Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy (Supplementary Material)

A Complete Proof of Theorem 3.4

The α -expansion and β -separation assumptions hold for the training set \hat{D} . Then, following the re-labeling theory [45], minimizing the self-consistency loss forces the classifier into correcting the erroneous labels and improving the training accuracy, as presented in Lemma A.1.

Lemma A.1. (RE-LABELING BOUND). Suppose α -expansion and β -separation assumptions hold for the training set $\tilde{\mathcal{D}}$. Then, for a Re-labeling minimizer $\theta_{\tilde{\mathcal{D}}}$ on $\tilde{\mathcal{D}}$, we have

$$Err(\theta_{\tilde{\mathcal{D}}}) \leq \frac{2 \cdot Err(\theta_{\mathcal{M}})}{\alpha - 1} + \frac{2 \cdot \alpha}{\alpha - 1} \cdot \beta,$$
(8)

where $Err(\cdot)$ is a training error on ground-truth labels, and $\theta_{\mathcal{M}}$ is a model trained with the supervised loss in Eq. (1) on a minimum (or given) clean set $\mathcal{M} \subset S$.

Proof. Refer to [45] for the detailed concept and proof.

This lemma is used for proving Theorem 3.4. Since α_S indicates the average number of augmentation neighbors in S, we can transform Eq. (8) using α_S ,

$$Err(\theta_{\mathcal{S}}) \leq \frac{2 \cdot Err(\theta_{\mathcal{M}})}{(1/|\mathcal{S}|) \sum_{x \in \mathcal{S}} \mathbb{1}_{[x' \in \mathcal{N}(x)]}} + \frac{2 \cdot \alpha_{\mathcal{S}}}{\alpha_{\mathcal{S}} - 1} \cdot \beta_{\mathcal{S}}.$$
(9)

Assume that the training error of the minimum clean set \mathcal{M} in the selected subset \mathcal{S} is proportional to the inverse of the confidence of $x \in \mathcal{S}$, since the performance of the standard learner is often correlated to the confidence of training examples. Then, Eq. (9) becomes

$$Err(\theta_{\mathcal{S}}) \leq \frac{2 \cdot |\mathcal{S}| \cdot Err(\theta_{\mathcal{M}})}{\sum_{x \in \mathcal{S}} C(x) \sum_{x \in \mathcal{S}} \mathbb{1}_{[x' \in \mathcal{N}(x)]}} + \frac{2 \cdot \alpha_{\mathcal{S}}}{\alpha_{\mathcal{S}} - 1} \cdot \beta_{\mathcal{S}}$$

$$\leq \frac{2 \cdot |\mathcal{S}| \cdot Err(\theta_{\mathcal{M}})}{\sum_{x \in \mathcal{S}} \mathbb{1}_{[x' \in \mathcal{N}(x)]} C(x)} + \frac{2 \cdot \alpha_{\mathcal{S}}}{\alpha_{\mathcal{S}} - 1} \cdot \beta_{\mathcal{S}},$$
(10)

where the last inequality holds because of Hölder's inequality with two sequence variables. Therefore, $Err(\theta_{\mathcal{S}}) \leq \frac{2 \cdot |\mathcal{S}| \cdot Err(\theta_{\mathcal{M}})}{\sum_{x \in \mathcal{S}} C_{\mathcal{N}}(x;\mathcal{S})} + \frac{2 \cdot \alpha_{\mathcal{S}}}{\alpha_{\mathcal{S}} - 1} \cdot \beta_{\mathcal{S}}$, and this concludes the proof of Theorem 3.4.

B Details for Prune4ReL_B

Algorithm 2 Greedy Balanced Neighborhood Confidence (Prune4ReL_B)

INPUT: $\hat{\mathcal{D}}$: training set, $\hat{\mathcal{D}}_j (\subset \hat{\mathcal{D}})$: set of training examples with a *j*-th class, *s*: target subset size, and C(x): confidence of *x* calculated from a warm-up classifier

```
1: Initialize \mathcal{S} \leftarrow \emptyset; \forall x \in \tilde{\mathcal{D}}, \ \hat{C}_{\mathcal{N}}(x) = 0
  2: while |\mathcal{S}| < s \operatorname{do}
  3:
              for j = 1 to c do
                   x \!=\! \mathrm{argmax}_{x \in \tilde{\mathcal{D}}_j \backslash \mathcal{S}} \ \boldsymbol{\sigma}(\hat{C}_{\mathcal{N}}(x) \!+\! C(x)) \!-\! \boldsymbol{\sigma}(\hat{C}_{\mathcal{N}}(x))
  4:
  5:
                   \mathcal{S} = \mathcal{S} \cup \{x\}
  6:
                    for all v \in \tilde{\mathcal{D}} do
  7:
                         \hat{C}_{\mathcal{N}}(v) \mathrel{+}= \mathbb{1}_{[sim(x,v) \ge \tau]} \cdot sim(x,v) \cdot C(x)
  8:
                    if |\mathcal{S}| = s
  9:
                         return S
10: end
OUTPUT: Final selected subset S
```

Algorithm 2 describes the class-balanced version of our greedy algorithm. We first divide the entire training set into c groups according to the noisy label of each example, under the assumption that the number of correctly labeled examples is much larger than that of incorrectly labeled examples in practice [7]. Similar to Algorithm 1 in Section 3.2, we begin with an empty set S and initialize the reduced neighborhood confidence \hat{C}_N to 0 for each training example (Line 1). Then, by iterating class j, we select an example x that maximizes the marginal benefit $\sigma(\hat{C}_N(x)+C(x))-\sigma(\hat{C}_N(x))$ within the set $\tilde{\mathcal{D}}_j(\subset \tilde{\mathcal{D}})$ and add it to the selected subset S (Lines 3–5). Next, we update the reduced neighborhood confidence \hat{C}_N of each example in the entire training set by using the confidence and the similarity score to the selected example x (Lines 6–7). We repeat this procedure until the size of the selected subset S (Lines 8–9).

C Complete Proof of Theorem 3.5

We complete Theorem 3.5 by proving the *monotonicity* and *submodularity* of Eq. (6) in Lemmas C.1 and C.2, under the widely proven fact that the monotonicity and submodularity of a combinatorial objective guarantee the greedy selection to get an objective value within (1-1/e) of the optimum [54].

Lemma C.1. (MONOTONICITY). Our data pruning objective in Eq. (6), denoted as OBJ, is monotonic. Formally,

$$\forall \mathcal{S} \subset \mathcal{S}', \ OBJ(\mathcal{S}) \le OBJ(\mathcal{S}').$$
(11)

Proof.

$$OBJ(\mathcal{S}') = \sum_{x_i \in \tilde{\mathcal{D}}} \sigma(\hat{C}_{\mathcal{N}}(x_i; \mathcal{S}')) = \sum_{x_i \in \tilde{\mathcal{D}}} \sigma(\sum_{x_j \in \mathcal{S}'} \mathbb{1}_{[sim(x_i, x_j) \ge \tau]} \cdot sim(x_i, x_j) \cdot C(x_j))$$

$$= \sum_{x_i \in \tilde{\mathcal{D}}} \sigma(\sum_{x_j \in \mathcal{S}} \mathbb{1}_{[sim(x_i, x_j) \ge \tau]} \cdot sim(x_i, x_j) \cdot C(x_j) + \sum_{x_j \in \mathcal{S}' \setminus \mathcal{S}} \mathbb{1}_{[sim(x_i, x_j) \ge \tau]} \cdot sim(x_i, x_j) \cdot C(x_j))$$

$$\geq \sum_{x_i \in \tilde{\mathcal{D}}} \sigma(\sum_{x_j \in \mathcal{S}} \mathbb{1}_{[sim(x_i, x_j) \ge \tau]} \cdot sim(x_i, x_j) \cdot C(x_j)) = \sum_{x_i \in \tilde{\mathcal{D}}} \sigma(\hat{C}_{\mathcal{N}}(x_i; \mathcal{S})) = OBJ(\mathcal{S}),$$
(12)

where the inequality holds because of the non-decreasing property of the utility function σ . Therefore, $OBJ(S) \leq OBJ(S')$.

Lemma C.2. (SUBMODULARITY). Our objective in Eq. (6) is submodular. Formally,

$$\forall \mathcal{S} \subset \mathcal{S}' \text{ and } \forall x \notin \mathcal{S}', \ OBJ(\mathcal{S} \cup \{x\}) - OBJ(\mathcal{S}) \ge OBJ(\mathcal{S}' \cup \{x\}) - OBJ(\mathcal{S}').$$
(13)

Proof. For notational simplicity, let x_i be i, x_j be j, and $\mathbb{1}_{[sim(x_i, x_j) \ge \tau]} \cdot sim(x_i, x_j) \cdot C(x_j)$ be C_{ij} . Then, Eq. (13) can be represented as

$$\sum_{i\in\tilde{\mathcal{D}}}\boldsymbol{\sigma}\left(\sum_{j\in\mathcal{S}}C_{ij}+C_{ix}\right)-\sum_{i\in\tilde{\mathcal{D}}}\boldsymbol{\sigma}\left(\sum_{j\in\mathcal{S}}C_{ij}\right)\geq\sum_{i\in\tilde{\mathcal{D}}}\boldsymbol{\sigma}\left(\sum_{j\in\mathcal{S}'}C_{ij}+C_{ix}\right)-\sum_{i\in\tilde{\mathcal{D}}}\boldsymbol{\sigma}\left(\sum_{j\in\mathcal{S}'}C_{ij}\right).$$
(14)

Proving Eq. (14) is equivalent to proving the decomposed inequality for each example $x_i \in \tilde{\mathcal{D}}$,

$$\sigma\left(\sum_{j\in\mathcal{S}}C_{ij}+C_{ix}\right)-\sigma\left(\sum_{j\in\mathcal{S}}C_{ij}\right)\geq\sigma\left(\sum_{j\in\mathcal{S}'}C_{ij}+C_{ix}\right)-\sigma\left(\sum_{j\in\mathcal{S}'}C_{ij}\right)$$
$$=\sigma\left(\sum_{j\in\mathcal{S}}C_{ij}+\sum_{j\in\mathcal{S}'\backslash\mathcal{S}}C_{ij}+C_{ix}\right)-\sigma\left(\sum_{j\in\mathcal{S}}C_{ij}+\sum_{j\in\mathcal{S}'\backslash\mathcal{S}}C_{ij}\right).$$
(15)

Since S, $S' \setminus S$, and $\{x\}$ do not intersect each other, we can further simplify Eq. (15) with independent scala variables such that

$$\boldsymbol{\sigma}(a+\epsilon) - \boldsymbol{\sigma}(a) \ge \boldsymbol{\sigma}(a+b+\epsilon) - \boldsymbol{\sigma}(a+b), \tag{16}$$

where $a = \sum_{j \in S} C_{ij}$, $b = \sum_{j \in S' \setminus S} C_{ij}$, and $\epsilon = C_{ix}$.

Since the utility function σ is *concave*, by the definition of concavity,

$$\frac{\boldsymbol{\sigma}(a+\epsilon)-\boldsymbol{\sigma}(a)}{(a+\epsilon-a)} \ge \frac{\boldsymbol{\sigma}(a+b+\epsilon)-\boldsymbol{\sigma}(a+b)}{(a+b+\epsilon-(a+b))}.$$
(17)

The denominators of both sides of the inequality become ϵ , and Eq. (17) can be transformed to Eq. (16). Therefore, Eq. (16) should hold, and $OBJ(S \cup \{x\}) - OBJ(S) \ge OBJ(S' \cup \{x\}) - OBJ(S')$. \Box

Hyperparamters		CIFAR-10N	CIFAR-100N	WebVision	Clothing-1M
	architecture	PreAct PresNet18	PreAct PresNet18	InceptionResNetV2	ResNet-50 (pretrained)
	warm-up epoch	10	30	10	0
Training	training epoch	300	300	100	10
Configuration	batch size	128	128	32	32
	learning rate (lr)	0.02	0.02	0.02	0.002
	lr scheduler	Cosine Annealing	Cosine Annealing	MultiStep-50th	MultiStep-5th
	weight decay	5×10^{-4}	5×10^{-4}	5×10^{-4}	0.001
DivideMix	λ_U	1	1		0.1
	κ	0.5	0.5		0.5
		0.5	0.5	-	0.5
	γ	4	4		0.5
	M	2	2		2
SOP+	$ \lambda_C$	0.9	0.9	0.1	
	λ_B	0.1	0.1	0	
	Ir for u	10	1	0.1	-
	lr for v	100	100	1	

Table 7: Summary of the hyperparameters for training SOP+ and DivideMix on the CIFAR-10N/100N, Webvision, and Clothing-1M datasets.

By Lemmas C.1 and C.2, the monotonicity and submodularity of Eq. (6) hold. Therefore, Eq. (7) naturally holds, and this concludes the proof of Theorem 3.5.

D Details for Constructing ImageNet-N

Since ImageNet-1K is a clean dataset with no known real label noise, we inject the synthetic label noise to construct ImageNet-N. Specifically, we inject *asymmetric* label noise to mimic real-world label noise following the prior noisy label literature [10]. When a target noise ratio of ImageNet-N is r%, we randomly select r% of the training examples for each class c in ImageNet-1K and then flip their label into class c + 1, *i.e.*, class 0 into class 1, class 1 into class 2, and so on. This flipping is reasonable because consecutive classes likely belong to the same high-level category. For the selected examples with the last class 1000, we flip their label into class 0.

E Implementation Details

Table 7 summarizes the overall training configurations and hyperparameters used to train the two Relabeling models, DivideMix and SOP+. The hyperparameters for DivideMix and SOP+ are favorably configured following the original papers. DivideMix [13] has multiple hyperparameters: λ_U for weighting the self-consistency loss, κ for selecting confidence examples, T for sharpening prediction probabilities, γ for controlling the Beta distribution, and M for the number of augmentations. For both CIFAR-10N and CIFAR-100N, we use $\lambda_U = 1$, $\kappa = 0.5$, T = 0.5, $\gamma = 4$, and M = 2. For Clothing-1M, we use $\lambda_U = 0.1$, $\kappa = 0.5$, T = 0.5, $\gamma = 0.5$, and M = 2. SOP+[33] also involves several hyperparameters: λ_C for weighting the self-consistency loss, λ_B for weighting the class-balance, and learning rates for training its additional variables u and v. For CIFAR-10N, we use $\lambda_C = 0.9$ and $\lambda_B = 0.1$, and set the learning rates of u and v to 10 and 100, respectively. For CIFAR-10ON, we use $\lambda_C = 0.9$ and $\lambda_B = 0.1$, and set the learning rates of u and v to 1 and 100, respectively. For WebVision, we use $\lambda_C = 0.1$ and $\lambda_B = 0$, and set the learning rates of u and v to 0.1 and 1, respectively.

Besides, the hyperparameters for all data pruning algorithms are also favorably configured following the original papers. For Forgetting [14], we calculate the forgetting event of each example throughout the warm-up training epochs in each dataset. For GraNd [15], we train ten different warm-up classifiers and calculate the per-sample average of the norms of the gradient vectors obtained from the ten classifiers.

F Limitation and Potential Negative Societal Impact

Limitation. Although Prune4ReL has demonstrated consistent effectiveness in the classification task with real and synthetic label noises, we have not validated its applicability on datasets with open-set noise or out-of-distribution examples [55, 56]. Also, we have not validated its applicability to state-of-the-art deep learning models, such as large language models [3] and vision-language models [4]. This verification would be valuable because the need for data pruning in the face of annotation noise is consistently high across a wide range of real-world tasks. In addition, Prune4ReL has not been validated in other realistic applications of data pruning, such as continual learning [57] and neural architecture search [58]. In these scenarios, selecting informative examples is very important, and we leave them for future research.

Potential Negative Societal Impact. We consider how to preserve the model performance while reducing the computation costs, which can even reduce substantial energy consumption, e.g., CO_2 emission. Hence, it is hard to apply to any negative applications, and there is no discussion of potential negative social impact.