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Abstract
Data pruning, which aims to downsize a large training set into a small informative
subset, is crucial for reducing the enormous computational costs of modern deep
learning. Though large-scale data collections invariably contain annotation noise
and numerous robust learning methods have been developed, data pruning for
the noise-robust learning scenario has received little attention. With state-of-
the-art Re-labeling methods that self-correct erroneous labels while training, it
is challenging to identify which subset induces the most accurate re-labeling of
erroneous labels in the entire training set. In this paper, we formalize the problem
of data pruning with re-labeling. We first show that the likelihood of a training
example being correctly re-labeled is proportional to the prediction confidence of its
neighborhood in the subset. Therefore, we propose a novel data pruning algorithm,
Prune4ReL, that finds a subset maximizing the total neighborhood confidence of all
training examples, thereby maximizing the re-labeling accuracy and generalization
performance. Extensive experiments on four real and one synthetic noisy datasets
show that Prune4ReL outperforms the baselines with Re-labeling models by up to
9.1% as well as those with a standard model by up to 21.6%.

1 Introduction

By virtue of ever-growing datasets and the neural scaling law [1, 2], where the model accuracy often
increases as a power of the training set size, modern deep learning has achieved unprecedented
success in many domains, e.g., GPT [3], CLIP [4], and ViT [5]. With such massive datasets, however,
practitioners often suffer from enormous computational costs for training models, tuning their
hyper-parameters, and searching for the best architectures, which become the main bottleneck of
development cycles. One popular framework to reduce these costs is data pruning, which reduces a
huge training set into a small subset while preserving model accuracy. Notably, Sorscher et al. [6] have
shown that popular data pruning approaches can break down the neural scaling law from power-law
to exponential scaling, meaning that one can reach a desired model accuracy with much fewer data.
Despite their great success, the impact of label noise on data pruning has received little attention,
which is unavoidable in real-world data collection [7, 8, 9].

Noisy labels are widely known to severely degrade the generalization capability of deep learning, and
thus numerous robust learning strategies have been developed to overcome their negative effect in
deep learning [10]. Among them, Re-labeling [11], a family of methods that identify wrongly labeled
examples and correct their labels during training by a self-correction module such as self-consistency
regularization [12], has shown state-of-the-art performance. For example, the performance of Di-
videMix [13] trained on the CIFAR-10N [7] dataset containing real human annotation noise is nearly
identical to that of a standard model trained on the clean CIFAR-10 dataset. Consequently, it is
evident that this excellent performance of re-labeling must be carefully considered when designing a
framework for data pruning under label noise.

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



Data Example Re-labeling Coverage

82
0.2 0.4

Selection Ratio

Incorrect

re-labeling

Correct

re-labeling

C
o

n
fid

en
ce

0.6 0.8

H
ig

h
L

o
w

84

86

88

90

92

Neighborhood Selected Set{   }

(a) Pruning Performance. (b) Re-labeling by Neighborhood. (c) Goal of Prune4ReL.

Figure 1: Key idea of Prune4ReL: (a) shows data pruning performance of Prune4ReL and exist-
ing sample selection methods on CIFAR-10N with DivideMix; (b) shows how the neighborhood
confidence affects the re-labeling correctness; (c) shows the goal of Prune4ReL that maximize the
neighbor confidence coverage to the entire training set, thereby maximizing the re-labeling accuracy.

In this paper, we formulate a new problem of data pruning with re-labeling for a training set with
noisy labels, which aims to maximize the generalization power of the selected subset with expecting
that a large proportion of erroneous labels are self-corrected (i.e., re-labeled). Unfortunately, prior
data pruning and sample selection algorithms are not suitable for our problem because the re-labeling
capability is not taken into account, and have much room for improvement as shown in Figure 1(a).
Popular data pruning approaches (denoted as Forgetting [14] and GraNd [15] in blue and yellow,
respectively) favor hard (i.e., uncertain) examples because they are considered more beneficial for
generalization [16]; however, because it is very difficult to distinguish between hard examples and
incorrectly-labeled examples [17], many of the incorrectly-labeled examples can be included in the
subset causing unreliable re-labeling. In addition, the small-loss trick [18] (denoted as SmallLoss
in green) for sample selection favors easy examples because they are likely to be correctly labeled;
however, they are not beneficial for generalization at a later stage of training. Therefore, this new
problem necessitates the development of a new data pruning approach.

Accordingly, we suggest a completely novel approach of finding a subset of the training set such that
the re-labeling accuracy of all training examples is preserved as much as possible with the model
trained on the subset. The first challenge in this direction is how to estimate whether each example
can be re-labeled correctly even before fully training models on the candidate subset. The second
challenge is how to find the subset that maximizes the overall re-labeling accuracy of the entire
training set in an efficient manner.

Addressing these two challenges, we develop a novel framework, called Prune4ReL. For the first
challenge, we define the concept of the neighborhood confidence which is the sum of the prediction
confidence of each neighbor example in the selected subset. We show that, as in Figure 1(b), an
example with high neighborhood confidence is likely to be corrected by Re-labeling methods. We
further provide theoretical and empirical evidence of this argument. For the second challenge, we
show that the overall re-labeling accuracy is maximized by selecting a subset that maximizes the
sum of its reachable neighborhood confidence for all training examples, as shown in Figure 1(c).
Furthermore, because enumerating all possible subsets is a combinatorial optimization problem which
is NP-hard [19], we provide an efficient greedy selection algorithm that expands the subset one by
one by choosing the example that most increases the overall neighborhood confidence.

Extensive experiments on four real noisy datasets, CIFAR-10N, CIFAR-100N, WebVision, and
Clothing-1M, and one synthetic noisy dataset on ImageNet-1K show that Prune4ReL consistently
outperforms the eight data pruning baselines by up to 9.1%. Moreover, Prune4ReL with Re-labeling
models significantly outperforms the data pruning baselines with a standard model by up to 21.6%,
which reaffirms the necessity of data pruning with re-labeling.

2 Preliminary and Related Work

2.1 Robust Learning under Noisy Labels

A long line of literature has been proposed to improve the robustness of DNNs against label noise,
and refer to [10] for a detailed survey for deep learning with noisy labels. While some studies have

2



focused on modifying the architectures [20, 21, 22] and the loss functions [23, 24, 25], others have
opted for sample selection approaches [26, 18, 27, 28] that select as many clean examples as possible
while discarding noisy examples based on a certain cleanness criterion, e.g., small-loss [18]. Note
that, these works do not consider the compactness or efficiency of the selected subset. Meanwhile,
to further exploit even noisy examples for training, Re-labeling [11, 29] approaches try to correct
noisy labels and reuse them for training with a re-labeling module, e.g., a heuristic rule [11]. Notably,
according to recent benchmark studies on real-world noisy datasets [7], a family of Re-labeling
methods with self-consistency regularization [12] has shown state-of-the-art performance.

In general, Re-labeling methods with self-consistency regularization are based on

LRe-labeling(D̃; θ,A) =
∑

(x,ỹ)∈D̃

1[Cθ(x)≥δ]Lce(x, ỹ; θ) + λ
∑
x∈D̃

Lreg(x; θ,A), (1)

where D̃ = {(xi, ỹi)}mi=1 is a given noisy training set obtained from a noisy joint distribution X × Ỹ ,
θ is a classifier, A is a strong data augmentation, Cθ(·) is a prediction confidence score, and δ is
a threshold to identify confident (clean) examples for the supervised loss Lce(x, ỹ; θ), i.e., cross-
entropy. The noisy labels are implicitly corrected by the self-consistency loss Lreg(x; θ) leveraging
the power of strong augmentations [30]. DivideMix [13], ELR+ [31], CORES [32], and SOP+ [33]
are popular approaches belonging to this family. DivideMix uses a co-training framework to further
improve the re-labeling accuracy, and SOP+ introduces additional learnable variables combined
with a self-consistency loss. For simplicity, we call this Re-labeling family with self-consistency
regularization as “Re-labeling” throughout the paper. Despite their effectiveness, Re-labeling models
tend to require more computation time due to additional data augmentations, multiple backbones,
and longer training epochs, which raises a need to enhance its efficiency.

2.2 Data Pruning

In order to achieve high generalization performance with a selected subset, most data pruning
approaches often prioritize the selection of hard or uncertain examples. Specifically, uncertainty-
based methods [34, 35, 36] favor selecting less confident examples over more confident ones, as the
former is assumed to be more informative than the latter. Similarly, geometry-based methods [37, 38]
focus on removing redundant examples that are close to each other in the feature space, and loss-based
methods [14, 15, 39, 40] favor selecting the examples with a high loss or gradient measured during
training. However, these existing methods may not be effective in realistic scenarios under label noise
because noisy examples also exhibit high uncertainty and could be wrongly considered informative
for training [14]. Meanwhile, some recent works reported that existing data pruning methods do not
work well at high pruning ratios [41, 42]. To alleviate this drawback, AL4DP [41] shows that mixing
various levels of uncertain examples is better for data scarcity, Moderate [43] aims to select examples
with the distances close to the median, and CCS [42] proposes a coverage-based method that jointly
considers data coverage with sample importance. While a few works attempted to improve the
robustness of sample selection against label noise by filtering the noise [19], no work yet considers
the effect of data pruning on noise-robust learners such as Re-labeling.

3 Methodology

We formalize a problem of data pruning with re-labeling such that it finds the most informative subset
S , where a model θS trained on S maximizes the re-labeling accuracy of the entire noisy training set
D̃ = {(xi, ỹi)}mi=1

2. Formally, we aim to find an optimal subset S∗ such that

S∗ = argmax
S: |S|≤s

∑
(x,ỹ)∈D̃

1[f(x;θS) = y∗] : θS = argmin
θ

LRe-labeling(S; θ,A), (2)

where y∗ is the ground-truth label of a noisy example x, f(x; θS) ∈ Rc is a c-way class prediction of
the example x from the Re-labeling model θS , and s is the target subset size.

Finding the optimal subset S∗ through direct optimization of Eq. (2) is infeasible because the ground-
truth label y∗ is unknown in practice. In addition, the subset should be found at the early stage of

2Maximizing the re-labeling accuracy is equivalent to correctly re-labeling all training examples. This
formulation enables the model to exploit all clean labels for training, leading to a satisfactory generalization.
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training, i.e., in a warm-up period, to reduce the computational cost [16]. To achieve these goals in an
accurate and efficient way, in Section 3.1, we first introduce a new metric, the reduced neighborhood
confidence, that enables estimating the re-labeling capacity of a subset even in the warm-up period.
Then, in Section 3.2, we propose a new data pruning algorithm Prune4ReL using this reduced
neighborhood confidence to find a subset that maximizes the re-labeling accuracy.

3.1 Reduced Neighborhood Confidence

As a measurement of estimating the re-labeling accuracy, we use the confidence of neighbor examples
for each target noisy example x, because the noisy examples are known to be corrected by their clean
neighbor examples with self-consistency regularization [44]. Specifically, once an augmentation of a
noisy example has a similar embedding to those of other clean neighbors in the representation space,
the self-consistency loss can force the prediction of the noisy example to be similar to those of other
clean neighbors as a way of re-labeling. This property is also evidenced by a theory of re-labeling
with a generalization bound [45]. Thus, the neighboring relationship among examples can be a clear
clue to estimate the re-labeling accuracy even in the early stage of training.

We define a neighborhood and its reduced neighborhood confidence to utilize the relationship of
neighboring examples in Definitions 3.1 and 3.2.

Definition 3.1. (NEIGHBORHOOD). Let B(xi) = {x : ||A(xi) − x|| ≤ ϵ} be a set of all possible
augmentations from the original example xi using an augmentation function A. Then, given a noisy
training set D̃, a neighborhood of xi is defined as N (xi) = {x∈ D̃ : B(xi) ∩ B(x) ̸= ∅}, which is
the set of examples that are reachable by the augmentation A.

Definition 3.2. (REDUCED NEIGHBORHOOD CONFIDENCE). The reduced neighborhood confidence
CN (xi;S) of an example xi is the sum of the prediction confidence C(·) of its neighbors xj ∈ N (xi)
in a given reduced (i.e., selected) subset S, which is formalized as

CN (xi;S) =
∑
xj∈S

1[xj∈N (xi)] · C(xj), (3)

and its empirical reduced neighborhood confidence is computed by using the cosine similarity among
the augmentations of all possible pairs of example embeddings,

ĈN (xi;S) =
∑
xj∈S

1[sim(A(xi),A(xj))≥τ ] · sim
(
A(xi),A(xj)

)
· C(xj), (4)

where sim(·) is the cosine similarity between the augmentations A(x) of two different examples in
the embedding space, and τ is a threshold to determine whether the two examples belong to the same
neighborhood. Unlike Eq. (3), Eq. (4) is calculated as a weighted sum of prediction confidences with
cosine similarity to approximate the likelihood of belonging to the neighborhood.

Based on these definitions, we investigate the theoretical evidence of employing the reduced neigh-
borhood confidence as a means to estimate the re-labeling capacity of a subset.

Theoretical Evidence. A subset S with a high value of the total reduced neighborhood confidence,
the sum of the reduced neighborhood confidence of each example in S, allows a Re-labeling model
to maximize its re-labeling accuracy in the entire training set. We formally support this optimization
by providing a theoretical analysis that extends the generalization bound in the prior re-labeling
theory [45] to data pruning.

Assumption 3.3. (EXPANSION AND SEPARATION). Following the assumption in [45], the α-
expansion and β-separation assumptions hold for the training set D̃. The α-expansion means that an
example is reachable to the α number of augmentation neighbors on average, i.e., Ex∈D̃[|N (x)|] = α.
The β-separation means that data distributions with different ground-truth classes are highly separable,
such that the average proportion of the neighbors from different classes is as small as β.

Under these assumptions, we can obtain a training accuracy (error) bound of a Re-labeling model
trained on a subset S as in Theorem 3.4.
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Theorem 3.4. Assume that a subset S ∈ D̃ follows αS -expansion and βS -separation, where αS ≤ α.
Then, the training error of a Re-labeling model θS trained on S is bounded by the inverse of the total
reduced neighborhood confidence

∑
x∈D̃ CN (x;S) such that,

Err(θS) ≤
2 · |S| · Err(θM)∑

x∈D̃ CN (x;S)
+

2 · αS

αS − 1
· βS , (5)

where θM is a model trained with the supervised loss in Eq. (1) on a given clean set M ⊂ S.

Proof. We extend the label denoising theorem in [45] by incorporating the influence of the subset to
the expansion factor αS . The complete proof is available in Appendix A.

Since βS is usually very small, its effect on the error bound is negligible. Then, the bound highly
depends on the total reduced neighborhood confidence. That is, as the total reduced neighborhood
confidence increases, the error bound becomes tighter. This theorem supports that we can utilize the
reduced neighborhood confidence for the purpose of maximizing the re-labeling accuracy.

Empirical Neighborhood Conf.
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Figure 2: Correlation between neighborhood
confidence and re-labeling accuracy on a 20%
randomly selected subset of CIFAR-10N.

Empirical Evidence. To empirically support The-
orem 3.4, we validate the correlation between the
empirical reduced neighborhood confidence3 and the
re-labeling accuracy using CIFAR-10N, which is a
real-world noisy benchmark dataset.

Specifically, we train DivideMix [13] on the 20% ran-
domly selected subset S for a warm-up training epoch
of 10 and calculate the empirical reduced neighbor-
hood confidence ĈN (x;S) for the entire training set.
Next, we fully train DivideMix [13] on the random
subset S. Last, we divide the entire training set into
15 bins according to the obtained ĈN (x;S) and ver-
ify the average re-labeling accuracy for each bin.

Figure 2 shows how the re-labeling accuracy changes according to the empirical reduced neighborhood
confidence in Eq. (4). (The term “empirical” is simply omitted hereafter.) The re-labeling accuracy
shows a strong positive correlation with the reduced neighborhood confidence. Interestingly, as
the neighborhood confidence increases, its utility in improving the re-labeling accuracy decreases,
eventually reaching a convergence point after surpassing a certain threshold.

3.2 Data Pruning by Maximizing Neighborhood Confidence Coverage

We present a new data pruning algorithm called Prune4ReL which optimizes the total reduced
neighborhood confidence defined in Eq. (4). This objective is equivalent to identifying a subset that
maximizes the re-labeling accuracy on the entire training set, as justified in Theorem 3.4. Therefore,
the objective of Prune4ReL is to find the subset S∗, which is formulated as

S∗ = argmax
S: |S|≤s

∑
xi∈D̃

σ
(
ĈN (xi;S)

)
, (6)

where σ(z) is a utility function of the reduced neighborhood confidence ĈN (xi;S) in improving
the re-labeling accuracy. By the observation in Figure 2, we define σ(z) as a non-decreasing and
concave function where σ(0) = 0. In our implementation, we use the positive of the tanh function
as the utility function, i.e., σ(z) = tanh(z). However, directly solving Eq. (6) is computationally
expensive and impractical due to its NP-hard nature as a Set-Cover problem [19]. Accordingly, we
employ an approximation solution to efficiently address this combinatorial optimization.

Optimization with Greedy Approximation. We present a practical solution for solving the optimiza-
tion problem stated in Eq. (6) using a greedy approximation. The objective function satisfies both
the monotonicity and submodularity conditions, indicating that the return of the objective function
monotonically increases and the marginal benefit of adding an example decreases as the subset grows.
Thus, a greedy sample selection can be employed as in Algorithm 1.

3RandAug [30] is used as the augmentation function for the reduced neighborhood confidence.
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Algorithm 1 Greedy Neighborhood Confidence

INPUT: D̃: training set, s: target subset size, and C(x):
confidence from warm-up classifier

1: Initialize S ← ∅; ∀x ∈ D̃, ĈN (x) = 0
2: repeat
3: x=argmaxx∈D̃\Sσ(ĈN (x)+C(x))−σ(ĈN (x))

4: S=S ∪ {x}
5: for all v ∈ D̃ do
6: ĈN (v) += 1[sim(x,v)≥τ ] · sim(x, v) · C(x)
7: until |S| = s

OUTPUT: Final selected subset S

In detail, we begin with an empty set S and ini-
tialize the reduced neighborhood confidence
ĈN to 0 (lowest confidence) for all training ex-
amples (Line 1). Next, at every step, we select
an example x that maximizes the marginal
benefit σ(ĈN (x) + C(x)) − σ(ĈN (x)) of
Eq. (6), and update the reduced neighborhood
confidence ĈN based on the similarity scores
(Lines 3–7). To further improve robustness
and efficiency, we introduce a class-balanced
version, Prune4ReLB , of which the detailed
process is elaborated in Appendix B.

In Theorem 3.5, we guarantee the selected subset S obtained by our greedy solution achieves a
(1− 1/e)-approximation of the optimum.
Theorem 3.5. Since Eq. (6), denoted as OBJ , is a monotone, submodular, and non-negative function
on x, the greedy solution provides a set with a (1− 1/e)-approximation of the optimum. Formally,

OBJ(S) ≥ (1− 1/e) ·OBJ(S∗). (7)

Proof. We prove the monotonicity and submodularity of Eq. (6). If the two conditions are satisfied,
Eq. (7) naturally holds. See Appendix C for the complete proof.

Time Complexity Analysis. We analyze the time complexity of our greedy approximation in
Algorithm 1. At each step, Prune4ReL takes the time complexity of O(m logm) + O(md), where m
is the training set size and d is the embedding dimension size of the warm-up classifier. Specifically,
in Line 3, sampling an example with the largest marginal benefit of confidence takes O(m logm), and
in Lines 5–6, updating the reduced neighborhood confidence of all training examples takes O(md).
In addition, with Prune4ReLB , the time complexity is reduced to O(m log(m/c)) + O(md) because
it iteratively selects the example with the largest marginal benefit within each class subset, which is
lower than the time complexity of a similar distance-based data pruning work, kCenterGreedy [38]
aiming to maximize the distance coverage of a selected subset to the entire training set by a greedy
approximation. At each iteration, kCenterGreedy’s runtime is O(mkt), where kt is the size of the
selected set at iteration t [46]. Note that, its time complexity increases as the subset size grows, which
hinders its usability on a large-scale dataset. In Section 4.2, we empirically show that Prune4ReL is
scalable to prune Clothing-1M, a large dataset with 1M examples, whereas kCenterGreedy is not.

4 Experiments

4.1 Experiment Setting

Datasets. We first perform the data pruning task on four real noisy datasets, CIFAR-10N, CIFAR-
100N, Webvision, and Clothing-1M. CIFAR-10N and CIFAR-100N [7] contain human re-annotations
of 50K training images in the original CIFAR-10 and CIFAR-100 [47]. Specifically, each training
image in CIFAR-10N contains three noisy labels, called Random 1,2,3, which are further transformed
into the Worst-case label. Each image in CIFAR-100N contains one noisy label. WebVision [8]
and Clothing-1M [9] are two large-scale noisy datasets. WebVision contains 2.4M images crawled
from the Web using the 1,000 concepts in ImageNet-1K [48]. Following prior work [49], we use
mini-WebVision consisting of the first 50 classes of the Google image subset with approximately 66K
training images. Clothing-1M consists of 1M training images with noisy labels and 10K clean test
images collected from online shopping websites. Additionally, a large-scale synthetic noisy dataset,
which we call ImageNet-N, is included in our experiments. It consists of 1.2M training images, which
are the training images of ImageNet-1K [48] with asymmetric label noise. See Appendix D for details
of the noise injection.

Algorithms. We compare Prune4ReL with a random selection from a uniform distribution, Uniform,
a clean sample selection algorithm, SmallLoss [26], and six data pruning algorithms including Mar-
gin [50], k-CenterGreedy [38], Forgetting [14], GraNd [15], SSP [6], and Moderate [43]. SmallLoss
favors examples with a small loss. For data pruning algorithms, (1) Margin selects examples in the
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Table 1: Performance comparison of sample selection baselines and Prune4ReL on CIFAR-10N and
CIFAR-100N. The best results are in bold.

Re-label
Models

Selection
Methods

CIFAR-10N CIFAR-100N
Random Worst Noisy

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

DivMix

Uniform 87.5±0.2 91.9±0.2 93.7±0.1 94.8±0.1 83.2±0.2 88.5±0.1 90.2±0.0 91.4±0.0 30.5±1.0 55.3±0.5 57.5±1.9 58.6±0.9

SmallL 68.1±4.0 82.4±0.8 89.0±0.3 93.1±0.1 70.3±0.6 80.3±0.2 89.1±0.0 92.1±0.1 33.3±3.2 47.4±1.1 59.4±0.7 62.0±1.2

Margin 68.5±2.9 88.5±0.3 93.2±0.2 94.7±0.1 61.3±0.8 75.1±0.7 85.3±0.2 90.2±0.1 17.1±0.8 30.8±1.0 46.3±2.4 61.2±1.3

kCenter 87.4±0.5 93.0±0.1 94.4±0.1 95.0±0.0 82.7±0.8 88.4±0.1 90.6±0.1 92.2±0.0 38.0±1.0 50.0±1.8 59.7±1.3 63.0±0.9

Forget 85.2±0.5 93.0±0.2 94.5±0.1 95.1±0.1 78.3±0.6 88.3±0.2 90.4±0.1 92.0±0.2 26.4±1.3 54.3±0.8 63.1±1.3 66.6±1.1

GraNd 21.8±0.6 60.9±4.5 92.5±1.8 94.8±0.1 18.5±1.7 25.5±0.9 49.3±0.9 88.0±0.5 15.5±1.2 26.0±1.9 44.7±1.5 60.4±1.6

SSP 85.8±1.8 92.2±1.5 93.0±1.1 94.5±0.2 81.4±2.5 86.5±1.9 89.6±1.2 91.9±0.4 30.1±2.2 52.4±1.3 58.7±0.5 63.4±0.5

Moderate 86.4±0.8 91.4±0.3 93.8±0.5 94.8±0.2 81.4±1.2 86.5±0.6 90.0±0.6 91.6±0.2 34.2±1.4 54.5±1.3 56.1±0.5 59.9±0.6

Pr4ReL 87.6±0.3 92.4±0.4 94.5±0.2 95.1±0.1 83.7±0.5 88.8±0.3 90.2±0.3 92.0±0.3 37.2±1.0 55.3±0.7 61.2±0.5 65.5±0.8

Pr4ReLB 88.1±0.3 93.0±0.2 94.5±0.2 95.1±0.1 83.7±0.4 88.6±0.4 90.8±0.2 92.4±0.2 39.4±0.8 56.3±0.5 63.5±0.3 67.4±0.7

SOP+

Uniform 87.5±0.3 91.5±0.1 93.4±0.0 94.8±0.2 81.9±0.1 87.5±0.1 90.8±0.1 91.8±0.1 46.5±0.0 55.7±0.2 60.8±0.3 64.4±0.2

SmallL 77.6±2.5 86.2±0.1 90.7±0.6 94.3±0.2 78.8±0.2 84.1±0.1 89.3±0.1 92.3±0.2 48.5±0.8 59.8±0.4 63.9±0.2 66.1±0.6

Margin 52.1±5.0 79.6±8.6 92.6±3.9 95.1±1.3 45.7±1.1 61.8±0.7 84.6±0.3 92.5±0.0 20.0±1.2 34.4±0.3 50.4±0.6 63.3±0.1

kCenter 86.3±0.4 92.2±0.3 94.1±0.2 95.3±0.1 81.9±0.0 88.0±0.0 91.3±0.1 92.3±0.0 44.8±0.6 55.9±0.4 61.6±0.3 65.2±0.6

Forget 82.4±1.0 93.0±0.2 94.2±0.3 95.0±0.1 71.1±0.4 87.7±0.1 90.6±0.3 92.2±0.0 38.0±0.5 55.3±0.2 63.2±0.1 65.8±0.4

GraNd 24.2±5.5 51.6±3.2 85.9±1.2 94.9±0.2 15.4±1.6 25.7±0.8 51.0±0.5 86.8±0.5 11.0±0.1 19.0±0.6 38.7±0.5 62.1±0.5

SSP 80.5±2.6 91.7±1.5 93.8±1.0 95.0±0.2 70.8±2.7 86.6±1.9 89.2±0.9 92.3±0.4 39.2±2.2 54.9±1.5 62.7±0.7 65.0±0.3

Moderate 87.8±1.0 92.8±0.5 94.0±0.3 94.9±0.2 75.2±1.5 81.9±1.2 87.7±0.7 91.8±0.3 46.4±1.8 54.6±1.7 60.2±0.4 64.6±0.4

Pr4ReL 87.8±1.2 92.7±0.3 94.4±0.2 95.1±0.1 82.7±0.5 88.1±0.4 91.3±0.3 92.5±0.2 50.2±0.2 59.1±0.5 63.9±0.3 65.7±0.5

Pr4ReLB 88.5±0.3 93.1±0.2 94.4±0.1 95.3±0.1 84.9±0.6 89.2±0.6 91.3±0.3 92.9±0.1 52.9±0.8 60.1±0.6 64.1±0.4 66.2±0.3

increasing order of the difference between the highest and the second highest softmax probability; (2)
k-CenterGreedy selects k examples that maximize the distance coverage to the entire training set; (3)
Forgetting selects examples that are easy to be forgotten by the classifier throughout the warm-up
training epochs; (4) GraNd uses the average norm of the gradient vectors to measure the contribution
of each example to minimizing the training loss; (5) SSP leverages a self-supervised pre-trained
model to select the most prototypical examples; and (6) Moderate aims to select moderately hard
examples using the distances to the median.

Implementation Details. We train two representative Re-labeling models, DivideMix [13] and
SOP+ [33] for our experiments. The hyperparameters for DivideMix and SOP+ are favorably
configured following the original papers. Following the prior Re-labeling work [13, 33], for CIFAR-
10N and CIFAR-100N, PreAct Resnet-18 [51] is trained for 300 epochs using SGD with a momentum
of 0.9, a weight decay of 0.0005, and a batch size of 128. The initial learning rate is 0.02, and it is
decayed with a cosine annealing scheduler. For WebVision, InceptionResNetV2 [52] is trained for
100 epochs with a batch size of 32. For Clothing-1M, we use ResNet-50 [53] pre-trained on ImageNet
and fine-tune it for 10 epochs with a batch size of 32. The initial learning rates of WebVision and
Clothing-1M are 0.02 and 0.002, which are dropped by a factor of 10 at the halfway point of the
training epochs. For ImageNet-N, ResNet-50 [53] is trained for 50 epochs with a batch size of 64 and
an initial learning rate of 0.02 decayed with a cosine annealing scheduler.

For data pruning algorithms, following prior work [16], we perform sample selection after 10 warm-
up training epochs for CIFAR-10N, WebVision, and ImageNet-N, and 30 warm-up epochs for
CIFAR-100N. For Clothing-1M, we perform the sample selection after 1 warm-up training epoch
from the ImageNet pre-trained ResNet-50. The hyperparameters for all data pruning methods are
favorably configured following the original papers. For Prune4ReL, we set its hyperparameter τ
to 0.975 for CIFAR-10N, to 0.95 for CIFAR-100N, WebVision, and ImageNet-N, and to 0.8 for
Clothing-1M. More implementation details can be found in Appendix E. All methods are implemented
with PyTorch 1.8.0 and executed on NVIDIA RTX 3080 GPUs. The code is available at https:
//github.com/kaist-dmlab/Prune4Rel.

Evaluation. For CIFAR-10N, CIFAR-100N, and WebVision, we select the subset with the selection
ratios {0.2, 0.4, 0.6, 0.8}. For Clothing-1M and ImageNet-N, we construct the subset with {0.01,
0.05, 0.1, 0.2} and {0.05, 0.1, 0.2, 0.4} selection ratios, respectively. We measure the test accuracy
of the Re-labeling models trained from scratch on the selected subset. Every experiment is run three
times, and the average of the last accuracy is reported. For CIFAR-10N with the Random noise, we
average the test accuracy of the models trained using the three noisy labels.
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(a) WebVision. (b) Clothing-1M. (c) GPU Time for Selection.

Figure 3: Data pruning performance comparison: (a) test accuracy of SOP+ trained on each selected
subset of WebVision; (b) test accuracy of DivideMix trained on each selected subset of Clothing-1M;
(c) elapsed GPU time for selecting a subset on WebVision with a selection ratio of 0.8.

Table 2: Performance comparison of the standard cross-entropy model and Re-labeling models when
combined with data pruning methods on CIFAR-10N and CIFAR-100N.

Learning
Models

Selection
Methods

CIFAR-10N CIFAR-100N
Random Worst Noisy

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

Standard
Uniform 75.6±0.1 81.0±0.1 83.0±0.1 84.3±0.5 58.6±0.3 63.9±0.2 66.4±0.1 67.5±0.5 37.4±0.2 46.1±0.2 50.1±0.0 52.3±0.1

SmallL 75.0±1.5 83.4±0.6 87.5±0.3 90.1±0.2 70.1±0.3 77.5±1.6 80.6±0.5 76.4±0.1 42.2±0.4 54.7±0.5 57.7±0.1 57.4±0.2

Forget 82.2±0.5 86.2±0.1 86.1±0.0 85.4±0.2 71.2±0.3 73.3±0.2 71.4±0.2 69.6±0.1 43.5±0.4 54.5±0.1 57.5±0.4 56.6±0.3

DivMix Pr4ReLB 88.1±0.3 93.0±0.2 94.5±0.2 95.1±0.1 83.7±0.4 88.6±0.4 90.8±0.2 92.4±0.2 39.4±0.8 56.3±0.5 63.5±0.3 67.4±0.7

SOP+ Pr4ReLB 88.5±0.3 93.1±0.2 94.4±0.1 95.3±0.1 84.9±0.6 89.2±0.6 91.3±0.3 92.9±0.1 52.9±0.8 60.1±0.6 64.1±0.4 66.2±0.3

4.2 Main Results on Real Noisy Datasets

Test Accuracy. Table 1 summarizes the test accuracy of eight baselines and Prune4ReL on CIFAR-
10N and CIFAR-100N trained with two Re-labeling models. Overall, Prune4ReL consistently
achieves the best performance for all datasets across varying selection ratios. Numerically, Prune4ReL
improves DivideMix and SOP+ by up to 3.7% and 9.1%, respectively. Compared with six data
pruning baselines, they show rapid performance degradation as the size of the subset decreases; most
of them, which are designed to favor hard examples, tend to select a large number of noisy examples,
resulting in unreliable re-labeling. While Moderate selects moderately hard examples, it is still
worse than Prune4ReL since it is not designed for noise-robust learning scenarios with Re-labeling
models. On the other hand, SmallLoss, a clean sample selection baseline, shows poor performance
in CIFAR-10N (Random), because this dataset contains a relatively low noise ratio, and selecting
clean examples is less critical. Although SmallLoss shows robust performance in CIFAR-100N, it is
worse than Prune4ReL because it loses many informative noisy examples that help generalization if
re-labeled correctly. Meanwhile, Uniform is a fairly robust baseline as it selects easy (clean) and hard
(noisy) examples in a balanced way; many selected noisy examples may be relabeled correctly by
other selected clean neighbors, resulting in satisfactory test accuracy.

Similarly, Figures 3(a) and 3(b) visualize the efficacy of the baselines and Prune4ReL on the
WebVision and Clothing-1M datasets. We train SOP+ on WebVision and DivideMix on Clothing-1M.
Similar to CIFAR-N datasets, Prune4ReL achieves better performance than existing baselines on
two datasets. Quantitatively, Prune4ReL outperforms the existing sample selection methods by up
to 2.7% on WebVision with a selection ratio of 0.4. This result confirms that the subset selected by
Prune4ReL, which maximizes the total neighborhood confidence of the training set, successfully
maintains the performance of Re-labeling models and is effective for model generalization.

Efficiency. In Figure 3(c), we further show the GPU time taken for selecting subsets within the
warm-up training. We train SOP+ on WebVision with a selection ratio of 0.8. Powered by our
efficient greedy approximation, Prune4ReL fastly prunes the dataset in a reasonable time. GraNd
takes almost 10 times longer than SmallLoss or Margin, since it trains the warm-up classifier multiple
times for the ensemble. kCenterGreedy is infeasible to run in our GPU configuration due to its huge
computation and memory costs.
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Table 3: Effect of the confidence metrics on Prune4ReL.

Re-label
Model Dataset Conf. Metric

Selection Ratio
0.2 0.4 0.6 0.8

SOP+

CIFAR-10N
(Worst)

MaxProb 82.7 88.1 91.3 92.5
DiffProb 82.5 88.5 91.2 92.5

CIFAR-100N
MaxProb 50.2 59.1 63.9 65.7
DiffProb 49.2 59.3 64.1 66.0
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Figure 4: Effect of the neighbor-
hood threshold τ on Prune4ReLB .

4.3 Necessity of Data Pruning with Re-labeling under Label Noise

Table 2 shows the superiority of the Re-labeling models over the standard learning model, i.e., only
with the cross-entropy loss, for data pruning under label noise. When combined with the data pruning
methods, the performance of the Re-labeling models such as DivideMix and SOP+ significantly
surpasses those of the standard models on CIFAR-10N and CIFAR-100N by up to 21.6%. That is, the
re-labeling capacity can be well preserved by a proper data pruning strategy. This result demonstrates
the necessity of data pruning for the Re-labeling models in the presence of noisy labels.

4.4 Ablation Studies

Effect of Confidence Metrics. Prune4ReL can be integrated with various metrics for the confidence
of predictions in Eq. (6). In our investigation, we consider two widely-used metrics: (1) MaxProb,
which represents the maximum value of softmax probability and (2) DiffProb, which measures the
difference between the highest and second highest softmax probabilities. Table 3 shows the effect
of the two confidence metrics on the test accuracy of SOP+ on CIFAR-10N (Worst) and CIFAR-
100N. The result indicates that both metrics perform similarly and yield higher accuracy compared
to existing data pruning baselines, which demonstrates Prune4ReL is open to the choice of the
confidence metric.

Effect of Neighborhood Size. Prune4ReL involves a hyperparameter τ in Eq. (6) to determine the
neighborhood of each example, where a larger (smaller) value introduces a fewer (more) number of
neighbors. Figure 4 shows the effect of τ ∈ {0.93, 0.95, 0.99} on the test accuracy of SOP+ trained
on CIFAR-100N with varying selection ratios. In general, Prune4ReL shows better or comparable
performance than other sample selection baselines. Among them, Prune4ReL with τ = 0.95 shows
a satisfactory accuracy across varying selection ratios. With a smaller value of τ = 0.93, it shows
the best performance in a high selection ratio of 0.8, but it becomes less effective in low selection
ratios, due to the increasing influence of noisy examples caused by a relatively large neighborhood
size. On the contrary, with a large value of τ = 0.99, it primarily selects clean yet easy examples due
to a small neighborhood size, leading to a relatively less improvement in performance.

4.5 In-depth Analysis of Noisy Examples in Selected Subset

Noise Ratio of Selected Subset. Table 4 shows the ratio of noisy examples in the subset selected by
each sample selection method. SmallLoss shows a very low ratio of noisy examples in the subset
because it prefers clean examples. Many data pruning methods, including Margin, GraNd, SSP, and
Moderate (for CIFAR-100N), tend to select a higher ratio of noisy examples compared with that
of each original dataset since they prefer to select hard examples. On the other hand, Prune4ReL
selects a low ratio of noisy examples when the subset size is small and gradually increases the noise
ratio as the subset size increases. This result indicates that Prune4ReL expands the confident subset
through Algorithm 1—i.e., selecting the most confident (clean) examples first and then trying to
select less confident (hard or noisy) neighbors to ensure accurate re-labeling. While some baselines,
such as kCenterGreedy, Forget, and Moderate (for CIFAR-10N), also select a somewhat low ratio of
noisy examples, their data pruning performances are worse than Prune4ReL because the quality (or
self-correctability) of noisy examples is not considered when selecting the subset, which is further
investigated in Table 5.

Self-correctability of Selected Noisy Examples. Table 5 shows the self-correctability of selected
subsets, which indicates the ratio of correctly re-labeled noisy examples out of all selected noisy
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Table 4: Ratio (%) of noisy examples in the selected subset.
Re-label
Model

Selection
Methods

CIFAR-10N (Random, ≈18%) CIFAR-10N (Worst, ≈40%) CIFAR-100N (Noisy, ≈40%)
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

SOP+

SmallL 0.1 0.2 1.0 4.0 0.8 3.6 11.5 26.2 3.5 8.7 16.3 27.4
Margin 29.7 25.7 22.5 19.7 54.6 52.1 48.5 44.6 61.5 56.8 51.6 46.2
kCenter 19.0 18.8 19.1 18.6 40.0 41.1 41.6 42.1 37.5 38.7 39.9 40.4
Forget 17.0 17.7 17.5 17.8 37.7 38.8 39.2 40.2 37.9 34.6 33.0 36.8
GraNd 67.5 41.7 28.6 21.5 91.5 79.4 64.2 50.1 93.9 57.3 61.2 49.3

SSP 25.2 23.7 21.6 19.5 48.5 46.4 43.2 42.1 52.7 52.3 46.8 43.0
Moderate 6.6 7.1 8.4 13.5 31.7 33.4 34.7 40.0 33.2 54.6 60.2 64.6
Pr4ReL 17.0 18.7 19.3 22.5 38.7 42.7 43.5 46.5 28.3 29.1 33.3 37.2

Table 5: Ratio of correctly re-labeled
noisy examples in the selected subset
(denoted as % Correct).

Re-label
Model

Selection
Methods

CIFAR-10N (Random)
Test Acc. % Noisy % Correct

SOP+
kCenter 86.3 19.0 75.2
Forget 82.4 17.0 61.7

Pr4ReL 88.1 17.0 90.3

Table 6: Data pruning performance on Ima-
geNet with a 20% synthetic label noise.

Re-label
Model

Selection
Methods

ImageNet-1K (Syn, ≈20%)
0.05 0.1 0.2 0.4

SOP+

Uniform 27.8 42.5 52.7 59.2
SmallL 22.8 31.4 42.7 54.4
Forget 4.1 8.3 50.6 57.2

Pr4ReLB 30.2 44.3 53.5 60.0

examples. Here, we compare Prune4ReL with kCenterGreedy and Forgetting on CIFAR-10N
(Random) with the selection ratio of 0.2, where the ratio of noisy examples (i.e., %Noisy) in
the selected subset of each method is similar (i.e., from 17% to 19%). Although these methods
select almost equal amounts of noisy examples, there were differences in the self-correctability
(i.e., %Correct) of the selected subsets. Noisy examples selected by Prune4ReL are mostly self-
correctable as it maximizes the total neighborhood confidence of the training set. In contrast, those
selected by existing data pruning methods such as kCenter and Forget are not guaranteed to be
self-correctable. This result confirms that Prune4ReL not only selects a low ratio of noisy examples
but also considers the quality of the selected subset in terms of maximizing re-labeling accuracy.
Therefore, Prune4ReL fully takes advantage of the Re-labeling methods.

4.6 Results on ImageNet-N with Synthetic Label Noise

We further validate the efficacy of Prune4ReL on ImageNet-N by injecting synthetic label noise of
20% to the commonly-used benchmark dataset ImageNet-1K (see Appendix D for details). Table
6 shows the test accuracy of Prune4ReL and three representative sample selection baselines with
varying selection ratios of {0.05, 0.1, 0.2, 0.4}. Similar to the result in Section 4.2, Prune4ReL
consistently outperforms the baselines by up to 8.6%, thereby adding more evidence of the superiority
of Prune4ReL. In addition, owing to its great computation efficiency, Prune4ReL is able to scale to
ImageNet-N, a large-scale dataset with approximately 1.2M training examples.

5 Conclusion

We present a noise-robust data pruning method for Re-labeling, called Prune4ReL, that finds a subset
that maximizes the total neighborhood confidence of the training examples, thereby maximizing the
re-labeling accuracy and generalization performance. To identify a subset that maximizes the re-
labeling accuracy, Prune4ReL introduces a novel metric, the reduced neighborhood confidence, which
is the prediction confidence of each neighbor example in the selected subset, and the effectiveness of
this metric in estimating the re-labeling capacity of a subset is theoretically and empirically validated.
Furthermore, we optimize Prune4ReL with an efficient greedy algorithm that expands the subset
by selecting the example that contributes the most to increasing the total reduced neighborhood
confidence. Experimental results demonstrate the substantial superiority of Prune4ReL compared to
existing data pruning methods in the presence of label noise.
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