithms, which first simulate graphs
of interest, then run a warm-up phase to handle graph dynamics and initialization, and proceed
to the learning period using a combination of upper confidence bounds (UCB) with a consensus
mechanism that relies on newly proposed weight matrices and updates, and using a stopping time
to handle randomly delayed feedback. Our technical novelties in the results and the analyses are as
follows. We prove high probability instance-dependent regret bounds of the order of log T in both
sub-gaussian and sub-exponential cases, consistent with the regret bound in the existing works that
only consider the expected regret. Moreover, we establish a nearly tight instance-free regret bound
of order

√
T log T for both sub-exponential and sub-gaussian distributions, up to a log T factor. We

leverage probabilistic graphical methods on random graphs and draw on theories related to rapidly
mixing Markov chains, which allows us to eliminate the doubly stochasticity assumption through
new weight matrices and a stopping time. We construct new network-wide estimators and invent new
concentration inequalities for them, and subsequently incorporate the seminal UCB algorithm into
this distributed setting. A discussion on future work is refered to Appendix.
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A Additional Background Work

Developing efficient algorithms for decentralized systems has been a popular research area in recent
years. Among them, gossiping algorithms have been proven to be successful [Scaman et al., 2017,
Duchi et al., 2011, Nedic and Ozdaglar, 2009]. In this approach, each client computes iteratively a
weighted average of local estimators and network-wide estimators obtained from neighbors. The goal
is to derive an estimator that converges to the average of the true values across the entire system. The
weights are represented by a matrix that respects the graph structure under certain conditions. The
gossiping-based averaging approach enables the incorporation of MAB methods in decentralized
settings. In particular, motivated by the success of the UCB algorithm [Auer et al., 2002a] in stochastic
MAB, [Landgren et al., 2016a,b, 2021, Zhu et al., 2020, 2021a,b, Martínez-Rubio et al., 2019, Chawla
et al., 2020, Wang et al., 2021] import it to various decentralized settings under the assumption of
sub-Gaussianity, including homogeneous or heterogeneous rewards, different graph assumptions,
and various levels of global information. The regret bounds obtained are typically of order log T .
However, most existing works assume that the graph is time-invariant under further conditions, which
is often not the case. For example, [Wang et al., 2021] provide a optimal regret guarantee for complete
graphs which are essentially a centralized batched bandit problem [Perchet et al., 2016]. Connected
graphs are also considered, but [Zhu et al., 2020] assume that the rewards are homogeneous and
graphs are time-invariant related to doubly stochastic matrices. In addition, [Martínez-Rubio et al.,
2019] propose the DDUCB algorithm for settings with time-invariant graphs and homogeneous
rewards, dealing with deterministically delayed feedback and assuming knowing the number of
vertices and the spectral gap of the given graph. Meanwhile, [Jiang and Cheng, 2023] propose an
algorithm C-CBGE that is robust to Gaussian noises and deals with client-dependent MAB, but
requires time-invariant regular graphs. [Zhu et al., 2021b] propose a gossiping-based UCB-variant
algorithm for time-invariant graphs. In this approach, each client maintains a weighted averaged
estimator by gossiping, uses doubly stochastic weight matrices depending on global information
of the graph, and adopts a UCB-based decision rule by constructing upper confidence bounds.
Recently, [Zhu and Liu, 2023], revisit the algorithm and add an additional term to the UCB rule for
time-varying repeatedly strongly connected graphs, assuming no global information. However, the
doubly stochasticity assumption excludes many graphs from consideration. Our algorithm builds
on the approach proposed by [Zhu et al., 2021b] with new weight matrices that do not require the
doubly stochasticity assumption. Our weight matrices leverage more local graph information, rather
than just the size of the vertex set as in [Zhu and Liu, 2023, Zhu et al., 2021b]. We introduce the
terminology of the stopping time for randomly delayed feedback, along with new upper confidence
bounds that consider random graphs and sub-exponentiality. This leads to smaller high probability
regret bounds, and the algorithm only requires knowledge of the number of vertices that can be
obtained at initialization or estimated as in [Martínez-Rubio et al., 2019].

In the context of bandits with heavy-tailed distributed rewards, the UCB algorithm continues to
play a significant role. [Dubey et al., 2020] are the first to consider the multi-agent MAB setting
with homogeneous heavy-tailed rewards. They develop a UCB-based algorithm with an instance-
dependent regret bound of order log T . They achieve this by adopting larger upper confidence bounds
and finding cliques of vertices, even though the graphs are time-invariant and known to clients. In a
separate line of work, [Jia et al., 2021] consider the single-agent MAB setting with sub-exponential
rewards, and propose a UCB-based algorithm that enlarges or pretrains the upper confidence bounds,
achieving a mean-gap independent regret bound of order

√
T log T . We extend this technique to

the decentralized multi-agent MAB setting with heterogeneous sub-exponential rewards, using a
gossiping approach, and establish both an optimal instance-dependent regret bound of O(log T ) and
a nearly optimal mean-gap independent regret bound of O(

√
T log T ), up to a log T factor.

Our work draws on the classical literature on random graphs. From the perspective of generating
random connected graphs, we build upon a numerically efficient algorithm introduced in [Gray et al.,
2019], which is based on the Metropolis-Hastings algorithm [Chib and Greenberg, 1995], despite
its lack of finite convergence rate for non-sparse graphs. We follow their algorithm and, in addition,
provide a new analysis on the convergence rate and mixing time of the underlying Markov chain.
In terms of the E-R model, it has been thoroughly examined in various areas, such as mean-field
games [Delarue, 2017] and majority vote settings [Lima et al., 2008]. However, these random graphs
have not yet been applied to the decentralized multi-agent MAB setting that is partially determined
by the underlying graphs. Our formulation and analyses bridge this gap, providing insights into the
dynamics of decentralized multi-agent MAB in the context of random graphs.
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B Future work
Recent advancements have been made in reducing communication costs with respect to the depen-
dency in multi-agent MAB with homogeneous rewards (in the generalized linear bandit setting [Li
and Wang, 2022], the ground truth of the unknown parameter is the same for all clients), such as
achieving O(

√
TM2) in [Li and Wang, 2022] for centralized settings or O(M3 log T ) through Global

Information Synchronization (GIS) communication protocols assuming time-invariant graphs in [Li
and Song, 2022]. Likewise, [Sankararaman et al., 2019, Chawla et al., 2020] improve the communi-
cation cost of order log T or o(T ) through asynchronous communication protocols and balancing
the trade-off between regret and communication cost. More recently, [Wang et al., 2022] establish
a novel communication protocol, TCOM, which is of order log log T by means of concentrating
communication around sub-optimal arms and performing aggregation of estimators across time steps.
Furthermore, [Wang et al., 2020] develops a new leader-follower communication protocol, which
selects a leader that communicates to the followers. Here the communication cost is independent of
T which is much smaller. The incorporation of random graph structures and heterogeneous rewards
introduces its own complexities, which poses challenges to reductions in communication costs. These
great advancements introduce a promising direction for communication efficiency as a next step
within the context herein.

C Details on numerical experiments in Section 4
We report the experimental details in Section 4, including both benchmarking and regret properties
of the algorithms. The implementation details of the experiments are as follows, including the data
generation, benchmarks, and the evaluation metrics.

The process of data generation involves both reward generation and graph generation. First we
generate different numbers of arms and clients, denoted as K and M , respectively. Specifically, we
generate rewards using the Bernoulli distribution in the sub-Gaussian distribution family, varying the
mean values µm

i by introducing multiple levels of heterogeneity denoted as h = maxi,j,m |µm
i − µj |

and then for each arm k, partitioning the range [0.1, 0.1 + (k + 1) · h/K] into M intervals. In
terms of graph generation, we generate E-R models with varying values of c, to capture graph
complexity. Specifically, for the benchmarking experiment with time-invariant graphs, we set
K = 2,M = 5, h = 0.1, c = 1, i.e. complete graphs. For the benchmarking experiment with
time-varying graphs, we set K = 2,M = 5, h = 0.1, c = 0.9. For the regret experiments, the
parameters are h ∈ {0.1, 0.2, 0.3}, M ∈ {5, 8, 12}, c ∈ {0.2, 0.5, 0.9, 1}, and K ∈ {2, 3, 4}. We
selected the least positive number of arms K = 2 to keep computational times low and M = 5 to
have small graphs but still a variety of them.

We compare the new method DrFed-UCB with the classical methods, such as the Gossiping Insert-
Eliminate algorithm (GoSInE) in [Chawla et al., 2020] which focuses on deterministic graphs
and sub-Gaussian rewards and motivated our work. We also include the Gossip UCB algorithm
(Gossip_UCB) [Zhu et al., 2021b] as a benchmark. Meanwhile, in terms of time-varying graphs,
we implement the algorithm, Distributed UCB (Dist_UCB) in [Zhu and Liu, 2023] that has been
developed for time-varying graphs, and compare our algorithm to this benchmark.

Evaluation The evaluation metric is the regret measure as defined in Section 4. More specifically,
for the experiments, we use the average regret over 50 runs for each benchmark and also report the
95% confidence intervals across the 50 runs. With respect to the communication cost as another
performance measure, it is computed explicitly. Additionally, the runtime can provide insights into
the time complexity of the models.

Benchmark comparison results The results for time-invariant and time-varying graphs are pre-
sented in Figure 1 (a) and Figure 1 (b), respectively. The x-axis represents time steps, while the
y-axis shows the average regret up to that time step. Figure 1 (a) demonstrates that DrFed-UCB
exhibits the smallest average regret among all methods in time-invariant graphs, with significant
improvements. More precisely, with respect to the Area Under the Curve (AUC) of the regret curve,
the improvements of DrFed-UCB over GoSInE, Gossip_UCB, and Dist_UCB are 132%, 158%, and
128%, respectively, showcasing the regret improvement of the newly proposed algorithm compared
to the benchmarks. Notably, both Dist_UCB and DrFed-UCB result in larger variances, primarily
observed in Dist_UCB. This phenomenon may be attributed to the communication mechanisms
designed for time-varying graphs. In Figure 1 (b), we observe that our regret is notably smaller
compared to Dist_UCB in settings with time-varying graphs. Specificaly, the AUC of Dist_UCB is
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(a) time-invariant graphs (b) time-varying graphs

Figure 1: The regret of different methods in settings with both time-invariant and time-varying graphs

(a) h (b) M

(c) c (d) K

Figure 2: The regret of the proposed algorithm in problem settings with different parameters

96.6% larger than that of our regret curve, which implies the significant improvement in this setting
with time-varying graphs. Furthermore, we perform a time complexity comparison, revealing that
DrFed-UCB and GoSInE are approximately six times faster than Dist_UCB. Lastly, communication
cost is directly computed by the total number of communication rounds and follows an explicit
formula. Specifically, the communication costs of DrFed-UCB, Gossip_UCB, and Dist_UCB are
of order T , whereas GoSInE exhibits only o(T ), suggesting a potential direction for optimizing
communication costs.

Regret dependency results Meanwhile, we illustrate how DrFed-UCB’s regret depends on several
factors: the number of clients (M ), the number of arms (K), the Bernoulli parameter (c) for the E-R
model, and heterogeneity measured by h. The regret metrics are presented as (a), (b), (c), and (d) in
Figure 2, respectively. We observe that regret monotonically increases with the level of heterogeneity
and the number of arms, while decreasing with connectivity, which is equivalent to an increase in
graph complexity. However, this monotonic trend does not apply to the number of clients. This is due
to the following considerations. On one hand, a large M implies a greater number of incident edges
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Figure 3: Flowchart of Algorithm 2

of each client, providing more global information access and potentially leading to smaller regret. On
the other hand, a large M also weakens the Chernoff-Hoeffding inequality for clients transmitting
information, which might result in larger regret.

D Algorithms and Tables in Section 3

The algorithm for generating random connected graphs is presented in Algorithm 3 as follows.

Algorithm 3: Generate a uniformly distributed connected graph

Initialization: Let τ1 be given; Generate a random graph Ginit by selecting each edge with
probability 1

2 ;
Connectivity: make Ginit connected by adding the least many edges to get G0 ;
for t = 0, 1, 2, . . . , τ1 do

Randomly sample an edge pair e = (i, j);
Denote the edge set of Gs as Es;
if e ∈ Es then

Remove e from Es to get G′
s = (V,Es\{e});

if G′
s is connected then
Gs+1 = G′

s;
else

reject G′
s and set Gs+1 = Gs;

end
else

Gs+1 = (V,Es ∪ {e});
end

end

The flowchart of Algorithm 2 is presented in Figure 3 to illustrate the information flow in the
algorithm. The table below displays the various settings we consider for the regret analysis.
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Table 1: Settings

E-R uniform M reward

s1 ✓ any sub-g

s2 ✓ [1, 10] sub-g

s3 ✓ [11,∞) sub-g

S1 ✓ any sub-e

S2 ✓ [1, 10] sub-e

S3 ✓ [11,∞) sub-e

E Remarks on the theoretical results in Section 3.2

E.1 Remarks on Theorem 2

Remark (The condition on the time horizon). Although the above regret bound holds for any T > L,
the same bound applies to T ≤ L as follows. Assuming T ≤ L, we obtain E[RT |Aϵ,δ] ≤ T ≤ L
where the first inequality is by noting that the rewards are within the range of [0, 1].

Remark (The upper bound on the expected regret). Theorem 2 states a high probability regret
bound, while the expected regret is often considered in the existing literature. As a corollary of
Theorem 2, we establish the upper bound on E[RT ] if ϵ = log T

MT as follows. Note that

E[RT ] = E[RT |Aϵ,δ]P (Aϵ,δ) + E[RT |Ac
ϵ,δ]P (Ac

ϵ,δ) ≤ P (Aϵ,δ) · E[RT |Aϵ,δ] + T · (1− P (Aϵ,δ))

≤ (1− 7ϵ)(L+
∑
i ̸=i∗

(max {[ 4C1 log T

∆2
i

], 2(K2 +MK)}+ 2π2

3P (Aϵ,δ)
+K2 + (2M − 1)K)) + 7ϵT

≤ l1 + l2 log T +
∑
i ̸=i∗

(max {[ 4C1 log T

∆2
i

], 2(K2 +MK)}+ 2π2

3(1− 7ϵ)
+K2 + (2M − 1)K) + 7

log T

M

where the first inequality uses E[RT |Aϵ,δ] ≤ T and the second inequality follows by Theorem 1.
Here l1 and l2 are constants depending on K,M, δ,mini ̸=i∗ ∆i, and λ.

Remark (Comparison with previous work). A comparison to the regret bounds in the existing
literature considering sub-Gaussian rewards is as follows. Our regret bounds are consistent with
the prior works where the expected regret bounds are of order log T . Note that the regret bounds
in [Zhu and Liu, 2023] cannot be used here since the update rule and the settings are different. Their
update rule and analyses cannot carry over to our settings, which explains why we invent these
modifications and proofs. On the one hand, the time-varying graphs they consider do not include
the E-R model, and we can find counter-examples where their doubly stochastic weight matrices Wt

result in the divergence of W1 ·W2 . . .WT . This makes the key proof step invalid in our framework.
On the other hand, their time-varying graphs include the connected graphs when l = 1, but they
also make an additional assumption of doubly stochastic weight matrices, which is not applicable
to regular graphs. Furthermore, they study an expected regret upper bound, while we prove a high
probability regret bound that captures the dynamics in the random graphs. The graph assumptions in
other works, however, are stronger, such as [Zhu et al., 2021b] consider time-invariant graphs and
[Wang et al., 2021] assume graphs are complete [Perchet et al., 2016]. In contrast to some work that
focuses on homogeneous rewards in decentralized multi-agent MAB, we derive regret bounds of the
same order log T in a heterogeneous setting. If we take a closer look at the coefficients in terms of
K,M, λ,∆i, our regret bound is determined by O(max(K, 1+λ

1−λ ,
1

M2∆i
) log T ). The work of [Zhu

and Liu, 2023] arrives at O(max{ log T
∆i

,K1,K2}) where K1,K2 are related to T without explicit
formulas. Our regret is smaller when K∆i ≤ 1 and 1+λ

1−λ∆i ≤ 1, which can always hold by rescaling
∆i, i.e. for many cases we get substantial improvement.
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E.2 Remarks on Theorem 4

Remark. Based on the expression of L1, we obtain that L1 is independent of the sub-optimality gap
∆i. Meanwhile, we have C1 = 8σ2 · 12M(M+2)

M4 and C2 = 3
2C1 = 12σ2 · 12M(M+2)

M4 . This implies
that the established regret bound in Theorem 4 does not rely on ∆i but does depend on σ2. To this
end, we use the terminology, mean-gap independent bounds, to only represent bounds having no
dependency on ∆i, rather than instance independent that seems to be an overclaim in this case.

Remark (Comparison with previous work). For decentralized multi-agent MAB with homogeneous
heavy-tailed rewards and time-invariant graphs, [Dubey et al., 2020] provide an instance-dependent
regret bound of order log T . In contrast, our regret bound has the same order for heterogeneous
settings with random graphs, as shown in Theorem 3. Additionally, we provide a mean-gap inde-
pendent regret bound as in Theorem 4. In the single-agent MAB setting, [Jia et al., 2021] consider
sub-exponential rewards and derive a mean-gap independent regret upper bound of order

√
T log T .

Our regret bound of
√
T log T is consistent with theirs, up to a logarithmic factor. Furthermore, our

result is consistent with the regret lower bound as proposed in [Slivkins et al., 2019], up to a log T
factor, indicating the tightness of our regret bound.

Remark. The discussion regarding the conditions on T , the expected regret E[RT ], and the parame-
ter specifications follow the same logic as those in Theorem 2. We omit the details here.

F Proof of results in Section 3.2

F.1 Lemmas and Propositions
Lemma 1. For any m, i, t > L, we have

nm,i(t) ≥ Nm,i(t)−K(K + 2M)

Proof of Lemma 1. The proof is referred to [Zhu and Liu, 2023].

Lemma 2. For any m, i, t > L, if nm,i(t) ≥ 2(K2 +KM +M) and graph Gt is connected, then
we have

nm,i(t) ≤ 2min
j

nj,i(t).

where the min is taken over all clients, not just the neighbors.

Proof of Lemma 2. The proof is referred to [Zhu and Liu, 2023].

Lemma 3 (Generalized Holder’s inequality). For any r > 0 and measurable functions hi for
i = 1, . . . , n, if

∑n
i=1

1
pi

= 1
r , then

||Πn
i=1hi||r ≤ Πn

i=1||hi||pk
.

The proof follows from the Young’s inequality for products.

Lemma 4. Suppose that random variables X1, X2, . . . , Xn are such that Yi =
E[(X1, . . . , Xn)|(X1, . . . , Xi−1, Xi+1, . . . , Xn)] are sub-Gaussian distributed with variance
proxy σ1, σ2, . . . , σn, respectively. Then the sum of these sub-Gaussian random variables,

∑n
i=1 Xi,

is again sub-Gaussian with variance proxy (
∑n

i=1 σi)
2.

Proof. First, without loss of generality, let us assume E[Xi] = 0. Otherwise, we can always construct
a random variable Xi − E[Xi] which has the same variance proxy with a difference up to a constant.
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Defining pi =
∑n

k=1 σk

σi
gives

∑n
i=1

1
pi

= 1. Let µ be the distribution function of random vector
(X1, . . . , Xn). By specifying hi(x) = exp (λx) and r = 1, we obtain that for any λ > 0 we have

E[exp{λ(
n∑

i=1

Xi)}]

= E[Πn
i=1 exp{λXi}]

=

∫ ∞

0

Πn
i=1 exp{λXi}dµ

≤ Πn
i=1|| exp{λXi}||∑n

k=1
σk

σi

= Πn
i=1(

∫ ∞

0

exp{λXi}
∑n

k=1 σk
σi dµ)

σi∑n
k=1

σk

= Πn
i=1(EYi [exp{λXi

∑n
k=1 σk

σi
}]

σi∑n
k=1

σk

≤ Πn
i=1[exp{

1

2
σ2
i λ

2 (
∑n

k=1 σk)
2

σ2
i

}]
σi∑n

k=1
σk

= [exp{1
2
λ2(

n∑
k=1

σk)
2}]

∑n
i=1

σi∑n
k=1

σk

= exp{1
2
λ2(

n∑
k=1

σk)
2}

where the first inequality is by Lemma 3 and the second inequality follows the definition of sub-
Gaussian random variables.

Lemma 5. Suppose that random variables X1, X2, . . . , Xn are independent sub-Gaussian dis-
tributed with variance proxy σ1, σ2, . . . , σn, respectively. Then we have that the sum of these
sub-Gaussian random variables,

∑n
i=1 Xi, is again sub-Gaussian with variance proxy

∑n
i=1 σ

2
i .

Proof. For any λ > 0 note that

E[exp{λ(
n∑

i=1

Xi)}]

= E[Πn
i=1 exp{λXi}].

Since X1, X2, . . . , Xn are independent random variables, we further have

E[exp{λ(
n∑

i=1

Xi)}]

= Πn
i=1E[expλXi]

≤ Πn
i=1 exp{

1

2
λ2σ2

i }

= exp{1
2
λ2

∑
i=1

σ2
i }

where the inequality is by the definition of sub-Gaussian random variables.

This concludes the proof.

Proposition 1. Under E-R, for any 1 > δ, ϵ > 0, and any fixed t, t ≥ Ls1, the maintained matrix Pt

satisfies

||Pt − cE||∞ ≤ δ
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with probability 1− ϵ
T . This implies that with probability at least 1− ϵ for any t ≥ Ls1 , we have

||Pt − cE||∞ ≤ δ.

Proof. We start with the convergence rate of matrix Pt for fixed t.

We recall that in E-R, the indicator function Xs
i,j for edge (i, j) at time step s follows a Bernoulli

distribution with mean value c. This implies that {Xs
i,j}s are i.i.d. random variables which allows us

to use the Chernoff-Hoeffding inequality

P (|
∑t

s=1 X
s
i,j

t
− c| > δ) ≤ 2 exp{−2tδ2}.

For the probability term, we note that for any t ≥ Ls1 ,

2 exp{−2tδ2} ≤ ϵ

T

since t ≥ Ls1 ≥ ln T
2ϵ

2δ2 by the choice Ls1 of the burn-in period in setting 1.

As a result, the maintained matrix Pt satisfies with probability at least 1− ϵ
T that

||Pt − cE||∞

= max
i,j

|
∑t

s=1 X
s
i,j

t
− c|

≤ δ

which concludes the first part of the statement.

Subsequently, consider the probability P (||Pt − cE||∞ < δ, ∀t > Ls1). We obtain

P (||Pt − cE||∞ < δ, ∀t > Ls1)

= 1− P (∪t≥Ls1
||Pt − cE||∞ < δ)

≥ 1−
∑

t≥Ls1

P (||Pt − cE||∞ < δ)

≥ 1− (T − Ls1)
ϵ

T
≥ 1− ϵ

where the first inequality uses the Bonferroni’s inequality.

This completes the second part of the statement.

We next pin down the Markov chain governing Algorithm 1. Its states compound to all connected
graphs if G and G′ are connected, then the transition probability is defined by

π(G′|G) =


0 if |E(G′)∆E(G)| > 1

2
M(M−1) if |E(G′)∆E(G)| = 1

1− 2α(G)
M(M−1) if G′ = G.

Here ∆ denotes the symmetric difference and α(G) is the number of all connected graph that differ
with G by at most one edge. Algorithm 1 is a random walk in the Markov chain denoted as CG−MC.
The intriguing question is if the stationary distribution corresponds to the uniform distribution on
all connected graphs on M nodes and if it is rapidly mixing. The next paragraph gives affirmative
answers.

Proposition 2. In CG−MC, for any time step n ≥ 1 and initial connected graph Ginit, we have

||πn(·|Ginit)− π∗(·)||TV ≤ 2(p∗)n

where p∗ = p∗(M) < 1 and π∗ is the uniform distribution on all connected graphs.
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Proof. Based on the definition of π∗, we have

π∗ =
1

#{connected graphs}
.

Therefore, there exists a constant 0 < Cf < 1 such that for any two connected graphs G, G′ with
|E(G)∆E(G′)| = 1 we have

π(G|G′) ≥ Cfπ
∗.

In essence Cf = 1
π∗ minG,G′ π(G|G′) < 1.

If G = G′, then there are two possible cases. First, if α(G) < (M(M−1)
2 , then π(G|G) > 2

M(M−1) >

π∗ and π(G|G) > 0. Otherwise, we have π(G|G) = 0. In other words, the set G ̸∈ {G′ : π(G′|G) ≤
π∗(G′), π(G′|G) > 0}.

This implies that for G′ ∈ {G′ : π(G′|G) ≤ π∗(G′), π(G′|G) > 0}, we have |E(G)∆E(G′)| = 1
and subsequently π(G|G′) ≥ Cfπ

∗.

We start with the one-step transition and obtain

||π(·|G)− π∗(·)||TV

= 2 sup
A

|
∫
A

(π(G′|G)− π∗(G′))dG′ |

≤ 2

∫
{G′:π(G′|G)−π∗(G′)≤0}

(−π(G′|G) + π∗(G′))dG′

≤ 2

∫
{G′:π(G′|G)=0}

(−π(G′|G) + π∗(G′))dG′+

2

∫
{G′:π(G′|G)>0,π(G′|G)−π∗(G′)≤0}

(−π(G′|G) + π∗(G′))dG′

= 2

∫
{G′:π(G′|G)=0}

(π∗(G′))dG′ + 2(1− Cf )

∫
{G′:π(G′|G)>0,π(G′|G)−π∗(G′)≤0}

(π∗(G′))dG′

≤ 2P ({G′ : π(G′|G) = 0}) + 2(1− Cf )(1− P ({G′ : π(G′|G) = 0}))

≤ 2(1− 1

#{connected graphs}
) + 2(1− Cf )(1− (1− 1

#{connected graphs}
))

.
= 2p′ + 2(1− Cf )(1− p′) = 2(p′ + (1− Cf )(1− p′))
.
= 2p∗

where we denote the term 1− 1
#{connected graphs} and the term p′ + (1− Cf )(1− p′) by p′ and

p∗, respectively. It is worth noting that p∗ = p∗(M) and p∗ < 1 since p′, Cf < 1. Here the third
inequality uses the above argument on the graphs in the set {G′ : π(G′|G) ≤ π∗(G′), π(G′|G) > 0},
and the last inequality uses the following result. By definition,

P ({G′ : π(G′|G) = 0})
= 1− P ({G′ : π(G′|G) > 0})
≤ 1− P ({G′ : |E(G)∆E(G′)| = 1})

= 1− α(G)

#{connected graphs}
≤ 1− 1

#{connected graphs}

where the last inequality uses α(G) ≥ 1 by the definition of α(G).

Suppose at time step n, the result holds, i.e. for any G

||πn(·|G)− π∗(·)||TV ≤ 2(p∗)n.
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Then we consider the transition kernel at the n+ 1 step. Note that

||πn+1(·|G)− π∗(·)||TV

= 2 sup
A

|
∫
A

(πn+1(G′|G)− π∗(G′))dG′ |

≤ 2 sup
A

|
∫
S

∫
A

(πn(G′|S)− π∗(G′))(π(S|G)− π∗(S))dG′dS |

= 2 sup
A

|
∫
S

(π(S|G)− π∗(S))(

∫
A

(πn(G′|S)− π∗(G′))dG′)dS |

≤ 2 · 1
2
||πn(·|S)− π∗(·)||TV · 1

2
||π(·|G)− π∗(·)||TV

=
1

2
||πn(·|S)− π∗(·)||TV ||π(·|G)− π∗(·)||TV

≤ 1

2
· 2(p∗)n · 2p∗ = 2(p∗)n+1

where the second inequality is by using the definition of || · ||TV and the last inequality holds by
the results in the basis step and the induction step, respectively. The first inequality requires more
arguments as follows. Consider the integral∫

S

∫
A

(πn(G′|S)− π∗(G′))(π(S|G)− π∗(S))dG′dS

=

∫
S

∫
A

(πn(G′|S)− π∗(G′))π(S|G)dG′dS − (πn(G′|S)− π∗(G′))π∗(S)dG′dS

=

∫
S

∫
A

πn(G′|S)π(S|G)dG′dS −
∫
S

∫
A

π∗(G′)πn(S|G)dG′dS−∫
S

∫
A

πn(G′|S)π∗(S)dG′dS +

∫
S

∫
A

π∗(G′)π∗(S)dG′dS

≥
∫
A

πn+1(G′|G)dG′ −
∫
A

π∗(G′)dG′−∫
S

π∗(S)dS +

∫
S

π∗(G′)dG′

=

∫
A

πn+1(G′|G)dG′ −
∫
A

π∗(S)dS =

∫
A

(πn+1(G′|G)− π∗(G′))dG′

where the results hold by exchanging the orders of the integrals as a result of Funibi’s Theorem and
the inequality uses the fact that

∫
A
πn(G′|S)dG′ ≤ 1.

This completes the proof by concluding the mathematical induction.

Proposition 3. For any 1 > δ, ϵ > 0, we obtain that for setting 2, for any fixed t ≥ Ls2 , the
maintained matrix Pt satisfies with probability 1− 2 ϵ

T

||Pt − cE||∞ ≤ δ.

Meanwhile, the graph generated by Algorithm 3 converges to the stationary distribution with

||πt(·|G)− π∗(·)||TV ≤ 1δ

5
,

where π∗ is the uniform distribution on all connected graphs.

Proof. Suppose we run the rapidly mixing markov chain for a time period of length τ1 =
ln ζ

2

ln p∗ where
ζ < δ

5 . By applying Proposition 2, we obtain that for any time step t > τ1,

||πt(·|G)− f(·)||TV ≤ 2(p∗)τ1 .
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For the second phase, we reset the counter of time step and denote the starting point t = τ1 + 1

as t = 1. Based on the definition of Pt, we have Pt = (
∑t

s=1 Xs
i,j

t )1≤i ̸=j≤M where Xs
i,j is the

indicator function for edge (i, j) on Graph Gs that follows the distribution πτ1+s(G, ·). Let us
denote Y s

i,j the indicator function for edge (i, j) on Graph Gobj
s following the distribution π∗(·) and

P obj
t = (

∑t
s=1 Y s

i,j

t )1≤i ̸=j≤M .

By the Chernoff-Hoeffding inequality and specifying ζ = 2(p∗)τ1 , we derive

P (|E[Y 1
i,j ]−

∑t
s=1 Y

s
i,j

t
| ≥ ζ) ≤ 2 exp{−2tζ2}, (3)

i.e.

||P obj
t − cE||∞ ≤ ζ

holds with probability 1− 2 exp{−2tζ2}.

Consider the difference between Pt and P obj
t and we obtain that

Pt − P obj
t

= (

∑t
s=1 X

s
i,j −

∑t
s=1 Y

s
i,j

t
)1≤i̸=j≤M

= (

∑t
s=1 X

s
i,j

t
− E[X1

i,j ] + E[X1
i,j − Y 1

i,j ] + E[Y 1
i,j ]−

∑t
s=1 Y

s
i,j

t
)1≤i̸=j≤M

where the last term is bounded by (3).

For the second quantity E[(Xs
i,j − Y s

i,j)], we have that for any s, i, j

E[(Xs
i,j − Y s

i,j)|Gs, G
obj
s ]

= 1Gs contains edge (i,j)&Gobj
s does not contain edge (i,j) − 1(Gs does not contain edge (i,j)&Gobj

s contains edge (i,j))
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and subsequently by the law of total expectation, we further obtain

E[(Xs
i,j − Y s

i,j)]

= E[E[(Xs
i,j − Y s

i,j)|Gs, G
obj
s ]]

= E[1Gs contains edge (i,j)&Gobj
s does not contain edge (i,j) − 1(Gs does not contain edge (i,j)&Gobj

s contains edge (i,j))]

= E[1Gs contains edge (i,j)] · E[1Gobj
s does not contain edge (i,j)]−

E[1(Gs does not contain edge (i,j)] · E[1Gobj
s contains edge (i,j))] since Gs and Gobj

s are independent

=

∫
A

1S contains edge (i,j)π
τ1+s(S|G)dS ·

∫
A

1S does not contain edge (i,j)π
∗(S)dS−∫

A

1S does not contain edge (i,j)π
τ1+s(S|G)dS ·

∫
A

1S contains edge (i,j)π
∗(S)dS

=

∫
A

1S contains edge (i,j)π
τ1+s(S|G)dS ·

∫
A

1S does not contain edge (i,j)π
∗(S)dS−∫

A

1S contains edge (i,j)π
∗(S)dS ·

∫
A

1S does not contain edge (i,j)π
∗(S)dS+∫

A

1S contains edge (i,j)π
∗(S)dS ·

∫
A

1S does not contain edge (i,j)π
∗(S)dS−∫

A

1S does not contain edge (i,j)π
τ1+s(S|G)dS ·

∫
A

1S contains edge (i,j)π
∗(S)dS

=

∫
A

1S does not contain edge (i,j)π
∗(S)dS(

∫
A

1S contains edge (i,j)(π
τ1+s(S|G)− π∗(S))dS)+∫

A

1S contains edge (i,j)π
∗(S)dS(

∫
A

1S contains edge (i,j)(−πτ1+s(S|G) + π∗(S))dS)

≤
∫
A

1S does not contain edge (i,j)π
∗(S)dS · ||πτ1+s(·|G)− π∗(·)||TV +∫

A

1S contains edge (i,j)π
∗(S)dS · ||πτ1+s(·|G)− π∗(·)||TV

= ||πτ1+s(·|G)− π∗(·)||TV

≤ 2(p∗)τ1 .

In like manner, we achieve

E[(−Xs
i,j + Y s

i,j)]

≤ 2(p∗)τ1 . (4)

We now proceed to the analysis on the first term. Though {Xs
i,j}s are neither independent or

identically distributed random variables, the difference
∑t

s=1 Xs
i,j

t −E[X1
i,j ] can be upper bounded

by the convergence property of πn. Note that Xs
i,j is only different from Xs+1

i,j when edge (i, j) is
sampled at time step s and the generated graph is accepted.

We observe that

P (Gs+1|Gs, Gs−1, . . . , G1)

= P (Gs+1|Gs).

Meanwhile, we can write Xs+1
i,j = 1Xs+1

i,j =1 = 1Gs+1 contains edge (i,j) and similarly, Xs
i,j = 1Xs

i,j=1 =

1Gs contains edge (i,j). Denote event E as E = {connected graph G contains edge (i, j)}. This gives us

Xs+1
i,j = 1Gs+1∈E ,

Xs
i,j = 1Gs∈E .
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Furthermore, the quantity
∫
A
1S∈Eπ

∗(S)dS can be simplified as

E[Y 1
i,j ] = E[1Gobj

s ∈E ]

=

∫
A

1S∈Eπ
∗(S)dS

since Gobj
s follows a distribution with density π∗(·).

A new Hoeffding lemma for markov chains has been recently shown as follows in [Fan et al., 2021].
Let a(λ) = 1+λ

1−λ where λ is the spectrum of the Markov chain CG−MC and by the Theorem 2.1
in [Fan et al., 2021], we obtain that

P (|
t∑

s=1

1Gs∈E − tE[Y 1
i,j ]| > tζ) ≤ 2 exp{−2a(λ)−1tζ2}

i.e.P (|
∑t

s=1 X
s
i,j

t
− E[Y 1

i,j ]| > ζ) ≤ 2 exp{−2a(λ)−1tζ2} (5)

since Xs
i,j = 1Gs∈E satisfies 0 ≤ 1Gs∈E ≤ 1, i.e. the values are within the range of [0, 1].

By the result E[X1
i,j ]− ζ ≤ E[Y 1

i,j ] ≤ E[X1
i,j ] + ζ, we obtain

P (|
∑t

s=1 X
s
i,j

t
− E[X1

i,j ]| > 2ζ) ≤ 2 exp{−2a(λ)−1tζ2}. (6)

Putting the results (3), (4) and (6) together, we derive

||Pt − P obj
t ||∞

= max
i,j

|
∑t

s=1 X
s
i,j

t
− E[X1

i,j ] + E[X1
i,j − Y 1

i,j ] + E[Y 1
i,j ]−

∑t
s=1 Y

s
i,j

t
|

≤ max
i,j

(|
∑t

s=1 X
s
i,j

t
− E[X1

i,j ]|+ |E[X1
i,j − Y 1

i,j ]|+ |E[Y 1
i,j ]−

∑t
s=1 Y

s
i,j

t
|

≤ 2ζ + ζ + ζ = 4ζ

which holds with probability at least 1− 2 exp{−2a(λ)−1tζ2} − 2 exp{−2tζ2}.

For the probability term 1− 2 exp{−2a(λ)−1tζ2} − 2 exp{−2tζ2}, we have

2 exp{−2a(λ)−1tζ2} ≤ ϵ

T
,

2 exp{−2tζ2} ≤ ϵ

T

which holds by

t ≥ Ls2 − τ1 = a(λ)
ln T

2ϵ

2ζ2
.

Therefore, the distance between the empirical matrix and the constant matrix reads as with probability
at least 1− 2 ϵ

T ,

||Pt − cE||∞
≤ ||Pt − P obj

t ||∞ + ||P obj
t − cE||∞

≤ 4ζ + ζ = 5ζ < δ

where ζ = 2(p∗)τ1 < 1
5δ by the choice of parameter δ and ζ . This completes the proof of Proposition

3.

Next, we proceed to explicitly characterize the spectrum of CG −MC which plays a role in the
length of burning period Ls2 and Ls3 .

26



Proposition 4. In setting 2, the spectral gap 1− λ of CG−MC satisfies that for θ > 1,

1− λ ≥ 1

2 ln θ
ln 2p∗ ln 2θ + 1

.

Proof. It is worth noting that for G ̸= G′ and |E(G)∆E(G′)| = 1, we have

π∗(G)π(G′|G) = π∗(G′)π(G|G′)

by the fact that π∗(G) = π∗(G′) and π(G′|G) = π(G|G′) = 2
M(M−1) .

For G ̸= G′ and |E(G)∆E(G′)| > 1 or |E(G)∆E(G′)| = 0, we have π∗(G)π(G′|G) =
π∗(G′)π(G|G′) since π(G′|G) = π(G|G′) = 0.

For G = G′, we have π∗(G)π(G′|G) = π∗(G′)π(G|G′) by the expression.

As a result, CG−MC is reversible. Meanwhile, it is ergodic since it has a stationary distribution π∗

as stated in Proposition 2.

Henceforth, by the result of Theorem 1 in [McNew, 2011] that holds for any ergodic and reversible
Markov chain, we have

1

2 ln 2e

λ2

1− λ2
≤ τ(e)

where τ(e) is the mixing time for an error tolerance e and λ2 is the second largest eigenvalue of
CG−MC. Choosing e > 1

2 immediately gives us

λ2 ≤
2τ(e) ln 2 1

5δ

2τ(e) ln 2e+ 1
. (7)

Again by Proposition 2, we have

||πτ(e)(·|G)− π∗(·)||TV ≤ 2(p∗)τ(e) = e.

Consequently, we arrive at

τ(e) =
ln e

ln 2p∗

and subsequently

λ2 ≤
2 ln e
ln 2p∗ ln 2e

2 ln e
ln 2p∗ ln 2e+ 1

.

by plugging τ(e) into (7).

This completes the proof of the lower bound on the spectral gap 1− λ2.

In the following proposition, we show the sufficient condition for graphs generated by the E-R model
being connected.

Proposition 5. Assume c in setting 1 meets the condition

1 ≥ c ≥ 1

2
+

1

2

√
1− (

ϵ

MT
)

2
M−1 ,

where 0 < ϵ < 1. Then, with probability 1 − ϵ, for any t > 0, Gt following the E-R model is
connected.
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Proof. For 1 ≤ j ≤ M , we denote the degree of client j as dj .

It is straightforward to have 1)
∑M

j=1 dj = 2 · total number of edegs, 2) E[total number of edges] =

c · M(M−1)
2 and 3) random variables d1, d2, . . . , dM are dependent but follow the same distribution.

Note that dj follows a binomial distribution with E[dj ] = c · (M − 1) where c is the probability of
an edge. Then by the Chernoff Bound inequality, we have

P (dj <
M − 1

2
) ≤ exp {−(M − 1) ·KL(0.5||c)}

where KL(0.5||c) denotes the KL divergence between Bernoulli(0.5) and Bernoulli(c).

For the term KL(0.5||c), we can further show that

KL(0.5||c) = 1

2
log

1
2

c
+

1

2
log

1
2

1− c
=

1

2
log

1

4c(1− c)

which leads to P (dj <
M−1

2 ) ≤ exp {(M − 1) · 1
2 log 4c(1− c)}.

Meanwhile, we have specified the choice of c as

1

2
+

1

2

√
1− (

ϵ

MT
)

2
M−1 } ≤ c < 1

which guarantees exp {(M − 1) · 1
2 log 4c(1− c)} ≤ ϵ

MT as follow. We observe that

c ≥ 1

2
+

1

2

√
1− (

ϵ

MT
)

2
M−1

=⇒ 4c(1− c) ≤ (
ϵ

MT
)

2
M−1

=⇒ log 4c(1− c) ≤
2 log ϵ

MT

M − 1

=⇒ (M − 1) · 1
2
log 4c(1− c) ≤ log

ϵ

MT

=⇒ exp{(M − 1) · 1
2
log 4c(1− c)} ≤ ϵ

MT
.

This is summarized as for any j

P (dj <
M − 1

2
) ≤ exp {(M − 1) · 1

2
log 4c(1− c)} ≤ ϵ

MT
. (8)

Meanwhile, it is known as if δ(Gt) ≥ M−1
2 , then we have that graph Gt is connected where

δ(Gt) = minm dm.

As a result, consider the probability and we obtain that

P (graph Gt is connected)

≥ P (min
j

dj ≥
M − 1

2
)

= P (
⋂
j

{dj ≥
M − 1

2
})

= 1− P (
⋃
j

{dj <
M − 1

2
})

≥ 1−
∑
j

P (dj <
M − 1

2
)

= 1−MP (dj <
M − 1

2
)

≥ 1−M
ϵ

MT
= 1− ϵ

T
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where the second inequality holds by the Bonferroni’s inequality and the third inequality uses (8).

Consequently, we obtain

P (graph Gt is connected)
= P (∩t{Gt is connected})

≥ 1−
∑
t

P (Gt is not connected)

= 1−
∑
t

(1− P (Gt is connected))

≥ 1−
∑
t

(1− (1− ϵ

T
) = 1− ϵ

where the first inequality holds again by the Bonferroni’s inequality and the second inequality results
from the above derivation.

This completes the proof.

On graphs with the established properties, we next show the results on the transmission gap between
two consecutive rounds of communication for any two clients and the number of arm pulls for all
clients.

Proposition 6. We have that with probability 1− ϵ, for any t > L and any m, there exists t0 such
that

t+ 1−min
j

tm,j ≤ t0, t0 ≤ c0 min
l

nl,i(t+ 1)

where c0 = c0(K,mini ̸=i∗ ∆i,M, ϵ, δ).

Proof. The edges in setting 1 follow a Bernoulli distribution with a given parameter c by definition.
Though setting 2 does not explicitly define the edge distribution, the probability of an edge existing
in a connected graph, denoted as c, is deterministic, independent of time since graphs are i.i.d. over
time and homogeneous among edges.

Henceforth, it is straightforward that c satisfies

M(M − 1)

2
c = E(N)

and equivalently c = 2E(N)
M(M−1) where N denotes the number of edges in a random connected graph.

We observe that 0 ≤ N ≤ M(M−1)
2 . Furthermore, the existing result in [Trevisan] yields

E[N ] = M logM.

Consequently, the probability term c has an explicit expressions c = 2E[N ]
M(M−1) =

2 logM
M−1 .

For setting s2, S2 we have c = 2 logM
M−1 ≥ 1

2 since M < 10, while in setting s1, S1, the condition on c

guarantees c > 1
2 . Note that t+ 1− tm,j follows a geometric distribution since each edge follows a

Bernoulli distribution, which holds by

P (t+ 1− tm,j = 1|tm,j)

=
P (there is an edge between m and j at time step t+1 and tm,j)

P (there is an edge between m and j at time step tm,j)

=
(c)2

c
= c
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and

P (t+ 1− tm,j = k|tm,j)

=
P (there is an edge between m and j at time step t+k and tm,j , no edge at time stept+ 1, . . . , t+ k − 1)

P (there is an edge between m and j at time step tm,j)

=
(1− c)k−1c2

c
= c(1− c)k−1.

Note that P (t+ 1−minj tm,j ≥ t0) which denotes the tail of a geometric distribution depends on
the choice of c. More precisely, the tail probability P0 is monotone decreasing in c.

When c = 1
2 , we obtain that

P0 = P (t+ 1−min
j

tm,j > t0) ≤
∑
s>t0

(
1

2
)s ≤ (

1

2
)t0 . (9)

Choosing t0 =
ln M2T

ϵ

ln 2 leads to P0 = 1− ( 12 )
t0 = 1− ϵ

M2T and

c0 min
l

nl,i(t+ 1) ≥ c0 min
l

nl,i(L)

≥ c0
L

K
≥ c0

ln M2T
ϵ

c0 ln 2
=

ln M2T
ϵ

ln 2
= t0

where the last inequality holds by the choice of L. This implies minl nl,i(t + 1) − t0 ≥ (1 −
c0)minl nl,i(t+ 1), i.e. t0 ≤ c0 minl nl,i(t+ 1).

Therefore, with probability 1− ϵ
M2T ,

min
l

nl,i(tm,l)

≥ min
l

nl,i(min
j

tm,j)

≥ min
l

nl,i(t+ 1− t0)

≥ min
l

nl,i(t+ 1)− t0

≥ (1− c0) ·min
l

nl,i(t+ 1)

where the first inequality results from the fact tm,l ≥ minj tm,j , the second inequality uses the fact
from (9), the third inequality applies the definition of n, and the last inequality holds by the choice of
t0.

Consider setting s3, S3 where M > 10. Generally, for a given parameter c, we obtain

P (t+ 1−min
j

tm,j = 1) = c,

P (t+ 1−min
j

tm,j = 2) = c(1− c),

. . . ,

P (t+ 1−min
j

tm,j = n) = c(1− c)n−1

and subsequently

P0 = P (t+ 1−min
j

tm,j > t0) ≤
∑
s>t0

c(1− c)s−1 ≤ c(
1

c
− 1− (1− c)t0

c
) = (1− c)t0 .

For the probability term P0, we further arrive at

P0 ≥ 1− ϵ

M2T

by the choice of t0 ≥ ln( ϵ
M2T

)

ln(1−c) .

30



Meanwhile, we claim that the choice of t0 satisfies

t0 ≤ c0 min
l

nl,i(t+ 1)

since
ln( ϵ

M2T
)

ln(1−c) ≤ c0 minl nl,i(t+ 1) holds by noting nl,i(t+ 1) ≥ nl,i(L) ≥ L
K and

L ≥
K ln( ϵ

M2T )

c0 ln(1− c)
=

K ln(M
2T
ϵ )

c0 ln(
1

1−c )
.

To summarize, in all the settings, we have that with probability at least 1− ϵ
M2T ,

t+ 1−min
j

tm,j ≤ t0,

t0 ≤ c0 min
l

nl,i(t+ 1). (10)

Therefore, we obtain that in setting s1, S1

P (∀m, t+ 1−min
j

tm,j ≤ t0 ≤ c0 min
l

nl,i(t+ 1))

.
= (1− P0)

M ≥ 1−MP0 = 1− ϵ

MT
(11)

where the inequality is a result of the Bernoulli’s inequality.

In setting s2, S2, s3, S3, {t+1−minj t1,j , . . . , t+1−minj tM,j} follow the same distribution, but
are dependent since they construct a connected graph. However, we have the following result

P (∀m, t+ 1−min
j

tm,j ≤ t0 ≤ c0 min
l

nl,i(t+ 1))

= 1− P (∪m{t+ 1−min
j

tm,j ≥ t0})

≥ 1−
∑
m

P (t+ 1−min
j

tm,j ≥ t0)

= 1−MP0 = 1− ϵ

MT
(12)

by the Bonferroni’s inequality.

As a consequence, we arrive at that in setting s1, S1, s2, S2, s3, S3,

P (∀t,∀m, t+ 1−min
j

tm,j ≤ t0 ≤ c0 min
l

nl,i(t+ 1))

≥ 1−
∑
t

∑
m

P (t+ 1−min
j

tm,j ≤ t0 ≤ c0 min
l

nl,i(t+ 1))

≥ 1−MT (1− (1− ϵ

MT
)) = 1− ϵ

where the first inequality again uses the Bonferroni’s inequality and the second inequality holds by
applying (11) and (12).

After establishing the transmissions among clients, we next proceed to show the concentration
properties of the network-wide estimators maintained by the clients.

The first is to demonstrate the unbiasedness of these estimators with respect to the global expected
rewards.

Proposition 7. Assume the parameter δ satisfies that 0 < δ < c = f(ϵ,M, T ). For any arm i and
any client m, at every time step t, we have

E[µ̃m
i (t)|Aϵ,δ] = µi.
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Proof. The result can be shown by induction as follows. We start with the basis step by considering
any time step t ≤ L+ 1. By the definition of µ̃m

i (t) = µ̃m
i (L+ 1), we arrive at

E[µ̃m
i (t)|Aϵ,δ]

= E[µ̃m
i (L+ 1)|Aϵ,δ]

= E[

M∑
j=1

P ′
m,j(L)ˆ̄µ

m
i,j(h

L
m,j)|Aϵ,δ] (13)

where P ′
m,j(L) =

{
1
M , if PL(m, j) > 0

0, else
. The definition of Aϵ,δ and the choice of δ guarantee that

|PL − cE| < δ < c on event Aϵ,δ , i.e. we have for any t ≥ L, Pt > 0 and thereby obtaining

P ′
m,j(L) =

1

M
. (14)

Therefore, we continue with (13) and have

(13) = E[

M∑
j=1

1

M
ˆ̄µm
i,j(h

L
m,j)|Aϵ,δ]

=
1

M

M∑
j=1

E[µ̄j
i (h

L
m,j)|Aϵ,δ]

=
1

M

M∑
j=1

E[

∑
s r

j
i (s)

nj,i(hL
m,j)

|Aϵ,δ]

=
1

M

M∑
j=1

E[E[

∑
s r

j
i (s)

nj,i(hL
m,j)

|σ(nj,i(l))l≤hL
m,j

, Aϵ,δ|Aϵ,δ]

where the last equality uses the law of total expectation.

With the derivations, we further have

(13) =
1

M

M∑
j=1

E[
1

nj,i(hL
m,j)

E[
∑

s:nj,i(s)−nj,i(s−1)=1

rji (s)|σ(nj,i(l))l≤hL
m,j

, Aϵ,δ|Aϵ,δ]

=
1

M

M∑
j=1

E[
1

nj,i(hL
m,j)

∑
s:nj,i(s)−nj,i(s−1)=1

E[rji (s)|σ(nj,i(l))l≤hL
m,j

, Aϵ,δ|Aϵ,δ] (15)

=
1

M

M∑
j=1

E[
1

nj,i(hL
m,j)

∑
s:nj,i(s)−nj,i(s−1)=1

µj
i |Aϵ,δ] (16)

=
1

M

M∑
j=1

E[µj
i |Aϵ,δ] = µi (17)

where the second equality (15) uses the fact that {s : nj,i(s) − nj,i(s − 1) = 1} is contained in
σ(nj,i(l))l≤Lm,j and the third equality (16) results from that rji (s) is independent of everything else
given s and E[rji (s)] = µj

i .

The induction step follows a similar analysis as follows. Suppose that for any s ≤ t we have
E[µ̃m

i (s)|Aϵ,δ] = µi.
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For time step t+ 1, we first write it as

E[µ̃m
i (t+ 1)|Aϵ,δ]

= E[

M∑
j=1

P ′
t (m, j)ˆ̃µm

i,j(tm,j) + dm,t

∑
j∈Nm(t)

ˆ̃µm
i,j(t) + dm,t

∑
j ̸∈Nm(t)

ˆ̄µm
i,j(tm,j)|Aϵ,δ]

= E[E[

M∑
j=1

P ′
t (m, j)µ̃j

i (tm,j) + dm,t

∑
j∈Nm(t)

µ̄j
i (t) + dm,t

∑
j ̸∈Nm(t)

µ̄j
i (tm,j)|σ(nj,i(t))j,i,t, Aϵ,δ|Aϵ,δ]

(18)

where P ′
t (m, j) and d are constants since Pt(m, j) > 0 for t ≥ L on event Aϵ,δ and the last equality

is again by the law of total expectation.

This gives us that by the law of total expectation

(18) = E[

M∑
j=1

P ′
t (m, j)E[µ̃j

i (tm,j)|σ(nj,i(t))j,i,t, Aϵ,δ+

dm,t

∑
j∈Nm(t)

E[µ̄j
i (t)|σ(nj,i(t))j,i,t, Aϵ,δ+

dm,t

∑
j ̸∈Nm(t)

E[µ̄j
i (tm,j)|σ(nj,i(t))j,i,t, Aϵ,δ|Aϵ,δ]

=

M∑
j=1

P ′(m, j)E[E[µ̃j
i (tm,j)|σ(nj,i(t))j,i,t, Aϵ,δ|Aϵ,δ]+

E[dm,t

∑
j∈Nm(t)

E[µ̄j
i (t)|σ(nj,i(t))j,i,t, Aϵ,δ+

dm,t

∑
j ̸∈Nm(t)

E[µ̄j
i (tm,j)|σ(nj,i(t))j,i,t, Aϵ,δ|Aϵ,δ]

=

M∑
j=1

P ′(m, j)E[µ̃j
i (tm,j)|Aϵ,δ] + E[dm,t

∑
j

E[µ̄j
i (tm,j)|σ(nj,i(t))j,i,t, Aϵ,δ|Aϵ,δ]

=

M∑
j=1

P ′(m, j)E[µ̃j
i (tm,j)|Aϵ,δ]+

dm,t

∑
j

E[E[
1

nj,i(tm,j)

∑
s:nj,i(s)−nj,i(s−1)=1

E[rji (s)|σ(nj,i(t))j,i,t, Aϵ,δ|Aϵ,δ]

=

M∑
j=1

P ′(m, j)µi + dm,tMµi = (

M∑
j=1

P ′(m, j) +Mdm,t)µi = µi

where the first equality uses P ′
t (m, j) and d are constants on event Aϵ,δ , the second equality is derived

by re-organizing the terms, the third equality again uses the law of total expectation and integrates
the second term by tm,j , the fourth equality elaborate the second term and the equality in the last line
follows from the induction and (15, 16 17).

This completes the induction step and thus shows the unbiasedness of the network-wide estimators
conditional on event Aϵ,δ .

Then we characterize the moment generating functions of the network-wide estimators and conclude
that they have similar properties as their local rewards.

Proposition 8. Assume the parameter δ satisfies that 0 < δ < c = f(ϵ,M, T ). In setting s1, s2, s3
where rewards follow sub-gaussian distributions, for any m, i, λ and t > L where L is the length of
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the burn-in period, the global estimator µ̃m
i (t) is sub-Gaussian distributed. Moreover, the conditional

moment generating function satisfies that with P (Aϵ,δ) = 1− 7ϵ,

E[exp {λ(µ̃m
i (t)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ exp {λ
2

2

Cσ2

minj nj,i(t)
}

where σ2 = maxj,i(σ̃
j
i )

2 and C = max{
4(M+2)(1− 1−c0

2(M+2)
)2

3M(1−c0)
, (M + 2)(1 + 4Md2m,t)}.

Proof. We prove the statement on the conditional moment generating functions by induction. Let us
start with the basis step.

Note that the definition of Aϵ,δ and the choice of δ again guarantee that for t ≥ L, |Pt − cE| < δ < c
on event Aϵ,δ . This implies that for any t ≥ L, m and j, Pt(m, j) > 0, and if t = L

P ′
t (m, j) =

1

M
(19)

and if t > L

P ′
t (m, j) =

M − 1

M2
. (20)

Consider the time step t ≤ L+ 1. The quantity satisfies that

E[exp {λ(µ̃m
i (t)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)

= E[exp {λ(µ̃m
i (L+ 1)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)

= E[exp {λ(
M∑
j=1

P ′
m,j(L)ˆ̄µ

m
i,j(h

L
m,j)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[exp {λ(
M∑
j=1

1

M
ˆ̄µm
i,j(h

L
m,j)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[exp {λ
M∑
j=1

1

M
(ˆ̄µm

i,j(h
L
m,j)− µj

i )}1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

≤ ΠM
j=1(E[(exp {(λ 1

M
(µ̄j

i (h
L
m,j)− µj

i )}1Aϵ,δ
)M |σ({nm,i(t)}t,i,m))])

1
M (21)

where the third equality holds by (19), the fourth equality uses the definition µi =
1
M

∑M
i=1 µ

j
i , and

the last inequality results from the generalized hoeffding inequality as in Lemma 3 and the fact that
ˆ̄µm
i,j(h

L
m,j) = µ̄j

i (h
L
m,j).

Note that for any client j, we have

E[(exp {(λ 1

M
(µ̄j

i (h
L
m,j)− µj

i )}1Aϵ,δ
)M |σ({nm,i(t)}t,i,m))]

= E[exp {(λ(µ̄j
i (h

L
m,j)− µj

i )}1Aϵ,δ
)|σ({nm,i(t)}t,i,m)]

= E[exp {(λ
∑

s(r
j
i (s)− µj

i )

nj,i(hL
m,j)

}1Aϵ,δ
)|σ({nm,i(t)}t,i,m)]

= E[exp {
∑
s

(λ
(rji (s)− µj

i )

nj,i(hL
m,j)

}1Aϵ,δ
)|σ({nm,i(t)}t,i,m)]. (22)
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It is worth noting that given s, rji (s) is independent of everything else, which gives us

(22) = ΠsE[exp {λ (r
j
i (s)− µj

i )

nj,i(hL
m,j)

}1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

= ΠsE[exp {λ (r
j
i (s)− µj

i )

nj,i(hL
m,j)

}|σ({nm,i(t)}t,i,m)] · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

= ΠsEr[exp {λ
(rji (s)− µj

i )

nj,i(hL
m,j)

}] · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

≤ Πs exp {
( λ
nj,i(hL

m,j)
)2σ2

2
} · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ (exp {
( λ
nj,i(hL

m,j)
)2σ2

2
})nj,i(h

L
m,j)

= exp {
λ2

nj,i(hL
m,j)

σ2

2
}

≤ exp { λ2σ2

2minj nj,i(hL
m,j)

} (23)

where the first inequality holds by the definition of sub-Gaussian random variables rji (s) − µj
i

with an mean value 0, the second inequality results from 1Aϵ,δ
≤ 1, and the last inequality uses

nj,i(h
L
m,j) ≥ minj nj,i(h

L
m,j) for any j.

Therefore, we obtain that by plugging (23) into (21)

(21) ≤ ΠM
j=1(exp {

λ2σ2

2minj nj,i(hL
m,j)

}) 1
M

= ((exp { λ2σ2

2minj nj,i(hL
m,j)

}) 1
M )M

= exp { λ2σ2

2minj nj,i(hL
m,j)

}

which completes the basis step.

Now we proceed to the induction step. Suppose that for any s < t+ 1 where t ≥ L, we have

E[exp {λ(µ̃m
i (s)− µi)}1Aϵ,δ

|σ({nm,i(s)}s,i,m)]

≤ exp {λ
2

2

Cσ2

minj nj,i(s)
}. (24)
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The update rule of µ̃m
i implies that

E[exp {λ(µ̃m
i (t+ 1)− µi)}1Aϵ,δ

|σ({nm,i(s)}s,i,m)]

= E[exp{λ(
M∑
j=1

P ′
t (m, j)(ˆ̃µm

i,j(tm,j)− µi) + dm,t

∑
j∈Nm(t)

(ˆ̄µm
i,j(t)− µj

i )

+ dm,t

∑
j ̸∈Nm(t)

(ˆ̄µm
i,j(tm,j)− µj

i ))}1Aϵ,δ
|σ({nm,i(s)}s,i,m)]

= E[exp{λ(
M∑
j=1

P ′
t (m, j)(µ̃j

i (tm,j)− µi) + dm,t

∑
j∈Nm(t)

(µ̄j
i (t)− µj

i )

+ dm,t

∑
j ̸∈Nm(t)

(µ̄j
i (tm,j)− µj

i ))}1Aϵ,δ
|σ({nm,i(s)}s,i,m)]

= E[ΠM
j=1 exp{λP ′

t (m, j)(µ̃j
i (tm,j)− µi)}1Aϵ,δ

·Πj∈Nm(t) exp{λdm,t(µ̄
j
i (t)− µj

i )}1Aϵ,δ

·Πj ̸∈Nm(t) exp{λdm,t(µ̄
j
i (tm,j)− µj

i )1Aϵ,δ
}|σ({nm,i(s)}s,i,m)]

≤ ΠM
j=1(E[(exp{λP ′

t (m, j)(µ̃j
i (tm,j)− µi)})M+21Aϵ,δ

|σ({nm,i(s)}s,i,m)])
1

M+2 ·

E[Πj∈Nm(t)(exp{λdm,t(µ̄
j
i (t)− µj

i )})
M+21Aϵ,δ

|σ({nm,i(s)}s,i,m)]
1

M+2 ·

E[Πj ̸∈Nm(t)(exp{λdm,t(µ̄
j
i (tm,j)− µj

i )})
M+21Aϵ,δ

|σ({nm,i(s)}s,i,m)]
1

M+2

= ΠM
j=1(E[(exp{λP ′

t (m, j)(M + 2)(µ̃j
i (tm,j)− µi)})1Aϵ,δ

|σ({nm,i(s)}s,i,m)])
1

M+2 ·

E[Πj∈Nm(t)(exp{λdm,t(M + 2)(µ̄j
i (t)− µj

i )})1Aϵ,δ
|σ({nm,i(s)}s,i,m)]

1
M+2 ·

E[Πj ̸∈Nm(t)(exp{λdm,t(M + 2)(µ̄j
i (tm,j)− µj

i )})1Aϵ,δ
|σ({nm,i(s)}s,i,m)]

1
M+2

≤ ΠM
j=1(exp {

λ2(P ′
t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

1
M+2 ·

Πj∈Nm(t)Πs(Er[exp {λdm,t(M + 2)
(rji (s)− µj

i )

nj,i(t)
}] · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)])
1

M+2 ·

Πj ̸∈Nm(t)Πs(Er[exp {λdm,t(M + 2)
(rji (s)− µj

i )

nj,i(tm,j)
}] · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)])
1

M+2

(25)
where the first inequality uses Lemma 3 and the second inequality applies (24) as the assumption for
the induction step and holds by exchanging the expectations with the multiplication since again given
s the reward (rji (s)− µj

i ) is independent of other random variables.

We continue bounding the last two terms by using the definition of sub-Gaussian random variables
(rji (s)− µj

i ) and obtain

(25) ≤ (exp {λ
2(P ′

t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

M
M+2 ·

Πj∈Nm(t)Πs(exp
λ2d2m,t(M + 2)2σ2

2n2
j,i(t)

· E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)])

1
M+2 ·

Πj ̸∈Nm(t)Πs(exp
λ2d2m,t(M + 2)2σ2

2n2
j,i(tm,j)

· E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)])

1
M+2

= (exp {λ
2(P ′

t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

M
M+2 ·

Πj∈Nm(t) exp {
nj,i(t)

M + 2

λ2d2m,t(M + 2)2σ2

2n2
j,i(t)

} · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)]·

Πj ̸∈Nm(t) exp {
nj,i(tm,j)

M + 2

λ2d2m,t(M + 2)2σ2

2n2
j,i(tm,j)

} · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)]
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Building on that, we establish

(25) ≤ (exp {λ
2(P ′

t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

M
M+2 ·

(exp {
λ2d2m,t(M + 2)σ2

2minj nj,i(t)
})|Nm(t)| · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)]·

(exp {
λ2d2m,t(M + 2)σ2

2minj nj,i(tm,j)
})|M−Nm(t)| · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[(exp {λ
2(P ′

t (m, j))2M(M + 2)

2

Cσ2

minj nj,i(tm,j)
}) · (exp {

λ2d2m,t(M + 2)|Nm(t)|
2minj nj,i(t)

})

· (exp {
λ2d2m,t(M + 2)σ2|M −Nm(t)|

2minj nj,i(tm,j)
})1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ E[(exp {λ
2(P ′

t (m, j))2M(M + 2)

2(1− c0)

Cσ2

minj nj,i(t+ 1)
}) · (exp {

λ2d2m,t(M + 2)|Nm(t)|σ2

2 L/K
L/K+1 minj nj,i(t+ 1)

})

· (exp {
λ2d2m,t(M + 2)|M −Nm(t)|σ2

2(1− c0)minj nj,i(t+ 1)
})1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

where the first inequality uses the fact that for any j, nj,i(t) ≥ minj nj,i(t) and nj,i(tm,j) ≥
minj nj,i(tm,j). For the second inequality, the first term is a result of minj nj,i(t)

minj nj,i(t+1) ≥
minj nj,i(t)

minj nj,i(t)+1 ≥ L/K
L/K+1 since nj,i(t) > nj,i(L) = L/K and the ratio is monotone increasing

in n, and the second term is bounded based on the following derivations

min
j

nj,i(tm,j) ≥ min
j

nj,i(t+ 1− t0)

≥ min
j

nj,i(t+ 1)− t0

≥ min
j

nj,i(t+ 1)− c0 min
j

nj,i(t+ 1)

= (1− c0)min
j

nj,i(t+ 1)

where the last inequality holds by applying Proposition 6 that holds on event Aϵ,δ .

Therefore, we can rewrite the above expression as

(25) = E[(exp{ λ2σ2

2minj nj,i(t+ 1)
· (C(P ′

t (m, j))2M(M + 2)

2(1− c0)
+

d2m,t(M + 2)|Nm(t)|
L/K

L/K+1

+
d2m,t(M + 2)|M −Nm(t)|

(1− c0)
)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ E[exp{ Cλ2σ2

2minj nj,i(t+ 1)
}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ exp{ Cλ2σ2

2minj nj,i(t+ 1)
}

where the first inequality holds by the choice of P ′
t (m, j), dm,t, L, c0 and C and the second inequality

uses the fact that 1Aϵ,δ
≤ 1 and minj nj,i(t+ 1) ∈ σ({nm,i(t)}t,i,m).

This completes the induction step and subsequently concludes the proof.

Proposition 9. Assume the parameter δ satisfies that 0 < δ < c = f(ϵ,M, T ). In setting s1, s2, and
s3, for any m, i and t > L where L is the length of the burn-in period, µ̃m,i(t) satisfies that if if
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nm,i(t) ≥ 2(K2 +KM +M), then with P (Aϵ,δ) = 1− 7ϵ,

P (µ̃m,i(t)− µi ≥

√
C1 log t

nm,i(t)
|Aϵ,δ) ≤

1

P (Aϵ,δ)

1

t2
,

P (µi − µ̃m,i(t) ≥

√
C1 log t

nm,i(t)
|Aϵ,δ) ≤

1

P (Aϵ,δ)t2
.

Proof. By Proposition 7, we have E[µ̃m,i(t) − µi|Aϵ,δ] = 0, which allows us to consider the tail
bound of the global estimator µ̃m

i (t) conditional on event Aϵ,δ as follows.

Note that

P (µ̃m,i(t)− µi ≥

√
C1 log t

nm,i(t)
|Aϵ,δ)

= E[1
µ̃m,i(t)−µi≥

√
C1 log t

nm,i(t)

|Aϵ,δ]

=
1

P (Aϵ,δ)
E[1

µ̃m,i(t)−µi≥
√

C1 log t

nm,i(t)

1Aϵ,δ
]

=
1

P (Aϵ,δ)
E[1

exp{λ(n)(µ̃m,i(t)−µi)}≥exp{λ(n)
√

C1 log t

nm,i(t)
}
1Aϵ,δ

]

≤ 1

P (Aϵ,δ)
E[

exp{λ(n)(µ̃m,i(t)− µi)}

exp{λ(n)
√

C1 log t
nm,i(t)

}
1Aϵ,δ

] (26)

where the last inequality is by the fact that 1
exp{λ(n)(µ̃m,i(t)−µi)}≥exp{λ(n)

√
C1 log t

nm,i(t)
}

≤

exp{λ(n)(µ̃m,i(t)−µi)}

exp{λ(n)
√

C1 log t

nm,i(t)
}

.

By the assumption that δ < c, we have Proposition 8 holds. Subsequently, by Proposition 8 and
Lemma 2 which holds since nm,i(t) ≥ 2(K2 +KM +M), we have for any λ

E[exp {λ(µ̃m
i (t)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)] ≤ exp {λ
2

2

Cσ2

minj nj,i(t)
}

≤ exp {λ
2

1

Cσ2

nm,i(t)
}. (27)

Again, we utilize the law of total expectation and further obtain

(26) =
1

P (Aϵ,δ)
E[E[

exp{λ(n)(µ̃m,i(t)− µi)}

exp{λ(n)
√

C1 log t
nm,i(t)

}
1Aϵ,δ

|σ({nm,i(t)}m,i,t)]]

=
1

P (Aϵ,δ)
E[E[

exp{λ(n)(µ̃m,i(t)− µi)}

exp{λ(n)
√

C1 log t
nm,i(t)

}
1Aϵ,δ

|σ({nm,i(t)}m,i,t)]]

=
1

P (Aϵ,δ)
E[

1

exp{λ(n)
√

C1 log t
nm,i(t)

}
E[exp{λ(n)(µ̃m,i(t)− µi)}1Aϵ,δ

|σ({nm,i(t)}m,i,t)]]

≤ 1

P (Aϵ,δ)
E[

1

exp{λ(n)
√

C1 log t
nm,i(t)

}
· exp {λ

2(n)

1

Cσ2

nm,i(t)
}]

≤ 1

P (Aϵ,δ)
exp{−2 log t} =

1

P (Aϵ,δ)t2
(28)
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where the first inequality holds by (44) and the second inequality holds by choosing λ(n) =

√
C1 log t

nm,i(t)

2 Cσ2

nm,i(t)

and by the choice of parameter C1 such that C1

4Cσ2 ≥ 2 or equivalently C1 ≥ 8Cσ2.

In like manner, we obtain that by repeating the above steps with µi − µ̃m,i(t), we have

P (µi − µ̃m,i(t) ≥

√
C1 log t

nm,i(t)
|Aϵ,δ) ≤

1

P (Aϵ,δ)t2
(29)

which complete the proof.

Proposition 10. Assume the parameter δ satisfies that 0 < δ < c = f(ϵ,M, T ). An arm k is said
to be sub-optimal if k ̸= i∗ where i∗ is the unique optimal arm in terms of the global reward, i.e.
i∗ = argmax 1

M

∑M
j=1 µ

j
i . Then in setting s1, s2 and s3, when the game ends, for every client m,

0 < ϵ < 1 and T > L, the expected numbers of pulling sub-optimal arm k after the burn-in period
satisfies with P (Aϵ,δ) = 1− 7ϵ

E[nm,k(T )|Aϵ,δ]

≤ max {[ 4C1 log T

∆2
i

], 2(K2 +MK +M)}+ 2π2

3P (Aϵ,δ)
+K2 + (2M − 1)K

≤ O(log T ).

Proof of Proposition 10. We claim that what lead to pulling an sub-optimal arm i are explicit by
the decision rule of Algorithm 2, meaning that the result amt = i holds when any of the following
conditions is met:

• Case 1: nm,i(t) ≤ Nm,i(t)−K,

• Case 2: µ̃m,i − µi >
√

C1 log t
nm,i(t−1) ,

• Case 3: −µ̃m,i∗ + µi∗ >
√

C1 log t
nm,i∗ (t−1) ,

• Case 4: µi∗ − µi < 2
√

C1 log t
nm,i(t−1) .

Then we formally consider the number of pulling arms nm,i(T ) starting from L+ 1. For any l > 1,
we have that based on the above listed conditions

nm,i(T ) ≤ l +

T∑
t=L+1

1{am
t =i,nm,i(t)>l}

≤ l +

T∑
t=L+1

1
{µ̃m

i −
√

C1 log t

nm,i(t−1)
>µi,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µ̃m

i∗+

√
C1 log t

nm,i∗ (t−1)
<µi∗ ,nm,i(t−1)≥l}

+
T∑

t=L+1

1{nm,i(t)<Nm,i(t)−K,am
t =i,nm,i(t−1)≥l}

+

T∑
t=L+1

1
{µi+2

√
C1 log t

nm,i(t−1)
>µi∗ ,nm,i(t−1)≥l}

.
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Consequently, the expected value of nm,i(t) conditional on Aϵ,δ reads as

E[nm,i(T )|Aϵ,δ]

= l +

T∑
t=L+1

P (µ̃m
i −

√
C1 log t

nm,i(t− 1)
> µi, nm,i(t− 1) ≥ l|Aϵ,δ)

+

T∑
t=L+1

P (µ̃m
i∗ +

√
C1 log t

nm,i∗(t− 1)
< µi∗ , nm,i(t− 1) ≥ l|Aϵ,δ)

+

T∑
t=L+1

P (nm,i(t) < Nm,i(t)−K, amt = i, nm,i(t− 1) ≥ l|Aϵ,δ)

+

T∑
t=L+1

P (µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l|Aϵ,δ)

= l +

T∑
t=L+1

P (Case2, nm,i(t− 1) ≥ l|Aϵ,δ) +

T∑
t=L+1

P (Case3, nm,i(t− 1) ≥ l|Aϵ,δ)

+

T∑
t=L+1

P (Case1, amt = i, nm,i(t− 1) ≥ l|Aϵ,δ) +

T∑
t=L+1

P (Case4, nm,i(t− 1) ≥ l|Aϵ,δ)

(30)

where l = max {[ 4C1 log T
∆2

i
], 2(K2 +MK +M)}.

For the last term in (30), we have

T∑
t=L+1

P (Case4 : µi + 2

√
C1 log t

nm,i(t− 1)
> µi∗ , nm,i(t− 1) ≥ l) = 0 (31)

since the choice of l satisfies l ≥ [ 4C1 log T
∆2

i
] with ∆i = µi∗ − µi.

For the first two terms, we have on event Aϵ,δ

T∑
t=L+1

P (Case2, nm,i(t− 1) ≥ l|Aϵ,δ) +

T∑
t=1

P (Case3, nm,i(t− 1) ≥ l|Aϵ,δ)

≤
T∑

t=L+1

P (µ̃m,i − µi >

√
C1 log t

nm,i(t− 1)
|Aϵ,δ) +

T∑
t=1

P (−µ̃m,i∗ + µi∗ >

√
C1 log t

nm,i∗(t− 1)
|Aϵ,δ)

≤
T∑

t=1

(
1

t2
) +

T∑
t=1

(
1

t2
) ≤ π2

3
(32)

where the first inequality holds by the property of the probability measure when removing the event
nm,i(t− 1) ≥ l and the second inequality holds by (47) and (29) as stated in Proposition 9, which
holds by the assumption that δ < c.

For Case 1, we note that Lemma 1 implies that

nm,i(t) > Nm,i(t)−K(K + 2M)

with the definition of Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j ∈ Nm(t)}.

Departing from the result that the difference between Nm,i(t) and nm,i(t) is at most K(K + 2M),
we then present the following analysis on how long it takes for the value −nm,i(t) +Nm,i(t) to be
smaller than K.

At time step t, if Case 1 holds for client m, then nm,i(t+1) is increasing by 1 on the basis of nm,i(t).
What follows characterizes the change of Nm,i(t+1). Client m satisfying nm,i(t) ≤ Nm,i(t)−K will
not change the value of Nm,i(t+ 1) by the definition Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j ∈
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Nm(t)}. Moreover, for client j ∈ Nm(t) with nj,i(t) < Nj,i(t) − K, i.e. Nj,i(t + 1) will
not be affected by nj,i(t + 1) ≤ nj,i(t) + 1. Thus, the value of Nm,i(t + 1) = max{nm,i(t +
1), Nj,i(t), j ∈ Nm(t)} is independent of such clients. We observe that for client j ∈ Nm(t) with
nj,i(t) > Nj,i(t)−K, the value Nj,i(t) will be the same if the client does not sample arm i, which
leads to a decrease of 1 in the difference −nm,i(t) +Nm,i(t). Otherwise, if such a client samples
arm i which brings an increment of 1 to Nm,i(t), the difference between nm,i(t) and Nm,i(t) will
remain the same. However, the latter has just been discussed and must be the cases as in Case 2 and
Case 3, the total length of which has already been upper bounded by π2

3 as shown in (32).

Therefore, the gap is at most K(K + 2M)−K + π2

3 , i.e.

T∑
t=1

P (Case1, amt = i, nm,i(t− 1) ≥ l|A) ≤ K(K + 2M)−K +
π2

3
. (33)

Subsequently, we derive that

E[nm,i(T )|Aϵ,δ] ≤ l +
π2

3
+K(K + 2M)−K +

π2

3
+ 0

= l +
2π2

3
+K2 + (2M − 1)K

= max {[ 4C1 log T

∆2
i

], 2(K2 +MK +M)}+ 2π2

3
+K2 + (2M − 1)K

where the inequality results from (30), (31), (32), and (33).

This completes the proof steps.

Next, we establish the concentration inequalities of the network-wide estimators when the rewards
follow sub-exponential distributions, i.e. in setting S1, S2, and S3.

Proposition 11. Assume the parameter δ satisfies that 0 < δ < c = f(ϵ,M, T ). In setting S1, S2,
and S3, for any m, i, λ and t > L where L is the length of the burn-in period, the global estimator
µ̃m
i (t) is sub-exponentially distributed. Moreover, the conditional moment generating function

satisfies that with P (Aϵ,δ) = 1− 7ϵ, for |λ| < 1
α

E[exp {λ(µ̃m
i (t)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ exp {λ
2

2

Cσ2

minj nj,i(t)
}

where σ2 = maxj,i(σ̃
j
i )

2 and C = max{
4(M+2)(1− 1−c0

2(M+2)
)2

3M(1−c0)
, (M + 2)(1 + 4Md2m,t)}.

Proof. Assume that parameter |λ| < 1
α . We prove the statement on the conditional moment generating

function by induction. Let us start with the basis step.

Note that the definition of A and the choice of δ again guarantee that for t ≥ L, |Pt − cE| < δ < c
on event A. This implies that for any t ≥ L, Pt > 0 and thereby obtaining that if t = L

P ′
m,j(t) =

1

M
(34)

and if t > L

P ′
m,j(t) =

M − 1

M2
. (35)
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Consider the time step t ≤ L+ 1. The quantity

E[exp {λ(µ̃m
i (t)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[exp {λ(µ̃m
i (L+ 1)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[exp {λ(
M∑
j=1

P ′
m,j(L)ˆ̄µ

m
i,j(h

L
m,j)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[exp {λ(
M∑
j=1

1

M
µ̄j
i (h

L
m,j)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[exp {λ
M∑
j=1

1

M
(µ̄j

i (h
L
m,j)− µj

i )}1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

≤ ΠM
j=1(E[(exp {(λ 1

M
(µ̄j

i (h
L
m,j)− µj

i )}1Aϵ,δ
)M |σ({nm,i(t)}t,i,m))])

1
M (36)

where the third equality holds by (34), the fourth equality uses the definition µi =
1
M

∑M
i=1 µ

j
i and

the last inequality results from the generalized hoeffding inequality as in Lemma 3.

Note that for any client j, by the definition of µ̄j
i (h

L
m,j) we have

E[(exp {(λ 1

M
(µ̄j

i (h
L
m,j)− µj

i )}1Aϵ,δ
)M |σ({nm,i(t)}t,i,m))]

= E[exp {(λ(µ̄j
i (h

L
m,j)− µj

i )}1Aϵ,δ
)|σ({nm,i(t)}t,i,m)]

= E[exp {(λ
∑

s(r
j
i (s)− µj

i )

nj,i(hL
m,j)

}1Aϵ,δ
)|σ({nm,i(t)}t,i,m)]

= E[exp {
∑
s

(λ
(rji (s)− µj

i )

nj,i(hL
m,j)

}1Aϵ,δ
)|σ({nm,i(t)}t,i,m)]. (37)

It is worth noting that given s, rji (s) is independent of everything else, which gives us

(37) = ΠsE[exp {λ (r
j
i (s)− µj

i )

nj,i(hL
m,j)

}1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

= ΠsE[exp {λ (r
j
i (s)− µj

i )

nj,i(hL
m,j)

}|σ({nm,i(t)}t,i,m)] · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

= ΠsEr[exp {λ
(rji (s)− µj

i )

nj,i(hL
m,j)

}] · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)]

≤ Πs exp {
( λ
nj,i(hL

m,j)
)2σ2

2
} · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ (exp {
( λ
nj,i(hL

m,j)
)2σ2

2
})nj,i(h

L
m,j)

= exp {
λ2

nj,i(hL
m,j)

σ2

2
} ≤ exp { λ2σ2

2minj nj,i(hL
m,j)

} (38)

where the first inequality holds by the definition of sub-exponential random variables rji (s) − µj
i

with mean 0, the second inequality again uses 1Aϵ,δ
≤ 1, and the last inequality is by the fact that

nj,i(h
L
m,j) ≥ minj nj,i(h

L
m,j).
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Therefore, we obtain that by plugging (38) into (36)

(36) ≤ ΠM
j=1(exp {

λ2σ2

2minj nj,i(hL
m,j)

}) 1
M

= ((exp { λ2σ2

2minj nj,i(hL
m,j)

}) 1
M )M = exp { λ2σ2

2minj nj,i(hL
m,j)

}

which completes the basis step.

Now we proceed to the induction step. Suppose that for any s < t+1 where t+1 > L+1, we have

E[exp {λ(µ̃m
i (s)− µi)}1Aϵ,δ

|σ({nm,i(s)}s,i,m)]

≤ exp {λ
2

2

Cσ2

minj nj,i(s)
} (39)

The update rule of µ̃m
i again and (25) implies that

E[exp {λ(µ̃m
i (t+ 1)− µi)}1Aϵ,δ

|σ({nm,i(s)}s,i,m)]

≤ ΠM
j=1(exp {

λ2(P ′
t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

1
M+2 ·

Πj∈Nm(t)Πs(Er[exp {λdm,t(M + 2)
(rji (s)− µj

i )

nj,i(t)
}] · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)])
1

M+2 ·

Πj ̸∈Nm(t)Πs(Er[exp {λdm,t(M + 2)
(rji (s)− µj

i )

nj,i(tm,j)
}] · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)])
1

M+2 .

(40)

We continue bounding the last two terms by using the definition of sub-exponential random variables
(rji (s)− µj

i ) and obtain

(40) ≤ (exp {λ
2(P ′

t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

M
M+2 ·

Πj∈Nm(t)Πs(exp
λ2d2m,t(M + 2)2σ2

2n2
j,i(t)

· E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)])

1
M+2 ·

Πj ̸∈Nm(t)Πs(exp
λ2d2m,t(M + 2)2σ2

2n2
j,i(tm,j)

· E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)])

1
M+2

= (exp {λ
2(P ′

t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

M
M+2 ·

Πj∈Nm(t) exp {
nj,i(t)

M + 2

λ2d2m,t(M + 2)2σ2

2n2
j,i(t)

} · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)]·

Πj ̸∈Nm(t) exp {
nj,i(tm,j)

M + 2

λ2d2m,t(M + 2)2σ2

2n2
j,i(tm,j)

} · E[1Aϵ,δ
|σ({nm,i(t)}t,i,m)].
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Building on that, we establish

(40) ≤ (exp {λ
2(P ′

t (m, j))2(M + 2)2

2

Cσ2

minj nj,i(tm,j)
})

M
M+2 ·

(exp {
λ2d2m,t(M + 2)σ2

2minj nj,i(t)
})|Nm(t)| · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)]·

(exp {
λ2d2m,t(M + 2)σ2

2minj nj,i(tm,j)
})|M−Nm(t)| · E[1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

= E[(exp {λ
2(P ′

t (m, j))2M(M + 2)

2

Cσ2

minj nj,i(tm,j)
}) · (exp {

λ2d2m,t(M + 2)|Nm(t)|
2minj nj,i(t)

})

· (exp {
λ2d2m,t(M + 2)σ2|M −Nm(t)|

2minj nj,i(tm,j)
})1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ E[(exp {λ
2(P ′

t (m, j))2M(M + 2)

2(1− c0)

Cσ2

minj nj,i(t+ 1)
}) · (exp {

λ2d2m,t(M + 2)|Nm(t)|σ2

2 L/K
L/K+1 minj nj,i(t+ 1)

})

· (exp {
λ2d2m,t(M + 2)|M −Nm(t)|σ2

2(1− c0)minj nj,i(t+ 1)
})1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

where the first inequality uses the fact that nj,i(t) ≥ minj nj,i(t) and nj,i(tm,j) ≥ minj nj,i(tm,j).
For the second inequality, the first term is a result of minj nj,i(t)

minj nj,i(t+1) ≥
minj nj,i(t)

minj nj,i(t)+1 ≥ L/K
L/K+1 since

nj,i(t) > nj,i(L) = L/K and the ratio is monotone increasing in n, and the second term is bounded
through applying Proposition 6, which holds on event Aϵ,δ and leads to

min
j

nj,i(tm,j) ≥ min
j

nj,i(t+ 1− t0)

≥ min
j

nj,i(t+ 1)− t0

≥ min
j

nj,i(t+ 1)− c0 min
j

nj,i(t+ 1)

= (1− c0)min
j

nj,i(t+ 1).

Therefore, we can rewrite the above expression as

(40) = E[(exp{ λ2σ2

2minj nj,i(t+ 1)
· (Cλ2(P ′

t (m, j))2M(M + 2)

2(1− c0)
+

d2m,t(M + 2)|Nm(t)|
L/K

L/K+1

+
d2m,t(M + 2)|M −Nm(t)|

(1− c0)
)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ E[exp{ Cλ2σ2

2minj nj,i(t+ 1)
}1Aϵ,δ

|σ({nm,i(t)}t,i,m)]

≤ exp{ Cλ2σ2

2minj nj,i(t+ 1)
}

where the first inequality holds again by the choice of P ′
t (m, j), dm,t, L and c0 and the second

inequality uses the fact that 1Aϵ,δ
≤ 1.

This completes the induction step and subsequently concludes the proof.

Proposition 12. Assume the parameter δ satisfies that 0 < δ < c = f(ϵ,M, T ). In setting S1, S2,
and S3, for any m, i and t > L where L is the length of the burn-in period, the deviation of µ̃m,i(t)
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satisfies that if nm,i(t) ≥ 2(K2 +KM +M), then with P (Aϵ,δ) = 1− 7ϵ,

P (µ̃m,i(t)− µi ≥

√
C1 log t

nm,i(t)
+

C2 log t

nm,i(t)
|Aϵ,δ) ≤

1

P (Aϵ,δ)

1

T 4
,

P (µi − µ̃m,i(t) ≥

√
C1 log t

nm,i(t)
+

C2 log t

nm,i(t)
|Aϵ,δ) ≤

1

P (Aϵ,δ)

1

T 4
.

Proof. By Proposition 7, we have E[µ̃m,i(t) − µi|Aϵ,δ] = 0, which allows us to consider the tail
bound of the global estimator µ̃m

i (t) conditional on event Aϵ,δ. It is worth mentioning that by the
choice of C1 and C2, we have

C2
1 · α

2

σ̃4
≤ C2

2 .

where σ̃2 is 2Cσ2

nm,i(t)
.

Note that since we set Rad =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

, we obtain

P (|µ̃m
i (t)− µi| > Rad|Aϵ,δ) < P (|µ̃m

i (t)− µi| >

√
C1 lnT

nm,i(t)
|Aϵ,δ), (41)

P (|µ̃m
i (t)− µi| > Rad|Aϵ,δ) < P (|µ̃m

i (t)− µi| >
C2 lnT

nm,i(t)
|Aϵ,δ) (42)

On the one hand, if

√
C1 log T

nm,i(t)

σ̃2 > 1
α , i.e. nm,i(t) ≤ C1 log T

α2

(σ̃)4 , we have

P (|µ̃m
i (t)− µi| >

C2 lnT

nm,i(t)
|Aϵ,δ)

= E[1|µ̃m
i (t)−µi|> C2 lnT

nm,i(t)

|Aϵ,δ]

=
1

P (Aϵ,δ)
E[1|µ̃m

i (t)−µi|> C2 lnT

nm,i(t)

1Aϵ,δ
]

=
1

P (Aϵ,δ)
E[1

exp{λ(n)(|µ̃m,i(t)−µi|)}≥exp{λ(n) C2 lnT

nm,i(t)

}1Aϵ,δ
]

≤ 1

P (Aϵ,δ)
E[

exp{λ(n)(|µ̃m,i(t)− µi|)}
exp{λ(n)C2 lnT

nm,i(t)
}

1Aϵ,δ
] (43)

where the last inequality is by the fact that 1
exp{λ(n)(|µ̃m,i(t)−µi|)}≥exp{λ(n) C2 lnT

nm,i(t)
} ≤

exp{λ(n)(|µ̃m,i(t)−µi|)}
exp{λ(n) C2 lnT

nm,i(t)
}

.

By the assumption that δ < c, we have Proposition 11 holds. Subsequently, by Proposition 11 and
Lemma 2 which holds since nm,i(t) ≥ 2(K2 +KM +M), we have for any |λ| < 1

α

E[exp {λ(µ̃m
i (t)− µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)] ≤ exp {λ
2

2
σ̃2}. (44)

Likewise, we obtain that by taking λ = −λ,

E[exp {λ(−µ̃m
i (t) + µi)}1Aϵ,δ

|σ({nm,i(t)}t,i,m)] ≤ exp {λ
2

2
σ̃2}. (45)

With (44) and (45), we arrive at for any |λ| < 1
α that

E[exp {λ(|µ̃m
i (t)− µi)|}1Aϵ,δ

|σ({nm,i(t)}t,i,m)] ≤ 2 exp {λ
2

2
σ̃2}. (46)
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Again, we utilize the law of total expectation and further obtain that |λ(n)| < 1
α

(43) =
1

P (Aϵ,δ)
E[E[

exp{λ(n)(|µ̃m,i(t)− µi|)}
exp{λ(n)C2 lnT

nm,i(t)
}

1Aϵ,δ
|σ({nm,i(t)}m,i,t)]]

=
1

P (Aϵ,δ)
E[

1

exp{λ(n)C2 lnT
nm,i(t)

}
E[exp{λ(n)(|µ̃m,i(t)− µi|)}1Aϵ,δ

|σ({nm,i(t)}m,i,t)]]

≤ 2
1

P (Aϵ,δ)
E[

1

exp{λ(n)C2 lnT
nm,i(t)

}
· exp {λ

2(n)

2
σ̃2}] (47)

where the first inequality holds by (46).

Note that the condition

√
C1 log T

nm,i(t)

σ̃2 > 1
α implies that nm,i(t) <

C1 lnT
σ̃2

α

which is the global optima of

the function in (47). This is true since nm,i(t) ≤ C1 log T
α2

(σ̃)4 ≤ (C2 log T )2

C1
. Henceforth, (47) is

monotone decreasing in λ(n) ∈ (0, 1
α ) and we obtain a minima when choosing λ(n) = 1

α and using
the continuity of (47).

Formally, it yields that

(47) ≤ 2
1

P (Aϵ,δ)
E[

1

exp{ 1
α

C2 lnT
nm,i(t)

}
· exp {

1
2α2

1
σ̃2}]

= 2
1

P (Aϵ,δ)
E[exp{ 1

2α2
σ̃2 − 1

α

C2 lnT

nm,i(t)
}]

≤ 2
1

P (Aϵ,δ)
exp{−4 log T} =

2

P (Aϵ,δ)T 4
(48)

where the last inequality uses the choice of C2 and the condition that 1
2α2 σ̃

2 − 1
α

C2 lnT
nm,i(t)

≤ −4 lnT

which holds by the following derivation. Notably, we have

1

2α2
σ̃2 − 1

α

C2 lnT

nm,i(t)
≤ 1

2α2
σ̃2 − C2 lnT

α

σ̃2

α

C1 lnT

=
1

2α2
σ̃2 − C2

C1

σ̃2

α2

= (
1

2
− C2

C1
)(σ̃2 ·

C1 log T
nm,i(t)

σ̃4
) = (

1

2
− C2

C1
)(

C1 log T
nm,i(t)

σ̃2
)

= (
1

2
− C2

C1
) · C1 log T

nm,i(t)
· 1

2Cσ2

nm,i(t)

= (
1

2
− C2

C1
)

C1

2Cσ2
log T ≤ −4 log T

where the first inequality uses nm,i(t) <
C1 lnT

σ̃2

α

and the last inequality is by the choices of parameters

( 12 − C2

C1
) C1

2Cσ2 ≤ −4.

On the other hand, if

√
C1 log T

nm,i(t)

σ̃2 < 1
α , i.e. nm,i(t) ≥ C1 log T

α2

(σ̃)4 , we observe for |λ(n)| < 1
α

P (|µ̃m
i (t)− µi| >

√
C1 lnT

nm,i(t)
|Aϵ,δ)

≤ 2
1

P (Aϵ,δ)
E[

1

exp{λ(n)
√

C1 lnT
nm,i(t)

}
· exp {λ

2(n)

2
σ̃2}] (49)

by a same argument from (43) to (47) replacing C2 lnT
nm,i(t)

with
√

C1 lnT
nm,i(t)

. When choosing λ(n) =√
C1 log T

nm,i(t)

σ̃2 that meets the condition λ < 1
α under the assumption

√
C1 log T

nm,i(t)

σ̃2 < 1
α and noting that
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C1

2Cσ2 ≥ 4, we obtain

(49) ≤ 2
1

P (Aϵ,δ)
E[exp{− C1 log T

σ̃2nm,i(t)
}]

= 2
1

P (Aϵ,δ)
E[exp{−C1 log T

nm,i(t)

1
2Cσ2

nm,i(t)

}]

≤ 2
1

P (Aϵ,δ)
exp{−4 log T} =

2

P (Aϵ,δ)T 4
.

To conclude, by (41) and (42), we have

P (|µ̃m
i (t)− µi| > Rad|Aϵ,δ) ≤

2

P (Aϵ,δ)T 4

which completes the proof.

Proposition 13. Assume the parameter δ satisfies that 0 < δ < c = f(ϵ,M, T ). An arm k is said
to be sub-optimal if k ̸= i∗ where i∗ is the unique optimal arm in terms of the global reward, i.e.
i∗ = argmax 1

M

∑M
j=1 µ

j
i . Then in setting S1, S2 and S3, when the game ends, for every client m,

0 < ϵ < 1 and T > L, the expected numbers of pulling sub-optimal arm k after the burn-in period
satisfies with P (Aϵ,δ) = 1− 7ϵ

E[nm,k(T )|Aϵ,δ]

≤ max([
16C1 log T

∆2
i

], [
4C2 log T

∆i
], 2(K2 +MK +M)) +

4

P (Aϵ,δ)T 3
+K2 + (2M − 1)K

≤ O(log T ).

Proof. Recall that Rad =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

. We again have amt = i holds when any of the

following conditions is met: Case 1: nm,i(t) ≤ Nm,i(t)−K, Case 2: µ̃m,i−µi >
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

,

Case 3: −µ̃m,i∗ + µi∗ >
√

C1 lnT
nm,i∗ (t)

+ C2 lnT
nm,i∗ (t)

, and Case 4: µi∗ − µi < 2(
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

).

By (30), the expected value of nm,i(t) conditional on Aϵ,δ reads as

E[nm,i(T )|Aϵ,δ]

= l +

T∑
t=L+1

P (Case2, nm,i(t− 1) ≥ l|Aϵ,δ) +

T∑
t=L+1

P (Case3, nm,i(t− 1) ≥ l|Aϵ,δ)

+

T∑
t=L+1

P (Case1, amt = i, nm,i(t− 1) ≥ l|Aϵ,δ) +

T∑
t=L+1

P (Case4, nm,i(t− 1) ≥ l|Aϵ,δ)

(50)

where l is specified as l = max {[ 4C1 log T
∆2

i
], 2(K2 +MK +M)} with ∆i = µi∗ − µi.

For the last term in the above upper bound, we have

T∑
t=L+1

P (Case4 : µi + 2(

√
C1 lnT

nm,i(t)
+

C2 lnT

nm,i(t)
) > µi∗ , nm,i(t− 1) ≥ l) = 0 (51)

since the choice of l satisfies l ≥ max([ 16C1 log T
∆2

i
], [ 4C2 log T

∆i
], 2(K2 +MK)).
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For the first two terms, we have on event Aϵ,δ

T∑
t=L+1

P (Case2, nm,i(t− 1) ≥ l|Aϵ,δ) +

T∑
t=1

P (Case3, nm,i(t− 1) ≥ l|Aϵ,δ)

≤
T∑

t=L+1

P (µ̃m,i − µi >

√
C1 lnT

nm,i(t)
+

C2 lnT

nm,i(t)
|Aϵ,δ)+

T∑
t=1

P (−µ̃m,i∗ + µi∗ >

√
C1 lnT

nm,i∗(t)
+

C2 lnT

nm,i∗(t)
|Aϵ,δ)

≤
T∑

t=1

(
1

P (Aϵ,δ)T 4
) +

T∑
t=1

(
1

P (Aϵ,δ)T 4
) ≤ 2

P (Aϵ,δ)T 3
(52)

where the first inequality holds by the property of the probability measure when removing the event
nm,i(t− 1) ≥ l and the second inequality holds by Proposition 12, which holds by the assumption
that δ < c.

For Case 1, we note that Lemma 1 implies that

nm,i(t) > Nm,i(t)−K(K + 2M)

with the definition of Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j ∈ Nm(t)}.

Departing from the result that the difference between Nm,i(t) and nm,i(t) is at most K(K + 2M),
we then present the following analysis on how long it takes for the value −nm,i(t) +Nm,i(t) to be
smaller than K.

At time step t, if Case 1 holds for client m, then nm,i(t+1) is increasing by 1 on the basis of nm,i(t).
What follows characterizes the change of Nm,i(t+1). Client m satisfying nm,i(t) ≤ Nm,i(t)−K will
not change the value of Nm,i(t+ 1) by the definition Nm,i(t+ 1) = max{nm,i(t+ 1), Nj,i(t), j ∈
Nm(t)}. Moreover, for client j ∈ Nm(t) with nj,i(t) < Nj,i(t) − K, i.e. Nj,i(t + 1) will
not be affected by nj,i(t + 1) ≤ nj,i(t) + 1. Thus, the value of Nm,i(t + 1) = max{nm,i(t +
1), Nj,i(t), j ∈ Nm(t)} is independent of such clients. We observe that for client j ∈ Nm(t) with
nj,i(t) > Nj,i(t)−K, the value Nj,i(t) will be the same if the client does not sample arm i, which
leads to a decrease of 1 in the difference −nm,i(t) +Nm,i(t). Otherwise, if such a client samples
arm i which brings an increment of 1 to Nm,i(t), the difference between nm,i(t) and Nm,i(t) will
remain the same. However, the latter has just been discussed and must be the cases as in Case 2 and
Case 3, the total length of which has already been upper bounded by 2

P (Aϵ,δ)T 3 as shown in (52).

Therefore, the gap is at most K(K + 2M)−K + 2
P (Aϵ,δ)T 3 , i.e.

T∑
t=1

P (Case1, amt = i, nm,i(t− 1) ≥ l|Aϵ,δ) ≤ K(K + 2M)−K +
2

P (Aϵ,δ)T 3
. (53)

Subsequently, we derive that

E[nm,i(T )|Aϵ,δ]

≤ l +
2

P (Aϵ,δ)T 3
+K(K + 2M)−K +

2

P (Aϵ,δ)T 3
+ 0

= l +
2π2

3
+K2 + (2M − 1)K

= max([
16C1 log T

∆2
i

], [
4C2 log T

∆i
], 2(K2 +MK +M)) +

4

P (Aϵ,δ)T 3
+K2 + (2M − 1)K

where the inequality results from (50), (51), (52) and (53).
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F.2 Proof of Theorems

Theorem 1. For event Aϵ,δ and any 1 > ϵ, δ > 0, we have P (Aϵ,δ) ≥ 1− 7ϵ.

Proof. Recall that we define events
A1 = {∀t ≥ L, |Pt − cE| ≤ δ},
A2 = {∀t ≥ L,∀j,m, t+ 1−min

j
tm,j ≤ t0 ≤ c0 min

l
nl,i(t+ 1)},

A3 = {∀t ≥ L,Gt is connected}
where A1, A2, A3 belong to the σ-algebra in the probability space since the time horizon is countable,
i.e. for the probability space (Ω,Σ, P ), A1, A2, A3 ∈ Σ.

Meanwhile, we obtain
P (A1) = P ({∀t ≥ L, |Pt − cE| ≤ δ})

≥ P (∩i{∀t ≥ Lsi , |Pt − cE| ≤ δ})

≥ 1−
∑
i

(1− P (∩i{∀t ≥ Lsi , |Pt − cE| ≤ δ}))

≥ 1−
∑
i

(1− (1− ϵ))

= 1− 3ϵ (54)
where the first inequality includes all settings and L ≥ Lsi , the second inequality results from the
Bonferroni’s inequality and the third inequality holds by Proposition 1 and Proposition 3.

At the same time, note that
P (A2) = P ({∀t ≥ L,∀j,m, t+ 1−min

j
tm,j ≤ t0 ≤ c0 min

l
nl,i(t+ 1)})

≥ P (∩i{∀t ≥ Lsi ,∀j,m, t+ 1−min
j

tm,j ≤ t0 ≤ c0 min
l

nl,i(t+ 1)})

≥ 1−
∑
i

(1− P ({∀t ≥ Lsi ,∀j,m, t+ 1−min
j

tm,j ≤ t0 ≤ c0 min
l

nl,i(t+ 1)}))

≥ 1−
∑
i

(1− (1− ϵ)) = 1− 3ϵ (55)

where the first inequality is by the definition of L, the second inequality again uses the Bonferroni’s
inequality, and the third inequality results from Proposition 6.

Moreover, we observer that
P (A3) = P ({∀t ≥ L,Gt is connected})

≥ P (∩i{∀t ≥ Lsi , Gt is connected})

≥ 1−
∑
i

(1− P ({∀t ≥ Lsi , Gt is connected}))

≥ 1− (1− (1− ϵ))− 0 = 1− ϵ (56)
where the first inequality uses the definition of L, the second inequality is by the Bonferroni’s
inequality and the third inequality holds by Proposition 5 and the definition of s2, s3 where all graphs
are guaranteed to be connected.

Consequently, we arrive at
P (Aϵ,δ) = P (A1 ∩A2 ∩A3)

= 1− P (Ac
1 ∪Ac

2 ∪Ac
3)

≥ 1− (P (Ac
1) + P (Ac

2) + P (Ac
3))

≥ 1− (3ϵ+ 3ϵ+ ϵ) = 1− 7ϵ

where the first inequality utilizes the Bonferroni’s inequality, the second inequality results from (54),
(55), and (56).

This concludes the proof and shows the validness of the statement.
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Theorem 2. Let f be a function specific to a setting and detailed later. For every 0 < ϵ < 1 and

0 < δ < f(ϵ,M, T ), in setting s1 with c ≥ 1
2 +

1
2

√
1− ( ϵ

MT )
2

M−1 , s2 and s3, with the time horizon

T satisfying T ≥ L, the regret of Algorithm 2 with F (m, i, t) =
√

C1 ln t
nm,i(t)

satisfies that

E[RT |Aϵ,δ] ≤ L+
∑
i ̸=i∗

(max {[ 4C1 log T

∆2
i

], 2(K2 +MK +M)}+ 2π2

3P (Aϵ,δ)
+K2 + (2M − 1)K)

where the length of the burn-in period is explicitly

L = max

{
ln T

2ϵ

2δ2
,
4K log2 T

c0︸ ︷︷ ︸
Ls1

,
ln δ

10

ln p∗
+ 25

1 + λ

1− λ

ln T
2ϵ

2δ2
,
4K log2 T

c0︸ ︷︷ ︸
Ls2

,

ln δ
10

ln p∗
+ 25

1 + λ

1− λ

ln T
2ϵ

2δ2
,

K ln(MT
ϵ )

ln( 1

1− 2 log M
M−1

)

c0︸ ︷︷ ︸
Ls3

}

with λ being the spectral gap of the Markov chain in s2, s3 that satisfies 1 − λ ≥ 1
2 ln 2

ln 2p∗ ln 4+1
,

p∗ = p∗(M) < 1 and c0 = c0(K,mini ̸=i∗ ∆i,M, ϵ, δ), and the instance-dependent constant
C1 = 8σ2 max{12M(M+2)

M4 }.

Proof. The optimal arm is denoted as i∗ satisfying

i∗ = argmax
i

M∑
m=1

µm
i .

For the proposed regret, we have that for any constant L,

RT =
1

M
(max

i

T∑
t=1

M∑
m=1

µm
i −

T∑
t=1

M∑
m=1

µm
am
t
)

=

T∑
t=1

1

M

M∑
m=1

µm
i∗ −

T∑
t=1

1

M

M∑
m=1

µm
am
t

≤
L∑

t=1

| 1
M

M∑
m=1

µm
i∗ − 1

M

M∑
m=1

µm
am
t
|+

T∑
t=L+1

(
1

M

M∑
m=1

µm
i∗ − 1

M

M∑
m=1

µm
am
t
)

≤ L+

T∑
t=L+1

(
1

M

M∑
m=1

µm
i∗ − 1

M

M∑
m=1

µm
am
t
)

= L+

T∑
t=L+1

(µi∗ − 1

M

M∑
m=1

µm
am
t
)

= L+ ((T − L) · µi∗ − 1

M

M∑
m=1

K∑
i=1

nm,i(T )µ
m
i )

where the first inequality is by taking the absolute value and the second inequality results from the
assumption that 0 < µj

i < 1 for any arm i and client j.
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Note that
∑K

i=1

∑M
m=1 nm,i(T ) = M(T − L) where by definition nm,i(T ) is the number of pulls

of arm i at client m from time step L+ 1 to time step T , which yields that

RT ≤ L+

K∑
i=1

1

M

M∑
m=1

nm,i(T )µ
m
i∗ −

K∑
i=1

1

M

M∑
m=1

nm,i(T )µ
m
i

= L+

K∑
i=1

1

M

M∑
m=1

nm,i(T )(µ
m
i∗ − µm

i )

≤ L+
1

M

K∑
i=1

∑
m:µm

i∗−µm
i >0

nm,i(T )(µ
m
i∗ − µm

i )

= L+
1

M

∑
i ̸=i∗

∑
m:µm

i∗−µm
i >0

nm,i(T )(µ
m
i∗ − µm

i ).

where the second inequality uses the fact that
∑

m:µm
i∗−µm

i ≤0 nm,i(T )(µ
m
i∗ − µm

i ) ≤ 0 holds for any
arm i and the last equality is true since nm,i(T )(µ

m
i∗ − µm

i ) = 0 for i = i∗ and any m.

Meanwhile, by the choices of δ such that δ < c = f(ϵ,M, T ), we apply Proposition 10 which leads
to for any client m and arm i ̸= i∗,

E[nm,i(T )|Aϵ,δ] ≤ max {[ 4C1 log T

∆2
i

], 2(K2 +MK +M)}+ 2π2

3
+K2 + (2M − 1)K. (57)

As a result, the upper bound on RT can be derived as by taking the conditional expectation over RT

on Aϵ,δ

E[RT |Aϵ,δ]

≤ L+
1

M

∑
i ̸=i∗

∑
m:µm

i∗−µm
i >0

E[nm,i(T )|Aϵ,δ](µ
m
i∗ − µm

i ) (58)

≤ L+

1

M

∑
i ̸=i∗

∑
m:µm

i∗−µm
i >0

(max {[ 4C1 log T

∆2
i

], 2(K2 +MK)}+ 2π2

3
+K2 + (2M − 1)K)(µm

i∗ − µm
i )

= L+

1

M

∑
i ̸=i∗

(max {[ 4C1 log T

∆2
i

], 2(K2 +MK)}+ 2π2

3
+K2 + (2M − 1)K)

∑
m:µm

i∗−µm
i >0

(µm
i∗ − µm

i )

(59)

where the second inequality holds by plugging in (57).

Meanwhile, we note that for any i ̸= i∗,∑
m:µm

i∗−µm
i >0

(µm
i∗ − µm

i ) +
∑

m:µm
i∗−µm

i ≤0

(µm
i∗ − µm

i )

=

M∑
m=1

(µm
i∗ − µm

i )

= M∆i > 0

and

|
∑

m:µm
i∗−µm

i ≤0

(µm
i∗ − µm

i )| ≤ M
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which gives us that ∑
m:µm

i∗−µm
i >0

(µm
i∗ − µm

i )

= M∆i −
∑

m:µm
i∗−µm

i ≤0

(µm
i∗ − µm

i )

= M∆i + |
∑

m:µm
i∗−µm

i ≤0

(µm
i∗ − µm

i )|

≤ M∆i +M = M(∆i + 1). (60)

Hence, the regret can be upper bounded by
(59)

≤ L+
∑
i ̸=i∗

(∆i + 1)(max {[ 4C1 log T

∆2
i

], 2(K2 +MK +M)}+ 2π2

3
+K2 + (2M − 1)K)

= O(max{L, log T})
where the inequality is derived from (60) and L is the same constant as in the definition of Aϵ,δ .

This completes the proof.

Theorem 3. Let f be a function specific to a setting and defined in the above remark. For every

0 < ϵ < 1 and 0 < δ < f(ϵ,M, T ), in settings S1 with c ≥ 1
2 + 1

2

√
1− ( ϵ

MT )
2

M−1 ,S2, S3 with the

time horizon T satisfying T ≥ L, the regret of Algorithm 2 with F (m, i, t) =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

satisfies

E[RT |Aϵ,δ] ≤ L+
∑
i ̸=i∗

(∆i + 1) · (max([
16C1 log T

∆2
i

], [
4C2 log T

∆i
], 2(K2 +MK +M))

+
4

P (Aϵ,δ)T 3
+K2 + (2M − 1)K)

where L,C1 are specified as in Theorem 2 and C2

C1
≥ 3

2 .

Proof. By the regret decomposition as in (58), we obtain that

E[RT |Aϵ,δ] ≤ L+
1

M

∑
i̸=i∗

∑
m:µm

i∗−µm
i >0

E[nm,i(T )|Aϵ,δ](µ
m
i∗ − µm

i ). (61)

By Proposition 13, we have that with probability at least 1− 7ϵ

E[nm,i(T )|Aϵ,δ]

≤ max([
16C1 log T

∆2
i

], [
4C2 log T

∆i
], 2(K2 +MK +M)) +

4

P (Aϵ,δ)T 3
+K2 + (2M − 1)K.

(62)

Following (60) gives us that∑
m:µm

i∗−µm
i >0

(µm
i∗ − µm

i ) ≤ M∆i +M = M(∆i + 1). (63)

Therefore, we derive that with probability at least P (Aϵ,δ) = 1− 7ϵ

E[RT |Aϵ,δ] ≤ L+
∑
i ̸=i∗

(∆i + 1) · (max([
16C1 log T

∆2
i

], [
4C2 log T

∆i
], 2(K2 +MK +M))

+
4

P (Aϵ,δ)T 3
+K2 + (2M − 1)K)
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which completes the proof.

Theorem 4. Assume the same conditions as in Theorems 2 and 3. The regret of Algorithm 2 satisfies
that

E[RT |Aϵ,δ] ≤ L1 +
4

P (Aϵ,δ)T 3
+

(1 +max{
√
C1 lnT ,C2 lnT})(K(K + 2M)−K +

2

P (Aϵ,δ)T 3
)+

K(C2(lnT )
2 + C2 lnT +

√
C1 lnT

√
T (lnT + 1)) = O(

√
T lnT ).

where L1 = max(L,K(2(K2 +MK +M))), L,C1 is specified as in Theorem 2, and C2

C1
≥ 3

2 . The
involved constants depend on σ2 but not on ∆i.

Proof. Define U t
m(i) and Lt

m(i) as µ̃m
i (t) + Rad(i,m, t) and µ̃m

i (t) − Rad(i,m, t), respectively,

where Rad is previously defined as Rad(i,m, t) =
√

C1 lnT
nm,i(t)

+ C2 lnT
nm,i(t)

. We observe that by definition,
the regret RT can be written as

RT =
1

M

T∑
t=1

M∑
m=1

(µi∗ − µt
at
m
)

=
1

M

T∑
t=1

M∑
m=1

(µi∗ − U t
m(atm) + U t

m(atm)− Lt
m(atm) + Lt

m(atm)− µt
at
m
).

Subsequently, the conditional expectation of RT has the following decomposition

E[RT |Aϵ,δ]

=
1

M

T∑
t=1

M∑
m=1

(E[µi∗ − U t
m(atm)|Aϵ,δ] + E[U t

m(atm)− Lt
m(atm)|Aϵ,δ] + E[Lt

m(atm)− µt
at
m
|Aϵ,δ])

= L1 +
1

M

T∑
t=L1+1

M∑
m=1

(E[µi∗ − U t
m(i∗)|Aϵ,δ] + E[U t

m(i∗)− U t
m(atm)|Aϵ,δ]+

E[U t
m(atm)− Lt

m(atm)|Aϵ,δ] + E[Lt
m(atm)− µt

at
m
|Aϵ,δ]) (64)

where L1 = max(L, 2(K2 +MK +M)).

For the first term, we derive its upper bound as follows.

Note that

E[µi∗ − U t
m(i∗)|Aϵ,δ]

≤ E[(µi∗ − U t
m(i∗))1µi∗−Ut

m(i∗)>0|Aϵ,δ]

= E[µi∗1µi∗−Ut
m(i∗)>0|Aϵ,δ]− E[U t

m1µi∗−Ut
m(i∗)>0|Aϵ,δ]

≤ E[µi∗1µi∗−Ut
m(i∗)>0|Aϵ,δ]

≤ E[1µi∗−Ut
m(i∗)>0|Aϵ,δ]

= P (µi∗ − U t
m(i∗) > 0|Aϵ,δ)

= P (µi∗ − µ̃m
i∗(t) > Rad|Aϵ,δ)

≤ P (|µi∗ − µ̃m
i∗(t)| > Rad|Aϵ,δ) ≤

2

P (Aϵ,δ)T 4
(65)

where the first inequality uses the monotone property of E[·], the second inequality omits the latter
negative quantity, the third inequality holds by the fact that 0 ≤ µ∗

i ≤ 1, and the last inequality is by
Proposition 12.
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In like manner, we have that the last term satisfies that

E[Lt
m(atm)− µat

m
|Aϵ,δ] ≤

2

P (Aϵ,δ)T 4
(66)

by the same logic as the above and substituting i∗ with atm, and thus we omit the details here.

We then proceed to bound the second term. Based on the decision rule in Algorithm 2, we have either
E[U t

m(i∗)− U t
m(atm)|Aϵ,δ] < 0 or nm,i(t) < Nm,i(t)−K. This is equivalent to

E[U t
m(i∗)− U t

m(atm)|Aϵ,δ]

= E[U t
m(i∗)− U t

m(atm)1nm,i(t)≥Nm,i(t)−K |Aϵ,δ]+

E[U t
m(i∗)− U t

m(atm)1nm,i(t)<Nm,i(t)−K |Aϵ,δ]

≤ E[U t
m(i∗)− U t

m(atm)1nm,i(t)<Nm,i(t)−K |Aϵ,δ]

≤ E[U t
m(i∗)1nm,i(t)<Nm,i(t)−K |Aϵ,δ]. (67)

By definition, U t
m(i∗) = µ̃i∗ +Rad(i∗,m, t) implies that

U t
m(i∗) ≤ 1 +Rad(i∗,m, t)

which leads to

(67) ≤ E[(1 +Rad(i∗,m, t))1nm,i(t)<Nm,i(t)−K |Aϵ,δ]

≤ (1 + maxRad(i∗,m, t))E[1nm,i(t)<Nm,i(t)−K |Aϵ,δ]

≤ (1 + max{
√
C1 lnT ,C2 lnT})E[1nm,i(t)<Nm,i(t)−K |Aϵ,δ]

and subsequently

1

M

T∑
t=L1+1

M∑
m=1

E[U t
m(i∗)− U t

m(atm)|Aϵ,δ]

≤ 1

M

T∑
t=L1+1

M∑
m=1

(1 + max{
√

C1 lnT ,C2 lnT})E[1nm,i(t)<Nm,i(t)−K |Aϵ,δ]. (68)

Following (53) that only depends on whether clients stay on the same page that relies on the
transmission, we obtain∑

t

E[1nm,i(t)<Nm,i(t)−K |Aϵ,δ] ≤ K(K + 2M)−K +
2

P (Aϵ,δ)T 3

which immediately leads to

(68) ≤ (1 + max{
√
C1 lnT ,C2 lnT}) · (K(K + 2M)−K +

2

P (Aϵ,δ)T 3
)

Afterwards, we consider the third term and have

E[U t
m(atm)− Lt

m(atm)|Aϵ,δ]

= E[2Rad(atm,m, t)|Aϵ,δ] (69)

Putting (65, 66, 68, 69) all together, we deduce that

(64) ≤ L1 +
1

M

T∑
t=L1+1

M∑
m=1

(
2

P (Aϵ,δ)T 4
+ E[2Rad(atm,m, t)|Aϵ,δ] +

2

P (Aϵ,δ)T 4
)

+ (1 + max{
√

C1 lnT ,C2 lnT}) · (K(K + 2M)−K +
2

P (Aϵ,δ)T 3
)

≤ L1 +
4

P (Aϵ,δ)T 3
+

1

M

∑
t>L1

∑
m

(E[2Rad(atm,m, t)|Aϵ,δ])+

(1 + max{
√
C1 lnT ,C2 lnT}) · (K(K + 2M)−K +

2

P (Aϵ,δ)T 3
).
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Meanwhile, we observe that by definition

1

M

∑
t>L1

∑
m

(E[2Rad(atm,m, t)|Aϵ,δ])

=
1

M

∑
i

∑
m

∑
at
m=i

t>L1

(E[2Rad(i,m, t)|Aϵ,δ])

=
1

M

∑
i

∑
m

∑
at
m=i

t>L1

E[2

√
C1 lnT

nm,i(t)
+

C2 lnT

nm,i(t)
|Aϵ,δ]. (70)

By the sum of the Harmonic series, we have∑
at
m=i

t>L1

C2 lnT

nm,i(t)
≤ C2 lnT lnnm,i(T ) + C2 lnT ≤ C2(lnT )

2 + C2 lnT. (71)

Meanwhile, by the Cauchy-Schwartz inequality, we obtain∑
at
m=i

t>L1

√
C1 lnT

nm,i(t)

≤
√
C1 lnT

√√√√(
∑
t

1)(
∑
t

(

√
1

nm,i(t)
)2)

≤
√
C1 lnT

√
T (lnT + 1)

where the last inequality again uses the result on the Harmonic series as in (71).

Therefore, the cumulative value can be bounded as

(70) ≤ 1

M

∑
i

∑
m

(C2(lnT )
2 + C2 lnT +

√
C1 lnT

√
T (lnT + 1))

= K(C2(lnT )
2 + C2 lnT +

√
C1 lnT

√
T (lnT + 1))

Using the result of (70), we have

(64) ≤ L1 +
4

P (Aϵ,δ)T 3
+K(C2(lnT )

2 + C2 lnT +
√
C1 lnT

√
T (lnT + 1))+

(1 + max{
√
C1 lnT ,C2 lnT}) · (K(K + 2M)−K +

2

P (Aϵ,δ)T 3
)

= O(max{
√
T lnT, (lnT )2})

which completes the proof.

G Choices of parameter c0 in Theorem 2
Parameter c0 We note that c0 is a pre-specified parameter which are different in different settings.
The choices of c0 are as follows. Meanwhile, we need to study whether the possible choices of c0
explode in terms of the order of T .

Remark (2). The regret reads

E[RT |Aϵ,δ] ≤ L+ C1

∑
i ̸=i∗

([
4 log T

∆2
i

]) + (K − 1)(2(K2 +MK) +
2π2

3
+K2 + (2M − 1)K)
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with L denoted as L = max{L1, L2, L3} = max{a1, a2, a3, b1
c0
, b2
c0
, b3
c0
} and C1 denoted as

max{ e
1−c0

, f}, where parameters a1, a2, a3, b1, b2, b3, e, f are specified as

a1 =
ln 2T

ϵ

2δ2

b1 = 4K log2 T

a2 =
ln δ

10

ln p∗
+ 25

1 + λ

1− λ

ln 2T
ϵ

2δ2

b2 = 4K log2 T

a3 =
ln δ

10

ln p∗
+ 25

1 + λ

1− λ

ln 2T
ϵ

2δ2

b3 =
K ln(MT

ϵ )

ln( 1
1−c )

e = 16
4(M + 2)

3M

f = 16(M + 2)(1 + 4Md2m,t).

This function of c0 is non-differentiable which brings additional challenges and requires a case-by-
case analysis.

Let a = {a1, a2, a3} and b = {b1, b2, b3}. Then continue with the decision rule as in the previous
discussion.

• Case 1: there exists c0 such that a ≥ b
c0

,i.e. c ≥ b
a and b

a ≤ 1 Then RT is monotone
increasing in c due to C1 and c0 = b

a gives us the optimal regret R1
T .

• Case 2: if a ≤ b
c0

,i.e. c0 ≤ b
a

– if e
1−c0

< f ,i.e. c0 ≤ 1− e
f , then c0 = min { b

a , 1−
e
f } is the minima.

– else we have c0 ≥ 1− e
f

* if 1− e
f > b

a , it leads to contradiction and this can not be the case.

* else 1− e
f ≤ b

a , we obtain

RT ≤ b

c0
+

e

1− c0

∑
i ̸=i∗

([
4 log T

∆2
i

]) + (K − 1)(2(K2 +MK) +
2π2

3
+K2 + (2M − 1)K)

which implies that the optimal choice of c0 is
√
b

√
b+

√
e
∑

i̸=i∗ ([
4 log T

∆2
i

])

· if 1 − e
f ≤

√
b

√
b+

√
e
∑

i̸=i∗ ([
4 log T

∆2
i

])
≤ b

a , this gives us the final choice of c0 and

the subsequent local optimal regret R2
T .

· elif
√
b

√
b+

√
e
∑

i̸=i∗ ([
4 log T

∆2
i

])
< 1 − e

f , the optimal choice of c0 is 1 − e
f and the

subsequent local optimal regret is R2
T

· else the optimal choice of c0 is b
a and the subsequent local optimal regret is R2

T

• Compare R1
T and R2

T and choose the c0 associated with the smaller value.
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The possible choices of c0 are { b
a ,min{ b

a , 1−
e
f },

√
b

√
b+

√
e
∑

i̸=i∗ ([
4 log T

∆2
i

])
}, i.e.

c0 = { b1 + b2 + b3
a1 + a2 + a3

,min{ b1 + b2 + b3
a1 + a2 + a3

, 1−
16 4(M+2)

3M

16(M + 2)(1 + 4Md2m,t)
},

√
b

√
b+

√
e
∑

i ̸=i∗([
4 log T
∆2

i
])
}

= { b1 + b2 + b3
a1 + a2 + a3

,min{ b1 + b2 + b3
a1 + a2 + a3

, 1−
16 4(M+2)

3M

16(M + 2)(1 + 4Md2m,t)
},

√
b

√
b+

√
e
∑

i ̸=i∗([
4 log T
∆2

i
])
}

=
8K log T +

K ln(MT
ϵ )

ln( 1
1−c )

ln 2T
ϵ

2δ2 + 2
ln δ

10

ln p∗ + 50 1+λ
1−λ

ln 2T
ϵ

2δ2

,

min{
8K log T +

K ln(MT
ϵ )

ln( 1
1−c )

ln 2T
ϵ

2δ2 + 2
ln δ

10

ln p∗ + 50 1+λ
1−λ

ln 2T
ϵ

2δ2

, 1−
16 4(M+2)

3M

16(M + 2)(1 + 4Md2m,t)
},

√
8K log T +

K ln(MT
ϵ )

ln( 1
1−c )√

8K log T +
K ln(MT

ϵ )

ln( 1
1−c )

+
√
e
∑

i̸=i∗([
4 log T
∆2

i
])

which implies the choice of c0 is between

√
8K log T+

K ln(MT
ϵ

)

ln( 1
1−c

)√
8K log T+

K ln(MT
ϵ

)

ln( 1
1−c

)
+
√

e
∑

i̸=i∗ ([
4 log T

∆2
i

])

and 1 −

16
4(M+2)

3M

16(M+2)(1+4Md2
m,t)

. Meanwhile, we observe that the choice of c0 satisfies

E[RT |Aϵ,δ] ≤ RT (1−
16 4(M+2)

3M

16(M + 2)(1 + 4Md2m,t)
) = O(log T ).
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