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Abstract

Optimizing Deep Neural Networks (DNNs) to obtain high-quality models for
efficient real-world deployment has posed multi-faceted challenges to machine
learning engineers. Existing methods either search for neural architectures in
heuristic design spaces or apply low-level adjustments to computation primitives to
improve inference efficiency on hardware. We present Automated Graph Optimiza-
tion (AutoGO), a framework to evolve neural networks in a low-level Computation
Graph (CG) of primitive operations to improve both its performance and hardware
friendliness. Through a tokenization scheme, AutoGO performs variable-sized
segment mutations, making both primitive changes and larger-grained changes to
CGs. We introduce our segmentation and mutation algorithms, efficient frequent
segment mining technique, as well as a pretrained context-aware predictor to es-
timate the impact of segment replacements. Extensive experimental results show
that AutoGO can automatically evolve several typical large convolutional networks
to achieve significant task performance improvement and FLOPs reduction on a
range of CV tasks, ranging from Classification, Semantic Segmentation, Human
Pose Estimation, to Super Resolution, yet without introducing any newer primitive
operations. We also demonstrate the lightweight deployment results of AutoGO-
optimized super-resolution and denoising U-Nets on a cycle simulator for a Neural
Processing Unit (NPU), achieving PSNR improvement and latency/power reduction
simultaneously. Code available at https://github.com/Ascend-Research/AutoGO.

1 Introduction

Deep Neural Networks (DNNs) have achieved great success in Computer Vision (CV) and Natural
Language Processing (NLP) tasks. A major trend toward achieving better performance on benchmarks
is adopting large and computationally demanding deep models [7]. However, successful and efficient
deployment of deep neural networks onto diverse and specific hardware devices, including neural
processing units on the edge, significantly hinges upon engineering proper neural architectures that
are both excellent in task performance while meeting hardware friendliness objectives.

A range of techniques have been proposed by academia and industry to solve the hardware-friendly
deployment challenges of DNNs [46]. Neural Architecture Search (NAS) replaces the manual design
process of DNNs, achieving remarkable performance in several applications in CV [67, 11, 9, 6]
and NLP [32, 10, 12]. While NAS can utilize a flexible range of search algorithms [53, 11, 79, 47],
the search space adopted by NAS is based on heuristics, either searching for an optimal macro-net
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construction based on predefined blocks, e.g., MBConv blocks in MobileNets [59, 26], or stacking
searchable cells by heuristic rules [39, 17, 73]. These heuristic rules may not be efficient to the target
hardware device for deployment and may limit the potential gain from NAS methods. On the other
hand, graph rewriting [70, 30] operates on the tensor computation graph of a DNN to improve its
inference efficiency on hardware. Rewriting involves applying a set of subgraph substitution rules
that preserve mathematical functionality of the original DNN, which does not alter or reduce the
neural architecture to achieve better task performance or fitness to hardware.

In this paper, we propose Automated Graph Optimization (AutoGO), a generic graph optimization
framework to evolve a given neural architecture for efficient and low-power deployment onto a
specific hardware device. Unlike traditional NAS which builds networks from scratch in a heuristic
search space or from hand-crafted building blocks [39, 63, 15], AutoGO enhances both hardware-
friendliness and task performance of a DNN, by evolving its underlying Computation Graph (CG)
using computational units composed of operations extracted from NAS benchmarks. AutoGO
automatically improves typical neural networks in terms of benchmark performance on several CV
tasks ranging from classification, semantic segmentation, to super-resolution without relying on
newer operations. It also automates lightweight DNN deployment onto mobile neural processing
units while preserving task performance, hence replacing manual tweaking efforts by ML engineers.
We present the following key contributions in designing the AutoGO framework:
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Figure 1: A DNN can be partitioned into disjoint
subgraphs (segments). Segments contain a variable
number of inputs, outputs, and nodes ranging from
primitive operations to complex subgraphs.

AutoGO optimizes DNNs on a Computation
Graph (CG) of low-level primitives extracted
from TensorFlow [1] models, which allow us
to optimize all types of operations and their hy-
perparameters like filter size and latent tensor
dimensions and thus offer a holistic fine-grained
view of DNNs. Unlike graph rewriting which
preserves mathematical equivalence, AutoGO
alters the CG of a DNN for task performance
and fitness to hardware.

Rather than relying on predefined blocks, the
basic units for mutation in AutoGO are com-
putation subgraphs, which we call segments, as
illustrated in Figure 1. Segments are mined from
a large number of CGs from several NAS bench-

marks based on frequent subgraph mining in a data-driven manner. We use Byte Pair Encoding (BPE),
an efficient tokenization technique [20] from NLP, to segment CGs and merge frequent operations
into segments. By extracting and including segments of variable sizes into our database, AutoGO
enables both primitive operation changes and larger-scaled block changes to a DNN.

AutoGO leverages an evolutionary algorithm to mutate our BPE-segmented source network. The
segment mutation process is guided by hardware friendliness metrics and a pre-trained neural predictor
to estimate the performance of the mutant network resulting from segment replacement. We propose
a neural predictor which explicitly considers the positional and contextual information of a segment
replacement made in a CG and directly models the performance gain. Mutations are also coupled
with a resolution propagation scheme that solves for the tensor shapes in the replacement segment to
ensure architectural validity.

Extensive experiments demonstrate that AutoGO can enhance the performance of the best architec-
tures in several public architecture benchmarks, e.g., NAS-Bench-101 [71], NAS-Bench-201 [17],
HiAML, Inception, and Two-Path [48]. Additionally, AutoGO can automatically optimize several
typical large CNN architectures, including ResNets [24], VGG [61], and EDSR [38] on a breadth
of CV tasks including Classification, Semantic Segmentation, Human Pose Estimation, and Super
Resolution. We show that AutoGO can improve their performance while making them lightweight,
without using newer generations of operations that do not appear in the original network. Finally, to
demonstrate the real-world applicability of our framework, we show results of AutoGO-optimized
FSRCNN [16] (for super-resolution) and image denoising U-Net [55] for low-power or low-latency
deployment using a cycle simulator for a Huawei mobile Neural Processing Unit (NPU).
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2 Related Work

NAS Benchmarks and Neural Predictors. NAS-Benchmarks comprise architectures from a given
search space and their accuracy performance. NAS-Bench-101 [71] and NAS-Bench-201 [17] provide
the performance of 423k and 15.6k architectures, respectively, on CIFAR-10. Benchmarks enable
the rapid development of search algorithms and neural predictors. Neural predictors [43, 54, 41, 73,
65, 40] treat NAS benchmarks as datasets and learn to estimate the performance of architectures in a
given search space, and thus constitute a low-cost avenue for performance evaluation.

However, NAS benchmarks suffer from several drawbacks. First, benchmarks only provide per-
formance annotations for architectures inside a manually designed fixed search space. Thus, any
tweaks to decrease FLOPs or latency beyond the search space requires training the new architecture
from scratch. Second, existing NAS Benchmarks are mostly cell-based [39] and compose a network
by stacking the same cell structure multiple times. This structure forms a high-level architecture
representation that is insensitive to spatial details such as latent tensor dimensions, which vary along
the depth of the network and influence hardware-friendliness [49]. As most existing neural predictors
learn using high-level cell representations, these drawbacks hamper their deployment generalizability.
In contrast, AutoGO can mutate an architecture beyond its original, manually-defined design space
by utilizing a low-level, spatially-sensitive representation.

Computational Graphs for DNN Hardware Friendliness. Multiple subfields explore how to reduce
the carbon footprint and time cost of DNNs. Pruning and quantization methods [36] aim to reduce
the number of parameters or lower the bit precision of model weights, respectively. Graph rewriting
methods like TASO [30] and TENSAT [70] consider mathematically equivalent substitutions, e.g.,
merging or splitting parallel convolutions and applying the associative/distributive properties. These
schemes usually require spatial details like resolution and channel size to perform rewrites. Hence,
they represent DNNs using Computation Graphs (CG) [50, 22], which treat each primitive operation
as a node and use the network forward pass to define edge connectivity. Similarly, AutoGO also uses
a low-level CG representation. But different from these approaches, it aims to evolve the architecture
of an untrained DNN to improve performance while also optimizing hardware friendliness.

Neural Architecture Design Space. Several works employ NAS over large spaces by jointly
searching over macro and micro-structures for both block type and tensor dimensions [64, 15].
Human expertise is at the core of these design choices to constrain the search for high-performing
architectures. [57] model a search space as a 3-level hierarchical graph to overcome the reliance
on expert knowledge. [13] propose Neural Search Space Evolution, which progressively grows a
current search space by adding unseen operation candidates. Unlike the above work, we do not limit
ourselves to a pre-designed skeleton with spatial or topological constraints at any network position.
Rather, we incorporate search space and architectural knowledge into a neural predictor. Also, instead
of manually defining the search units [17, 59, 62, 42], we mine these units from NAS benchmarks.
In particular, we utilize Frequent Subgraph Mining (FSM) [31] to discover interesting and frequent
patterns in the computation graphs in a data-driven way. FSM requires conducting expensive steps
when graphs are large such as extracting patterns, inspecting isomorphism, and checking if subgraphs
are frequent enough to be considered interesting. Algorithms [68, 69, 27] trade result completeness
and accuracy for efficiency to overcome run time and memory inefficiency [19]. In NAS, [56] utilize
Weisfeiler-Lehman (WL) graph kernel to extract useful network features but only applies it shallow
cell-based DAG structure of NAS-Bench-201. In contrast, we propose an efficient approach to mine
frequent subgraphs by converting CGs to sequences and applying BPE [20] to extract subsequences,
which produces a fixed-size vocabulary of subgraphs of varying sizes.

3 AutoGO: Automated Computation Graph Optimization

The AutoGO framework operates on the Computation Graph (CG) of an input DNN architecture
extracted from the in-memory graph structure of a tensorflow.keras model or .pb file. CGs are
directed acyclic graphs (DAGs), where nodes represent primitive operations that are indecompos-
able computation operations in deep learning frameworks like ONNX [5] and PyTorch [52], e.g.,
Convolutions, Pooling, ReLU, Add, etc., while edges represent forward-passes between operations.
Specifically, node features include operation type, input and output tensor resolution dimensions and
weight tensor shape if applicable.
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Figure 2: AutoGO takes the CG of a neural network as input and improves it using an algorithm-
mined segment database and pre-trained mutation performance predictor.

Figure 2 provides an overview of the proposed AutoGO operating on the CG level. AutoGO
mutates the CG of an input DNN by utilizing a database of segments (Sec. 3.1), which are frequent
subgraphs mined from a variety of NAS-Benchmarks via an efficient tokenization method. A Pareto
front evolution strategy (Sec. 3.2) performs segment mutations to the CG, while using resolution
propagation to ensure network validity. Finally, a pretrained Predecessor-Segment-suCcessor (PSC)
neural predictor (Sec. 3.3) together with selected hardware metrics will guide the evolution by
assessing the performance gain when a certain segment is stitched into the architecture.

3.1 Computation Graph Segmentation via Tokenization

We partition a CG g into a contiguous sequence of subgraphs, which we call segments. A segment,
denoted by s, may have multiple input and output nodes, or could even be a single primitive operation.
For g to be a valid neural network, any two contiguous segments si and sj in g must maintain the
correctly matched height, width and channel (H,W,C) resolutions. The resolutions of output nodes
of si, have to match the resolutions of input nodes of its succeeding segment sj . Our definition of
segment spans a wider range of topologies and provides flexible operation grouping than predefined
or handcrafted blocks, e.g., ResNet and MBConv blocks or DARTS cells [39].

The Segment Database D is the core component that stores the segment units that AutoGO mutations
are based on. AutoGO uses the segment database D (or vocabulary) to either partition an input CG
into segment units or select a segment from D to replace an existing segment in input CG. To alleviate
the memory and time complexities of mining common subgraphs from a large number of CGs, we
relax the problem into mining segments from sequences. This allows us to utilize much more efficient
tokenization techniques over sequences.

Given a set of neural networks represented in a CG format G = {g1, · · · , gk}, we convert each CG
into a topologically sorted sequence of nodes. We enrich node representation by labeling a node in
the form of [current op, incoming ops, outgoing ops]. 3 Each unique node label is further encoded
into a single character symbol. Thus, a topologically sorted CG can be mapped into a string of
character symbols, where each character encodes an operation and its neighboring operations. By
converting all graphs in G into sequences, we essentially have built a corpus for training a tokenizer
to extract common segments of character symbols. Specifically, we use Byte-Pair Encoding (BPE), a
data compression [20] technique with a wide use for text tokenization in NLP [60], to tokenize the
string representations of CGs. BPE operates iteratively by collecting frequent pairs of consecutive
symbols to build a vocabulary of tokens (segments). Using BPE, we extract the most common
subsequences from the string representation of the CGs and build a vocabulary of size |V |. We revert
each discovered subsequence in the vocabulary back to its corresponding subgraph representation
from the CG to form a segment database D. Given a new CG, BPE utilizes its built vocabulary
and applies a greedy algorithm to segment it. Figure 1 provides an example of a segmented CG.
Our approach brings several benefits over mining on large graphs with WL-kernels. The extraction
process on sequences is efficient. Using BPE enables segment extraction from all benchmark families
simultaneously without facing memory inefficiencies like WL-Kernel.

3For example, we label a Conv 3x3 node with incoming edges from Add and BatchNorm operations and an
outgoing edge to a ReLU operation as “conv2d3,in,add,batchnorm,out,relu”.
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3.2 Computation Graph Mutation

We use an evolutionary search strategy to perform segment mutations on the CG of an input architec-
ture and iteratively update a Pareto front of architectures in terms of predicted accuracy and a chosen
hardware-friendliness objective, e.g., FLOPs, latency, and power. The mutation made to a parent
architecture comprises the following steps: segmentation, source segment selection, replacement
segment selection, tensor resolution (shape) propagation, and performance evaluation. First, AutoGO
partitions the parent architecture into segments using the BPE-generated vocabulary V . BPE adopts
a greedy segmentation approach, which will lead to deterministic partitioning. To diversify the
segmentation outcome, we select a subset of vocabulary V ′ ⊂ V that BPE uses during segmentation,
thus leading to different partitioning outcomes every time the CG is segmented. After segmentation,
we select a set of candidate source segments to mutate. For each source segment si, we randomly
select multiple replacement segments s∗i ∈ D that have the same number of inputs and outputs as the
corresponding source segment. If s∗i has multiple inputs and/or outputs, AutoGO randomly maps
these to the outputs and/or inputs created by removing si.

The mutation process must maintain a valid architecture, by correctly combining the replacement
segment with the rest of the model. Given a CG g, let Sg = {s0, s1, ..., sn−1} be the set of disjoint
segment subgraphs generated by applying BPE to g. Let si, 0 ≤ i ≤ n − 1 be a source segment
within g that we wish to replace. We partition the segments within Sg into three distinct groups that
reflect their positions within g:

• The Predecessor group denotes all segments P = {sp; 0 ≤ p < i} between the input and si.

• The specific Segment si ∈ D that we are aiming to replace by mutating g.

• The suCessor group denotes all the remaining network segments C = {sc; i < c ≤ n− 1}.
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Figure 3: An example of segment mutation.
AutoGO takes an input CG (left) and replaces
a source segment si with s∗i . The predecessor
(grey) and successor (yellow) are unchanged.

Let {P, S,C} refer to a CG partitioned in this manner,
denoted by grey, purple and orange blocks in Fig. 3.
Hence, for a mutation to be valid, the shape of the out-
put tensor from the Predecessor P must match that of
the input to the replacement segment s∗i and the out-
put shape of s∗i must match the shape of the expected
input to suCcessor C. AutoGO adapts replacement
segment s∗i to the remainder of the architecture P and
C by adjusting the hyperparameters of operations in
s∗i to achieve the desired resolutions. Adjustments
are applied to mutable operations, e.g., increasing
the stride of convolutions and pooling operations to
induce downsampling, whereas operations such as
activations and batch normalization are immutable.
Depending on the P , C and s∗i subgraphs, stitching
the replacement segment into the overall CG may be
infeasible. We cast this “resolution propagation” task
as a Mixed-Integer Linear Program (MILP) over the
adjustable hyperparameters of mutable nodes within s∗i , which is an optimization problem with linear
objectives and constraints, and integer-valued decision variables. We define MILP constraints that
regulate the correct resolution propagation within s∗i when stitched to the rest of the architecture.

At the end of each mutation iteration, we retain all the segment replacements that have a feasible
solution to the resolution propagation MILP, and profile these valid segment mutations in terms of the
predicted accuracy gain given by the PSC predictor (Sec. 3.3) and a selected hardware friendliness
metric, based on which a Pareto front O [21] of architectures is maintained and updated. During the
first iteration, we only mutate the input architecture. At the beginning of each successive iteration,
AutoGO selects the k architectures from the Pareto front as parents to mutate. If the Pareto front
contains less than k architectures, AutoGO will select additional non-Pareto optimal architectures
having the minimum sum of accuracy and FLOPs ranks. Further technical details on the {P, S,C}
partitioning scheme, resolution propagation, parent selection process and overall algorithm, including
examples, illustrations and pseudocode, are provided in supplementary Sections A.3.1 and A.5.
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3.3 Context-Aware Mutation Performance Estimation

AutoGO uses a neural predictor to estimate the performance of mutant architectures in order to search
for high-quality networks. We propose a novel predictor that assesses the potential performance
benefit from a segment mutation, based on its topology, context and its location within the architecture.

Just as we can construct subgraphs from the individual segments produced by BPE, we can construct
larger predecessor and successor subgraphs from all segments within P and C, respectively. We use
this format to train a PSC neural predictor. Let h∗ denote a fixed-length graph embedding for an
arbitrary graph produced by a graph neural network (GNN) [51]. The PSC predictor operates by
separately encoding the predecessor, segment, and successor CGs into distinct graph embeddings.
These embeddings are then concatenated and fed into a multi-layer perceptron (MLP) regressor to
predict the performance y of g. Stated more formally:

hP = GNN(P ); hsi = GNN(si); hC = GNN(C); y = MLP(Concat[hP , hsi , hC ]).

It is also possible to predict performance using the entire CG, y = MLP(GNN(g)). However, our
PSC predictor enjoys several advantages over this approach. By separately encoding the {P, S,C}
partitions, the PSC predictor is sensitive to the position and context of the segment si within the
overall network. This allows us to more directly estimate the performance impact that mutating si
will have. As shown in Figure 3, we are considering mutating g into g∗ by replacing the source
segment si with a segment s∗i . We want the mutant network to outperform the original, i.e., y∗ > y.
Our training process emphasizes learning a separate embedding for each si in our segment database
D. It encodes the required knowledge to estimate the effect of small changes from segment si to any
replacement segment s∗i , given a fixed P and C.

4 Experimental Results

We construct our database by extracting segments from 5 CIFAR-10 [33] benchmark families: NAS-
Bench-101 (NB-101) [71], NAS-Bench-201 (NB-201) [17], HiAML, Inception, and Two-Path [48].
Initially, we set the BPE vocabulary size to 2000 and obtain a database with 428 unique segments
after filtering out isomorphisms. Segments vary in size ranging from primitives (containing a single
operation node) to blocks with up to 16 nodes and edges. The average segment contains 5 nodes and
3 edges, and some segments are disconnected subgraphs spanning parallel branches of a CG. We
provide in-depth statistics and visualizations in Section A.1.

In the remainder of this section, we apply AutoGO and our Segment Database to search for better
architectures on several NAS benchmarking families to demonstrate the benefits of our framework.
We further use AutoGO to improve several open-sourced, popular network architectures. We consider
various high-resolution CV tasks, including Classification, Semantic Segmentation and Human Pose
Estimation, with the aim of improving hardware friendliness in terms of FLOPs. We also provide
examples of deployment where AutoGO minimizes the energy consumption or on-chip latency
of already lightweight neural networks for Super Resolution and Image Denoising using a cycle
simulator for a Huawei Neural Processing Unit (NPU). We provide implementation details, dataset
metrics, and training setup in Sections A.2 and A.4.

4.1 Rank Correlation of Performance Predictors

Table 1: Test SRCC of all 5 architecture families for the
PSC predictor and baselines. Results averaged over 5 runs.

Arch. Family GNN PSC 1:1 Ratio PSC
NB-101 0.627 ± 0.031 0.666 ± 0.025 0.849 ± 0.054
NB-201 0.809 ± 0.016 0.865 ± 0.015 0.983 ± 0.003
HiAML 0.010 ± 0.013 0.170 ± 0.042 0.734 ± 0.031
Inception 0.209 ± 0.037 0.066 ± 0.071 0.496 ± 0.022
Two-Path 0.023 ± 0.018 0.236 ± 0.043 0.724 ± 0.022

AutoGO uses a neural predictor to esti-
mate the performance of mutated archi-
tectures. We train and evaluate our PSC
predictor on five CIFAR-10 benchmarks.
Our CG format provides the advantage
of training simultaneously on multiple
benchmark architecture families. We
split each family into training, valida-
tion, and testing partitions containing
80%, 10% and 10% of the overall CGs
in that family. We combine the training
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Table 2: AutoGO results across all 5 CIFAR-10 architecture families while aiming to increase
accuracy [%] and reduce FLOPs [1e6]. We consider 3 experimental configurations that vary in unit
of mutation and predictor used. We bold and italicize the best and second best result per family.

Baseline Architectures Operator + GNN Segment + GNN Segment + PSC
Family Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs
NB-101 95.18% 11722 95.16% 9407 95.31% 10817 95.45% 11118
∆ – – -0.02% -19.75% +0.13% -7.72% +0.27% -5.15%

NB-201 93.50% 313 93.37% 232 93.57% 294 93.84% 303
∆ – – -0.13% -25.88% +0.07% -6.07% +0.34% -3.19%

HiAML 92.32% 246 92.00% 198 92.62% 168 92.75% 198
∆ – – -0.32% -19.51% +0.30% -31.71% +0.43% -19.51%

Inception 93.20% 494 92.97% 319 93.31% 461 93.52% 474
∆ – – -0.23% -35.43% +0.11% -6.68% +0.32% -4.05%

Two-Path 87.90% 116 88.63% 106 89.16% 48 88.94% 91
∆ – – +0.73% -8.62% +1.26% -58.62% +1.04% -21.55%

partitions for each family to form an overall training set for the predictors while setting the test
partitions aside individually. When training the PSC predictor, we partition each CG into multiple
{P, S,C} instances to use as training samples. We compare our proposed PSC predictor with two
baselines: As each CG contains multiple {P, S,C} instances, we consider an intermediate setting,
PSC 1:1 Ratio, where we only consider one random {P, S,C} instance per CG in the training set.
Moreover, we also consider a baseline GNN that estimates the performance of whole unpartitioned
CGs but is not sensitive to segment-level changes.

We measure the Spearman’s Rank Correlation Coefficient (SRCC) of each predictor on the test
partitions for each benchmark family. SRCC is defined in the range [-1, 1] and higher values are
better. Table 1 summarizes our results. We note the exceptional performance of the PSC predictor as
it can obtain SRCC above 0.72 on HiAML and Two-Path while the GNN barely achieves positive
SRCC. Moreover, while the GNN and PSC 1:1 predictors can obtain SRCC above 0.8 and 0.6 for
NB-201 and NB-101, respectively, if we train the PSC predictors on all {P, S,C} samples, we can
obtain a near perfect SRCC of 0.98 on NB-201 and almost 0.85 on NB-101. Overall, these findings
demonstrate the merit of our segment decomposition and PSC encoding scheme for CGs.

4.2 Improving CIFAR-10 NAS Benchmark Architectures

We test the effectiveness of AutoGO by refining the best architectures from each family. Specifically,
AutoGO aims to increase accuracy while reducing FLOPs. We consider three scenarios that allow
us to ablate the effectiveness of our PSC predictor when applied to search. We also compare our
segment-level mutation to a simpler, operation-level mutation that mutates single primitive operation.

We run AutoGO for 10 iterations in the segment-level mutation, and 50 iterations for the operation-
level mutation for a fair comparison since segments have 5 nodes on average. At the end of each
iteration, we randomly select 10 architectures from the accuracy-FLOPs Pareto frontier to qualify
for the next iteration as parent architectures. For each parent candidate, we consider up to 100
replacement mutations. We allow AutoGO to mutate sequences of 1 to 3 contiguous source segments
simultaneously. We randomly mask out 50% of segments with more than 1 node in our segment
database and force BPE to segment the input with the remaining ones. Further, we consider two search
settings that limit the FLOPs decrease of child architectures. In the first case, we allow AutoGO to
freely reduce FLOPs, while in the second case, we do not allow FLOPs to fall by more than 20%
relative to the original network we are optimizing. After the search is complete, we train architectures
on the accuracy-FLOPs Pareto frontier 3 times on CIFAR-10 [33]. We report the accuracy and FLOPs
of the overall best architecture found across both FLOPs constraint settings. Finally, it takes 45 to
90 minutes to execute the search depending on the size of the input architecture CG. We provide an
ablation study across FLOPs constraints, a detailed breakdown of wall-clock time cost, and enumerate
our hardware platform in Sections A.6, A.7 and A.9, respectively.

Table 2 reports our findings across all 5 architectures families. We observe that the segment-level
mutation is a better fit for finding high-performance architectures, as the best architectures are found
using it. For example, on HiAML, it can increase the accuracy by up by 0.43% while reducing
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Table 3: Results running AutoGO on Computation Graphs for ResNet-50, 101 and VGG-16. Specifi-
cally, we compare ImageNet [58] Top-1/Top-5 accuracy, Cityscapes test mIoU [14] using a PSPNet
head [76], MPII [4] PCK as well as FLOPs. For performance metrics, higher is better. We measure
latency on an Nvidia RTX 2080 Ti GPU using an input resolution size of 224× 224.

Architecture ImageNet Top-1/5 Cityscapes mIoU MPII PCK FLOPs [1e9] Lat. [ms]
ResNet-50 Original 74.02%/91.22% 63.42% 82.36% 6.29 7.18
ResNet-50 AutoGO Arch 1 75.34%/92.16% 65.88% 84.07% 6.71 7.50
ResNet-50 AutoGO Arch 2 75.66%/92.45% 66.65% 82.70% 5.88 6.92

ResNet-101 Original 75.09%/91.94% 65.92% 82.77% 13.76 15.86
ResNet-101 AutoGO Arch 1 76.56%/93.09% 67.12% 83.59% 13.66 15.56
ResNet-101 AutoGO Arch 2 75.69%/92.15% 66.38% 84.64% 13.35 15.36

VGG-16 Original 74.18%/91.83% 65.36% 85.92% 30.81 4.65
VGG-16 AutoGO 74.91%/93.23% 66.91% 85.99% 24.34 4.20

FLOPs by -19.76%. By contrast, the operation-level mutation only manages to improve performance
on Two-Path. However this gain of +0.73% is substantially less than what we can achieve using
segment mutation. On NAS-Bench-101, operation mutation manages to break even with the baseline
architecture, while incurring an accuracy drop of more than 0.10% on all other families.
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Figure 4: Example of a segment mu-
tation from that helped create ResNet-
50 AutoGO Arch 2 (Tab. 3). A ResNet
block is replaced by a HiAML block.

Next, we compare the effectiveness of the PSC and GNN
predictors. The PSC predictor finds the best architecture
in 4 of the 5 architecture families. PSC improves accuracy
on NB-101 and NB-201 by 0.34% and 0.27%, respectively.
By contrast, the GNN only achieves the best performance
on Two-Path, which is the smallest benchmark family with
a baseline architecture of only 116 MegaFLOPs. Thus,
segment-level mutations span more considerable changes
that are distinguishable with GNN and PSC predictors. In
sum, the segment-aware encoding is better at increasing
performance while reducing FLOPs than the operation-
level mutation. Moreover, our results demonstrate the
superiority of the PSC predictor compared to the GNN in
most cases.

4.3 Application to High-Resolution
Classification, Segmentation and Pose Estimation

To demonstrate the extensibility and generalizability of our
framework, we apply it to several stand-alone architectures
for higher-resolution computer vision tasks. Specifically,
we perform NAS using AutoGO with the PSC predictor
and segment-level mutation for 5 iterations on ResNet-50,
ResNet-101 [24] and VGG-16 [61]. For a fair comparison,
we do not allow AutoGO to select segments containing
operations that were not available or popularized when
the network was first proposed, e.g., depthwise convolu-
tions [59].

After the search, we examine the architectures on the
Pareto frontier and select 1-2 with noticeably different
FLOPs reductions to train and evaluate against the original
architecture. To form the first point of comparison, we train each network on ImageNet [58]. Then,
we fine-tune the network on different tasks. For Semantic Segmentation (SS), we use a PSPNet [76]
head structure and fine-tune on Cityscapes [14] to obtain mean Intersection over Union (mIoU)
performance. For Human Pose Estimation (HPE), we adopt the method of [78] to fine-tune on
MPII [4] to measure the Percentage of Correct Keypoints (PCK) of an architecture.

Table 3 shows our results on ImageNet, Cityscapes, and MPII. First, we note how in every case, the
architectures generated by AutoGO consistently outperform the original on all 3 CV benchmarks.
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Table 4: Peak Signal-to-Noise Ratio (PSNR) for EDSR on the DIV2K validation set and several SR
benchmarks in the 2x upscaling setting. Higher is better. We measure latency on an RTX 2080 Ti.

SR Architecture DIV2K Set5 Set14 BSD100 Urban100 Manga109 FLOPs [1e9] Lat. [ms]
EDSR Original 36.19 36.86 32.57 31.39 29.14 36.09 141 18.04
EDSR AutoGO Arch 1 37.28 38.01 33.62 32.18 31.56 38.49 118 15.38
EDSR AutoGO Arch 2 37.27 37.97 33.55 32.16 31.53 38.47 110 14.52
EDSR AutoGO Arch 3 37.25 38.01 33.58 32.16 31.46 38.44 105 13.81

Table 5: SR PSNR results on Proprietary FSRCNN networks. FSRCNN-{3, 4} denotes the number
of Conv3x3 operations in the middle of the architecture. We report change in power according to
a cycle-accurate simulation model that uses a 64x640 input resolution. FLOPs [1e9] are measured
using an input resolution of 640x360.

SR Architecture Set5 Set14 BSD100 Urban100 Manga109 Power [mW] ∆Power FLOPs
FSRCNN-3 Original 35.12 31.43 30.56 27.65 32.75 774.77 – 2.67
FSRCNN-3 AutoGO 35.12 31.43 30.56 27.64 32.60 644.10 -16.87% 2.09

FSRCNN-4 Original 35.22 31.50 30.60 27.71 32.88 892.89 – 3.74
FSRCNN-4 AutoGO 35.17 31.52 30.60 27.71 32.77 508.37 -43.06% 2.07

For example, ResNet-50 AutoGO Arch 2 outperforms the original by over 1.64% ImageNet top-1
accuracy, while the found architecture on VGG outperforms the original on Cityscapes by 1.55%
mIoU. Also, we measure inference latency on an RTX 2080 Ti GPU. We note some correlation
between FLOPs and GPU latency; as one metric increases or decreases, so does the other metric.

Figure 4 illustrates how AutoGO splices a HiAML segment into ResNet-50 to create a new architec-
ture. The longer branch performs multiple convolutions at reduced channels, while the shorter branch
applies lightweight operations on the original number of channels, and the MILP performs resolution
propagation to ensure functionality.

4.4 Application to Super Resolution with EDSR

We use AutoGO to optimize networks for Super Resolution (SR). Specifically, we optimize the
backbone feature extractors of EDSR [38]. As the original EDSR only uses convolution and ReLU
operations, we do not let AutoGO select segments that contain depthwise, pooling, or batch nor-
malization. Figure 9 (Sec. A.8) provides sample illustrations of the mutations AutoGO performs on
EDSR. We train SR networks on DIV2K [2, 29] in the 2x resolution setting and evaluate on several
public benchmarks [8, 74, 44, 28, 45, 3]. Table 4 demonstrates how EDSR architectures produced by
AutoGO can handily outperform the original network while substantially reducing FLOPs and GPU
latency, e.g., AutoGO Arch 3 is 36 gigaFLOPs smaller and 4.2ms faster.

4.5 Using AutoGO to Automate Neural Network Deployment on a Neural Processing Unit

Table 6: Results of using AutoGO to optimize a Proprietary U-Net
Denoising network to improve PSNR and minimize on-chip latency.
We report changes in latency and power measured on a mobile NPU
using a cycle simulation model.

Denoising PSNR ∆Latency Power [mW] ∆Power FLOPs [1e9]
Base Model 139.4 – 724.59 – 17.05
AutoGO 139.9 -24.94% 657.82 -9.21% 16.26

We demonstrate the real-
world deployment capabili-
ties of AutoGO by optimiz-
ing neural network perfor-
mance using a cycle-accurate
counter that simulates Huawei
NPU performance for cell-
phones [37]. We optimize for
power or on-chip latency by
pairing our pretrained PSC ac-

curacy predictor with power/latency measurements fed back by either a hardware profiling tool or the
cycle-accurate hardware simulator.

Super Resolution Power Optimization We use AutoGO to optimize proprietary lightweight SR
models similar to FSRCNN [16]. Table 5 reports the network performance on several public datasets
as well as the change in power and FLOPs. We note the effectiveness of AutoGO at optimizing
the energy efficiency of even a small network, e.g., the FSRCNN-4 AutoGO variant can reduce the
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instantaneous power of an already small FSRCNN (with 4 Conv3x3 in the body network) by over
43%, while the FSRCNN-3 AutoGO variant reduces it by over 16%. Moreover, AutoGO maintains
or even enhances the PSNR performance as compared to the original networks, demonstrating the
generalizability of the pretrained PSC predictor to other tasks.

Image Denoising Latency Optimization We use AutoGO to optimize a proprietary Image Denoising
U-Net similar to [55] to reduce on-chip latency. Table 6 reports our findings on an in-house dataset.
We observe how the mutated network can exceed the original denoising PSNR by 0.5. While
substantially improving latency, we have also reduced other resource consumption metrics including
power and FLOPs.

5 Limitations and Future Discussions

The AutoGO framework consists of many components: frequent subgraph mining (FSM) via topolog-
ical sorting and BPE tokenization, the position-aware PSC predictor, the mutation-based evolutionary
strategy and use of Computational Graphs. Each of these components has its own strengths and
weaknesses. Our paper demonstrates the feasibility of using topological sorting and BPE to per-
form FSM, although it faces limitations due to the non-deterministic nature of topological sorting,
resulting in generation of segments for isomorphic subgraphs that must be filtered out from our
database. However, the primary strength of FSM through topological sorting and BPE is the economic
advantage of speed, as neither BPE-based segment extraction nor isomorphic segment filtering is
time-consuming, even on large Computational Graphs. Moreover, FSM only considers the frequency
of a given subgraph (represented as a segment) while ignoring its contribution to performance and
hardware-friendliness metrics. Extracting frequent subgraphs that can explain performance is a
subject for further studies.

The quality of our segment database depends on the types of operations and subgraphs present in the
benchmark families we extract from. For example, a few segments in our database use depthwise
convolutions (see Fig. 5 in Sec. A.1) as the only NAS-Benchmark we consider that contains them is
Inception, and in limited quantity. These were not widely used in our experiments, since to achieve
a fair comparison with the baseline architectures that AutoGO aimed to improve, we constrained
the vocabulary of AutoGO during the search to use only same generation of operations. On the flip
side, one could use AutoGO to mine newer operations like depthwise convolutions, StarReLU [72],
or even older operations that have gained popularity like GELU [25]. Segments containing these
operations could then be used to further refine older architectures like ResNets, EDSR, and FSRCNN
for performance improvement.

A future variant of AutoGO could replace the mutation-driven search with a policy network [35]
to select replacement segments. Another avenue for future research is performing frequent and
important computational subgraph mining for Transformer and attention-based models for their
hardware-friendly deployment, as the Computational Graph representation and subgraph mining
presented in this paper are principally designed for convolutional neural networks currently.

6 Conclusion

We propose AutoGO, or Automatic Graph Optimization, a new framework for optimizing neural
networks outside the bounds of predefined, fixed search spaces. AutoGO represents architectures
using a computation graph format of primitive operations. We partition computation graphs into
segment subgraphs using Byte-Pair Encoding. Using a segment database and guided by a predictor
which is sensitive to segment size and position, AutoGO modifies the network by incrementally
mutating its segments while a resolution propagation MILP ensures network functionality. We build
a segment database by extracting a vocabulary of segments from 5 open-source NAS benchmarks
using Frequent Subgraph Mining. We use AutoGO to improve the accuracy of the best architectures
from each of the 5 CIFAR-10 search spaces while reducing FLOPs. Furthermore, we use AutoGO to
evolve several open-sourced large CNNs, including ResNets, VGG-16, and EDSR, and successfully
improve their performance on a breadth of CV tasks with reduced or comparable FLOPs. Finally, we
demonstrate how to utilize AutoGO to automatically reduce the hardware energy consumption and
on-chip latency of realistic convolutional neural network applications, when deployed onto a mobile
Neural Processing Unit.
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Figure 5: Histograms of segment database statistics including number of input and output
nodes/degrees, nodes/edges per segment, unique segment topologies and operation frequency.

A Supplementary Material

A.1 Additional Database Statistics

Figure 5 provides histograms regarding our segment database. Additionally, we enumerate the
primitive operations that are only present in specific NAS-Benchmark families:

• Depthwise: Inception.
• Max Pool: NB-101, Inception and Two-Path.
• Concat: NB-101, Inception and Two-Path.

All other operation primitives, e.g., Conv, ReLU, BatchNorm, etc., are present across all 5 CIFAR-10
NAS-Benchmarks.

A.2 Predictor and Dataset Details

We further elaborate on the baseline GNN and PSC predictors from Section 4.1. We provide
implementation details, dataset statistics and data pre-processing techniques. We train our predictors
for 40 epochs with a batch size of 32 and an initial learning rate of 1e−4.

A.2.1 Baseline and PSC Predictor Setup

We use the same baseline GNN predictor as GENNAPE [48]. First, CGs are given as input into
an initial set of embedding layers that transform discrete node features, such as operation type,
input/output tensor resolution, kernel size, and bias, into a continuous vector. The node embeddings
are then fed through a series of 6 k-GNN [51] layers. Next, an overall graph embedding is computed
by taking the mean of all node embeddings. A simple MLP with 4 hidden layers predicts performance
using the graph embedding.

The PSC predictor differs in that each CG sample is first split into its respective Predecessor, Segment,
and suCcessor subgraphs before being fed into the predictor. All three subgraphs are processed as
separate CGs by the node embedding and k-GNN layers to produce three distinct graph embeddings.
We concatenate these graph embeddings feature-wise and feed them into an MLP to generate a
prediction. Also, node embedding and k-GNN layer weights are shared for each subgraph type.
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A.2.2 Dataset Statistics and PSC Preprocessing

Table 7: Number of Computation Graphs
(CG), segment samples and test SRCC
folds for each family. We randomly sam-
ple 5k NB-101 architectures and only con-
sider NB-201 networks that do not have
the ‘none’ operation.

Arch. Family CGs Segments Folds
NB-101 5.0k 404.9k 42
NB-201 4096 252.8k 34
HiAML 4.6k 65.1k 10
Inception 580 222.4k 129
Two-Path 6.9k 193.1k 10

We train and evaluate the baseline GNN predictor on ev-
ery unique CG sample. Additional steps are required
to train the PSC predictor since each CG comprises
many segments and can decompose into many distinct
{P, S,C} subgraph sets.

For the intermediate baseline, PSC 1:1 Ratio in Table 1,
we randomly sample 1 {P, S,C} representation from
each segmented CG in our training dataset. Hence, the
number of samples equals the original number of training
instances. For the full PSC predictor, we remove this
restriction and consider all possible {P, S,C} decompo-
sitions which drastically increases the number of samples.

Table 7 lists the number of CGs and {P, S,C} samples
per family. While each {P, S,C} sample for a given CG

focuses on a different network segment, they still describe the same overall architecture and thus
retain the same accuracy label. Therefore, when measuring test SRCC on the PSC predictor, we
divide the test data into folds. Each fold contains only one {P, S,C} instance of a given CG. This
avoids introducing additional ties in the ground-truth labels when calculating SRCC. The number
of folds is equal to the minimum number of segments in any test CGs or 10, whichever is smaller.
Therefore, we calculate the overall test SRCC by averaging SRCC across each fold.

A.3 Segment Extraction with BPE
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(b) BPE

Figure 6: Comparison between subgraphs ex-
tracted with WL-kernel and BPE on a NAS-Bench-
201 cell. Nodes are numerically labeled by a topo-
logical ordering. Best viewed in color. Specifi-
cally, WL-kernel extracts one large subgraph con-
sisting of all highlighted nodes (greyed-out nodes
are omitted). For BPE, all nodes are extracted into
one subgraph, denoted by a unique color.

We compare our BPE subgraph extraction ap-
proach to the Weisfeiler-Leman (WL) Kernel
method adopted by NAS-BOWL [56] in terms
of efficiency. NAS-BOWL applied it on the orig-
inal, shallow cell-based network representation
of NAS-Bench-201 with a depth of 2. We use the
WL-kernel on the CG-level and enumerate all
subgraphs with a maximum depth of 5. The time
and RAM costs of using the WL-kernel scale
poorly as we increase the number of graphs and
nodes per graph. For example, it takes at least 6
hours to extract and count subgraphs from each
NAS-Benchmark family. Moreover, we could
not use more than 1k CGs from the HiAML or
NB-201 families (∼110 and ∼250 nodes per
CG, respectively) without facing memory issues
on the rack server described in Section A.9.

By contrast, our approach brings several benefits
over mining on large graphs with WL-kernels.
The extraction process on sequences is efficient.
Using BPE enables segment extraction from all
benchmark families (over 21k CGs per Tab. 7)
simultaneously in less than 20 minutes using
around 10GB of RAM. Also, BPE provides seg-
ments that are easier to mutate and alleviates lim-
itations with WL-kernel extraction process by
topologically ordering the nodes. Figure 6 com-
pares WL and BPE segmentations on a part of a
CG from the NAS-Bench-201 family. The sub-
graph extracted from the WL method (Fig. 6(a))
cannot cover several nodes within its context
(grey nodes of BN-8, Pool-10, BN-11, and Add-
14) due to a limited depth of 5 and several resid-
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Figure 7: Example of how the BPE-segmented graph in Figure 6(b) is partitioned into Predecessor,
Segment and suCcessor subgraphs based on the selected segment. Specifically, we highlight nodes of
the selected segment in purple, the predecessor in grey and the successor in yellow.

ual connections. This exacerbates the mutation process. In contrast, segmentation with BPE (Fig. 6(b))
spans different subgraph sizes denoted by separate colors.

A.3.1 PSC Partitioning with Parallel Branches

Figure 7 illustrates how a Computational Graph with multiple branches can be cleanly partitioned
into different {P, S,C} based on the choice of segment si. Although the input CG has multiple
parallel branches, the use of topological sort to assign ordered numerical labels to each node. The
numerical labels of each node in a segment are contiguous, while parallel branches are assigned to
either the Predecessor or suCcessor according to their numerical labels.

A.4 Architecture Training Hyperparameters

We elaborate on the training recipes we use to evaluate input baseline architectures as well as those
found by AutoGO.

A.4.1 CIFAR-10 Families

We use the CG representation of the initial and mutated architectures to instantiate networks and train
them using TensorFlow. We evaluate CIFAR-10 networks by training them 3 times for 200 epochs
with a batch size of 256. We optimize the models using RMSProp with an initial learning rate of
1e−3 and a momentum factor of 0.9. We anneal the learning rate according to a cosine schedule.

A.4.2 ImageNet, Segmentation and Pose Estimation

When evaluating ResNet and VGG4 architectures, we first train on ImageNet [58] using timm [66]
with a batch size of 1024. We use an initial learning rate of 0.1 which we anneal using a cosine
schedule. We optimize the model using Stochastic Gradient Descent (SGD) with a momentum factor
of 0.9 and a weight decay of 1e−4. We set a gradient clipping value of 5.0 and use label smoothing
with ϵ = 0.1. We train ResNets for 200 epochs and VGG-16 for 100 epochs. We save the trained
weights to fine-tune on other tasks.

We evaluate Semantic Segmentation performance using semseg [75]. The PSPNet [76] head requires
two inputs to implement properly. The first is the final latent tensor that originally feeds into the

4Base model uses batch normalization
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classifier head, while the second requires grafting an auxiliary residual connection 3/4ths of the way
through the network feature extractor. Furthermore, we adjust the dilation factor and strides of all
convolution and pooling operations in the later part of the network to limit downsampling. After
loading the pretrained ImageNet weights, we fine-tune on Cityscapes [14] images cropped to 7132 for
200 epochs using a batch size of 16. We use SDG with an initial learning rate of 0.01, a momentum
factor of 0.9, and a weight decay of 1e−4.

We implement 2D Human Pose Estimation using [78]. To convert an ImageNet network, we remove
the classifier layers and then append a series of ‘Deconvolution-BatchNorm-ReLU’ blocks which
gradually upsample the latent tensors from 82 to 642. We train on MPII [4] images cropped to 2562

for 140 epochs with a batch size of 32. We optimize our networks using Adam, setting an initial
learning rate of 1e−3 for ResNet-50 and VGG-16, and 5e−4 for ResNet-101. We reduce the learning
rate by a factor of 10 at epochs 90 and 120. Finally, we report performance in terms of the Percentage
of Correct Keypoints (PCK), specifically the Percentage of Correct Keypoints at a head-neck distance
of 0.5 (PCK@h0.5) [77].

A.4.3 Super Resolution

We train networks on DIV2K in the 2x upsampling setting for 1000 epochs with a batch size of 16.
We set an input patch size of 64 for EDSR and 48 for FSRCNN. We minimize the L1 loss using the
Adam optimizer with an initial learning rate of 1e−4, which we reduce using a cosine decay schedule.

A.4.4 Image Denoising

We train networks on a custom in-house image-denoising dataset with 7k images. We set an input
patch size of 128 for all networks. We train each network for 2k epochs under a batch size of 128.
We minimize the L1 loss using the Adam optimizer with an initial learning rate of 1e−3 and a final
learning rate of 1e−6, reduced over a polynomial schedule.

A.5 Additional AutoGO Search Details

We provide additional details on the AutoGO search algorithm from Section 3.2.

Algorithm 1 Sample AutoGO pseudocode for one iteration

1: Input: Pareto frontier O ▷ Only contains the input architecture at iteration 0.
2: Input: Segment Database D
3: Input: Performance Predictor p and FLOPs counter f .
4: Gk = Sample(O, k) ▷ Sample k architectures
5: for g ∈ Gk do
6: PSCg = [] ▷ Empty list of mutants
7: Sg = Segment(g,D)
8: for s ∈ Sample(Sg) do ▷ Source segments
9: {P, s, C} = Partition(Sg, s)

10: for s∗ ∈ Sample(s,D) do ▷ Sample replacement segments
11: {P, s∗, C} = Mutate(P, s∗, C)
12: if MILP ({P, s∗, C}) finds a solution then ▷ Resolution propagation
13: Add {P, s∗, C} to PSCg

14: end if
15: end for
16: end for
17: for All mutated {P, s∗, C} ∈ PSCg do
18: Profile {P, s∗, C} using p and f
19: Update O using {P, s∗, C} and its profiled information.
20: end for
21: end for
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A.5.1 AutoGO Pseudocode Algorithm

Algorithm 1 provides an example of how the AutoGO search procedure executes over one iteration.
AutoGO selects parent architectures from the Pareto frontier O. It then uses the segment database
D to select source and replacement segments to create mutant child architectures. The resolution
propagation MILP ensures the mutants constitute valid architectures. Finally, AutoGO places the
child architectures on the Pareto frontier O according to their performance and hardware-friendliness.

A.5.2 Node Labeling

Before segmentation with BPE, we label nodes in the CG in the form of [current operation, incoming
operations, outgoing operations]. We encode each unique node label with a single Chinese character
symbol, as they span a wide range of symbols compared to other languages.

A.5.3 Selecting a Sparse BPE Vocabulary

When generating V ′ as a vocabulary set utilized by BPE to segment CGs, we include all single-node
segments as these represent the irreducible primitive operations that must exist within the vocabulary
in some form and only filter out multi-node segments.

A.5.4 Selecting Non-Pareto Optimal Architectures

Table 8: Example of the minimum sum of ranks selection
algorithm with a deficit of 3 architectures.

Acc. [%] Rank FLOPs Rank Rank Sum Selected?
91.21 0 260 5 5 No
91.10 1 215 2 3 Yes
91.02 2 200 0 2 Yes
90.75 3 210 1 4 Yes
90.35 4 220 3 7 No
89.05 5 250 4 9 No

When transitioning from iteration e to
e + 1, we select k architectures from
the Pareto frontier O and search history
to serve as parents. If we have suffi-
cient architectures on the Pareto fron-
tier, |O| ≥ k, we randomly sample from
it. However, if |O| < k, there is an ar-
chitecture deficit. We compensate for
this deficit by selecting non-Pareto op-
timal architectures that aim to achieve
our search objective. We select these ar-
chitectures by ranking them in terms of
predicted accuracy and FLOPs, where higher and lower are better, respectively. We then sum these
ranks and select the non-Pareto optimal architectures with the lowest rank sum. Table 8 provides a
simple example of this process. Note how the selection mechanism excludes architectures that have
high performance but are too large, as well as underperforming architectures.

A.5.5 Segment Selection

For each CG g, we sample a set of m source segments si. We sort the segments Sg by FLOPs and
then we select the m/2 segments with the lowest FLOPs while randomly sampling the rest.

A.5.6 Accuracy Predictions and FLOPs Constraints

Once we have a set of valid source and replacement segments, we use the PSC predictor to select
mutations that yield the most significant accuracy gain. We use a FLOPs calculator (or a proprietary
profiling tool for measuring NPU latency/power) to further filter these mutations by rejecting child
architectures whose FLOPs deviate too far from the FLOPs of the input architecture.

A.5.7 Resolution Propagation

Adjustment can not always lead to a solution, meaning the replacement segment can not be used
for mutation at this position and generate a valid CG. We cast this task as a search problem over
the height, width, and channel resolution values on the replacement segment operations. The search
spans mutable operations such as convolutions and pooling. The rest of the operations are immutable
and only forward the resolution without changing its sizes, such as add, activation functions, and
batch normalization. During the search, we limit the adjustments on the values of height, width, and
channel sizes to doubling, halving, or keeping the same.
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Figure 8: Resolution propagation adjusts the res-
olution of mutable operations in the replacement
segment. The Height, Width, and Channel sizes
are adjusted in both ‘Conv’ operations so that the
replacement segment yields the expected output
resolution at the ‘Add’ operation.

Our solution is based on Mixed Integer Linear
Programming (MILP). MILP is an optimiza-
tion problem formulated with linear objectives,
linear constraints, and integer-valued variables.
The input to MILP is the replacement segment
DAG. Each node has two variables per each
height, width, and channel dimension, denoting
input and output resolutions. Each edge is asso-
ciated with a "flow" variable. We define MILP
constraints that regulate the correct flow of reso-
lution. Immutable nodes have input resolutions
equal to output resolutions. The output resolu-
tion for mutable nodes is less than or equal to
the input resolution. The model is optimized
to achieve the expected resolution at the output
nodes. The model is proven infeasible if the
search fails to achieve expected output resolu-
tions.

We briefly illustrate the resolution propagation
process. Figure 8 shows a replacement segment
(yellow) that is being put together with the Pre-
decessor (blue) and Successor (green) partitions
of the network. We provide the output reso-
lution of each operation in the form of (height,
width, channel). Notice how the number of input
and output nodes of the replacement segment
matches the number of output and input nodes
of the Predecessor and Successor, respectively.
Initially, the replacement segment expects input
dimension sizes for its ‘Conv’ and ‘BN’ opera-
tions of (32, 32, 16), which are the resolutions of
the Predecessor’s output nodes. Also, the Succe-
sor expects an input size of (16, 16, 32), which
demands the replacement segment to output a
feature map with this dimension at the ‘Add’ op-
eration. This requires adjusting the resolution of
the 2 mutable ‘Conv’ operations in the replacement segment (highlighted with red borders). Notice
that adjusting one of them or leaving resolutions unadjusted will result in incorrect propagation
because the ‘Add’ operations require its incoming tensors to have the exact same dimensions. We
use MILP to solve this problem by finding the correct adjustment to mutable operations by halving,
doubling, or maintaining resolution sizes.

A.6 CIFAR-10 FLOPs Restraint Ablation

Table 9 provides a full ablation study of AutoGO on all 5 CIFAR-10 families in terms of FLOPs
reduction constraint. We consider two settings where AutoGO can reduce FLOPs by at most -20%
relative to the baseline architecture, or can reduce them freely (-100%), while always limiting FLOPs
increases to be at most +10%. We again note how the best architecture for each family was found
using segment mutations.

We observe that the segment-level mutation is a better fit for finding high-performance architectures
under wider FLOPs constraints. For example, on HiAML, the segment-mutation cannot improve
the accuracy of the base architecture when we impose a FLOPs reduction limit of -20%, yet it can
increase the accuracy by up to 0.43% on average when we remove the restriction, even though
the best architecture only reduces FLOPs by -19.76%. From this result, we infer that FLOPs
restrictions hamper the exploration of the segment-level mutation. The only family where the -20%
FLOPs constraint produces a better architecture than the no-constraint setting is Inception, which is
already the second-largest family with a base model size of nearly 500 MegaFLOPs. By contrast,
the operation-level mutations require FLOPs reduction constraints to break even with the baseline
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Table 9: Full ablation study of AutoGO on all 5 CIFAR-10 families considering choice of mutation
unit {Operation, Segment}, predictor {GNN, PSC} and FLOPs [1e6] reduction (δ) constraint {-20%,
-100%}, extending the results of Table 2. For each experiment, we report the accuracy [%] and FLOPs
[1e6] (raw and ∆ relative to the baseline). We bold and italicize the best and second best result per
family, respectively.

Baseline Operator + GNN Segment + GNN Segment + PSC
Family (δFLOPs) Acc. FLOPs Acc. FLOPs Acc. FLOPs Acc. FLOPs
NB-101 (-20%) 95.18% 11722 95.16% 9407 95.31% 10817 95.06% 9606
∆ -0.02% -19.75% +0.13% -7.72% -0.12% -18.05%
NB-101 (-100%) 93.12% 1591 95.25% 10513 95.45% 11118
∆ -2.06% -86.43% +0.07% -10.31% +0.27% -5.15%

NB-201 (-20%) 93.50% 313 93.28% 250 92.86% 250 93.32% 251
∆ -0.22% -20.13% -0.34% -20.13% -0.18% -19.81%
NB-201 (-100%) 93.37% 232 93.57% 294 93.84% 303
∆ -0.13% -25.88% +0.07% -6.07% +0.34% -3.19%

HiAML (-20%) 92.32% 246 92.00% 198 92.08% 198 92.22% 230
∆ -0.32% -19.51% -0.24% -19.51% -0.10% -6.50%
HiAML (-100%) 84.63% 28 92.62% 168 92.75% 198
∆ -7.69% -88.62% +0.30% -31.71% +0.43% -19.51%

Inception (-20%) 93.50% 494 92.97% 399 93.12% 399 93.52% 474
∆ -0.23% -19.23% -0.08% -19.23% +0.32% -4.05%
Inception (-100%) 92.97% 319 93.31% 461 93.30% 478
∆ -0.23% -35.43% +0.11% -6.68% +0.10% -3.24%

Two-Path (-20%) 87.90% 116 88.63% 106 88.31% 93 88.68% 94
∆ +0.73% -8.62% +0.41% -19.83% +0.78% -18.97%
Two-Path (-100%) 88.63% 106 89.16% 48 88.94% 91
∆ +0.73% -8.62% +1.26% -58.62% +1.04% -21.55%

architectures. For example, when no FLOPs constraint is imposed, the operation-level mutation will
find HiAML and NB-101 architectures that remove enough convolution nodes to reduce the model
size by more than 85%. These changes drastically reduce the accuracy by over 7.5% on HiAML.

A.7 AutoGO Components Evaluation

We evaluate the search efficiency on the benchmark families by measuring the speed of each com-
ponent. The time to execute the search largely depends on the choice of input architecture, i.e.,
architectures with more nodes and complex topologies like Inception form large search spaces. On
the HiAML and NB-201 families, it takes 15 minutes on average to execute a search iteration using
the PSC predictor and segment-level mutation. AutoGO visits over 1000 unique architectures per
iteration and can find high-performance architectures in around an hour or less.

Specifically, it takes around 1.5 to 2 minutes to segment a parent architecture using BPE, select source
and replacement segments, perform resolution propagation, and rank the mutations using the predictor.
The bulk of this time is spent between searching the database for replacement segments, confirming
their validity and measuring the performance of each mutation, while the BPE segmentation and
source segment selection processes take less than 1 millisecond each. When gauging execution time,
we sequentially mutate each parent architecture per iteration, but note that this process can be sped
up with parallelization.

Resolution propagation with MILP takes 0.11 seconds on average to find a solution or determine
that the problem is infeasible. We compare it to an exhaustive search approach by enumerating all
candidate solutions. It takes, on average, 0.4 seconds to find a solution and more than 4 seconds for
infeasible solutions. Our subgraph extraction process for generating the segment vocabulary is very
efficient as the BPE operates on a sequence representation of the CGs. It takes less than 20 minutes
to sort all CG topologically, and extract subsequences with BPE.

To provide specific examples of the search time, consider the ResNet-50 Arch 2 and EDSR Arch
3 architectures from Tables 3 and 4, respectively. Mutating the initial ResNet-50 and EDSR CGs
takes 1.8 and 1.5 minutes, respectively, on our hardware. It takes longer to mutate ResNet-50 simply
because the CG contains more nodes (108) than EDSR, whose CG only has 67 nodes. Moreover,
since the base EDSR architecture only uses Convolutions and ReLU operations, we exclude segments
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Figure 9: Example mutations performed by AutoGO to create EDSR Arch 2 in Table 4 by swapping
out 8 EDSR blocks. Specifically, AutoGO will swap out multiple, simple ‘Conv-ReLU-Conv’ residual
blocks for larger blocks that have operations on both branches.

that contain batchnorm and pooling operations, which reduces the number of replacement segments
to consider during mutation.

The first iteration of AutoGO mutates the initial architecture while all subsequent iterations mutate 10
parent architectures. Given that ResNet-50 Arch 2 was found in iteration 3, it took AutoGO around

1.8min + 2iter ∗ 10arch/iter ∗ 1.8min/arch = 37.8min

to discover that architecture. Likewise, EDSR Arch 3 was found in iteration 5, which took

1.5min + 4iter ∗ 10arch/iter ∗ 1.5min/arch = 61.5min
to find. Finally, we note that these measurements and calculations assume sequential processing
of parent architectures. In practice (e.g., runtime numbers in Sec 4.2), we use multi-processing
techniques to mutate multiple parent architectures simultaneously to further speedup the process.

A.8 EDSR Mutation Example

Figure 9 illustrates three distinct mutations that take place to produce an EDSR AutoGO architecture.
Initially, the EDSR backbone contains 16 ‘Conv-ReLU-Conv’ residual blocks. To create the mutant
network, AutoGO removed 8 of these blocks, denoting half the backbone structure, and replaced
them with three double-branch structures that also consist of just convolutions and ReLU activations.

A.9 Hardware and Software Setup

We run our experiments on rack servers using Intel Xeon Gold 6140 CPUs. Each server is equipped
with 8 NVIDIA V100 32GB GPUs and 756GB RAM. We execute our search and experiments on
Python 3 using PyTorch==1.8.1 and TensorFlow==1.15.0. We implement our predictors using
PyTorch-Geometric==1.7.1. We use SentencePiece [34] to perform BPE. Finally, we implement
our MILP using a Coin-CBC solver [18] and pyomo==6.4.0 [23].
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