
Robust Data Pruning under Label Noise via
Maximizing Re-labeling Accuracy

(Supplementary Material)

A Complete Proof of Theorem 3.4

The α-expansion and β-separation assumptions hold for the training set D̃. Then, following the
re-labeling theory [45], minimizing the self-consistency loss forces the classifier into correcting the
erroneous labels and improving the training accuracy, as presented in Lemma A.1.

Lemma A.1. (RE-LABELING BOUND). Suppose α-expansion and β-separation assumptions hold
for the training set D̃. Then, for a Re-labeling minimizer θD̃ on D̃, we have

Err(θD̃) ≤
2 · Err(θM)

α− 1
+

2 · α
α− 1

· β, (8)

where Err(·) is a training error on ground-truth labels, and θM is a model trained with the supervised
loss in Eq. (1) on a minimum (or given) clean set M ⊂ S.

Proof. Refer to [45] for the detailed concept and proof.

This lemma is used for proving Theorem 3.4. Since αS indicates the average number of augmentation
neighbors in S , we can transform Eq. (8) using αS ,

Err(θS) ≤
2 · Err(θM)

(1/|S|)
∑

x∈S 1[x′∈N (x)]
+

2 · αS

αS − 1
· βS . (9)

Assume that the training error of the minimum clean set M in the selected subset S is proportional
to the inverse of the confidence of x ∈ S, since the performance of the standard learner is often
correlated to the confidence of training examples. Then, Eq. (9) becomes

Err(θS) ≤
2 · |S| · Err(θM)∑

x∈S C(x)
∑

x∈S 1[x′∈N (x)]
+

2 · αS

αS − 1
· βS

≤ 2 · |S| · Err(θM)∑
x∈S 1[x′∈N (x)]C(x)

+
2 · αS

αS − 1
· βS ,

(10)

where the last inequality holds because of Hölder’s inequality with two sequence variables. Therefore,
Err(θS) ≤ 2·|S|·Err(θM)∑

x∈S̃ CN (x;S) +
2·αS
αS−1 · βS , and this concludes the proof of Theorem 3.4.

B Details for Prune4ReLB

Algorithm 2 Greedy Balanced Neighborhood Confidence (Prune4ReLB)

INPUT: D̃: training set, D̃j(⊂ D̃): set of training examples with a j-th class, s: target subset size, and C(x):
confidence of x calculated from a warm-up classifier

1: Initialize S ← ∅;∀x ∈ D̃, ĈN (x) = 0
2: while |S| < s do
3: for j = 1 to c do
4: x=argmaxx∈D̃j\S σ(ĈN (x)+C(x))−σ(ĈN (x))

5: S=S ∪ {x}
6: for all v ∈ D̃ do
7: ĈN (v) += 1[sim(x,v)≥τ] · sim(x, v) · C(x)
8: if |S| = s
9: return S

10: end
OUTPUT: Final selected subset S

15

Algorithm 2 describes the class-balanced version of our greedy algorithm. We first divide the entire
training set into c groups according to the noisy label of each example, under the assumption that
the number of correctly labeled examples is much larger than that of incorrectly labeled examples in
practice [7]. Similar to Algorithm 1 in Section 3.2, we begin with an empty set S and initialize the
reduced neighborhood confidence ĈN to 0 for each training example (Line 1). Then, by iterating
class j, we select an example x that maximizes the marginal benefit σ(ĈN (x)+C(x))−σ(ĈN (x))

within the set D̃j(⊂ D̃) and add it to the selected subset S (Lines 3–5). Next, we update the reduced
neighborhood confidence ĈN of each example in the entire training set by using the confidence and
the similarity score to the selected example x (Lines 6–7). We repeat this procedure until the size of
the selected subset S meets the target size s (Lines 8–9).

C Complete Proof of Theorem 3.5

We complete Theorem 3.5 by proving the monotonicity and submodularity of Eq. (6) in Lemmas C.1
and C.2, under the widely proven fact that the monotonicity and submodularity of a combinatorial
objective guarantee the greedy selection to get an objective value within (1−1/e) of the optimum [54].

Lemma C.1. (MONOTONICITY). Our data pruning objective in Eq. (6), denoted as OBJ , is
monotonic. Formally,

∀ S ⊂ S ′, OBJ(S) ≤ OBJ(S ′). (11)

Proof.

OBJ(S ′) =
∑
xi∈D̃

σ
(
ĈN (xi;S ′)

)
=

∑
xi∈D̃

σ
(∑
xj∈S′

1[sim(xi,xj)≥τ] · sim
(
xi, xj

)
· C(xj)

)
=

∑
xi∈D̃

σ
(∑
xj∈S

1[sim(xi,xj)≥τ] · sim
(
xi, xj

)
·C(xj) +

∑
xj∈S′\S

1[sim(xi,xj)≥τ] ·sim
(
xi, xj

)
·C(xj)

)
≥

∑
xi∈D̃

σ
(∑
xj∈S

1[sim(xi,xj)≥τ] · sim
(
xi, xj

)
· C(xj)

)
=

∑
xi∈D̃

σ
(
ĈN (xi;S)

)
= OBJ(S),

(12)

where the inequality holds because of the non-decreasing property of the utility function σ. Therefore,
OBJ(S) ≤ OBJ(S ′).

Lemma C.2. (SUBMODULARITY). Our objective in Eq. (6) is submodular. Formally,

∀ S ⊂ S ′ and ∀x /∈ S ′, OBJ(S ∪ {x})−OBJ(S) ≥ OBJ(S ′ ∪ {x})−OBJ(S ′). (13)

Proof. For notational simplicity, let xi be i, xj be j, and 1[sim(xi,xj)≥τ]· sim
(
xi, xj

)
·C(xj) be Cij .

Then, Eq. (13) can be represented as∑
i∈D̃

σ
(∑
j∈S

Cij + Cix

)
−

∑
i∈D̃

σ
(∑
j∈S

Cij

)
≥

∑
i∈D̃

σ
(∑
j∈S′

Cij + Cix

)
−

∑
i∈D̃

σ
(∑
j∈S′

Cij

)
. (14)

Proving Eq. (14) is equivalent to proving the decomposed inequality for each example xi ∈ D̃,

σ
(∑
j∈S

Cij + Cix

)
− σ

(∑
j∈S

Cij

)
≥ σ

(∑
j∈S′

Cij + Cix

)
− σ

(∑
j∈S′

Cij

)
= σ

(∑
j∈S

Cij +
∑

j∈S′\S

Cij + Cix

)
− σ

(∑
j∈S

Cij +
∑

j∈S′\S

Cij

)
.

(15)

Since S , S ′\S , and {x} do not intersect each other, we can further simplify Eq. (15) with independent
scala variables such that

σ
(
a+ ϵ

)
− σ

(
a
)
≥ σ

(
a+ b+ ϵ

)
− σ

(
a+ b

)
, (16)

where a =
∑

j∈S Cij , b =
∑

j∈S′\S Cij , and ϵ = Cix.

Since the utility function σ is concave, by the definition of concavity,

σ
(
a+ ϵ

)
− σ

(
a
)

(a+ ϵ− a)
≥

σ
(
a+ b+ ϵ

)
− σ

(
a+ b

)
(a+ b+ ϵ− (a+ b))

. (17)

The denominators of both sides of the inequality become ϵ, and Eq. (17) can be transformed to Eq. (16).
Therefore, Eq. (16) should hold, and OBJ(S∪{x})−OBJ(S) ≥ OBJ(S ′∪{x})−OBJ(S ′).

16

Table 7: Summary of the hyperparameters for training SOP+ and DivideMix on the CIFAR-10N/100N,
Webvision, and Clothing-1M datasets.

Hyperparamters CIFAR-10N CIFAR-100N WebVision Clothing-1M

Training
Configuration

architecture PreAct PresNet18 PreAct PresNet18 InceptionResNetV2
ResNet-50
(pretrained)

warm-up epoch 10 30 10 0
training epoch 300 300 100 10

batch size 128 128 32 32
learning rate (lr) 0.02 0.02 0.02 0.002

lr scheduler Cosine Annealing Cosine Annealing MultiStep-50th MultiStep-5th
weight decay 5 × 10−4 5 × 10−4 5 × 10−4 0.001

DivideMix

λU 1 1 0.1
κ 0.5 0.5 0.5
T 0.5 0.5 – 0.5
γ 4 4 0.5
M 2 2 2

SOP+

λC 0.9 0.9 0.1

–
λB 0.1 0.1 0

lr for u 10 1 0.1
lr for v 100 100 1

By Lemmas C.1 and C.2, the monotonicity and submodularity of Eq. (6) hold. Therefore, Eq. (7)
naturally holds, and this concludes the proof of Theorem 3.5.

D Details for Constructing ImageNet-N

Since ImageNet-1K is a clean dataset with no known real label noise, we inject the synthetic label
noise to construct ImageNet-N. Specifically, we inject asymmetric label noise to mimic real-world
label noise following the prior noisy label literature [10]. When a target noise ratio of ImageNet-N is
r%, we randomly select r% of the training examples for each class c in ImageNet-1K and then flip
their label into class c+ 1, i.e., class 0 into class 1, class 1 into class 2, and so on. This flipping is
reasonable because consecutive classes likely belong to the same high-level category. For the selected
examples with the last class 1000, we flip their label into class 0.

E Implementation Details

Table 7 summarizes the overall training configurations and hyperparameters used to train the two Re-
labeling models, DivideMix and SOP+. The hyperparameters for DivideMix and SOP+ are favorably
configured following the original papers. DivideMix [13] has multiple hyperparameters: λU for
weighting the self-consistency loss, κ for selecting confidence examples, T for sharpening prediction
probabilities, γ for controlling the Beta distribution, and M for the number of augmentations. For
both CIFAR-10N and CIFAR-100N, we use λU = 1, κ = 0.5, T = 0.5, γ = 4, and M = 2.
For Clothing-1M, we use λU = 0.1, κ = 0.5, T = 0.5, γ = 0.5, and M = 2. SOP+ [33] also
involves several hyperparameters: λC for weighting the self-consistency loss, λB for weighting the
class-balance, and learning rates for training its additional variables u and v. For CIFAR-10N, we
use λC = 0.9 and λB = 0.1, and set the learning rates of u and v to 10 and 100, respectively. For
CIFAR-100N, we use λC = 0.9 and λB = 0.1, and set the learning rates of u and v to 1 and 100,
respectively. For WebVision, we use λC = 0.1 and λB = 0, and set the learning rates of u and v to
0.1 and 1, respectively.

Besides, the hyperparameters for all data pruning algorithms are also favorably configured following
the original papers. For Forgetting [14], we calculate the forgetting event of each example throughout
the warm-up training epochs in each dataset. For GraNd [15], we train ten different warm-up
classifiers and calculate the per-sample average of the norms of the gradient vectors obtained from
the ten classifiers.

17

F Limitation and Potential Negative Societal Impact

Limitation. Although Prune4ReL has demonstrated consistent effectiveness in the classification task
with real and synthetic label noises, we have not validated its applicability on datasets with open-set
noise or out-of-distribution examples [55, 56]. Also, we have not validated its applicability to state-
of-the-art deep learning models, such as large language models [3] and vision-language models [4].
This verification would be valuable because the need for data pruning in the face of annotation noise
is consistently high across a wide range of real-world tasks. In addition, Prune4ReL has not been
validated in other realistic applications of data pruning, such as continual learning [57] and neural
architecture search [58]. In these scenarios, selecting informative examples is very important, and we
leave them for future research.

Potential Negative Societal Impact. We consider how to preserve the model performance while
reducing the computation costs, which can even reduce substantial energy consumption, e.g., CO2

emission. Hence, it is hard to apply to any negative applications, and there is no discussion of
potential negative social impact.

18

	Complete Proof of Theorem 3.4
	Details for Prune4ReLB
	Complete Proof of Theorem 3.5
	Details for Constructing ImageNet-N
	Implementation Details
	Limitation and Potential Negative Societal Impact

