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Abstract

The radiology report is the main form of communication between radiologists and
other clinicians. Prior work in natural language processing in radiology reports
has shown the value of developing methods tailored for individual tasks such as
identifying reports with critical results or disease detection. Meanwhile, English
and biomedical natural language understanding benchmarks such as the General
Language Understanding and Evaluation as well as Biomedical Language Under-
standing and Reasoning Benchmark have motivated the development of models
that can be easily adapted to address many tasks in those domains. Here, we charac-
terize the radiology report as a distinct domain and introduce RaLEs, the Radiology
Language Evaluations, as a benchmark for natural language understanding and gen-
eration in radiology. RaLEs is comprised of six natural language understanding and
generation evaluations including the extraction of anatomical and disease entities
and their relations, procedure selection, and report summarization. We character-
ize the performance of models designed for the general, biomedical, clinical and
radiology domains across these tasks. We find that advances in the general and
biomedical domains do not necessarily translate to radiology, and that certain more
advanced models from the general domain can perform comparably to smaller
clinical-specific models. The limited performance of existing pre-trained models on
RaLEs highlights the opportunity to improve domain-specific self-supervised mod-
els for natural language processing in radiology. We propose RaLEs as a benchmark
to promote and track the development of such domain-specific radiology language
models. RaLEs is available at https://github.com/StanfordMIMI/RaLEs.

1 Introduction
Radiology reports convey a radiologist’s interpretation of a medical image. The reports have char-
acteristic content and structure that differentiate them from other types of text. Natural language
processing of radiology reports can aid research efforts and ultimately lead to improved quality
of care. However, many recent approaches focus on solving single radiology tasks, often report
performance only on private datasets, fail to compare proposed methods with relevant baselines, and
do not publish code or models [5]. Further, reports are typically not publicly available due to patient
privacy concerns. The development of private, single-task models limits the measurement of progress
in NLP for radiology broadly.
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Model benchmarking in other domains, such as general English or biomedical text, has enabled thor-
ough comparisons of existing methods across tasks that evaluate model performance and alignment
with human evaluation [53; 20; 35]. This has promoted the development of state of the art models that
can be adapted to address multiple tasks. Radiology reports are excluded from existing biomedical
or clinical benchmarks, which often feature evaluations on datasets that do not reflect real-world
clinical use cases. In contrast, 75% of current current FDA-approved AI applications target radiology
([18]), with a potential for impact on over 700 million studies (and associated reports) annually [39].
However, it is unclear how advances in other domains translate to the unique domain of radiology
language and reports.

To address the aforementioned challenges, in this work we develop RaLEs, a benchmark for evalua-
tions of natural language understanding (NLU) and generation (NLG) in the radiology domain. Our
main contributions are:

1. Curating a set of 6 datasets across 4 tasks, all of which are publicly available. Among these
datasets, 1 is newly created and introduced in this work (procedure selection), and 1 is newly
de-identified and released into the public domain (Stanza radiology named entity recognition).

2. We benchmark and report RaLEs multi-metric performance on 16 models from the general,
biomedical, clinical and radiology domains. We find that on average, clinical and radiology-
specific models outperform general and biomedical models by 1.5 and 0.5% on preferred
metrics.

3. We consolidate progress by developing RaLEs NLU and NLG scores, and release code for
dataset standardization, model fine-tuning and evaluation to spur future benchmarking.

2 Related work
2.1 Radiology natural language processing

Prior work has reviewed the status of NLP in radiology. In a systematic review, Casey et al. [5]
identified that <20% of previously published radiology NLP methods used deep learning, with
the majority relying on other machine learning or rule-based systems. A significant portion of
these studies primarily concentrated on tasks like information extraction (accounting for 45%) and
classification (making up 50%). Regarding reproducibility, only 14 and 15 of the 164 studies reviewed
made their data and code available, respectively. Fewer than 20% of studied compared proposed
methods with alternate approaches. In a separate study, Pons et al. [44] reported that 20 of 67 studies
reported operational use, the majority of which were not intended for integration into a clinical
workflow.

Most existing applications of NLP in radiology can be framed as NLU or NLG tasks. These include
information extraction (named entity recognition and/or relation extraction), text classification, and
text summarization [40; 38]. These methods can enable applications such as extracting labels from
reports to annotate images [26; 48], automatic image protocol selection, defining patient cohorts,
monitoring appropriate use and clinical follow-up of medical images, and summarizing prior imaging
studies [40; 38].

2.2 Benchmarks in other domains

Benchmarks that systematically compare the performance of existing models in the general English
domain, such as GLUE or SuperGLUE [53; 52], have enabled comparisons of models across a variety
of NLU tasks, promoting the development of pre-trained models that can be adapted to a variety of
tasks using transfer learning or other adaptation methods. Other benchmarks have been proposed
for biomedical language understanding and reasoning, such as the BLURB Benchmark [20], which
contains 13 datasets and 6 tasks, focusing on the performance of systems across scientific biomedical
text. The Biomedical Language Understanding Evaluation (BLUE) benchmark [43], includes 6
biomedical scientific text datasets and 4 clinical datasets evaluating sentence similarity, named entity
recognition, relation extraction, document classification and inference. While comprehensive, the
BLUE benchmark does not include any radiology text-based tasks. This highlights a broader issue:
no existing benchmarks broadly compare the performance of models in a curated set of radiology
tasks, which makes it challenging to quantify the efficacy of general-purpose language models on
domain-specific radiology tasks.
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3 Radiology reports as a domain
Three key characteristics define the domain of radiology reports: a) content, b) context and c)
closed source. In terms of content, radiology reports contain a limited specialized vocabulary, often
existing only in the context of images. For example, words like pneumothorax, cardiomegaly, and
radiodensity, referring to air in the space surrounding the lungs, an enlarged heart, and opacity to
X-rays, are frequently found in radiology reports. Such words are contained in Radiology Lexicon1, a
comprehensive set of radiology terms that contains approximately 30,000 entries. An additional aspect
of content involves structure. Radiology reports typically follow a document structure comprised of a
header containing patient history and exam-related information, followed by mentions of relevant
comparison studies, details about the imaging technique utilized, a detailed description of image
findings, and an impression that summarizes findings contextualized to the patient’s condition [30; 23].
Sentences within reports are typically short, declarative and factual, and are written in the present
tense. The content (unique vocabulary, format, and narrative style) of radiology reports is an important
feature of this specialized domain.

Another aspect that characterizes this domain is the context surrounding radiology reports. Reports
only exist in the presence of an accompanying medical image. Typically they exist within the context
of electronic medical records, which are collections of documents, images and other signals that
describe a patient’s medical history. The content of these reports is embedded within the current
radiology and medical knowledge.

Finally, due to existing concerns and regulations that protect patient health information, the vast
majority of radiology reports exist within private data warehouses, often requiring institutional review
board approval for access. The largest publicly available collections of reports, such as MIMIC-III,
MIMIC-CXR, PadChest, and Open-i datasets [29; 28; 4; 15], have undergone de-identification and
are typically made available subject to agreement to terms of data use protecting patient privacy.

4 RaLEs: Radiology Language Evaluations
The following sections outline RaLEs. The tasks and datasets were selected to reflect real-world use
cases, ensuring they are both challenging and achievable. We outline multiple metrics of success for
well-rounded evaluation for each dataset-task pair, as well as differentiate the performance of the
model in data from institutions unseen during training where available.

4.1 Tasks and datasets

Table 1: Overview of datasets and tasks in RaLEs.

Category Dataset Task # Train/Dev/Test Anatomy/Modality # Sources New

NLU

RadGraph [27] RE 425 / 75 / 100 Chest / XR 2
RadGraph [27] NER 425 / 75 / 100 Chest / XR 2
RadSpRL [11] RE 848 / 105 / 106 Chest / XR 1
Stanza Radiology [58] NER 2,461 / 200 / 295 Chest / CT 3 "

CT Procedure Selection Clf. 58,091 / 19,364 / 19,364 Varied / CT 1 "

NLG MEDIQA 2021[3] Summ. 91,544 / 4,000 / 600 Chest / XR 2
BioNLP 2023[14] Summ. 59,320 / 7,413 / 13,057 Varied / CT, MR 1

XR=X-ray, CT=Computed Tomography, MR=Magnetic Resonance Imaging, NLU=Natural Language
Understanding, NLG=Natural Language Generation, New= newly released with this work, Varied=Abdomen,
Pelvis, Neck, Spine, Head, etc., see A and B

Table 1 summarizes tasks and datasets within RaLEs. We include four tasks as part of the initial
RaLEs: named entity recognition (NER), relation extraction (RE), document classification and
document summarization. The datasets selected for each task are described as follows.

RadGraph [27] consists of 600 manually annotated chest x-ray reports from MIMIC-CXR and
CheXpert datasets [28; 26]. A board-certified radiologist labeled the reports with named entities,
consisting of Observation - definitely present, Observation - definitely absent, Observation - uncertain,
and Anatomy, reflecting key entities in reports corresponding to observations (which may be negated
or hedged) as well as anatomical structures. Pairs of entities may be related by one of three types:
suggestive of, located at, and modify. We use this dataset to evaluate models on NER and RE. Test

1https://www.radlex.org
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set evaluations are carried out separately on MIMIC-CXR and CheXpert, reflecting in and out of
distribution performance, respectively.

RadSpRL [11] consists of 2000 manually annotated chest x-ray reports from the Open-i dataset
[15]. A medical librarian and an MD annotated entities and relations that represent spatial relations.
Spans of text were annotated as a relationship between a Spatial indicator with another span of
text consisting of one of four spatial roles: Trajector, Landmark, Hedge, and Diagnosis. We
evaluate models on RE with this dataset. We use only documents with labeled relations for training
and evaluation. Though prior performance is reported on cross-validation sets, we create a fixed
train/dev/test split on the report level to limit excessive compute requirements of hyperparameter
exploration across each split for each model.

Stanza Radiology [58] consists of 150 manually annotated chest computed tomography reports
from three hospitals. Two radiologists annotated spans of text in the reports with five entity types:
Anatomy, Observation, Anatomy modifier, Observation modifier, and Uncertainty. This dataset is
used for NER evaluations. As part of RaLEs, we have deidentified these reports using a publicly
available hidden-in-plain-sight de-identification algorithm [7], and release this previously private
dataset to the public.

MIMIC-III procedure selection is a newly created dataset, released alongside this work, that consists
of 96,819 documents extracted from individual computed tomography reports from the MIMIC-III
dataset [29]. The reason for exam and procedure title were extracted from each report using regular
expressions. The task consists of appropriately classifying reason for exam documents into one of 46
normalized procedure titles. The procedure titles were normalized to a standardized vocabulary [50]
by manually mapping a set of extracted procedure titles to the vocabulary. Normalization was carried
out by an MD and a board-certified radiologist. Additional details of the curation of this dataset are in
A. This evaluation was developed to simulate the selection of a procedure given a clinician provided
reason for exam, a task that often requires expert human oversight in current practice.

MEDIQA 2021 report summarization [3] consists of 96,144 chest X-ray reports with extracted
Findings and Impression sections. The task is summarizing the Findings section of reports, using the
Impression as ground truth. Models are trained using reports from one dataset (MIMIC-CXR) and
validated using reports from MIMIC-CXR and the Open-I dataset (from Indiana). The test evaluation
is carried out on reports from an institution seen during validation (Indiana), as well as an institution
present only in the test set (Stanford), which aims to measure out-of-domain generalization.

BioNLP 2023 report summarization [14] consists of 79,790 multi-modal reports [8] extracted from
the MIMIC-III dataset [29] that are separated into Findings and Impression sections. The task is to
create a summary in the same fashion as MEDIQA 2021. The reports are of computed tomography
and magnetic resonance imaging examinations, with head, chest, abdomen, spine and sinuses present
as different anatomies (Details in B. Test evaluations include anatomies/modalities unseen in training
data.

4.2 Evaluation strategy

4.2.1 Models

Table 2: Masked language models evaluated. Number of parameters in millions.
Domain Model # Params

English

BERT {110, 340}
RoBERTa {125, 355}
ELECTRA {14,110,345}
DeBERTa-v3 {86, 304}

Biomedical PubMedBERT 110
BioLinkBERT {110, 340}

Clinical BioClinicalBERT 110
GatorTron 345

Radiology RadBERT1 110
RadBERT2 125
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We evaluate various pre-trained masked language models from the general, biomedical, clinical and
radiology domains. Table 2 lists the models evaluated. We refer the reader to the respective publication
for details on the pretraining strategy including source of vocabulary, corpus and model-specific
optimizations.

From the general English domain, where models are trained using sources such as Wikipedia and
Google Books, we evaluate BERT [17] in its base and large configurations, RoBERTa [36] in its base
and large configurations, ELECTRA [9] in its small, base and large configurations, and DeBERTa-v3
[24] in its base and large configuration.

From the biomedical domain, we examine models pre-trained on scientific text contained in PubMed:
PubMedBERT-base [19], which pretrains a BERT-base model using biomedical scientific abstracts
and full-text articles as a corpus, and BioLinkBERT-base and large [56], which uses a similar
pretraining corpus but incorporates an additional pretraining objective consisting of identifying
document links.

From the clinical domain, we evaluate BioClinicalBERT [2], a BioBERT [34] biomedical model (i.e.,
a BERT-base model continually pretrained on PubMed text), which is further continually pretrained
on MIMIC-III clinical notes. In addition, we examine GatorTron-base[55], a MegaTronBERT model
[47] pretrained using clinical notes from the University of Florida, PubMed text and Wikipedia
articles (500GB of text).

Finally, we examine the performance of models developed specifically for the radiology domain,
both named RadBERT by their creators. One model, which we refer to as RadBERT1, corresponds
to a BioBERT model continually pretrained on 4 million radiology reports from Stanford Health
Care [6]. The second model, which we refer to as RadBERT2, corresponds to a BioMed-RoBERTa
(RoBERTA-base model continually pretrained on 2.7 million scientific papers [22] ) model further
pretrained on 4.4 million radiology reports from various facilities of the U.S. Department of Veterans
Affairs health system.

4.2.2 NLU evaluations

We fine-tune each model using all documents in training split and perform task-specific hyperparame-
ter optimization as detailed in C. We select the best model according to the best run preferred metric
on the validation set, as defined by each dataset. We report the performance of models on test sets
using the best model for each model type/task. We employ different fine-tuning strategies for each
task, described as follows.

For RE, datasets (RadGraph, RadSpRL), we use DyGIE++ [51], a multi-task NER and RE framework
that learns a dynamic graph that models relationships between text spans. Span representations
are obtained from a language model embedding. We use DyGIE++ as a NER extraction method
for RadGraph models as we empirically observed improved performance compared to the Stanza
NER approach which cannot leverage the relation labels. For document classification, a randomly
initialized head of dimensions (h, c) where h corresponds to the hidden size and c corresponds to
the number of classes, is added as a final layer to classify the classification [CLS] token. For Stanza
NER, a randomly initialized head of dimensions (h, c) is added to classify each token. For words
comprised of multiple sub-word tokens, the label is assigned to the first token.

Consistent with prior evaluations for existing datasets, the preferred metric for all evaluations is
the micro-averaged F1 score. For the newly created procedure selection task, we select accuracy
as the preferred metric as it more closely reflects success in clinical settings. We report a RaLEs
NLU score as the average of the preferred metrics across the NLU datasets. In addition, we perform
label-stratified sampling evaluations using 1% and 10% labels during training and validation to assess
how dataset scaling across domain-specific and domain-agnostic models affects their performance.
We also examine separability of representations generated by each model by keeping language model
weights frozen and training only a linear probe, or only the graph layers in the case of DyGIE++
models. Furthermore, we evaluate models in metrics that may be relevant for deployment, focusing
on model calibration and uncertainty. We include in RaLEs metrics measuring calibration and
uncertainty, prediction quality, and information criteria. We detail the results for the document
classification (procedure selection) task on these metrics in Appendix D. Model fine-tuning is
performed in private infrastructure using a single NVIDIA TITAN RTX or RTX A6000 GPU. For
each model, hyperparameter exploration takes on average 1 hour for DyGIE++ models, 1 hour for
Stanza NER, and 3 hours for the procedure selection task (in total approximately 400 GPU hours).
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4.2.3 NLG evaluations

For report summarization, we fine-tune each model to predict the Impressions section of a radiology
report given the Findings, using the MEDIQA2021 and BioNLP 2023 datasets. Specifically, we
construct an encoder-decoder model for sequence generation [46] using the same pretrained model as
the encoder and the decoder, and newly initialize a cross-attention layer. All weights are updated
during model fine-tuning. Due to increased computational cost of hyperparameter exploration for
each model (10-20 hours per training run on an RTX A6000 GPU), we chose a representative model
from each domain for study: ELECTRAbase, BioLinkBERTbase, GatorTron, and RadBERT2. Further,
we include our evaluations of two recently proposed report summarization-specific approaches:
RadiologyGPT and RadAdapt [37; 49].

We evaluate the quality of generated summaries using commonly used lexical similarity metrics,
ROUGE-2, ROUGE-L [31; 25], as well as recently proposed metrics to evaluate factual correctness of
a report [57; 12]. For factual correctness in Chest X-ray report summarization (MEDIQA 2021), we
examine the F1-CheXbert score, which measures the micro-averaged F1 score of 14 disease mentions
extracted from a generated summary, using the original as ground truth [57]. In addition, we report
the F1-RadGraph [12] (RG) metric, which compares the agreement of anatomy and observation
entities and their relations extracted in the generated versus the original summary. We report the
test-set results using the ROUGE, CheXbert and RG metrics, and summarize model performance in
the RaLEs NLG score, which is the average of the ROUGE-L and RG metrics across both datasets.

5 Results and discussion
5.1 NLU

Table 3: Summary of results for NLU tasks.

Model RGNER† RGNER‡ RGRE† RGRE‡ RadSpRL Stanza Procedure NLU Score
BERTbase 93.0 86.3 82.7 70.6 91.2 83.7 65.4 81.8
BERTlarge 92.6 88.5 82.0 71.4 85.3 85.4 64.9 81.4
RoBERTabase 92.4 89.7 81.3 70.2 89.6 81.5 64.2 81.3
RoBERTalarge 92.7 89.7 83.0 73.1 82.1 83.0 64.9 81.2
ELECTRAsmall 92.6 89.7 82.0 70.7 88.1 73.1 61.5 79.7
ELECTRAbase 93.2 85.9 83.2 71.9 89.9 85.2 64.4 82.0
ELECTRAlarge 93.0 86.0 82.3 71.0 87.5 84.9 64.2 81.3
DeBERTa-V3base 93.4 89.8 84.6 73.4 89.8 84.1 65.7 83.0
DeBERTa-V3large 93.1 89.9 83.8 73.4 89.4 85.1 64.2 82.7
PubMedBERT 92.1 86.8 82.9 71.7 88.9 85.0 65.9 81.9
BioLinkBERTbase 93.2 90.6 83.6 75.1 91.0 83.7 65.7 83.3
BioLinkBERTlarge 93.2 90.3 82.6 72.4 89.6 84.6 65.7 82.6
BioClinicalBERT 93.7 90.4 82.0 72.8 91.9 85.6 65.4 83.1
GatorTron 93.5 89.8 82.9 74.6 92.0 84.3 66.7 83.4
RadBERT1 93.8 90.1 81.2 72.1 91.2 85.1 65.4 82.7
RadBERT2 94.0 90.7 81.9 73.4 91.2 85.5 65.8 83.2

Prior SOTA§ 94.0 90.5 82.3 72.5 85.6 84.8 - -

†: MIMIC-CXR (in domain), ‡: CheXpert (out of domain), §: RadGraph [27], RadSpRL [11], Stanza [58]

Table 3 summarizes the results of the NLU evaluation. No single model outperforms all others across
all tasks. In general, biomedical or clinical models outperform general domain models. Furthermore,
most models perform similarly (within 2-3 percentage points of each other; standard deviation of
average performance across models is 1).

5.1.1 Impact of domain, pretraining objective and model size

Figure 1 shows the summarized performance of models across domain and size. Overall, general
English models perform worse than their more specialized counterparts. Furthermore, models in
the clinical/radiology domain outperform those from the biomedical and general domains. This is
consistent with prior observations of benefits of using domain specific corpora during pretraining[19;
55; 54]. This trend is consistent across varying availability of labeled fine-tuning data (Figure 2).

Additionally, improved pretraining objectives typically lead to improvements in RaLEs NLU perfor-
mance. For example, ELECTRA models (adversarially trained to predict replaced tokens) outperform
models trained only with masked language modeling objectives (such as BERT). DeBERTa-V3, which
in addition to replaced token detection enhances token representation with disentangled attention,
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Figure 1: Model size and domain vs RaLEs NLU performance

obtains improvements in both in GLUE as well as in RaLEs NLU. Similarly, though BioLinkBERT
and PubMedBERT share similar scientific pretraining corpora, the document relation prediction
objective of BioLinkBERT leads to improved performance in both BLURB as well as RaLEs NLU.

However, improvements in performance in other benchmarks, such as GLUE or BLURB, do not
directly translate to improvements in RaLEs NLU. This is illustrated in Figure 3 which shows that 10
percentage point improvements in GLUE or BLURB lead to a 1-2 percent improvement in RaLEs
NLU performance. We hypothesize that the decrease in benefit stems from the domain characteristics
of radiology that differentiate it from other text, as proposed in Section 3. Furhermore, we observe
that existing radiology domain adaptation hurts alternate domain performance, exemplified by the
relatively low BLURB score for RadBERT1,2 models seen in Figure 3. Finally, we find that given a
fixed architecture, an increase in parameter count (O(300M) vs O(100M)) does not lead to improved
overall performance. This observations holds for both English and biomedical models, which are
the only ones publicly available in different sizes. Similar results have been previously observed
in other domains [20; 45], though the impact of base model size on domain adaptation is yet to be
systematically studied.

5.2 NLG

Table 4 presents the results for the report summarization task, with prior results referenced for
comparison. Similarly to NLU results, no model is consistently superior across all metrics. GatorTron,
the model from the clinical domain, outperforms the other evaluated fine-tuned models slightly on
lexical similarity (ROUGE-2 and ROUGE-L). Using these metrics as reference, the encoder-decoder
framework as implemented here performs inferiorly to the best existing performing models. The best
MEDIQA 2021 prior model [10], in addition to an abstractive-summarization-specific architecture,
uses a domain adaptation module to improve performance on Indiana reports. However, as can be
seen from our evaluation on fully held out Stanford reports in Appendix G, most of the benefits
of such specialized approaches may not generalize to sites not seen during training. Further, our
approach seems to favor factual correctness, with BioLinkBERT and GatorTron models having
the best performance according to the CheXbert and RG metrics. RadAdapt [49], a label efficient
adaptation of a clinical large language model, matches the overall NLG performance of our best
fine-tuned model. As the RadAdapt authors recognize, however, it is unclear to what extent its
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Figure 2: RaLEs NLU performance by model domain. Values are averaged across model domain,
error bars are standard deviation. There are no statistically significant pairwise differences between
model categories within the same label availability, as determined by Mann-Whitney U-tests with
Bonferroni correction.

Figure 3: General (English, left) and biomedical (right) benchmark vs RaLEs NLU performance.

performance is affected by possible leakage of testing data during the base model pre-training stage.
We aim to further evaluate other large language models in future versions of RaLEs.
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Table 4: Summary of results for NLG tasks (abstractive report summarization).
MEDIQA 2021 BioNLP 2023

Model R-2 R-L CheXbert RG R-2 R-L RG NLG score

ELECTRAbase .238 .381 .710 .378 .156 .274 .229 .316
BioLinkBERTbase .245 .388 .725 .391 .183 .297 .272 .337
GatorTron .250 .386 .719 .406 .189 .303 .283 .345
RadBERT2 .237 .382 .709 .381 .184 .300 .271 .334
RadAdapt§ .253 .393 - .345 .212 .324 .342 .345
RadiologyGPT§ .074 .148 .601 .135 .127 .209 .242 .184

Prior SOTA† .436 .557 .718 - - - - -
Prior Baseline‡ .264 .389 .610 - - - - -

R-2/L: ROUGE 2/L, RG: F1-RadGraph, †:MEDIQA[10], ‡:from [3], §:our evaluation of [49]
and [37]

5.3 Ethical considerations

RaLEs provides a framework for benchmarking advances in radiology NLP. The current version
of RaLEs uses the RadSpRL dataset, which has a CC BY 4.0 license. Datasets stemming from
MIMIC, including RadGraph, have a PhysioNetCredentialed Health Data License 1.5.0 which
prohibit commercial use, data sharing and patient or institution identification attempts. For the
newly released Stanza NER dataset, the dataset will be accompanied by an analogous Research Use
Agreement following institutional review board approval, which was obtained to access the reports.
For all datasets we have followed the appropriate research use, have not attempted re-identification
of individuals, and provide instructions for data access in the accompanying code. Demographic
characteristics of individuals included in RadGraph [27] and MIMIC-III [29] datasets are described
in their original publications. Demographic characteristics for the Stanza NER [58], MEDIQA 2021
[3] and Indiana [16] dataset (from which the RadSpRL dataset is derived) are not reported since the
radiology reports have been de-identified and these characteristics are not otherwise available. We do
not foresee any potential risks following appropriate use of RaLEs as a tool to measure progress in
NLP research. We strongly discourage the use of models trained using our framework for clinical care
or advice without adequately studying the performance and limitations on specific patient populations
that reflect intended use.

5.4 Limitations

An important limitation of our analysis stems from the limited availability of publicly available
radiology reports and datasets. This is consistent with prior observations that healthcare algorithms
trained on US patient data rely on data from a handful of states [32]. While we release a new dataset
from a new institution, future efforts should promote the availability of training and/or evaluation
datasets from additional institutions, geographic locations, and languages. Aside from geographic
diversity, we note that most publicly available reports and evaluations focus on chest X-ray reports
which tend to be shorter and simpler than reports of other modalities and anatomies (see example
lengths in Table 13). Our newly introduced procedure selection dataset expands the scope of current
data by focusing on a different modality (computed tomography) across all anatomies. Finally,
while we present extensive evaluations across models of different domains, we intend RaLEs to be a
dynamic benchmark, with expansions across newer datasets, tasks, and model evaluations (including
adding newer models and estimates of variance of performance).

6 Conclusion
Radiology reports are defined by their content, context and restricted access. RaLEs defines a
benchmark for meassuring progress in NLP in the radiology domain, focusing on multifaceted
evaluations that reflect real-world use cases in radiology research and/or practice. The results showed
that no single model, including existing radiology-specific domain adapted models, outperforms
others across all evaluations.
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A MIMIC-III procedure selection dataset
The MIMIC-III dataset consists of electronic health record data of individuals admitted to critical
care units at a large tertiary care hospitals [29]. Within the data made in MIMIC-III are clinical notes,
among which are 500,000+ radiology reports. Using regular expressions on the report titles, we
select 97,304 containing CT in the title. From the report header, the procedure title is extracted and
procedure titles are grouped into a set of distinct procedure titles. These were manually reviewed by
an MD and a board-certified radiologist, and mapped to the LOINC/RSNA Radiology Playbook2, a
standardized naming and coding convention for 1,000 commonly performed radiology procedures.
Each report was then labeled with an corresponding LOINC/RSNA procedure code. Procedure codes
that appeared less than 100 times in the corpus were aggregated into an "Other category". This led to
a total of 45 categories.

To obtain the source data for each report, regular expressions were used to extract the Clinical History
section of the report. The extracted segment of text is used as a proxy for the Reason for Exam, the
motivating clinical context expressed by the clinician when ordering a radiology procedure. The task
consists of mapping a free-text Reason for Exam to a corresponding procedure code.

A stratified sampling strategy based on the report label was used to obtain final train/dev/test splits
consisting of 60/20/20 percent of the total reports, respectively.

Figure 4: Distribution of CT procedure codes in MIMIC-III procedure selection task.

Figure 4 illustrates the distribution of report labels in the dataset. We note that the majority of entries
correspond to a minority of classes, with CT Head without contrast being the most common class.
Notably, there is a long tail of procedures, motivating the stratified sampling strategy. Examples of
entries in the dataset include: SEIZURES → CT Head WO contr, please eval for residual stones →

2https://www.rsna.org/practice-tools/data-tools-and-standards/radlex-radiology-lexicon/procedure-names-
radlex-playbook
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CT Abd+Pelvis WO contr, and Evaluate colon, status of ischemic colitis. → CT Abd+Pelvis W contr
IV.

In addition to stratifying by labels, our provided annotated data provides a separate dev and test sets,
consisting of patients that do not appear in the train, or train ∪ dev splits, respectively. The number
of patients and documents in each set are detailed in Table 5. Performance of models on the set
of previously unseen patients is further examined in I, where in general a decrease in performance
compared to the overall test set is observed. We hypothesize that in application settings there may be
a subset of patients seen during model training, as well as a subset of patients new to the institution.
Therefore, it would be relevant to know how a model will perform on a mix of the two, as well as on
unseen patients only as a measure of model generalizability. Thus, we provide two dev/test sets so
that this difference can be kept in mind in the model design stage.

Table 5: Summary of data splits for MIMIC III Procedure dataset
Set n Patients n Samples
Train 19,811 58,091
Dev 11,467 19,364
Devnew only 2,170 2,603
Test 11,428 19,364
Testnew only 1,497 1,746

Devnew only and Testnew only are sub-
sets of Dev and Test that only contain
documents of patients not present in
Train, or Train ∪ Dev splits.

B BioNLP Summarization Data

Table 6: Number of reports available in the BioNLP2023 report summarization task.
Modality/Body Part Number of Reports

Train Dev Test Total

CT Abdomen-pelvis 12791 1598 798 15187
CT Chest 10228 1277 639 12144
CT Head 25121 3139 1569 29829
CT Neck 911 113 56 1080
CT Sinus 0 0 633 633
CT Spine 4413 550 275 5238
MR Abdomen 0 0 530 530
MR Head 5850 730 365 6945
MR Neck 0 0 114 114
MR Pelvis 0 0 126 126
MR Spine 0 0 1410 1410

C Additional experimental details
For each DyGIE++ model fine-tuning and evaluation, we leverage the implementation by the original
authors3, which is based on the allennlp and Pytorch libraries. We perform a grid hyperparameter
search varying the learning rate (1e-2 - 1e-4), weight decay (0-1), and fine-tuning vs. freezing the
language model layers. We use a fixed seed, 2 hidden graph layers of dimension 150, and keep other
hyperparameters as described in [51].

For classification and Stanza NER, we leverage the HuggingFace transformers library4. We perform
hyperparameter optimization using a Tree-structured Parzen Estimator algorithm implemented by
Optuna [1]. Using a fixed seed, we perform up to 10 trials varying the learning rate (1e-5 - 1e-4),
number of epochs (3-5), batch size (32, 64, 128) and weight decay (1e-12 - 1e-1). We use the

3https://github.com/dwadden/dygiepp
4https://github.com/huggingface/transformers
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HuggingFace evaluate library to evaluate models for F1 scores and accuracy. We use the same
framework to implement the complementary metrics described in D.

For report summarization, model fine-tuning and evaluation is carried out using the ViLMedic
library [13]. Models are trained using an initial learning rate of 5e-5 using the Adam optimizer [33].
A batch size of 32 with gradient accumulations over 0, 2 and 4 batches are explored. The ROUGEL
metric is monitored for early stopping (10 epochs). The learning rate is decayed by 0.8 if there is no
improvement on the validation set for two epochs.

D Complementary metrics for NLU evaluation
It is important to evaluate models on their ability to express their uncertainty and calibration that
make them suitable for deployment. Calibration ensures that estimated class probabilities match their
naturally occurring prevalence. It is typically measured using the scalar summary statistic, Expected
Calibration Error (ECE) [41]. Sorted predictions are divided into multiple bins (usually 10) and
the absolute difference between the average accuracy and average confidence in the bin is termed
the calibration gap. ECE is the weighted average of the calibration gaps [21]. Static Calibration
Error (SCE) [42] was proposed as an extension to ECE to include every class in the multi-class
setting, since ECE uses only the maximum probability and ignores the other class probabilities.
Mathematically, the two quantities are defined as

ECE =

B∑
b=1

nb

N
| acc(b)− conf(b) |

SCE =
1

K

K∑
k=1

B∑
b=1

nbk

N
| acc(b, k)− conf(b, k) |

where N is the total number of samples, K is the total number of classes, nb and nbk are number of
samples in bin b and for class k, respectively.

Weighted Model Confidence. We propose Weighted Model Confidence (WMC) as a metric that
measures the quality of the model’s confidence, as weighted by accuracy. This measure assigns
positive weight when it’s accurate (rewards confident & accurate predictions) and negative weight
when inaccurate (penalizes confident & inaccurate predictions). We define it mathematically to be

WMC =
1

N

N∑
i=1

conf(i) . (−1)acc(i)+1

where conf(i) and acc(i) denote confidence and accuracy of prediction i. The higher the value of this
metric, the better the model is at correlating confidence with accuracy.

Average KL divergence with the Uniform Distribution (aKLU) measures the how peaked the the
predicted distribution is by comparing against a flat, uniform distribution via the KL divergence,
averaged over the dataset. Mathematically, it is given by

aKLU =
1

N

N∑
i=1

KL( p̂(yi|xi) ||U )

where U is the uniform distribution over the classes. Higher values of the metric indicate better
discriminative power of the model.

Average Predictive Entropy (aPE) measures the entropy of the predicted distribution averaged over
the dataset. Lower values of aPE imply lower uncertainty in model predictions. Mathematically, it is
defined as

aPE =
1

N

N∑
i=1

K∑
k=1

p̂(yi = k|xi) log p̂(yi = k|xi)

D.1 Results

We evaluate all document classification models on the MIMIC-III Procedure Selection dataset using
all the complementary metrics and summarize their performance in Table 7. To provide an overview
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of performance across these metrics, we rank the models based on each metric, with 1 being the
highest (best) rank and 16 being the lowest. We average each model’s rank across the different
metrics to get the final Average Rank. We do not directly average these additional scores since, unlike
F1 and accuracy scores (Table 3), these are not all percentage-based metrics. Overall, similar to what
is observed with other evaluation methods, no single model outperforms all others across all tasks.
General domain models have inferior performance than biomedical models, of which BioLinkBERT
ranks higher across all metrics. These findings further suggest that both pretraining corpora and
vocabulary, as well as improved representation learning objectives during pretraining may lead to
improved performance across calibration, uncertainty and prediction quality. Notably, GatorTron,
which achieves the highest accuracy, ranks 7.4/16 on average across these metrics. Alternatively,
ELECTRAsmall achieves the best calibration, uncertainty and discriminative scores, yet has the lowest
accuracy. Our proposed WMC metric, aimed at rewarding both confidence and accuracy clarifies the
discordance: GatorTron achieves the best performance and ELECTRAsmall the worst. We believe
that combining this set of metrics with Accuracy and F1 scores to the benchmark has complementary
utility and is an important step towards making RaLEs model comparisons more comprehensive.
We hope that these evaluations can guide future model developers to train models that are not just
accurate but also well-calibrated with high prediction quality and able to express their uncertainty to
enable deployment and their integration into larger systems.

Table 7: Complementary NLU Evaluations for document classification models on the MIMIC-III
Procedure selection dataset using multiple families of metrics.

Model ECE ↓ SCE ↓ aPE ↓ WMC ↑ aKLU ↑ Avg Rank ↓
BERTbase 0.065 0.004 0.994 0.339 3.897 10.8
BERTlarge 0.045 0.003 1.112 0.332 3.385 8.2
ROBERTAbase 0.040 0.002 1.144 0.320 3.472 9
ROBERTAlarge 0.048 0.003 1.087 0.329 3.368 8
ELECTRAsmall 0.025 0.002 1.323 0.292 3.294 7.2
ELECTRAbase 0.069 0.004 0.994 0.324 4.558 12.6
ELECTRAlarge 0.046 0.003 1.121 0.321 3.722 12
DeBERTabase 0.046 0.003 1.077 0.340 3.438 6.4
DeBERTalarge 0.061 0.003 1.065 0.325 3.640 11
PubMedBERT 0.050 0.003 1.035 0.343 3.669 8
BioLinkBERTbase 0.046 0.003 1.077 0.340 3.438 6.2
BioLinkBERTlarge 0.035 0.002 1.107 0.337 3.384 5.4
BioClinicalBERT 0.047 0.003 1.089 0.337 3.377 7
GatorTron 0.061 0.003 0.977 0.355 3.556 7.4
RadBERT1 0.070 0.004 0.988 0.340 3.697 10.4
RadBERT2 0.052 0.003 1.059 0.343 3.415 6.4

Abbreviations: ECE: Expected Calibration Error, SCE: Static Calibration Error, aPE:
average Predictive Entropy, WMC: Weighted model confidence, aKLU: average KL
divergence with uniform distribution.

Table 8: Pearson Correlation Coefficient between
added complementary metrics on NLU evaluation.

ECE SCE aPE WMC aKLU
ECE 1.00 0.93 -0.89 0.51 0.70
SCE 0.93 1.00 -0.72 0.25 0.78
aPE -0.89 -0.72 1.00 -0.82 -0.54

WMC 0.51 0.25 -0.82 1.00 0.02
aKLU 0.70 0.78 -0.54 0.02 1.00

Abbreviations: ECE: Expected Calibration Er-
ror, SCE: Static Calibration Error, aPE: average
Predictive Entropy, WMC: Weighted model con-
fidence, aKLU: average KL divergence with uni-
form distribution.
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E Data efficiency experiment results

Table 9: Summary of results for NLU tasks using 10% training and validation labels.

Model RGNER† RGNER‡ RGRE† RGRE‡ RadSpRL Stanza Procedure Avg
BERTbase 90.4 82.8 77.6 63.1 75.1 6.6 53.9 64.2
BERTlarge 89.7 79.7 76.2 62.6 60.1 7.0 58.8 62.0
RoBERTabase 88.8 82.2 75.1 61.5 73.2 3.2 57.3 63.0
RoBERTalarge 88.5 78.7 73.2 60.6 74.4 4.4 58.9 62.7
ELECTRAsmall 88.6 81.5 73.9 57.8 68.0 5.3 48.9 60.6
ELECTRAbase 92.1 79.7 75.5 58.2 71.5 8.2 54.7 62.8
ELECTRAlarge 92.5 80.5 81.2 66.3 69.5 6.5 41.6 62.6
DeBERTa-V3base 92.9 88.9 75.9 62.1 78.7 4.5 54.0 65.3
DeBERTa-V3large 90.7 81.6 75.5 63.0 79.1 7.0 49.1 63.7
PubMedBERT 91.6 82.6 78.6 64.7 77.9 5.3 60.5 65.9
BioLinkBERTbase 91.5 86.5 79.9 65.1 80.8 4.2 60.1 66.9
BioLinkBERTlarge 90.8 87.1 80.7 62.0 75.7 6.0 57.8 65.7
BioClinicalBERT 91.5 86.7 75.9 59.4 80.0 4.4 60.3 65.5
GatorTron 92.2 87.7 80.6 66.7 81.8 4.3 62.6 68.0
RadBERT1 91.1 84.5 73.1 62.8 71.3 7.2 60.9 64.4
RadBERT2 91.1 85.3 74.0 62.6 71.2 3.3 59.6 63.9

†: MIMIC-CXR (in domain), ‡: CheXpert (out of domain).

Table 10: Summary of results for NLU tasks using 1% training and validation labels.

RadGraph
Model RGNER† RGNER‡ RGRE† RGRE‡ RadSpRL Stanza Procedure Avg
BERTbase 0.0 0.0 0.0 0.0 0.0 6.5 48.1 9.1
BERTlarge 2.2 1.9 0.0 0.0 0.0 4.0 40.3 7.7
RoBERTabase 0.0 0.0 0.0 0.0 0.0 1.0 39.6 6.8
RoBERTalarge 0.0 0.0 0.0 0.0 0.0 4.4 45.5 8.3
ELECTRAsmall 1.5 1.1 0.0 0.0 0.0 6.0 35.6 7.1
ELECTRAbase 0.0 0.0 0.0 0.0 0.0 8.7 38.8 7.9
ELECTRAlarge 0.0 0.0 0.0 0.0 0.0 7.0 35.6 7.1
DeBERTa-V3base 0.0 0.0 0.0 0.0 0.9 6.1 39.1 7.7
DeBERTa-V3large 0.0 0.0 0.0 0.0 0.0 7.2 38.9 7.7
PubMedBERT 0.0 0.0 0.0 0.0 0.0 1.1 40.4 6.9
BioLinkBERTbase 0.0 0.0 0.0 0.0 0.0 4.1 35.6 6.6
BioLinkBERTlarge 0.0 0.0 0.0 0.0 0.0 6.3 37.2 7.3
BioClinicalBERT 0.0 0.0 0.0 0.0 0.0 5.8 45.2 8.5
GatorTron 0.4 0.4 0.0 0.0 0.0 5.2 55.4 10.2
RadBERT1 0.1 0.1 0.0 0.0 0.0 7.4 37.8 7.7
RadBERT2 2.4 2.0 0.0 0.0 0.0 1.3 52.0 9.2

†: MIMIC-CXR (in domain), ‡: CheXpert (out of domain).
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F Linear probe experiment results

Table 11: Summary of results for NLU tasks keeping language model weights frozen during fine-
tuning.

Model RGNER† RGNER‡ RGRE† RGRE‡ RadSpRL Stanza Procedure Avg
BERTbase 91.4 88.9 77.1 65.7 87.4 39.4 35.7 69.4
BERTlarge 91.9 88.5 72.4 57.7 82.5 13.3 35.6 63.1
RoBERTabase 89.3 85.8 70.5 56.3 82.9 12.5 35.6 61.8
RoBERTalarge 89.1 83.9 56.4 39.9 83.4 18.3 37.5 58.3
ELECTRAsmall 88.1 80.3 69.7 52.6 86.3 12.5 35.8 60.8
ELECTRAbase 91.1 87.1 77.0 60.1 90.0 37.6 39.0 68.8
ELECTRAlarge 90.8 85.7 69.5 56.5 88.1 33.5 38.1 66.0
DeBERTa-V3base 90.2 86.6 49.4 32.0 85.2 22.7 35.6 57.4
DeBERTa-V3large 89.9 84.8 55.4 38.8 87.3 23.0 35.6 59.3
PubMedBERT 92.9 89.4 82.1 70.5 88.5 21.9 41.8 69.6
BioLinkBERTbase 92.1 90.5 79.0 68.0 90.5 10.4 35.6 66.6
BioLinkBERTlarge 92.2 90.7 74.9 63.5 85.4 43.5 38.3 69.8
BioClinicalBERT 92.3 89.5 78.9 66.0 88.3 34.9 35.6 69.4
GatorTron 93.6 89.5 81.1 68.1 91.2 42.0 49.3 73.5
RadBERT1 91.7 87.8 76.2 61.6 88.0 16.5 51.0 67.5
RadBERT2 91.3 88.2 74.3 60.8 89.1 19.7 50.4 67.7

†: MIMIC-CXR (in domain), ‡: CheXpert (out of domain).
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G Out of distribution NLG evaluation

Table 12: NLG evaluation on out of distribution
(Stanford) and in distribution (Indiana) test sets.

Stanford Indiana
Model R-2 RG R-2 RG

ELECTRAbase .232 .382 .244 .374
BioLinkBERTbase .227 .397 .263 .385
GatorTron .238 .408 .262 .404
RadBERT2 .222 .383 .251 .379

Prior SOTA† .277 - .596 -
Prior Baseline‡ .241 - .287 -

†:[10], ‡:from [3]

H Report Length Analysis

Table 13: Report length statistics for the report summarization datasets. Note that only findings and
impressions sections were used to calculate report lengths.

Dataset Split Min Max Average Standard Deviation

BioNLP2023
train 8 1279 157.5 85.3
dev 15 964 158.6 87.1
test 16 992 166.2 89.2

MEDIQA2021

train 19 430 63.5 31.0
dev 21 240 63.2 31.0
devindiana 15 230 43.1 19.7
test 18 220 57.2 31.6
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I Procedure Selection Error Analysis
The following tables and figure outline error analysis for the best performing model in the benchmark,
a fine-tuned GatorTron model. Evaluation metrics are obtained by studying this model across the
MIMIC III Procedure selection test set.

Table 14 shows that this model may be confidently correct and incorrect. This was also quantified in
Table 7, which shows metrics such as ECE. Further, example indications such as “Please evaluate for
interval progression of hemorrhage” reveal that there are instances where the provided indication
alone may not be sufficient to reliable determine the ground truth protocol. This observation suggests
the opportunity to develop improved datasets in the future, possibly integrating prior clinical notes
with the examination indications.

Table 15 shows that model performance varies by class label availability, with underrepresented
classes having poorer performance in general. However, as visualized in Figure 5, this is not
universally the case, as some underrepresented classes exhibit relatively higher performance with
lower label availability. We hypothesize that certain classes with highly specific indications are easier
to classify, even with smaller sample sizes in the training data.

Finally, Figure 6 shows the drop in performance when evaluating only new patients in the test set.
The drop is observed across all model types, label availabilities and tuning strategies (full fine-tuning
vs. linear probe).

Table 14: Examples of correct and incorrect predictions made by the best-performing classifier in the
procedure prediction task.

Indication Reference Predicted Correct? Ref P Pred P

evaluate s/p drainage of SDH CT Head WO
contr

CT Head WO
contr

✓ 0.99 0.99

evaluate for progression of
subdural hematomas

CT Head WO
contr

CT Head WO
contr

✓ 0.99 0.99

eval for hemorrhage post-op,
4 hours after surgery

CT Head WO
contr

CT Head WO
contr

✓ 0.99 0.99

R/o IPMN CT Abd WO+W
contr IV

CT Head WO
contr

× 0.00 0.99

Please evaluate for interval
progression of hemorrhage.

CT Abd+Pelvis
p 3D proc WO
contr

CT Head WO
contr

× 0.00 0.99

r/o met, bleed CT T+L-Spine
WO contr

CT Head WO
contr

× 0.00 0.94
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Figure 5: Per-class performance as a function of number of reports.

Figure 6: Effect of excluding patients seen during training from test set. Error bars indicate standard
deviation across the models within each category.

23



Table 15: Per-class performance for procedure prediction task for model with highest overall accuracy.
Number of samples are reported in the test set.

Procedure Precision Recall F1 N

CT Head WO contr 84.3 95.3 89.4 6894
CTA Chest ves WO+W contr IV 80.8 87.3 83.9 1002
CT Guided Str loc–W contr IV 69.0 85.3 76.3 34
CT C-spine WO contr 68.5 69.5 69.0 984
CT Chest WO contr 64.3 67.3 65.7 1021
CT Abd+Pelvis W contr IV 54.5 71.1 61.7 1717
CT Sinuses+Mandible WO contr + CT Maxillofacial
WO contr

67.4 51.3 58.3 298

CTA Head ves WO+W contr IV 57.9 54.2 56.0 312
CT UE WO contr 55.9 55.9 55.9 34
CT Abd+Pelvis WO contr 56.7 47.5 51.7 1037
CT Neck W contr IV 48.4 48.7 48.6 156
CTA Chest+Abd+Pelv ves WO+W contr IV 43.1 50.0 46.3 170
CT Abd WO + CT Chest+Abd+Pel W contr IV 41.5 51.6 46.0 366
CTA Abd ves+Pelvis ves WO+W contr IV 38.5 54.8 45.2 155
CT Head+Brain perf+CTA Head WO+W IV 69.4 32.7 44.4 104
CT L-spine WO contr 52.7 37.1 43.6 132
CT Chest+Abd+Pelvis W contr IV 42.1 44.3 43.2 1020
CT Pelvis bones WO contr 45.7 40.0 42.7 40
CT Chest W contr IV 45.8 37.3 41.1 565
Other 49.8 33.7 40.2 978
CT Abd+Pelvis W contr IV + CTA Chest ves
WO+W contr IV

55.0 31.4 40.0 210

CTA Abd Aorta+ROves-Bl WO+WcontrIV 52.9 32.1 40.0 28
CT T-spine WO contr 44.4 33.9 38.5 118
CTA Head+Neck Ves WO+W contr IV 45.6 28.5 35.1 165
CT Abd WO+W contr IV 32.1 35.3 33.6 102
CTA Neck ves WO+W contr IV 36.2 29.8 32.7 57
CT Abd+Pelvis WO+W contr IV 41.0 27.0 32.6 159
CT Abd WO + CT Abd+Pel W contr IV 31.7 32.7 32.2 223
CTA Abd ves WO+W contr IV 29.3 27.5 28.4 80
CT Head WO+W contr IV 31.0 22.3 25.9 220
CT Chest+Abd+Pelvis WO contr 44.6 17.5 25.1 355
CT Abd WO contr 45.5 15.6 23.3 64
CT Head+Orbit-Bl WO contr 33.3 13.6 19.4 22
CT Pelvis WO contr 26.3 11.6 16.1 43
CT Pelvis W contr IV 1 7.4 13.8 27
CTA Abd ves+Pelvis ves W contr IV 18.8 10.9 13.8 55
CT Abd+Pel + CTA AA WO+W contr IV 25.0 5.7 9.3 35
CT Neck WO contr 25.0 4.4 7.5 45
CT Chest p 3D proc WO contr 1 3.2 6.2 31
CT Guided Peritoneal Absc drain+cath plc 20.0 2.9 5.1 34
CT T+L-Spine WO contr 0 0 0 22
CT Abd W contr IV 0 0 0 45
CT Abd WO + CT Abd+Chest W contr IV 0 0 0 19
CT Abd+Pel WO + Chest+Abd+Pel W contr IV 0 0 0 32
CT Abd+Pelvis p 3D proc WO contr 0 0 0 101
CT Head W contr IV 0 0 0 53
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J Report Summarization Errors
Table 16 lists example reference and generated impressions for MEDIQA2021 and BioNLP2023, the
report summarization tasks examined in RaLEs. We highlight the limitations of current automated
evaluation approaches. For example, when additional recommendations based on medical expertise
are provided in the hypothesis, metrics such as R-L impose additional penalty on the prediction if
these are not present in the reference. Conversely, in scenarios where no specific disease entities
are mentioned in the ground truth, metrics like RG unfairly penalize the models given that they rely
on the explicit mention of diseases and their relation to anatomies. The RG metric may be further
affected by the lack of validation of RadGraph labeler on non-Chest-X-ray reports, as well as lack of
normalization to a standardized nomenclature for entities. Such examples illustrate the opportunity
for improved summarization evaluations. Further, they motivate importance of developing models
that not only understand the immediate report but can also draw upon broader context, enabling them
to offer recommendations rooted in both the findings and best clinical practice.
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Table 16: Report summarization errors.
Dataset Findings Reference

Impression
Generated
Impression

R-L RG CheXbert NLG

MEDIQA
2021

__ and lateral views of the chest demon-
strate no focal infiltrate, pleural effusion,
or pneumothorax. No bony abnormality is
seen. The right scapula appears intact. No
acute fractures are seen. prediction

No acute car-
diopulmonary
process. No
acute fracture
is seen

no acute car-
diopulmonary
process no
acute fracture
is identified
if there is
continued
concern for
rib fracture
a dedicated
rib series is
recommended

0.50 0.89 0.0 0.695

Status post posterior spinal fusion. Status
post ____ sternotomy. Stable position of
the cardiac ____ and leads. The cardiac
silhouette and mediastinum size are normal.
The lungs are clear. prediction

Stable posi-
tion of the
cardiac ____
and leads.
Normal car-
diac size with
clear lungs.

no acute car-
diopulmonary
process

0.0 0.0 0.67 0.0

Heart and mediastinal contours are un-
remarkable. The pulmonary vascula-
ture is normal in appearance. The lung
parenchyma is clear, without focal infiltrate.
There are no pleural effusions, and there
is no pneumothorax. The visualized bony
structures are grossly unremarkable. No
displaced rib fractures. Right nipple ring
noted.

no acute
radiographic
cardiopul-
monary
process.

no acute
pulmonary
process

0.67 0 1 0.335

BioNLP
2023

the patient is status post surgical interven-
tion on the left side as evidenced by left
frontoparietal craniotomy with drainage
catheters. there is interval decrease in
the size of the left convexity subdural
hematoma; however, there remains high hy-
perintensity material along the left cerebral
convexity. the appearance of the interhemi-
spheric fissure subdural hematoma appears
stable. there is less rightward shift of nor-
mally midline structures compared to prior
examination and there is associated reex-
pansion of the lateral ventricles. there is
new finding of left and right frontal pneu-
mocephalus which is related to surgical in-
tervention. there is also subcutaneous gas
adjacent to the left masseter muscle and
within the left frontal and temporal subcuta-
neous tissue. there is also significant soft tis-
sue swelling adjacent to the left craniotomy.
there are no new areas of hemorrhage. there
are no areas of infarction. the sinuses are
clear.

no evidence
of intracranial
hemorrhage
or mass effect.

no evidence
of intracranial
hemorrhage
or mass effect

1.00 1.00 - 1

the right basal ganglionic parenchymal hem-
orrhage and surrounding vasogenic edema
is unchanged since the ___ study, again
measuring 1.9 x 3.5 cm. small intraven-
tricular component layering in the bilat-
eral occipital horns has resolved. there
is no new focus of hemorrhage, large ter-
ritorial infarction, mass, or shift of nor-
mally midline structures. asymmetry of
all the components of the right lateral
ventricle, unchanged, is likely congeni-
tal/developmental. increased opacification
of the bilateral sphenoid air cells with air-
fluid levels, which may relate to supine posi-
tioning. the mastoid air cells are well pneu-
matized.

1) no evidence
of acute
hemorrhage.
2) periven-
tricular
white matter
changes are
consistent
with chronic
microvascular
infarctions. 3)
involutional
change of
the brain. 4)
hypodense
lesion adja-
cent to the
left internal
capsule likely
represents an
old infarct.

no evidence
of intracranial
hemorrhage
or mass effect

0.18 0.0 - 0.09

there is no intracranial mass lesion, hy-
drocephalus, shift of normally midline
structures, major vascular territorial infarct,
or intracranial hemorrhage. other than
bifrontal small, ill- defined low-attenuation
foci (eg. 2:17-19), which may represent
chronic microvascular infarction, the ___-
white matter differentiation is preserved.
the osseous and soft tissue structures are
unremarkable. the visualized paranasal si-
nuses are clear.

1. no evidence
of acute hem-
orrhage or
mass effect.
2. marked
calcification
of the carotid
and vertebral
arteries, more
on the right
than the left.

no evidence
of intracranial
hemorrhage
or mass effect

0.41 0.0 - 0.20
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