
DynGFN: Towards Bayesian Inference of Gene
Regulatory Networks with GFlowNets

Lazar Atanackovic1,2∗ Alexander Tong3,4∗ Bo Wang1,2,5 Leo J. Lee1,2

Yoshua Bengio3,4,6 Jason Hartford3,4,7

1University of Toronto, 2Vector Institute
3Mila - Quebec AI Institute, 4Université de Montréal

5University Health Network, 6CIFAR Fellow, 7Valence Labs

Abstract

One of the grand challenges of cell biology is inferring the gene regulatory network
(GRN) which describes interactions between genes and their products that control
gene expression and cellular function. We can treat this as a causal discovery
problem but with two non-standard challenges: (1) regulatory networks are inher-
ently cyclic so we should not model a GRN as a directed acyclic graph (DAG),
and (2) observations have significant measurement noise, so for typical sample
sizes there will always be a large equivalence class of graphs that are likely given
the data, and we want methods that capture this uncertainty. Existing methods
either focus on challenge (1), identifying cyclic structure from dynamics, or on
challenge (2) learning complex Bayesian posteriors over DAGs, but not both. In
this paper we leverage the fact that it is possible to estimate the “velocity” of gene
expression with RNA velocity techniques to develop an approach that addresses
both challenges. Because we have access to velocity information, we can treat
the Bayesian structure learning problem as a problem of sparse identification of a
dynamical system, capturing cyclic feedback loops through time. Since our objec-
tive is to model uncertainty over discrete structures, we leverage Generative Flow
Networks (GFlowNets) to estimate the posterior distribution over the combinatorial
space of possible sparse dependencies. Our results indicate that our method learns
posteriors that better encapsulate the distributions of cyclic structures compared to
counterpart state-of-the-art Bayesian structure learning approaches.

1 Introduction

Inferring gene regulatory networks (GRNs) is a long standing problem in cell biology [25, 44]. If
we knew the GRN, it would dramatically simplify the design of biological experiments and the
development of drugs because it would serve as a map of which genes to perturb to manipulate
protein and gene expression. GRNs concisely represent the complex system of directed interactions
between genes and their regulatory products that govern cellular function through control of RNA
(gene) expression and protein concentration. We can treat GRN inference as a causal discovery
problem by treating the regulatory structure between genes (variables) as causal dependencies (edges)
that we infer / rule out by using gene expression data. Structure learning methods aim to automate
this task by inferring a set of directed acyclic graphs (DAGs) that are consistent with the conditional
independencies that we can measure among the variables [14, 41, 42]. While there may be multiple

∗Equal Contribution
Correspondence to: (l.atanackovic@mail.utoronto.ca)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

l.atanackovic@mail.utoronto.ca

A Problem: Gene Modules

GFN Graph Sampler

G ∼ Qψ (G)

1 0 1 …
0 1 0 …
⋮ ⋮ ⋱
1 0 0 …

Parameter HyperNetwork

⋮

G

θ
θ

Structural Model

{
G
θ
x } ⋮ ⋮

xi d xi

G

p (G, θ , D) = p (D |G, θ)p (θ |G)p (G)

Qψ (G) ∝ p (G) → G p (θ |G) = δθ

hϕ(G) → θ

p (D |G, θ) ∝ e−∥dx−fθ(x,G)∥

fθ(x , G) → ̂d x

x

̂d x

Figure 1: Architecture for Bayesian structure learning of dynamical systems. DynGFN consists of
three main components: A GFlowNet modeling a posterior distribution over graphs Qψ(G|D), a
HyperNetwork modeling a posterior over parameters given a graph Qϕ(θ|G,D), and the structural
equation model scoring G and θ according to how well they fit the data. Although the figure shows
the case where Qψ(G|D) is modelled with a GFlowNet, this can be any arbitrary graph sampler that
can sample discrete structures G ∼ Qψ(G|D).

DAGs in this set—the “Markov equivalence class”—when we are able to perturb the variables with
enough experimental interventions, it is possible to uniquely identify a causal graph [18].

However, structure learning for inferring GRNs comes with two non-standard challenges: (1) gene
regulation contains inherent cyclic feedback mechanisms, hence we should not model a GRN as a
DAG, and (2) observations are limited and have significant measurement noise, hence there exists a
large equivalence class of graphs that are likely given datasets with typical sample sizes. Existing
methods either focus on (1) – identifying graphs with cyclic structure by leveraging dynamics [15, 13]
or assuming the system is in equilibrium [36], or (2) – learning complex Bayesian posteriors over
explanatory DAGs [12], but not both. In this work, we address both challenges concurrently in a fully
differentiable end-to-end pipeline (see Figure 1).

To accomplish this, we treat structure learning as a problem of sparse identification of a dynamical
system. From a dynamical systems perspective, one can model both causal structure between variables
as well as their time-dependent system response with the drift function [37, 43]. We leverage the
fact that we can estimate the rate of change of a gene’s expression (velocity) with RNA velocity
methods [9]. This data takes the form of dynamic tuple pairs (x, dx), which we can use to pose the
dynamical system learning problem as a regression task (see Figure 1). This significantly simplifies
the learning objective as we can model system dynamics while also learning structure without the
need for numerically intensive differential equation solvers. We view this as a step towards Bayesian
structure learning from continuous dynamics – we term this Bayesian dynamic structure learning.

Our approach estimates the posterior over the sparse dependencies and parameters of the dynamical
system. This is important in scientific applications because it is usually prohibitively expensive
to acquire a enough data to uniquely identify the true graph underlying a data generating process.
Capturing the complex distribution over candidate structure is critical for downstream scientific
applications and is an essential step in active causal discovery [39, 52, 19]. This is especially important
in settings where experiments are expensive, e.g. conducting genetic perturbations for inference of
GRNs. Bayesian structure learning is a class of methods that try to model this distribution over
structure from observed data. These methods model posteriors over admissible structures P (G|D)
that explain the observations [32, 11, 4, 12, 31], but focus on modelling distributions over DAGs.

Our approach leverages Generative Flow Networks (GFlowNets) to model complex distributions over
cyclic structures. GFlowNets [7, 8] parameterize the distribution over any discrete object (e.g. graphs)
through a sequential policy, and as a result avoid needing to make restrictive parametric assumptions
on the distribution. This makes them a useful tool in structure learning, particularly in cases where
P (G|D) is discrete and complex [12]. In this work, we use GFlowNets to learn posteriors over the
sparse structure in a dynamical system, and separately learn the posteriors over the parameters of the
drift function via a HyperNetwork [16] that conditions on inferred structures. Our main contributions
are summarized as follows:

2

• We develop a novel framework for Bayesian structure learning under the lens of dynamical
system identification for modelling complex posteriors over cyclic graphs. We consider flexible
parameterizations for the structural model such that we can capture both linear and non-linear
dynamic relationships.

• We design a novel GFlowNet architecture, Dynamic GFlowNet (DynGFN), tailored for modelling
posteriors over cyclic structures. We propose a per-node factorization within DynGFN that enables
efficient search over the discrete space of cyclic graphs.

• We empirically evaluated DynGFN on synthetic dynamic data designed to induce highly multi-
modal posteriors over graphs.

• We showcase the use of DynGFN on a real biological system using single-cell RNA-velocity data
for learning posteriors of GRNs.

2 Related Work

There are many works on the problem of identifying causal structure G from either observational [e.g.
49, 54, 35] or interventional [e.g. 26, 29, 38] data, but the majority of existing methods return only the
most likely DAG under the observed data. By returning only the most likely graph, these methods are
often overconfident in their predictions. Bayesian approaches attempt to explicitly model a posterior
distribution over DAGs given the data and model specification.

Bayesian Structure Learning: Recently, there has been significant interest in fully differentiable
Bayesian methods for structure learning in the static case. DiBS [32], BCD-Nets [11], VCN [4], and
DAG-GFlowNet [12] all attempt to learn a distribution over structural models from a fully observed
system. The key difference is in how these methods parameterize the graph. DiBS is a particle
variational inference method that uses two matrices U and V where G = sigmoid(UTV) where the
sigmoid is applied elementwise which is similar to graph autoencoders. BCD-Nets and DP-DAG
use the Gumbel-Sinkhorn distribution to parameterize a permutation and direct parameterization of a
lower triangular matrix. VCN uses an autoregressive LSTM to generate the graph as this gets rid of
the standard uni-modal constraint of Gaussian distributed parameters. DAG-GFN has shown success
for modelling P (G|D) [12]. However, it remains restrictive to assume the underlying structure of
the observed system is a DAG as natural dynamical systems typically contain regulating feedback
mechanisms. This can be particularly challenging for GFlowNets since including cycles in the
underlying structure exponentially increases the discrete search space. We show that under certain
assumptions we can in part alleviate this shortcoming for learning Bayesian posteriors over cyclic
structures for dynamical systems. In small graphs, these methods can model the uncertainty over
possible models (including over Markov equivalence classes).

Dynamic and Cyclic Structure Learning: There has been comparatively little work towards
Bayesian structure learning from dynamics. Recent works in this direction based on NeuralODEs [10]
propose a single explanatory structure [50, 6, 1, 2]. CD-NOD leverages heterogeneous non-stationary
data for causal discovery when the underlying generative process changes over time [53, 21]. A
similar approach uses non-stationary time-series data for causal discovery and forecasting [20].
DYNOTEARS is a score-based approach that uses time-series to learn structure [40]. However,
these methods do not attempt to explicitly model a distribution over the explanatory structure. Other
methods aim to learn cyclic dependencies in the underlying graph [24, 36, 28, 3]. For instance, [24]
propose an iterative method that leverages interventional data to learn directed cyclic graphs. It is
suggested that CD-NOD is also extendable to learn cyclic structure [21]. But these methods do not
model a posterior over structure. In general, there remains a gap for the problem of Bayesian structure
learning over cyclic graphs.

We include further discussion on related work for GRN inference from single-cell transcriptomic
data and cell dynamics in Appendix C.1.

3

3 Preliminaries

3.1 Bayesian Dynamic Structure Learning

Problem Setup: We consider a finite dataset, D, of dynamic pairs (x, dx) ∈ Rd × Rd where x
respresents the state of the system sampled from an underlying time-invariant stochastic dynamical
system governed by a latent drift dxdt = f(x, ϵ) where ϵ is a noise term that parameterizes the SDE; x
and ϵ are mutually independent. The latent drift has some fixed sparsity pattern i.e. ∂fi

∂xj
̸= 0 for a

small set of variables, which can be parameterized by a graph G such that gij = 1[∂fi∂xj
̸= 0], where

gij ∈ G, i = 1, . . . , d, j = 1, . . . , d. The variables xj for which ∂fi
∂xj
̸= 0 can be interpreted as the

causal parents of xi, denoted Pa(xi). This lets us define an equivalent dynamic structural model
[37, 43] of the form,

dxi(t)

dt
= fi(Pa(xi), ϵi), (1)

for i = 1, . . . , d. For the graphG to be identifiable, we assume that all relevant variables are observed,
such that causal sufficiency is satisfied.

Our goal is to model our posterior over explanatory graphs Q(G|D) given the data. We aim to jointly
learn distribution over parameters θ that parameterize the latent drift f(x); these parameters will
typically depend on the sparsity pattern such that p(θ|G) ̸= p(θ). We can factorize this generative
model as follows,

p(G, θ,D) = p(D|G, θ)p(θ|G)p(G) (2)

This factorization forms the basis of our inference procedure. We learn a parameterized function
fθ(x) : Rd → Rd that approximates the structural model defined in (1). To model this joint
distribution, we need a way of representing P (G), a distribution over the combinatorial space of
possible sparsity patterns, and P (θ|G), the posterior over the parameters of fθ. We use GFlowNets
[7] to represent P (G), and a HyperNetwork to parameterize P (θ|G).

3.2 Generative Flow Networks

GFlowNets are an approach for learning generative models over spaces of discrete objects [7, 8].
GFlowNets learn a stochastic policy PF (τ) to sequentially sample an object x from a discrete space
X . Here τ = (s0, s1, . . . , sn) represents a full Markovian trajectory over plausible discrete states,
where sn is the terminating state (i.e. end of a trajectory) [34]. The GFlowNet is trained such that at
convergence, sequential samples from the stochastic policy over a trajectory, x ∼ PF (τ), i.e. x = sn,
are equal in distribution to samples from the normalized reward distribution P (x) = R(x)∑

x′∈X R(x′) .
The GFlowNet policies are typically trained by optimizing either the Trajectory Balance (TB)
loss [34], Subtrajectory Balance (Sub-TB) loss [33], or the Detailed Balance (DB) loss [12]. In this
work, we exploit the DB loss to learn a stochastic policy for directed graph structure.

Detailed Balance Loss: The DB loss [12] leverages the fact that the reward function can be
evaluated for any partially constructed graph (i.e. any prefix of τ), and hence we get intermediate
reward signals for training the GFlowNet policy. The DB loss is defined as:

LDB(si, si−1) =

(
log

R(si)PB(si−1|si;ψ)PF (sn|si−1;ψ)

R(si−1)PF (si|si−1;ψ)PF (sn|si;ψ)

)2

, (3)

where PF (si|si−1;ψ) and PB(si−1|si;ψ) represent the forward transition probability and backward
transition probability, and a trainable normalizing constant, respectively. Under this formulation,
during GFlowNet training the reward is evaluated at every state. For this reason, the DB formulation
is in general advantageous for the structure learning problem where any sampled graph can be viewed
as a complete state, hence more robustly inform gradients when training the stochastic policy than
counterpart losses. Previous work has shown GFlowNets are useful in settings with multi-modal
posteriors. This is of particular interest to us where many admissible structures can explain the
observed data equally well. We model Qψ(G) using PF (si|si−1;ψ) and learn the parameters ψ.

4

Algorithm 1 Batch update training of DynGFN

1: Input: Data batch (xb, dxb), initial NN weights ψ, ϕ, L0 sparsity prior λ0, and learning rate ϵ.
2: s0 ← 0B×d×d ▷ Training is paralleled over B graph trajectories
3: a ∼ PF (s1|s0;ψ), ▷ Sample initial actions vector
4: while a not ∅ do
5: Compute PF (si|si−1;ψ), PB(si−1|si;ψ)
6: θ ← hϕ(si)

7: d̂xb ← fθ(x, si)

8: Ri(si)← e−∥dxb−d̂xb∥2
2−λ0∥si∥0

9: ψ ← ψ − ϵ∇ψLDB(si, si−1) ▷ LDB(si, si−1) computed as in Equation 3
10: a ∼ PF (si|si−1;ψ), si → si+1 ▷ Take action step to go to next state
11: ϕ← ϕ+ ϵ∇ϕ logR

return Updated GFN weights ψ and updated HyperNetwork weights ϕ.

4 DynGFN for Bayesian Dynamic Structure Learning

We present a general framework for Bayesian dynamic structure learning and propose a GFlowNet
architecture, DynGFN, tailored for modelling a posterior over discrete cyclic graphical structures.
We summarize our framework in Figure 1 and Algorithm 1. DynGFN consists of 3 key modules:

1. A graph sampler that samples graphical structures that encode the structural dependencies
among the observed variables. This is parameterized with a GFlowNet that iteratively adds
edges to a graph.

2. A model that approximates the structural equations defined in (1) to model the functional
relationships between the observed variables, indexed by parameters θ. This is a class of
functions that respect the conditional independencies implied by the graph sampled in step
1. We enforce this by masking inputs according to the graph.

3. Because the functional relationships between variables may be different depending on which
graph is sampled, we use a HyperNetwork architecture that outputs the parameters θ of the
structural equations as a function of the graph. We also show that under linear assumptions
of the structural modules, we can solve for optimal θ analytically (i.e. we do not need the
HyperNetwork).

For training, we assume L0 sparsity of graphs G to constrain the large discrete search space over
possible structures. We use a reward R for a graph G and L0 penalty of the form: R(G) =

e−∥dx−d̂x∥2
2+λ0∥G∥0 . We motivate this set-up so we can estimate d̂x close to dx in an end-to-end

learning pipeline. Since estimates for d̂x are dependent on G and θ, this reward informs gradients to
learn a policy that can approximate Q(G) given dynamic data.

The main advantage of DynGFN comes when modelling complex posteriors with many modes. Prior
work has shown GFlowNets are able to efficiently model distributions where we can share information
between different modes [34]. The challenge we tackle is how to do this with a changing objective
function, as the GFlowNet objective is a function of the current parameter HyperNetwork and the
structural equations. We use multilayer perceptrons (MLPs) to parameterize the stochastic GFlowNet
policy, HyperNetwork architecture, and the dynamic structural model1.

4.1 Graph Sampler

DynGFN models a posterior distribution over graphs Q(G|D) given a finite set of observations. To
learn Q(G|D), DynGFN needs to explore over a large discrete state space. Since we aim to learn
a bipartite graph between x and dx, DynGFN needs to search over 2d

2

possible structures, where
d denotes the dimensionality of the system and 2d

2

the number of possible edges in G. For even
moderate d, this discrete space is very large (e.g. for d = 20 we have 2400 possible graphs).

1When we assume linear dynamic structural relationships, we can solve for the parameters analytically, thus
do not need MLPs for the HyperNetwork and dynamic structural model. This is further discussed in section 4.2

5

However, under the assumption of causal sufficiency, we can significantly reduce this search space,
by taking advantage of the fact that Q(G|D) factorizes as follows,

Q(G|D) =
∏

i∈[1,...,d]

Qi(G[·, i]|D) (4)

By using this model, we reduce the search space from 2d
2 → d2d. For d = 20 this reduces the search

space from 2400 to ≈ 224.3. While still intractable to search over, it is still a vast improvement over
the unfactorized case. We call this model a per-node posterior, and we use a per-node GFlowNet
going forward. We discuss details regarding encouraging forward policy exploration during training
in Appendix B.6.

4.2 HyperNetwork and Structural Model

We aim to jointly learn the structural encoding G and parameters θ that together model the structural
relationships dx = fθ(x,G) of the dynamical system variables. To accomplish this, we propose
learning an individual set of parameters θ for each graph G, independent of the input data x. This
approach encapsulates P (θ|G) in (2). We use a HyperNetwork architecture that takes G as input
and outputs the structural equation model parameters θ, i.e. θ = hϕ(G) hence P (θ|G) = δ(θ|G) –
allowing us to learn a separate θ for each G. This HyperNetwork model does not capture uncertainty
in the parameters, however the formulation may be extended to the Bayesian setting by placing a
prior on the HyperNetwork parameters ϕ. Although hϕ allows for expressive parameterizations for θ,
it may not be easy to learn2. HyperNetworks have shown success in learning parameters for more
complex models (e.g. LSTMs and CNNs) [16], hence motivates their fit for our application.

Linear Assumption on Dynamic Structural Model: In some cases it may suffice to assume a
linear differential form dx

dt = Ax to approximate dynamics. In this setting, given a sampled graph
G ∼ Q(G) and n i.i.d. observations of (x, dx) we can solve for θ = A analytically. To induce
dependence on the graph structure, we use the sampled G as a mask on x and construct x̃i = GTi ⊙ x.
Then we can solve for θ on a per-node basis as

θi = (x̃Ti x̃i + λI)−1x̃Ti dxi, (5)

where i = 1, . . . d, λ > 0 is the precision of an independent Gaussian prior over the parameters, and
I is the identity matrix. We use λ = 0.01 throughout this work.

5 A Useful Model of Indeterminacy

In order to evaluate the ability of DynGFN to model complex posteriors over graphs, we need a
structure learning problem with a large equivalence class of admissible graphs. We present a simple
way to augment a set of identifiable dynamics under some model to create a combinatorial number
of equally likely dynamics under the same model. More specifically, this creates a ground truth
posterior Q∗(G|D) ∝

∑
T (G∗) where T (·) : G → G is an analytically computable transformation

over graphs and G∗ is the identified graph under the original dynamics. We use this system to test
how well we can learn a posterior over structures that matches what we see in single-cell data.

Specifically, given a dataset of (x, dx) ∈ Rd ×Rd pairs, we create a new dataset with d+1 variables
where the ‘new’ variable v′ is perfectly correlated with an existing variable v. In causal terms, this
new variable inherits the same parents as v, that is Pa(v′) := Pa(v) and the same structural equations
as v, that is dv′ = dv. This is depicted in Figure 2. This creates a number of new possible explanatory
graphs, which we generalize with the following proposition.
Proposition 1. Given any d dimensional ODE system with G∗ identifiable under f ∈ F , the
D = d + a dimensional system dx

dt = Ax, denote the vector of multiplicities m ∈ Nd with mi as
the number of repetitions of each variable. Then this construction creates an admissible family of
graphs G′ where |G′| =

∏
i∈d(2

mi − 1)Gi1. Furthermore, under an L0 penalty on G, this reduces to∏
i(mi)

Gi1.

See Appendix A for full proof. The intuition behind this proposition can be seen from the case of
adding a single copied variable. This corresponds to A = [δvId] where δv is a vector with a 1 on

2We discuss training dynamics when using hϕ in Appendix B.7.

6

Static GraphDynamic Graph

𝑮∗

𝑣!

𝑣"

𝑣#

𝒙 𝒅𝒙

𝑣!

𝑣"

𝑣#

𝑣#$

𝑮"

𝒙 𝒅𝒙 𝒙 𝒅𝒙 𝒙 𝒅𝒙

Figure 2: Visualization of modeling cyclic dependencies over time (left). To create a family of
admissible graphs (right), we add a new variable v′3 which has the same values as v3 and creates
three possible explanations for the data (green arrows). If we apply a sparsity penalty, then we can
eliminate the last possibility (which has two additional edges) for only two possible graphs. G∗

denotes the ground truth graph while G′ denotes the admissible family of graphs induced by v′3.

node v and zeros elsewhere, and Id is the d-dimensional identity matrix. Let v have c children, such
that v ∈ Pa(c) in the identifiable system, then any of those c child nodes could depend either on v or
on the new node v′ or both. This creates 3c possible explanatory graphs. If we restrict ourselves to
the set of graphs with minimal L0 norm, then we eliminate the possibility of a child node depending
on both v and v′, this gives 2c possible graphs, choosing either v or v′ as a parent.

6 Experimental Results

In this section we evaluate the performance of DynGFN against counterpart Bayesian structure
learning methods (see Appendix B.2 for details). Since our primary objective is to learn Bayesian
posteriors over discrete structure G, we compare to Bayesian methods that can also accomplish this
task, i.e. versions of BCD-Nets [11] and DiBS [32]. We show in certain cases, DynGFN is able
to better capture the true posterior when there are a large number of modes. We evaluate methods
according to four metrics: Bayes-SHD, area under the receiver operator characteristic curve (AUC),
Kullback–Leibler (KL) divergence between learned posteriors Q(G) and the distribution over true
graphs P (G∗), and the negative log-likelihood (NLL) P (D|G, θ) (in our setting this reduces to the
mean squared error between d̂x and dx, given θ and sampled G′s). Since the analytic linear solver
requires data at run-time to compute optimal parameters for the structural model, we include the NLL
metric only for models using the HyperNetwork solver. Bayes-SHD measures the average distance to
the closest structure in the admissible set of graphs according to the structural hamming distance,
which in this case is simply the hamming distance of the adjacency matrix representation to the
closest admissible graph. We assume P (G∗) is uniform over G∗ and include further details about
evaluating the quality of learned posteriors in Appendix B.8.

6.1 A Toy Example with Synthetic Data

To validate the ability of DynGFN to learn cyclic dependencies we consider identifiable acyclic
and cyclic 3 variable toy systems and provide a comparison with a DAG structure learning method
(NOTEARS [54]). We show results for this toy example in Figure 3. NOTEARS does not model
cyclic dependencies and therefore struggles to yield accurate predictions of A in the cyclic setting.
We can also verify this result by considering a conditional independence test over cyclic dependencies.
It is easy to see that the conditional independence test fails in the cyclic setting: in the acyclic case,
we can identify the v-structure by observing that x1 ⊥ x3 and x1 ̸⊥ x3|x2, which implies that x2
is a collider (i.e. x1 and x3 are marginally independent and conditionally dependent); while in the
cyclic example, we introduce time dependencies such that there are cycles in the summary graph
that render these variables marginally dependent. We show that DynGFN is able to identify the true
cyclic dependencies in this toy example. We note that in this toy example DynGFN exhibits a degree

7

Acyclic

Cyclic

DynGFNNOTEARS-

0.210.57Acyclic

1.00.58Cyclic

AUC-ROC
𝑥!

𝑥"

𝑥#

𝑥!

𝑥"

𝑥#

Figure 3: Toy example for learning DAG structure (top) and cyclic graph structure (bottom) from
observational data. In this example we compare NOTEARS and DynGFN for learning acyclic and
cyclic dependencies from observational data. Data is generated from a linear system dx = Ax with a
corresponding acyclic and cyclic A as defined in the figure. We use 500 observational samples for
each system. NOTEARS is implemented using the CausalNex [5] library.

Table 1: Bayesian dynamic structure learning of linear and non-linear systems with d = 20 variables.
The graphs representing the structural dynamic relationships of the linear and non-linear systems have
50 edges out of possible 400. The ground truth discrete distribution P (G∗) contains 1024 admissible
graphs for each respective system. The ℓ and h pre-fix denote usage of the analytic linear solver and
HyperNetwork solver for structural model parameters, respectively. Results are reported on held out
test data over 5 model seeds.

Linear System
Model Bayes-SHD ↓ AUC ↑ KL ↓ NLL ↓
ℓ-DynBCD 32.0± 0.27 0.71± 0.0 1707.45± 9.66 —
ℓ-DynDiBS 29.2± 0.78 0.71± 0.0 6622.43± 171.67 —
ℓ-DynGFN 22.8 ± 1.4 0.75 ± 0.01 1091.60 ± 35.72 —

h-DynBCD 5.5 ± 1.1 0.89± 0.04 701.19± 46.99 (9.83± 0.59)E − 5
h-DynDiBS 28.5± 4.2 0.51± 0.07 7934.90± 381.80 (8.17 ± 1.30)E − 6
h-DynGFN 6.7 ± 0.0 0.94 ± 0.0 350.92 ± 30.15 (8.35± 0.02)E − 3

Non-linear System
Model Bayes-SHD ↓ AUC ↑ KL ↓ NLL ↓
ℓ-DynBCD 77.5± 8.3 0.42± 0.03 3814.86± 354.56 —
ℓ-DynDiBS 75.7± 7.7 0.59 ± 0.01 5893.65± 59.66 —
ℓ-DynGFN 45.7 ± 0.6 0.55± 0.0 226.25 ± 6.58 —

h-DynBCD 192.9± 0.7 0.50± 0.0 9108.69± 51.34 (3.83± 0.32)E − 4
h-DynDiBS 48.1± 9.0 0.53± 0.10 8716.64± 265.29 (4.06 ± 0.10)E − 6
h-DynGFN 32.6 ± 0.9 0.67 ± 0.01 193.28 ± 8.53 (1.47± 0.11)E − 3

of convergence sensitivity on a per-run basis. In the following sections we provide comprehensive
results over 5 random seeds and consider larger systems.

6.2 Experiments with Synthetic Data

We generated synthetic data from two systems using our indeterminacy model presented in section 5:
(1) a linear dynamical system dx = Ax, and (2) a non-linear dynamical system dx = sigmoid(Ax).
We consider ℓ-DynGFN and h-DynGFN, i.e. DynGFN with the linear analytic parameter solver as
shown in (5), and DynGFN with the HyperNetwork parameter solver hϕ. Likewise, we compare ℓ-
DynGFN and h-DynGFN to counterpart Bayesian baselines which we call ℓ-DynBCD, ℓ-DynDiBS, h-
DynBCD, and h-DynDiBS. To constrain the discrete search procedure, we assume a sparse prior on the
structure (i.e. the graphs G), using the L0 prior. Due to challenging iterative optimization dynamics
present when using θ = hϕ(G) for DynGFN, to train initialize the forward policy PF (si|si−1;ψ)
using the ψ learned in ℓ-DynGFN to provide a more admissible starting point for learning hϕ (we

8

discuss further details in Appendix B.7). We do not need to do this for h-DynBCD and h-DynDiBS
as we are able to train both models end-to-end without iterative optimization. In Table 1 we show
results of our synthetic experiments for learning posteriors over multi-modal distributions of cyclic
graphs. We observe the DynGFN is most competitive on both synthetic systems for modelling the
true posterior over structure. Details about DynGFN, baselines, and accompanying hyper-parameters
can be found in Appendix B.

6.3 Ablations Over Sparsity and Linearity of Dynamic Systems

We conduct two ablations: (1) ablation over sparsity of the dynamic system structure, and (2) ablation
over ∆t, the time difference between data points of dynamic simulation. For a sparsity level of 0.9,
the ground truth graphs have 50 edges out of d2 possible edges. In these experiments, P (G∗) for
d = 20 and sparsity 0.9 has 1024 modes. We conduct the ablations over 5 random seeds for each set
of experiments.

Table 2: Ablation for ℓ-DynGFN on d = 20 systems
with varying levels of sparsity and fixed ∆t = 0.05.

Sparsity Bayes-SHD ↓ AUC ↑ KL ↓
0.95 16.4± 1.71 0.79± 0.0 889.57± 31.24
0.90 22.8± 1.41 0.75± 0.01 1091.60± 35.72
0.85 32.8± 0.72 0.71± 0.0 —
0.80 39.2± 0.69 0.71± 0.0 —
0.75 60.2± 1.17 0.66± 0.01 —

Table 3: Ablation for ℓ-DynGFN on d = 20 non-linear
systems with varying ∆t and fixed sparsity at 0.9.

∆t Bayes-SHD ↓ AUC ↑ KL ↓
0.001 38.7± 0.80 0.61± 0.0 202.41± 9.95
0.005 39.0± 0.81 0.60± 0.0 206.83± 11.55
0.01 40.6± 1.13 0.59± 0.0 202.71± 7.74
0.05 45.7± 0.62 0.55± 0.0 226.25± 6.58
0.1 51.8± 0.18 0.50± 0.0 264.86± 2.17

Sparsity: DynGFN uses the L0 prior on
G throughout training. Under this setting,
system sparsity carries significant weight
on the ability to learn posteriors over the
structured dynamics of a system. We show
this trend in Table 2. We note that comput-
ing the KL-divergence for DynGFN, specif-
ically computing the probability of gener-
ating a true G, becomes computationally
intractable as G is less sparse3. For sys-
tems of 0.9 and 0.95 sparsity, we observe
a decreasing trend in KL and Bayes-SHD,
and an increasing trend in AUC. This result
is expected as DynGFN can better traverse
sparse graphs as the combinatorial space
over possible trajectories is smaller relative
to denser systems.

Linearity: Training DynGFN via the lin-
ear solver for the structural model parame-
ters is an easier objective due to simplified
training dynamics. Because of this, we explore the performance of ℓ-DynGFN assuming fθ for
modelling equation (1) to be linear in the non-linear system. We do this by conducting an ablation
over ∆t and find that the performance of ℓ-DynGFN on the non-linear system improves as ∆t→ 0.
We show a portion of this trend in Table 3.

6.4 Experiments on Single-Cell RNA-velocity Data

To show how DynGFN can be applied to single cell data we use a cell cycle dataset of human
Fibroblasts [46]. As a motivating example we show the correlation structure of single-cell RNA-seq
data from human Fibroblast cells [46] Figure 4. We show both the raw correlation and the correlation
over cell cycle time, which is significantly higher. With such a pure cell population whose primary
axis of variation is state in the cell cycle by aggregating over cell cycle time we expect observation
noise to be averaged out, leading to a “truer” view of the correlation between latent variables. Further
details for this experimental set-up are provided in Appendix C.1.3. Since there are many genes which
are affected by the cell cycle phase, there are many correlated variables that are downstream of the
true cell cycle regulators. This provides a natural way of using cell cycle data to evaluate a model’s
ability to capture the Bayesian posterior. In Table 4 we show results for learning posteriors over an
undetermined GRN using RNA velocity data. We find that ℓ-DynGFN and h-DynGFN yield low KL

3For example, since DynGFN constructs one object G sequentially over a state space distribution, we must
compute probabilities of all combinatorial state trajectories for constructing G = (si, . . . , sn). The space of
combinatorial state trajectories is n! in nature, hence this computation is only possible for small graphs and/or
sparse graphs.

9

(a) (b) (c)

Cdc25A Cdk1 Cdc25C

Cell Cycle Module

Mcm2

Mcm5

𝜌 > 0.75

True edges

Potential edges

(d)

Figure 4: (a) Correlation structure in the raw single cell data over 5000 cells and 2000 genes selected
by scVelo [8] pre-processing. (b) Correlation structure among genes over (inferred) cell cycle times.
This stronger correlation structure is more reflective of the correlation in the underlying system. (c)
Histogram of pairwise Pearson correlations between all genes passing pre-processing, comparing
the absolute values of the elements in (a) and (b). (d) Shows the ground truth GRN extracted as a
subset of the KEGG cell cycle pathway. Cdc25A is known to inhibit Cdk1 which is known to inhibit
Cdc25C, while the Mcm complex is highly correlated with Cdc25A, they do not directly interact with
Cdk1 [24].

Table 4: Bayesian dynamic structure learning 5-D cellular system using scRNA velocity data. The
dynamics of this system are unknowns, however we identify 81 admissible graphs between variables
(genes) that describe the data. We train models over 5 seeds. The graphs of this system contain of 7
true edges.

Cellular System - RNA Velocity
Model Bayes-SHD ↓ AUC ↑ KL ↓ NLL ↓
ℓ-DynBCD 2.6 ± 0.1 0.56± 0.01 321.95± 3.34 —
ℓ-DynDiBS 6.5± 0.4 0.47± 0.01 550.17± 16.63 —
ℓ-DynGFN 3.3 ± 0.4 0.59 ± 0.03 44.98 ± 18.60 —

h-DynBCD 10.1± 0.8 0.53± 0.03 587.41± 24.00 0.094± 0.003
h-DynDiBS 9.6± 4.2 0.51± 0.13 560.85± 83.83 0.084 ± 0.0
h-DynGFN 5.1 ± 1.2 0.58 ± 0.05 39.82 ± 28.05 0.109± 0.001

and moderate Bayes-SHD. While ℓ-DynBCD performs well in terms of identify a small distribution
of true G’s, it falls short in modelling the true posterior (this can be seen from low Bayes-SHD, high
KL).

7 Conclusion

We presented DynGFN, a method for Bayesian dynamic structure learning. In low dimensions we
found that DynGFN is able to better model the distribution over possible explanatory structures than
counterpart Bayesian structure learning baseline methods. As a proof of concept, we presented an
example of learning the distribution over likely explanatory graphs for linear and non-linear synthetic
systems where complex uncertainty over explanatory structure is prevalent. We demonstrate the
use of DynGFN for learning gene regulatory structure from single-cell transcriptomic data where
there are many possible graphs, showing DynGFN can better model the uncertainty over possible
explanations of this data rather than capturing a single explanation.

Limitations and Future Work: We have demonstrated a degree of efficacy when using DynGFN
for Bayesian structure learning with dynamic observational data. A key limitation of DynGFN
is scaling to larger systems. To effectively model P (G, θ,D), DynGFN needs to search over an
environment state space of possible graphs. This state space grows exponentially with the number of
possible edges, i.e. 2d

2

or d2d for per-node-GFN where d is the number of variables in the system.
Therefore, DynGFN is currently limited to smaller systems. Nevertheless, there are many applications
where Bayesian structure learning, even over 5-20 dimensional examples that we explore here, could
be extraordinarily useful. We include further discussion of scaling DynGFN in Appendix C.3 with
some ideas on how to approach this challenge. We found that training DynGFN requires some
selection of hyper-parameters and in particular parameters that shape the reward function. Selecting
hyper-parameters for the baseline methods prove more difficult for this task.

10

8 Acknowledgments and Disclosure of Funding

This research was enabled in part by the computational researches provided by Mila (mila.quebec)
and Compute Canada (ccdb.computecanada.ca). In addition, resources used in preparing this
research were in part provided by the Province of Ontario and companies sponsoring the Vector
Institute (vectorinstitute.ai/partners/). All authors are funded by their primary academic
institution. We also acknowledged funding from the Natural Sciences and Engineering Research
Council of Canada, Recursion Pharmaceuticals, CIFAR, Samsung, and IBM. We are grateful to
Cristian Dragos Manta for catching some typos in the manuscript.

References
[1] Aliee, H., Theis, F. J., and Kilbertus, N. Beyond predictions in neural odes: Identification and

interventions. arXiv preprint 2106.12430, 2021.

[2] Aliee, H., Richter, T., Solonin, M., Ibarra, I., Theis, F., and Kilbertus, N. Sparsity in continuous-
depth neural networks. Advances in Neural Information Processing Systems (NeurIPS), 2022.

[3] Améndola, C., Dettling, P., Drton, M., Onori, F., and Wu, J. Structure learning for cyclic linear
causal models. Uncertainty in Artificial Intelligence (UAI), 2020.

[4] Annadani, Y., Rothfuss, J., Lacoste, A., Scherrer, N., Goyal, A., Bengio, Y., and Bauer, S.
Variational causal networks: Approximate bayesian inference over causal structures. arXiv
preprint, 2021.

[5] Beaumont, P., Horsburgh, B., Pilgerstorfer, P., Droth, A., Oentaryo, R., Ler, S., Nguyen, H.,
Ferreira, G. A., Patel, Z., and Leong, W. CausalNex, 2021. URL https://github.com/
quantumblacklabs/causalnex.

[6] Bellot, A. and Branson, K. Neural Graphical Modelling in Continuous Time: Consistency
Guarantees and Algorithms. International Conference on Learning Representations (ICLR),
2022.

[7] Bengio, E., Jain, M., Korablyov, M., Precup, D., and Bengio, Y. Flow Network based Generative
Models for Non-Iterative Diverse Candidate Generation. Advances in Neural Information
Processing Systems (NeurIPS), 2021.

[8] Bengio, Y., Deleu, T., Hu, E. J., Lahlou, S., Tiwari, M., and Bengio, E. GFlowNet Foundations.
arXiv preprint 2111.09266, 2022.

[9] Bergen, V., Lange, M., Peidli, S., Wolf, F. A., and Theis, F. J. Generalizing RNA velocity to
transient cell states through dynamical modeling. BioRxiv preprint 820936, 2019.

[10] Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. Neural Ordinary Differential
Equations. Advances in Neural Information Processing Systems (NeurIPS), 2018.

[11] Cundy, C., Grover, A., and Ermon, S. BCD Nets: Scalable Variational Approaches for Bayesian
Causal Discovery. Advances in Neural Information Processing Systems (NeurIPS), 2021.

[12] Deleu, T., Góis, A., Emezue, C., Rankawat, M., Lacoste-Julien, S., Bauer, S., and Bengio,
Y. Bayesian Structure Learning with Generative Flow Networks. Uncertainty in Artificial
Intelligence (UAI), 2022.

[13] Friedman, N., Murphy, K., and Russell, S. Learning the structure of dynamic probabilistic
networks. Uncertainty in Artificial Intelligence (UAI), 1998.

[14] Glymour, C., Zhang, K., and Spirtes, P. Review of Causal Discovery Methods Based on
Graphical Models. Frontiers in Genetics, 2019.

[15] Granger, C. W. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica: journal of the Econometric Society, 1969.

[16] Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. International Conference on Learning
Representations (ICLR), 2017.

11

mila.quebec
ccdb.computecanada.ca
vectorinstitute.ai/partners/
https://github.com/quantumblacklabs/causalnex
https://github.com/quantumblacklabs/causalnex

[17] Hashimoto, T. B., Gifford, D. K., and Jaakkola, T. S. Learning Population-Level Diffusions
with Generative Recurrent Networks. International Conference on Machine Learning (ICML),
2016.

[18] Hauser, A. and Bühlmann, P. Characterization and greedy learning of interventional markov
equivalence classes of directed acyclic graphs. Journal of Machine Learning Research (JMLR),
13(1), 2012.

[19] He, Y.-B. and Geng, Z. Active learning of causal networks with intervention experiments and
optimal designs. Journal of Machine Learning Research (JMLR), 9, 2008.

[20] Huang, B., Zhang, K., Gong, M., and Glymour, C. Causal discovery and forecasting in
nonstationary environments with state-space models. International Conference on Machine
Learning (ICML), 2019.

[21] Huang, B., Zhang, K., Zhang, J., Ramsey, J., Sanchez-Romero, R., Glymour, C., and Schölkopf,
B. Causal discovery from heterogeneous/nonstationary data. The Journal of Machine Learning
Research (JMLR), 21, 2020.

[22] Huguet, G., Magruder, D. S., Tong, A., Fasina, O., Kuchroo, M., Wolf, G., and Krishnaswamy,
S. Manifold interpolating optimal-transport flows for trajectory inference. Advances in Neural
Information Processing Systems (NeurIPS), 2022.

[23] Huguet, G., Tong, A., Zapatero, M. R., Wolf, G., and Krishnaswamy, S. Geodesic Sinkhorn:
Optimal transport for high-dimensional datasets. arXiv preprint 2211.00805, 2022.

[24] Itani, S., Ohannessian, M., Sachs, K., Nolan, G. P., and Dahleh, M. A. Structure learning in
causal cyclic networks. Proceedings of Workshop on Causality: Objectives and Assessment at
NIPS 2008, 2010.

[25] Karlebach, G. and Shamir, R. Modelling and analysis of gene regulatory networks. Nature
reviews Molecular cell biology, 9, 2008.

[26] Ke, N. R., Bilaniuk, O., Goyal, A., Bauer, S., Larochelle, H., Pal, C., and Bengio, Y. Learning
neural causal models from unknown interventions. arXiv preprint 1910.01075, 2019.

[27] La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber,
K., Kastriti, M. E., Lönnerberg, P., Furlan, A., Fan, J., Borm, L. E., Liu, Z., van Bruggen,
D., Guo, J., He, X., Barker, R., Sundström, E., Castelo-Branco, G., Cramer, P., Adameyko, I.,
Linnarsson, S., and Kharchenko, P. V. RNA velocity of single cells. Nature, 560, 2018.

[28] Lacerda, G., Spirtes, P. L., Ramsey, J., and Hoyer, P. O. Discovering cyclic causal models by
independent components analysis. arXiv preprint 1206.3273, 2012.

[29] Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien, S. Gradient-Based Neural DAG
Learning. International Conference on Learning Representations (ICLR), 2020.

[30] Liu, Q. and Wang, D. Stein variational gradient descent: A general purpose bayesian inference
algorithm. Advances in Neural Information Processing Systems (NeurIPS), 2016.

[31] Lopez, R., Hütter, J.-C., Pritchard, J. K., and Regev, A. Large-scale differentiable causal
discovery of factor graphs. Advances in Neural Information Processing Systems (NeurIPS),
2022.

[32] Lorch, L., Rothfuss, J., Schölkopf, B., and Krause, A. DiBS: Differentiable Bayesian Structure
Learning. Advances in Neural Information Processing Systems (NeurIPS), 2021.

[33] Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E., Jain, M., Nica, A., Bosc, T., Bengio,
Y., and Malkin, N. Learning gflownets from partial episodes for improved convergence and
stability. arXiv preprint 2209.12782, 2022.

[34] Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio, Y. Trajectory Balance: Improved Credit
Assignment in GFlowNets. Advances in Neural Information Processing Systems (NeurIPS),
2022.

12

[35] Monti, R. P., Zhang, K., and Hyvärinen, A. Causal discovery with general non-linear relation-
ships using non-linear ica. Uncertainty in Artificial Intelligence (UAI), 2020.

[36] Mooij, J. M., Janzing, D., Heskes, T., and Schölkopf, B. On causal discovery with cyclic
additive noise models. Advances in Neural Information Processing Systems (NeurIPS), 2011.

[37] Mooij, J. M., Janzing, D., and Schölkopf, B. From Ordinary Differential Equations to Structural
Causal Models: The deterministic case. Uncertainty in Artificial Intelligence (UAI), 2013.

[38] Mooij, J. M., Magliacane, S., and Claassen, T. Joint causal inference from multiple contexts.
The Journal of Machine Learning Research (JMLR), 21, 2020.

[39] Murphy, K. P. Active learning of causal bayes net structure. Technical report, UC Berkeley,
2001.

[40] Pamfil, R., Sriwattanaworachai, N., Desai, S., Pilgerstorfer, P., Georgatzis, K., Beaumont, P.,
and Aragam, B. Dynotears: Structure learning from time-series data. International Conference
on Artificial Intelligence and Statistics (AISTATS), 2020.

[41] Pearl, J. Causality. Caimbridge University Press, second edition, 2009.

[42] Peters, J., Janzing, D., and Schölkopf, B. Elements of causal inference: foundations and
learning algorithms. The MIT Press, 2017.

[43] Peters, J., Bauer, S., and Pfister, N. Causal models for dynamical systems. Probabilistic and
Causal Inference: The Works of Judea Pearl, 2022.

[44] Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A., and Murali, T. Benchmarking algorithms
for gene regulatory network inference from single-cell transcriptomic data. Nature methods, 17,
2020.

[45] Qiu, X., Zhang, Y., Martin-Rufino, J. D., Weng, C., Hosseinzadeh, S., Yang, D., Pogson, A. N.,
Hein, M. Y., Hoi (Joseph) Min, K., Wang, L., Grody, E. I., Shurtleff, M. J., Yuan, R., Xu, S.,
Ma, Y., Replogle, J. M., Lander, E. S., Darmanis, S., Bahar, I., Sankaran, V. G., Xing, J., and
Weissman, J. S. Mapping transcriptomic vector fields of single cells. Cell, 185, 2022.

[46] Riba, A., Oravecz, A., Durik, M., Jiménez, S., Alunni, V., Cerciat, M., Jung, M., Keime, C.,
Keyes, W. M., and Molina, N. Cell cycle gene regulation dynamics revealed by RNA velocity
and deep-learning. Nature Communications, 13, 2022.

[47] Saelens, W., Cannoodt, R., Todorov, H., and Saeys, Y. A comparison of single-cell trajectory
inference methods. Nature Biotechnology, 37, 2019.

[48] Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu,
S., Lin, S., Berube, P., Lee, L., Chen, J., Brumbaugh, J., Rigollet, P., Hochedlinger, K., Jaenisch,
R., Regev, A., and Lander, E. S. Optimal-Transport Analysis of Single-Cell Gene Expression
Identifies Developmental Trajectories in Reprogramming. Cell, 176, 2019.

[49] Spirtes, P. and Glymour, C. An algorithm for fast recovery of sparse causal graphs. Social
Science Computer Review, 9, 1991.

[50] Tank, A., Covert, I., Foti, N., Shojaie, A., and Fox, E. Neural Granger Causality. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

[51] Tong, A., Huang, J., Wolf, G., van Dijk, D., and Krishnaswamy, S. TrajectoryNet: A Dynamic
Optimal Transport Network for Modeling Cellular Dynamics. International Conference on
Machine Learning (ICML), 2020.

[52] Tong, S. and Koller, D. Active learning for structure in bayesian networks. International Joint
Conference on Artificial Intelligence (IJCAI), 17, 2001.

[53] Zhang, K., Huang, B., Zhang, J., Glymour, C., and Schölkopf, B. Causal discovery from nonsta-
tionary/heterogeneous data: Skeleton estimation and orientation determination. International
Joint Conference on Artificial Intelligence (IJCAI), 2017.

[54] Zheng, X., Aragam, B., Ravikumar, P., and Xing, E. P. DAGs with NO TEARS: Continuous
Optimization for Structure Learning. Advances in Neural Information Processing Systems
(NeurIPS), 2018.

13

Supplementary Material

A Proof of Proposition 1

Proposition 1 calculates the number of admissible structure graphs for a linear ODE system with
correlated variables. We will first show the general case this is

∏
i∈d(2

mi − 1)Gi1, then analyze the
case of an L0 penalty on the edges of G, which reduces the size of the set of admissible graphs to∏
i(mi)

Gi1.

Proof. Consider an identifiable linear system dx
dt = Ax where we directly observe (x, dxdt) with G∗

identifiable. Then the system with m = 1d has exactly one admissible graph by definition. For each
node, we analyze its set of child nodes in G, i.e. c(u) = {v ∈ V s.t. u→ v ∈ G}. For an identifiable
system, each child v must have an incoming edge from its parent.

Next, we consider the process of adding a correlated variable, i.e. consider the situation of w.l.o.g.
consider m = (s, 1, 1, . . . , 1) for some s > 1. Then for each child of cj(v1), there are now s possible
parents. This has multiplied the number of possible graphs by 2s − 1. Since each element of m is
independent, this leads to the first statement, i.e. |G′| =

∏
i∈d(2

mi − 1)Gi1.

Under an L0 penalty, then we constrain the possible graphs to s different graphs, where each
child node picks exactly one of the s possible parents. This leads to the second statement, |G′| =∏
i(mi)

Gi1

B Experimental Details

B.1 Single Cell Dataset Preprocessing

We start with the processed data from [46]. We first filter it applying steps from the ScVelo tutorial.
We then sub-select the genes of interest and use the “Ms” and “velocity” layers, which we normalize
to mean zero standard deviation one for the states and scale the dx with the same parameters.

B.2 Baselines for Bayesian Dynamic Structure Learning

Existing Bayesian structure learning methods are typically constrained to learning DAGs. Tem-
poral information about the the dynamic relationships amongst variables in a system can help
alleviate this constraint. DiBS and BCD-Nets are two state-of-the-art Bayesian structure learn-
ing approaches for static systems. We apply versions of DiBS and BCD-Nets such that they
are applicable in our Bayesian dynamic structure learning framework for learning cyclic graph
structure from dynamic data. We use the approach taken in DiBS and parameterize the distribu-
tion over graphs as Pαt(G|Z) =

∏
i

∏
j Pαt(Gij |Zij), where Z = UTV , U, V ∈ Rk×d. Here

Pαt
(Gij = 1|Zij) = σ(αtZij), σ(x) = 1/(1 + e−αtx), and αt = αc(t) (t denotes the training

iteration. We use c(t) =
√
t). As t → ∞, Pαt

(G|Z) → δ(G|Z). In DiBS, Stein variational
gradient decent (SVGD) [30] is used to iteratively transport particles Z to learn the target distribu-
tion. Following from the above parameterization, we implement a version of BCD-Nets by treating
U ∼ N (µu, σ

2
u), V ∼ N (µv, σ

2
v), and learning µu, µv, σu, and σv. Since our framework uses

dynamic data, we incorporate DiBS and BCD-Nets within the framework (labeled DynDiBS and
DynBCD, respectively) to leverage dynamic information for Bayesian structure learning of cyclic
graphs.

B.3 Hyper-parameters for Baselines

For both DynBCD and DynDiBS we use k = d across datasets. Since DynDiBS is an ensemble
based method, we use 1024 samples for the linear and non-linear synthetic systems and 1000 samples
for the cellular system (both training and evaluation). Since DynBCD is a variational approach
and doesn’t require parallelized model ensembles, we use a large quantity of samples for training
and evaluation. In the case of the cellular system, since there is a significantly smaller quantity of
admissible graphs, we use less samples for DynBCD. We use graph sparsity regularization denoted by
λ0 and a temperature parameter T that scales the magnitude of the likelihood (e.g. 1

T 2 MSE(dx, d̂x)).

14

In Table 5 and Table 6 we outline the hyper-parameters we found to yield the most competitive results.
We use grid search to tune DynBCD and DynDiBS. All baselines are trained for 1000 epochs.

Table 5: Hyper-parameters for DynBCD. We define learning rate as ϵ.

Linear System
Model ϵ λ0 T α samples

ℓ-DynBCD 0.0001 0.001 0.01 0.1 5000
h-DynBCD 0.0001 0.0025 0.01 2 2000

Non-linear System
Model ϵ λ0 T α samples

ℓ-DynBCD 0.00005 0.01 0.01 2 5000
h-DynBCD 0.0001 0.001 0.01 1 2000

Cellular System
Model ϵ λ0 T α samples

ℓ-DynBCD 0.0001 0.001 0.05 0.05 1000
h-DynBCD 0.00001 0.0005 0.1 2 1000

Table 6: Hyper-parameters for DynDiBS. We define learning rate as ϵ.
Linear System

Model ϵ λ0 T α γ

ℓ-DynDiBS 0.0025 500 0.01 0.0001 3000
h-DynDiBS 0.0001 3 0.01 0.0001 10000

Non-linear System
Model ϵ λ0 T α γ

ℓ-DynDiBS 0.001 10 0.01 0.0001 3000
h-DynDiBS 0.0001 0.1 0.01 0.0001 10000

Cellular System
Model ϵ λ0 T α γ

ℓ-DynDiBS 0.0025 1 0.05 0.0001 3000
h-DynDiBS 0.00001 0.1 0.01 0.01 3000

We note that when evaluation on validation and test data for Bayes-SHD and AUC metrics, we hard
threshold Pαt(G|Z). We find that through training this the final αt is typically small enough in
magnitude such that Pαt(G|Z) does not yield a full threshold of Z. To this end, we select large αt
when computing the KL metric to mimic hard threshold behaviour as experienced during training.
We use αt = 1× 108. In DynDiBS the parameter γ helps control separation of particles Z during
training. In general, we found DynBCD and DynDiBS baselines are challenging to train and to find
hyper-parameter settings with good performance. In part, we believe this is due to the numerous
hyper-parameters required to tune as well as the general difficulty of the objective.

B.4 Neural Network Architectures and Hyper-parameters

We parameterize PF (si|si−1;ψ) and hϕ with MLP architectures. PF (si|si−1;ψ) takes the current
state as input and first computes common representations using a 3 layer MLP. Then a 2 layer
MLP with a softmax output activation takes the representations as input and outputs a distribution
over possible actions. The latter MLP is used to parameterize one head for each distribution
PF (si|si−1;ψ). We use a hidden unit dimension of 128 and leaky rectified linear unit (Leaky ReLU)
activation functions for the PF (si|si−1;ψ) MLP architecture. We use a uniform backward policy
for PB(si−1|si;ψ). To parameterize hϕ, we use a 3 layer MLP with hidden layer dimensions of

15

Table 7: Hyper-parameters for DynGFN. We define learning rate as ϵ, mtrain as number of training
samples, and meval the number of evaluation samples.

Linear System
Model ϵ λ0 T mtrain meval

ℓ-DynGFN 0.0001 100 0.01 1024 5000
h-DynGFN 0.00001 100 0.005 256 3000

Non-linear System
Model ϵ λ0 T mtrain meval

ℓ-DynGFN 0.0001 150 0.01 1024 5000
h-DynGFN 0.00001 150 0.005 256 3000

Cellular System
Model ϵ λ0 T mtrain meval

ℓ-DynGFN 0.00005 45 0.01 1024 1000
h-DynGFN 0.0001 10 0.1 1024 1000

{64, 64, 64} and exponential linear unit activations (ELU). We consider two parametrizations for fθ:
single linear parameters, i.e dx = θx, and a single hidden layer neural network dx = fθ(x). We
use these parametrizations to model linear and non-linear node-wise parent-child structural models,
where x ∈ Rd are the node-wise input observations.

B.5 Hyper-parameters for DynGFN

DynGFN requires setting a variety of hyper-parameters that lead to different trade offs in model
performance. In particular, λ0 (sparsity encouragement for identified graphs), a temperature parameter
T that scales the magnitude of the reward likelihood (e.g. 1

T 2 MSE(dx, d̂x)), learning rate ϵ, softmax
tempering c (we always use a cosine schedule for c, with a discrete period of 5 epochs), and number of
training epochs. In our experiments we select hyper-parameter values that we find lead to competitive
performance (this pertains to ℓ-DynGFN and h-DynGFN models) by observing performance over a
few hyper-parameter values. We outline the selected hyper-parameters for each respective model in
Table 7. For GFlowNet sampling, due to computational limits, we use less training samples mtrain

than evaluation samples meval for DynGFN. We train DynGFN for 1000 epochs.

B.6 GFlowNet Exploration vs. Exploitation

The general procedure for training GFlowNets is inspired from reinforcement learning where the
primary objective is to learn a stochastic policy π(a|s) to sample actions from an action space given
a current state. In our setting, the action space represents possible locations where an additional edge
can be placed to an existing graph and each state is represented by a current graph. Since under this
training procedure we are sampling from the GFlowNet policy PF (si|si−1;ψ) at every iteration then
attributing a reward associated to the sampled state/graph, the policy is susceptible to exploitation: if
PF (si|si−1;ψ) samples a graph(s) with a high reward, it becomes easy for the policy to focus on
sampling said graphs since they yield high reward. To alleviate this we encourage exploration using
softmax tempering on our stochastic policy, by multiplying the logits of our forward policy by 1/c
before applying the softmax function. A larger c flattens the stochastic policy such that exploration
within the action space is encouraged. However, setting the parameters c is challenging and there
exists a trade-off between exploring and exploiting the stochastic policy during optimization. We
address this by using a cosine schedule for c such that 1 ≤ c ≤ 1000. We treat the period of the
cosine schedule as a hyper-parameter.

B.7 Discussion of Training Dynamics

GFlowNets are a relatively recent class of models that can be challenging to optimize. We discuss
some of the challenges with training them especially in the context of a learned energy function.

16

0 200 400 600 800 1000
epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
MSE

0 200 400 600 800 1000
epoch

25

50

75

100

125

150

175
Bayes-SHD

Figure 5: Validation curves throughout training of l-DynGFN on a linear system. Mean squared error
(left) and Bayes-SHD (right).

We observed that in settings where the energy reward is fixed and we could proportionally penalize
missing edges as well as the addition of incorrect edges (e.g. ℓ-DynGFN), we were able to better learn
posteriors over admissible graphs over models that require sparse priors and/or trainable energies.
This suggests that DynGFN may be limited by an inadequate energy reward. However, we found
training DynGFN with a trainable energy function challenging since the GFlowNet stochastic policy
depends on the rewards, and vice versa. Further investigation and experimentation into this alternating
optimization procedure is required. To in part alleviate the constraints of this challenge, in this work
we presented results for h-DynGFN which used initialized GFlowNet parameters from a trained
ℓ-DynGFN model on the same task. We found that this initialization technique enabled more effective
iterative optimization of the forward policy and energy reward. In Figure 5 we show validation curves
throughout training of ℓ-DynGFN on a linear system with d = 20 and a sparsity value of 0.9.

B.8 Evaluating Quality of Learned Posteriors

Using our indeterminacy model defined in section 5, we can determine P (G∗) for a given set of
correlated variables, where G∗ denotes the set of true equally admissible structures. Here we assume
P (G∗) is a uniform distribution over G∗ and determine the KL between Q(G) and P (G∗). We
compute the KL considering only the probabilities of a trained models to generate all structures in
G∗, i.e. Q(G∗). This is due to the computational constraints for calculating the KL for DynGFN
since even for sparse graphs of moderate size this is a combinatorial computation. Nonetheless,
this approach allows us to directly compare the learned posteriors Q(G) to a ground truth discrete
distribution over structure G to evaluate the effectiveness of Bayesian structure learning approaches.

B.9 Implementation Details

Our model is implemented in Pytorch and Pytorch Lightning and is available at https://github.
com/lazaratan/dyn-gfn. Models were trained on a heterogeneous mix of HPC clusters for a total
of ~1,000 GPU hours primarily on NVIDIA RTX8000 GPUs.

17

https://github.com/lazaratan/dyn-gfn
https://github.com/lazaratan/dyn-gfn
~

C Additional Details

C.1 Single-cell Biology and Gene Regulatory Network Inference

C.1.1 Gene Regulatory Networks and Cell Dynamics

One dynamical system of interest is that of cells. Cellular response to environmental stimuli or genetic
perturbations can be modelled as a complex time-varying dynamical system [17, 1]. In general,
dynamical system models are a useful tool for downstream scientific reasoning. In this work we are
primarily interested in identifying the underlying cell dynamics from data. A reasonable model for cell
dynamics is as a stochastic dynamical system with many, possibly unobserved, components. There
are many data collection models for gaining insight into this system from single-cell RNA-sequencing
data. We will primarily focus on RNA velocity type methods, where both x and an estimate of dx are
available in each cell, but note that there are other assumptions to infer dynamics and regulation such as
pseudotime-based methods [47, 1], and optimal transport methods [17, 48, 51, 22, 23]. After learning
a possible explanatory regulation, this is used in downstream tasks, but the resulting conclusions
drawn from these models are necessarily conditional on the inferred regulation. Motivated by gene
regulatory networks, we explicitly model uncertainty over graphs which allows us to propagate the
resulting uncertainty to downstream conclusions.

C.1.2 Learning Gene Regulatory Networks From Single-cell Data

Single-cell transcriptomics has an interesting property in that from a single measurement we can
estimate both the current state x and the current velocity dx. Because mechanistically RNA undergoes
a splicing process, we can measure the quantities of both the unspliced (early) and spliced (late) RNA
in the cell. From these two quantities we can estimate the current RNA content for each gene and the
current transcription rate. There exist many models for denoising and interpreting this data [27, 9, 45].
Furthermore, there exist more elaborate measurement techniques to extract more accurate velocity
estimates [45]. The fact that we have an estimate of the current velocity is exceptionally useful for
continuous time structure discovery because it allows us to avoid explicitly unrolling the dynamical
system.

Learning the underlying causal structure from data is one of the open problems in biology. There are
many works that attempt to learn the effect of a change in a gene, or the addition of a drug. These
works often build models that directly predict the outcome of an intervention. This may be useful for
certain applications, but often does not generalize well out of distribution. We would like to learn a
model of the underlying instantaneous dynamics that give rise to effects at longer time scales. This
approach has a number of advantages. (1) it is closer to the mechanistic model; it may be easier to
learn a model of the instantaneous dynamics rather than the dynamics over long time scales (details
in Appendix C.2). (2) One model can be trained and applied to data from many sources including
RNA-velocity, Pseudotime, Single-cell time series, and steady state perturbational data. (3) The
instantaneous graph may be significantly sparser (and therefore easier to learn) than the summary
graph or the equilibrium graph.

C.1.3 Further Details on Experiments with Single-cell RNA-velocity Data

The process of Eukaryotic cell division can be divided into four well regulated stages based on the
phenotype, Gap 1 (G1), Synthesis (S), Gap 2 (G2), and Mitosis (M). This process is a good starting
point for GRN discovery as it is (1) relatively well understood, (2) deterministic, and (3) well studied
with plentiful data. While there is an underlying control loop controlling the progression of the cell
cycle, there are many other genes that also change during this cycle. To rediscover the true control
process from data we must disentangle the true causal genes from the downstream correlated genes.
This may become very difficult when we only observe dynamics at longer time scales. We hide a cell
cycle regulator among two downstream genes that are highly correlated (Spearman ρ > 0.75) and
test whether we can model the Bayesian posterior – namely that we are uncertain about which of the
three genes (Cdc25A, Mcm2, or Mcm5) is the true causal parent of Cdk1.

18

C.2 Instantaneous Graph and Long-horizon Graph

The graph recovered depends on the time scale considered. We make a distinction between the
conditional structure of the graph based on the time scale. Consider a system governed by dx(t)

dt =
f(x(t)). We define the instantaneous graph as:

gi,j := ∪x1
(
df(x)j
dxi

)
, i = 1, . . . , d, j = 1, . . . , d. (6)

Here, 1(z) = 1 if z ̸= 0, otherwise 1(z) = 0. We can define the temporal summary of the system
drift f as:

F (T, x) = x0 +

∫ T

0

f(x(t))dt. (7)

Then, we can define a long-horizon graph over long time-scales as:

Gi,j := ∪x1
(
∂F (T, x)j

∂xi

)
, i = 1, . . . , d, j = 1, . . . , d. (8)

If we are integrating the drift f over long time-scales, the long-horizon graph may be less sparse
than the instantaneous graph. In cellular systems, this equates to observing cell dynamics over long
time-scales, in turn observing increase quantities of correlations between variables of the system.
Thus, trying to delineate the instantaneous dynamics from long time-scales may be difficult depending
on the underlying system dynamics.

C.3 Further Discussion on Future Work

Although DynGFN is currently limited to smaller systems, we foresee approaches that would enable
some degree of scaling DynGFN to larger systems. One approach is to leverage biological information
of known gene-gene connections as a more informative prior for DynGFN. Currently, DynGFN learns
a forward stochastic policy for Q(G|D) starting from an initialized state s0 of all zeros. Instead, we
can define s̃0 using a prior of high confidence biological connections and sequentially add edges
starting from this new initial state. This would reduce the number of possible structures DynGFN
would need to search over, thus improving the potentially scalability of DynGFN. Another approach
is to learn structure between sets of genes (variables) rather than single genes. Since GRNs are
generally very sparse, it makes sense to group genes in sets. Consequently, we can then learn structure
between these grouped genes, rather than just individual genes. In turn, DynGFN can explore/learn
the structure over a smaller space while effectively capturing structure between a significantly larger
set of genes. To group genes, we would use prior biological information, either form existing literature
or expert domain knowledge.

In this work we exploit the use of a minimal prior, i.e. L0 sparsity prior, for learning Bayesian
dynamic structure between variables. In general, the aforementioned approaches for scaling DynGFN
to larger systems involve the use of more informative priors on G. Although we mention two ways
we foresee approaching this in the biological context of GRN inference, the general approach of
using more informative priors can help scale DynGFN to larger systems across applications.

C.4 Broader Impacts

While it is important to acknowledge the potential risks of drawing incorrect scientific conclusions
due to incorrect assumptions, our work embraces a Bayesian perspective for structure learning. A
key component of our work is to account for uncertainty within our method, aiming to minimize the
chances of incorrect conclusions. It is important to note that the accuracy of conclusions relies on
applying the method in settings that align with the underlying assumptions, such as causal sufficiency
and the use of dynamic observational data. By adhering to these guidelines, our approach holds
promise for producing robust and reliable scientific outcomes.

19

	Introduction
	Related Work
	Preliminaries
	Bayesian Dynamic Structure Learning
	Generative Flow Networks

	DynGFN for Bayesian Dynamic Structure Learning
	Graph Sampler
	HyperNetwork and Structural Model

	A Useful Model of Indeterminacy
	Experimental Results
	A Toy Example with Synthetic Data
	Experiments with Synthetic Data
	Ablations Over Sparsity and Linearity of Dynamic Systems
	Experiments on Single-Cell RNA-velocity Data

	Conclusion
	Acknowledgments and Disclosure of Funding
	Proof of Proposition 1
	Experimental Details
	Single Cell Dataset Preprocessing
	Baselines for Bayesian Dynamic Structure Learning
	Hyper-parameters for Baselines
	Neural Network Architectures and Hyper-parameters
	Hyper-parameters for DynGFN
	GFlowNet Exploration vs. Exploitation
	Discussion of Training Dynamics
	Evaluating Quality of Learned Posteriors
	Implementation Details

	Additional Details
	Single-cell Biology and Gene Regulatory Network Inference
	Gene Regulatory Networks and Cell Dynamics
	Learning Gene Regulatory Networks From Single-cell Data
	Further Details on Experiments with Single-cell RNA-velocity Data

	Instantaneous Graph and Long-horizon Graph
	Further Discussion on Future Work
	Broader Impacts

