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Abstract

Face recognition systems are widely deployed in safety-critical applications, in-
cluding law enforcement, yet they exhibit bias across a range of socio-demographic
dimensions, such as gender and race. Conventional wisdom dictates that model
biases arise from biased training data. As a consequence, previous works on bias
mitigation largely focused on pre-processing the training data, adding penalties
to prevent bias from effecting the model during training, or post-processing pre-
dictions to debias them, yet these approaches have shown limited success on hard
problems such as face recognition. In our work, we discover that biases are actually
inherent to neural network architectures themselves. Following this reframing, we
conduct the first neural architecture search for fairness, jointly with a search for
hyperparameters. Our search outputs a suite of models which Pareto-dominate
all other high-performance architectures and existing bias mitigation methods in
terms of accuracy and fairness, often by large margins, on the two most widely
used datasets for face identification, CelebA and VGGFace2. Furthermore, these
models generalize to other datasets and sensitive attributes. We release our code,
models and raw data files at https://github.com/dooleys/FR-NAS.

1 Introduction

Machine learning is applied to a wide variety of socially-consequential domains, e.g., credit scoring,
fraud detection, hiring decisions, criminal recidivism, loan repayment, and face recognition [78, 81,
61, 3], with many of these applications significantly impacting people’s lives, often in discriminatory
ways [5, 55, 114]. Dozens of formal definitions of fairness have been proposed [80], and many
algorithmic techniques have been developed for debiasing according to these definitions [106].
Existing debiasing algorithms broadly fit into three (or arguably four [96]) categories: pre-processing
[e.g., 32, 93, 89, 110], in-processing [e.g., 123, 124, 25, 35, 83, 110, 73, 79, 24, 59], or post-processing
[e.g., 44, 114].
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Figure 1: Overview of our methodology.

Conventional wisdom is that in order to effectively mitigate bias, we should start by selecting a model
architecture and set of hyperparameters which are optimal in terms of accuracy and then apply a
mitigation strategy to reduce bias. This strategy has yielded little success in hard problems such
as face recognition [14]. Moreover, even randomly initialized face recognition models exhibit bias
and in the same ways and extents as trained models, indicating that these biases are baked in to the
architectures already [13]. While existing methods for debiasing machine learning systems use a
fixed neural architecture and hyperparameter setting, we instead, ask a fundamental question which
has received little attention: Does model bias arise from the architecture and hyperparameters?
Following an affirmative answer to this question, we exploit advances in neural architecture search
(NAS) [30] and hyperparameter optimization (HPO) [33] to search for inherently fair models.

We demonstrate our results on face identification systems where pre-, post-, and in-processing
techniques have fallen short of debiasing face recognition systems. Training fair models in this setting
demands addressing several technical challenges [14]. Face identification is a type of face recognition
deployed worldwide by government agencies for tasks including surveillance, employment, and
housing decisions. Face recognition systems exhibit disparity in accuracy based on race and gender
[37, 92, 91, 61]. For example, some face recognition models are 10 to 100 times more likely to give
false positives for Black or Asian people, compared to white people [2]. This bias has already led to
multiple false arrests and jail time for innocent Black men in the USA [48].

In this work, we begin by conducting the first large-scale analysis of the impact of architectures
and hyperparameters on bias. We train a diverse set of 29 architectures, ranging from ResNets [47]
to vision transformers [28, 68] to Gluon Inception V3 [103] to MobileNetV3 [50] on the two most
widely used datasets in face identification that have socio-demographic labels: CelebA [69] and
VGGFace2 [8]. In doing so, we discover that architectures and hyperparameters have a significant
impact on fairness, across fairness definitions.

Motivated by this discovery, we design architectures that are simultaneously fair and accurate. To
this end, we initiate the study of NAS for fairness by conducting the first use of NAS+HPO to jointly
optimize fairness and accuracy. We construct a search space informed by the highest-performing
architecture from our large-scale analysis, and we adapt the existing Sequential Model-based Algo-
rithm Configuration method (SMAC) [66] for multi-objective architecture and hyperparameter search.
We discover a Pareto frontier of face recognition models that outperform existing state-of-the-art
models on both test accuracy and multiple fairness metrics, often by large margins. An outline of our
methodology can be found in Figure 1.

We summarize our primary contributions below:

• By conducting an exhaustive evaluation of architectures and hyperparameters, we uncover their
strong influence on fairness. Bias is inherent to a model’s inductive bias, leading to a substantial
difference in fairness across different architectures. We conclude that the implicit convention of
choosing standard architectures designed for high accuracy is a losing strategy for fairness.

• Inspired by these findings, we propose a new way to mitigate biases. We build an architecture and
hyperparameter search space, and we apply existing tools from NAS and HPO to automatically
design a fair face recognition system.

• Our approach finds architectures which are Pareto-optimal on a variety of fairness metrics on both
CelebA and VGGFace2. Moreover, our approach is Pareto-optimal compared to other previous
bias mitigation techniques, finding the fairest model.
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• The architectures we synthesize via NAS and HPO generalize to other datasets and sensitive
attributes. Notably, these architectures also reduce the linear separability of protected attributes,
indicating their effectiveness in mitigating bias across different contexts.

We release our code and raw results at https://github.com/dooleys/FR-NAS, so that users can
easily adapt our approach to any bias metric or dataset.

2 Background and Related Work

Face Identification. Face recognition tasks can be broadly categorized into two distinct categories:
verification and identification. Our specific focus lies in face identification tasks which ask whether
a given person in a source image appears within a gallery composed of many target identities and
their associated images; this is a one-to-many comparison. Novel techniques in face recognition
tasks, such as ArcFace [108], CosFace [23], and MagFace [75], use deep networks (often called the
backbone) to extract feature representations of faces and then compare those to match individuals
(with mechanisms called the head). Generally, backbones take the form of image feature extractors
and heads resemble MLPs with specialized loss functions. Often, the term “head” refers to both
the last layer of the network and the loss function. Our analysis primarily centers around the face
identification task, and we focus our evaluation on examining how close images of similar identities
are in the feature space of trained models, since the technology relies on this feature representation to
differentiate individuals. An overview of these topics can be found in Wang and Deng [109].

Bias Mitigation in Face Recognition. The existence of differential performance of face recognition
on population groups and subgroups has been explored in a variety of settings. Earlier work [e.g.,
57, 82] focuses on single-demographic effects (specifically, race and gender) in pre-deep-learning face
detection and recognition. Buolamwini and Gebru [5] uncover unequal performance at the phenotypic
subgroup level in, specifically, a gender classification task powered by commercial systems. Raji
and Buolamwini [90] provide a follow-up analysis – exploring the impact of the public disclosures
of Buolamwini and Gebru [5] – where they discovered that named companies (IBM, Microsoft,
and Megvii) updated their APIs within a year to address some concerns that had surfaced. Further
research continues to show that commercial face recognition systems still have socio-demographic
disparities in many complex and pernicious ways [29, 27, 54, 54, 26].

Facial recognition is a large and complex space with many different individual technologies, some
with bias mitigation strategies designed just for them [63, 118]. The main bias mitigation strategies
for facial identification are described in Section 4.2.

Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO). Deep learning
derives its success from the manually designed feature extractors which automate the feature engi-
neering process. Neural Architecture Search (NAS) [30, 116], on the other hand, aims at automating
the very design of network architectures for a task at hand. NAS can be seen as a subset of HPO
[33], which refers to the automated search for optimal hyperparameters, such as learning rate, batch
size, dropout, loss function, optimizer, and architectural choices. Rapid and extensive research on
NAS for image classification and object detection has been witnessed as of late [67, 125, 121, 88, 6].
Deploying NAS techniques in face recognition systems has also seen a growing interest [129, 113].
For example, reinforcement learning-based NAS strategies [121] and one-shot NAS methods [113]
have been deployed to search for an efficient architecture for face recognition with low error. How-
ever, in a majority of these methods, the training hyperparameters for the architectures are fixed. We
observe that this practice should be reconsidered in order to obtain the fairest possible face recognition
systems. Moreover, one-shot NAS methods have also been applied for multi-objective optimization
[39, 7], e.g., optimizing accuracy and parameter size. However, none of these methods can be applied
for a joint architecture and hyperparameter search, and none of them have been used to optimize
fairness.

For the case of tabular datasets, a few works have applied hyperparameter optimization to mitigate
bias in models. Perrone et al. [87] introduced a Bayesian optimization framework to optimize
accuracy of models while satisfying a bias constraint. Schmucker et al. [97] and Cruz et al. [17]
extended Hyperband [64] to the multi-objective setting and showed its applications to fairness. Lin
et al. [65] proposed de-biasing face recognition models through model pruning. However, they only
considered two architectures and just one set of fixed hyperparameters. To the best of our knowledge,
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no prior work uses any AutoML technique (NAS, HPO, or joint NAS and HPO) to design fair face
recognition models, and no prior work uses NAS to design fair models for any application.

3 Are Architectures and Hyperparameters Important for Fairness?

In this section, we study the question “Are architectures and hyperparameters important for fairness?”
and report an extensive exploration of the effect of model architectures and hyperparameters.

Experimental Setup. We train and evaluate each model configuration on a gender-balanced subset
of the two most popular face identification datasets: CelebA and VGGFace2. CelebA [69] is a
large-scale face attributes dataset with more than 200K celebrity images and a total of 10 177 gender-
labeled identities. VGGFace2 [8] is a much larger dataset designed specifically for face identification
and comprises over 3.1 million images and a total of 9 131 gender-labeled identities. While this work
analyzes phenotypic metadata (perceived gender), the reader should not interpret our findings absent
a social lens of what these demographic groups mean inside society. We guide the reader to Hamidi
et al. [40] and Keyes [56] for a look at these concepts for gender.

To study the importance of architectures and hyperparameters for fairness, we use the following train-
ing pipeline – ultimately conducting 355 training runs with different combinations of 29 architectures
from the Pytorch Image Model (timm) database [117] and hyperparameters. For each model, we use
the default learning rate and optimizer that was published with that model. We then train the model
with these hyperparameters for each of three heads, ArcFace [108], CosFace [23], and MagFace
[75]. Next, we use the model’s default learning rate with both AdamW [70] and SGD optimizers
(again with each head choice). Finally, we also train with AdamW and SGD with unified learning
rates (SGD with learning_rate=0.1 and AdamW with learning_rate=0.001). In total, we thus
evaluate a single architecture between 9 and 13 times (9 times if the default optimizer and learning
rates are the same as the standardized, and 13 times otherwise). All other hyperparameters are held
constant fortraining of the model.

Evaluation procedure. As is commonplace in face identification tasks [12, 13], we evaluate
the performance of the learned representations. Recall that face recognition models usually learn
representations with an image backbone and then learn a mapping from those representations onto
identities of individuals with the head of the model. We pass each test image through a trained model
and save the learned representation. To compute the representation error (which we will henceforth
simply refer to as Error), we merely ask, for a given probe image/identity, whether the closest image
in feature space is not of the same person based on l2 distance. We split each dataset into train,
validation, and test sets. We conduct our search for novel architectures using the train and validation
splits, and then show the improvement of our model on the test set.

The most widely used fairness metric in face identification is rank disparity, which is explored in the
NIST FRVT [38]. To compute the rank of a given image/identity, we ask how many images of a
different identity are closer to the image in feature space. We define this index as the rank of a given
image under consideration. Thus, Rank(image) = 0 if and only if Error(image) = 0; Rank(image)
> 0 if and only if Error(image) = 1. We examine the rank disparity: the absolute difference of the
average ranks for each perceived gender in a dataset D:∣∣∣∣∣ 1

|Dmale|
∑

x∈Dmale

Rank (x)− 1

|Dfemale|
∑

x∈Dfemale

Rank(x)

∣∣∣∣∣. (1)

We focus on rank disparity throughout the main body of this paper as it is the most widely used in face
identification, but we explore other forms of fairness metrics in face recognition in Appendix C.4.

Results and Discussion. By plotting the performance of each training run on the validation set
with the error on the x-axis and rank disparity on the y-axis in Figure 2, we can easily conclude two
main points. First, optimizing for error does not always optimize for fairness, and second, different
architectures have different fairness properties. We also find the DPN architecture has the lowest
error and is Pareto-optimal on both datasets; hence, we use that architecture to design our search
space in Section 4.
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Figure 2: (Left) CelebA (Right) VGGFace2. Error-Rank Disparity Pareto front of the architectures
with lowest error (< 0.3). Models in the lower left corner are better. The Pareto front is denoted
with a dashed line. Other points are architecture and hyperparameter combinations which are not
Pareto-optimal.

We note that in general there is a low correlation between error and rank disparity (e.g., for models
with error < 0.3, ρ = .113 for CelebA and ρ = .291 for VGGFace2). However, there are differences
between the two datasets at the most extreme low errors. First, for VGGFace2, the baseline models
already have very low error, with there being 10 models with error < 0.05; CelebA only has three
such models. Additionally, models with low error also have low rank disparity on VGGFace2 but this
is not the case for CelebA. This can be seen by looking at the Pareto curves in Figure 2.

The Pareto-optimal models also differ across datasets: on CelebA, they are versions of DPN, TNT,
ReXNet, VovNet, and ResNets, whereas on VGGFace2 they are DPN and ReXNet. Finally, we note
that different architectures exhibit different optimal hyperparameters. For example, on CelebA, for
the Xception65 architecture finds the combinations of (SGD, ArcFace) and (AdamW, ArcFace) as
Pareto-optimal, whereas the Inception-ResNet architecture finds the combinations (SGD, MagFace)
and (SGD, CosFace) Pareto-optimal.

4 Neural Architecture Search for Bias Mitigation

Inspired by our findings on the importance of architecture and hyperparameters for fairness in Sec-
tion 3, we now initiate the first joint study of NAS for fairness in face recognition, also simultaneously
optimizing hyperparameters. We start by describing our search space and search strategy. We then
compare the results of our NAS+HPO-based bias mitigation strategy against other popular face
recognition bias mitigation strategies. We conclude that our strategy indeed discovers simultaneously
accurate and fair architectures.

4.1 Search Space Design and Search Strategy

We design our search space based on our analysis in Section 3, specifically around the Dual Path
Networks[10] architecture which has the lowest error and is Pareto-optimal on both datasets, yielding
the best trade-off between rank disparity and accuracy as seen in Figure 2.

Hyperparameter Search Space Design. We optimize two categorical hyperparameters (the archi-
tecture head/loss and the optimizer) and one continuous one (the learning rate). The learning rate’s
range is conditional on the choice of optimizer; the exact ranges are listed in Table 6 in the appendix.

Architecture Search Space Design. Dual Path Networks [10] for image classification share
common features (like ResNets [46]) while possessing the flexibility to explore new features [52]
through a dual path architecture. We replace the repeating 1x1_conv–3x3_conv–1x1_conv block
with a simple recurring searchable block. Furthermore, we stack multiple such searched blocks to
closely follow the architecture of Dual Path Networks. We have nine possible choices for each of the
three operations in the DPN block, each of which we give a number 0 through 8. The choices include a
vanilla convolution, a convolution with pre-normalization and a convolution with post-normalization,
each of them paired with kernel sizes 1×1, 3×3, or 5×5 (see Appendix C.2 for full details). We thus
have 729 possible architectures (in addition to an infinite number of hyperparameter configurations).
We denote each of these architectures by XYZ where X,Y, Z ∈ {0, . . . , 8}; e.g., architecture 180
represents the architecture which has operation 1, followed by operation 8, followed by operation 0.
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Validation Set Test Set

Figure 3: Pareto front of the models discovered by SMAC and the rank-1 models from timm for the
(a) validation and (b) test sets on CelebA. Each point corresponds to the mean and standard error of
an architecture after training for 3 seeds. The SMAC models Pareto-dominate the top performing
timm models (Error < 0.1).

Search strategy. To navigate this search space we have the following desiderata:

• Joint NAS+HPO. Since there are interaction effects between architectures and hyperparam-
eters, we require an approach that can jointly optimize both of these.

• Multi-objective optimization. We want to explore the trade-off between the accuracy of
the face recognition system and the fairness objective of choice, so our joint NAS+HPO
algorithm needs to supports multi-objective optimization [84, 21, 71].

• Efficiency. A single function evaluation for our problem corresponds to training a deep
neural network on a given dataset. As this can be quite expensive on large datasets, we would
like to use cheaper approximations with multi-fidelity optimization techniques [98, 64, 31].

To satisfy these desiderata, we employ the multi-fidelity Bayesian optimization method SMAC3 [66]
(using the SMAC4MF facade), casting architectural choices as additional hyperparameters. We
choose Hyperband [64] for cheaper approximations with the initial and maximum fidelities set to 25
and 100 epochs, respectively, and η = 2. Every architecture-hyperparameter configuration evaluation
is trained using the same training pipeline as in Section 3. For multi-objective optimization, we use
the ParEGO [21] algorithm with ρ set to 0.05.

4.2 Empirical Evaluation

We now report the results of our NAS+HPO-based bias mitigation strategy. First, we discuss
the models found with our approach, and then we compare their performance to other mitigation
baselines.

Setup. We conducted one NAS+HPO search for each dataset by searching on the train and validation
sets. After running these searches, we identified three new candidate architectures for CelebA
(SMAC_000, SMAC_010, and SMAC_680), and one candidate for VGGFace2 (SMAC_301) where
the naming convention follows that described in Section 4.1. We then retrained each of these models
and those high performing models from Section 3 for three seeds to study the robustness of error and
disparity for these models; we evaluated their performance on the validation and test sets for each
dataset, where we follow the evaluation scheme of Section 3.

Comparison against timm models. On CelebA (Figure 3), our models Pareto-dominate all of
the timm models with nontrivial accuracy on the validation set. On the test set, our models still
Pareto-dominate all highly competitive models (with Error<0.1), but one of the original configurations
(DPN with Magface) also becomes Pareto-optimal. However, the error of this architecture is 0.13,
which is significantly higher than our models (0.03-0.04). Also, some models (e.g., VoVNet and
DenseNet) show very large standard errors across seeds. Hence, it becomes important to also study

6



(b)(a)

Validation Set Test Set

Figure 4: Pareto front of the models discovered by SMAC and the rank-1 models from timm for the
(a) validation and (b) test sets on VGGFace2. Each point corresponds to the mean and standard error
of an architecture after training for 3 seeds. The SMAC models are Pareto-optimal the top performing
timm models (Error<0.1).

the robustness of models across seeds along with the accuracy and disparity Pareto front. Finally, on
VGGFace2 (Figure 4), our models are also Pareto-optimal for both the validation and test sets.

Novel Architectures Outperform the State of the Art. Comparing the results of our automatically-
found models to the current state of the art baseline ArcFace [23] in terms of error demonstrates that
our strategy clearly establishes a new state of the art. While ArcFace [23] achieves an error of 4.35%
with our training pipeline on CelebA, our best-performing novel architecture achieves a much lower
error of 3.10%. Similarly, the current VGGFace2 state of the art baseline [112] achieves an error of
4.5%, whereas our best performing novel architecture achieves a much lower error of 3.66%.

Novel Architectures Pareto-Dominate other Bias Mitigation Strategies. There are three common
pre-, post-, and in-processing bias mitigation strategies in face identification. First, Chang et al. [9]
demonstrated that randomly flipping labels in the training data of the subgroup with superior accuracy
can yield fairer systems; we call this technique Flipped. Next, Wang and Deng [110] use different
angular margins during training and therefore promote better feature discrimination for the minority
class; we call this technique Angular. Finally, Morales et al. [76] introduced SensitiveNets which
is a sensitive information removal network trained on top of a pre-trained feature extractor with an
adversarial sensitive regularizer. While other bias mitigation techniques exist in face recognition,
these three are the most used and pertinent to face identification. See Cherepanova et al. [14]
for an overview of the technical challenges of bias mitigation in face recognition. We take the top
performing, Pareto-optimal timm models from the previous section and apply the three bias mitigation
techniques (Flipped, Angular, and SensitiveNets). We also apply these same techniques to the
novel architectures that we found. The results in Table 1 show that the novel architectures from our
NAS+HPO-based mitigation strategy Pareto-dominate the bias-mitigated models. In VGGFace2, the
SMAC_301 model achieves the best performance, both in terms of error and fairness, compared to
the bias-mitigated models. On CelebA, the same is true for the SMAC_680 model.

NAS+HPO-Based Bias Mitigation can be Combined with other Bias Mitigation Strategies.
Additionally, we combined the three other bias mitigation methods with the SMAC models that
resulted from our NAS+HPO-based bias mitigation strategy. More precisely, we first conducted
our NAS+HPO approach and then applied the Flipped, Angular, and SensitiveNets approach
afterwards. On both datasets, the resulting models continue to Pareto-dominate the other bias
mitigation strategies used by themselves and ultimately yield the model with the lowest rank disparity
of all the models (0.18 on VGGFace2 and 0.03 on CelebA). In particular, the bias improvement of
SMAC_000+Flipped model is notable, achieving a score of 0.03 whereas the lowest rank disparity
of any model from Figure 3 is 2.63, a 98.9% improvement. In Appendix C.6, we demonstrate that
this result is robust to the fairness metric — specifically our bias mitigation strategy Pareto-dominates
the other approaches on all five fairness metrics.
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Table 1: Comparison of bias mitigation techniques where the SMAC models were found with our
NAS+HPO bias mitigation technique and the other three techniques are standard in facial recognition:
Flipped [9], Angular [76], and SensitiveNets [110]. Items in bold are Pareto-optimal. The values
show (Error;Rank Disparity). Other metrics are reported in Appendix C.6 and Table 8.

Trained on VGGFace2 Trained on CelebA
Model Baseline Flipped Angular SensitiveNets Model Baseline Flipped Angular SensitiveNets
SMAC_301 (3.66;0.23) (4.95;0.18) (4.14;0.25) (6.20;0.41) SMAC_000 (3.25;2.18) (5.20;0.03) (3.45;2.28) (3.45;2.18)
DPN (3.56;0.27) (5.87;0.32) (6.06;0.36) (4.76;0.34) SMAC_010 (4.14;2.27) (12.27; 5.46) (4.50;2.50) (3.99;2.12)
ReXNet (4.09;0.27) (5.73;0.45) (5.47;0.26) (4.75;0.25) SMAC_680 (3.22;1.96) (12.42;4.50) (3.80;4.16) (3.29;2.09)
Swin (5.47;0.38) (5.75;0.44) (5.23;0.25) (5.03;0.30) ArcFace (11.30;4.6) (13.56;2.70) (9.90;5.60) (9.10;3.00)

Table 2: We transfer the evaluation of top performing models on VGGFace2 and CelebA onto six
other common face recognition datasets: LFW [53], CFP_FF [100], CFP_FP [100], AgeDB [77],
CALFW [128], CPLPW [127]. The novel architectures found with our bias mitigation strategy
significantly outperform other models in terms of accuracy. Refer Table 9 for the complete results.

Architecture (trained on VGGFace2) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW
Rexnet_200 82.60 80.91 65.51 59.18 68.23 62.15
DPN_SGD 93.0 91.81 78.96 71.87 78.27 72.97
DPN_AdamW 78.66 77.17 64.35 61.32 64.78 60.30
SMAC_301 96.63 95.10 86.63 79.97 86.07 81.43

Architecture (trained on CelebA) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW
DPN_CosFace 87.78 90.73 69.97 65.55 75.50 62.77
DPN_MagFace 91.13 92.16 70.58 68.17 76.98 60.80
SMAC_000 94.98 95.60 74.24 80.23 84.73 64.22
SMAC_010 94.30 94.63 73.83 80.37 84.73 65.48
SMAC_680 94.16 95.68 72.67 79.88 84.78 63.96

Novel Architectures Generalize to Other Datasets. We observed that when transferring our
novel architectures to other facial recognition datasets that focus on fairness-related aspects, our
architectures consistently outperform other existing architectures by a significant margin. We take
the state-of-the-art models from our experiments and test the weights from training on CelebA and
VGGFace2 on different datasets which the models did not see during training. Specifically, we
transfer the evaluation of the trained model weights from CelebA and VGGFace2 onto the following
datasets: LFW [53], CFP_FF [100], CFP_FP [100], AgeDB [77], CALFW [128], CPLFW [127].
Table 2 demonstrates that our approach consistently achieves the highest performance among various
architectures when transferred to other datasets. This finding indicates that our approach exhibits
exceptional generalizability compared to state-of-the-art face recognition models in terms of transfer
learning to diverse datasets.

Novel Architectures Generalize to Other Sensitive Attributes. The superiority of our novel
architectures even goes beyond accuracy-related metrics when transferring to other datasets — our
novel architectures have superior fairness properties compared to the existing architectures even
on datasets which have completely different protected attributes than were used in the architecture
search. Specifically, to inspect the generalizability of our approach to other protected attributes, we
transferred our models pre-trained on CelebA and VGGFace2 (which have a gender presentation
category) to the RFW dataset [111] which includes a protected attribute for race and the AgeDB
dataset [77] which includes a protected attribute for age. The results detailed in Appendix C.7 show
that our novel architectures always outperforms the existing architectures, across all five fairness
metrics studied in this work on both datasets.

Novel Architectures Have Less Linear-Separability of Protected Attributes. Our comprehensive
evaluation of multiple face recognition benchmarks establishes the importance of architectures
for fairness in face-recognition. However, it is natural to wonder: “What makes the discovered
architectures fair in the first place? To answer this question, we use linear probing to dissect the
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Table 3: Linear Probes on architectures. Lower gender classification accuracy is better

Architecture (trained on VGGFace2) Accuracy on Layer N ↓ Accuracy on Layer N-1 ↓
DPN_MagFace_SGD 86.042% 95.461%
DPN_CosFace_SGD 90.719% 93.787%
DPN_CosFace_AdamW 87.385% 94.444%
SMAC_301 69.980% 68.240%

intermediate features of our searched architectures and DPNs, which our search space is based upon.
Intuitively, given that our networks are trained only on the task of face recognititon, we do not want
the intermediate feature representations to implicitly exploit knowledge about protected attributes
(e.g., gender). To this end we insert linear probes[1] at the last two layers of different Pareto-optimal
DPNs and the model obtained by our NAS+HPO-based bias mitigation. Specifically, we train an
MLP on the feature representations extracted from the pre-trained models and the protected attributes
as labels and compute the gender-classification accuracy on a held-out set. We consider only the
last two layers, so k assumes the values of N and N − 1 with N being the number of layers in
DPNs (and the searched models). We represent the classification probabilities for the genders by
gpk = softmax(Wk + b), where Wk is the weight matrix of the k-th layer and b is a bias. We
provide the classification accuracies for the different pre-trained models on VGGFace2 in Table 3.
This demonstrates that, as desired, our searched architectures maintain a lower classification accuracy
for the protected attribute. In line with this observation, in the t-SNE plots in Figure 18 in the
appendix, the DPN displays a higher degree of separability of features.

Comparison between different NAS+HPO techniques We also perform an ablation across
different multi-objective NAS+HPO techniques. Specifically we compare the architecture derived
by SMAC with architectures derived by the evolutionary multi-objective optimization algorithm
NSGA-II [22] and multi-objective asynchronous successive halving (MO-ASHA) [98]. We obesrve
that the architecture derived by SMAC Pareto-dominates the other NAS methods in terms of accuracy
and diverse fairness metrics Table 4. We use the implementation of NSGA-II and MO-ASHA from
the syne-tune library [95] to perform an ablation across different baselines.

Table 4: Comparison between architectures derived by SMAC and other NAS baselines
NAS Method Accuracy ↑ Rank Disparity↓ Disparity↓ Ratio↓ Rank Ratio ↓ Error Ratio↓
MO-ASHA_108 95.212 0.408 0.038 0.041 0.470 0.572

NSGA-II_728 86.811 0.599 0.086 0.104 0.490 0.491
SMAC_301 96.337 0.230 0.030 0.032 0.367 0.582

5 Conclusion, Future Work and Limitations

Conclusion. Our approach studies a novel direction for bias mitigation by altering network topology
instead of loss functions or model parameters. We conduct the first large-scale analysis of the
relationship among hyperparameters and architectural properties, and accuracy, bias, and disparity in
predictions across large-scale datasets like CelebA and VGGFace2. Our bias mitigation technique
centering around Neural Architecture Search and Hyperparameter Optimization is very competitive
compared to other common bias mitigation techniques in facial recognition.

Our findings present a paradigm shift by challenging conventional practices and suggesting that
seeking a fairer architecture through search is more advantageous than attempting to rectify an
unfair one through adjustments. The architectures obtained by our joint NAS and HPO generalize
across different face recognition benchmarks, different protected attributes, and exhibit lower linear-
separability of protected attributes.

Future Work. Since our work lays the foundation for studying NAS+HPO for fairness, it opens up
a plethora of opportunities for future work. We expect the future work in this direction to focus on
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studying different multi-objective algorithms [34, 60] and NAS techniques [67, 125, 115] to search
for inherently fairer models. Further, it would be interesting to study how the properties of the
architectures discovered translate across different demographics and populations. Another potential
avenue for future work is incorporating priors and beliefs about fairness in the society from experts to
further improve and aid NAS+HPO methods for fairness. Given the societal importance, it would be
interesting to study how our findings translate to real-life face recognition systems under deployment.
Finally, it would also be interesting to study the degree to which NAS+HPO can serve as a general
bias mitigation strategy beyond the case of facial recognition.

Limitations. While our work is a step forward in both studying the relationship among architectures,
hyperparameters, and bias, and in using NAS techniques to mitigate bias in face recognition models,
there are important limitations to keep in mind. Since we only studied a few datasets, our results may
not generalize to other datasets and fairness metrics. Second, since face recognition applications span
government surveillance [49], target identification from drones [72], and identification in personal
photo repositories [36], our findings need to be studied thoroughly across different demographics
before they could be deployed in real-life face recognition systems. Furthermore, it is important
to consider how the mathematical notions of fairness used in research translate to those actually
impacted [94], which is a broad concept without a concise definition. Before deploying a particular
system that is meant to improve fairness in a real-life application, we should always critically
ask ourselves whether doing so would indeed prove beneficial to those impacted by the given
sociotechnical system under consideration or whether it falls into one of the traps described by Selbst
et al. [99]. Additionally, work in bias mitigation, writ-large and including our work, can be certainly
encourage techno-solutionism which views the reduction of statistical bias from algorithms as a
justification for their deployment, use, and proliferation. This of course can have benefits, but being
able to reduce the bias in a technical system is a different question from whether a technical solution
should be used on a given problem. We caution that our work should not be interpreted through a
normative lens on the appropriateness of using facial recognition technology.

In contrast to some other works, we do, however, feel, that our work helps to overcome the portability
trap [99] since it empowers domain experts to optimize for the right fairness metric, in connection
with public policy experts, for the problem at hand rather than only narrowly optimizing one specific
metric. Additionally, the bias mitigation strategy which we propose here can be used in other
domains and applied to applications which have more widespread and socially acceptable algorithmic
applications [19].
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A Ethics Statement

Face recognition systems are being used for more and more parts of daily lives, from government
surveillance [49], to target identification from drones [72], to identification in personal photo reposito-
ries [36]. It is also increasingly evident that many of these models are biased based on race and gender
[37, 92, 91]. If left unchecked, these technologies, which make biased decision for life-changing
events, will only deepen existing societal harms. Our work seeks to better understand and mitigate
the negative effects that biased face recognition models have on society. By conducting the first
large-scale study of the effect of architectures and hyperparameters on bias, and by developing and
open-sourcing face recognition models that are more fair than all other competitive models, we
provide a resource for practitioners to understand inequalities inherent in face recognition systems
and ultimately advance fundamental understandings of the harms and technological ills of these
systems.

That said, we would like to address potential ethical challenges of our work. We believe that the
main ethical challenge of this work centers on our use of certain datasets. We acknowledge that the
common academic datasets which we used to evaluate our research questions — CelebA [69] and
VGGFace2 [8] — are all datasets of images scraped from the web without the informed consent of
those whom are depicted. This also includes the datasets we transfer to, including LFW, CFP_FF,
CFP_FP, AgeDB, CALFW, CPLFW, and RFW. This ethical challenge is one that has plagued the
research and computer vision community for the last decade [86, 85] and we are excited to see datasets
being released which have fully informed consent of the subjects, such as the Casual Conversations
Dataset [45]. Unfortunately, this dataset in particular has a rather restrictive license, much more
restrictive than similar datasets, which prohibited its use in our study. Additionally, these datasets all
exhibit representational bias where the categories of people that are included in the datasets are not
equally represented. This can cause many problems; see [14] for a detailed look at reprsentational
bias’s impact in facial recognition specifically. At least during training, we did address representaional
bias by balancing the training data between gender presentations appropriately.

We also acknowledge that while our study is intended to be constructive in performing the first
neural architecture search experiments with fairness considerations, the specific ethical challenge we
highlight is that of unequal or unfair treatment by the technologies. We note that our work could be
taken as a litmus test which could lead to the further proliferation of facial recognition technology
which could cause other harms. If a system demonstrates that it is less biased than other systems, this
could be used as a reason for the further deployment of facial technologies and could further impinge
upon unwitting individual’s freedoms and perpetuate other technological harms. We explicitly caution
against this form of techno-solutionism and do not want our work to contribute to a conversation
about whether facial recognition technologies should be used by individuals.

Experiments were conducted using a private infrastructure, which has a carbon efficiency of 0.373
kgCO2eq/kWh. A cumulative of 88 493 hours of computation was performed on hardware of type
RTX 2080 Ti (TDP of 250W). Total emissions are estimated to be 8,251.97 kgCO2eq of which
0% was directly offset. Estimations were conducted using the MachineLearning Impact calculator
presented in [58]. By releasing all of our raw results, code, and models, we hope that our results will
be widely beneficial to researchers and practitioners with respect to designing fair face recognition
systems.

B Reproducibility Statement

We ensure that all of our experiments are reproducible by releasing our code and raw data files at
https://github.com/dooleys/FR-NAS. We also release the instructions to reproduce our results
with the code. Furthermore, we release all of the configuration files for all of the models trained. Our
experimental setup is described in Section 3 and Appendix C.1. We provide clear documentation on
the installation and system requirements in order to reproduce our work. This includes information
about the computing environment, package requirements, dataset download procedures, and license
information. We have independently verified that the experimental framework is reproducible which
should make our work and results and experiments easily accessible to future researchers and the
community.
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Table 5: The fairness metrics explored in this paper. Rank Disparity is explored in the main paper
and the other metrics are reported in Appendix C.4

Fairness Metric Equation
Rank Disparity |Rank(male)− Rank(female)|
Disparity |Accuracy(male)− Accuracy(female)|
Ratio |1− Accuracy(male)

Accuracy(female) |

Rank Ratio |1− Rank(male)
Rank(female) |

Error Ratio |1− Error(male)
Error(female) |

C Further Details on Experimental Design and Results

C.1 Experimental Setup

The list of the models we study from timm are: coat_lite_small [120], convit_base [20],
cspdarknet53 [107], dla102x2 [122], dpn107 [10], ese_vovnet39b [62], fbnetv3_g [18],
ghostnet_100 [42], gluon_inception_v3 [103], gluon_xception65 [15], hrnet_w64
[102], ig_resnext101_32x8d [119], inception_resnet_v2 [104], inception_v4
[104], jx_nest_base [126], legacy_senet154 [51], mobilenetv3_large_100 [50],
resnetrs101 [4], rexnet_200 [41], selecsls60b [74], swin_base_patch4_window7_224
[68], tf_efficientnet_b7_ns’ [105], ’tnt_s_patch16_224[43], twins_svt_large [16] ,
vgg19 [101], vgg19_bn [101], visformer_small [11], xception and xception65 [15].

We study at most 13 configurations per model ie 1 default configuration corresponding to the original
model hyperparameters with CosFace as head. Further, we have at most 12 configs consisting of the
3 heads (CosFace, ArcFace, MagFace) × 2 learning rates(0.1,0.001) × 2 optimizers (SGD, AdamW).
All the other hyperparameters are held constant for training all the models. All model configurations
are trained with a total batch size of 64 on 8 RTX2080 GPUS for 100 epochs each.

We study these models across five important fairness metrics in face identification: Rank Disparity,
Disparity, Ratio, Rank Ratio, and Error Ratio. Each of these metrics is defined in Table 5.

C.2 Additional details on NAS+HPO Search Space

We replace the repeating 1x1_conv–3x3_conv–1x1_conv block in Dual Path Networks with a
simple recurring searchable block. depicted in Figure 6. Furthermore, we stack multiple such
searched blocks to closely follow the architecture of Dual Path Networks. We have nine possible
choices for each of the three operations in the DPN block, each of which we give a number 0
through 8, depicted in Figure 6. The choices include a vanilla convolution, a convolution with pre-
normalization and a convolution with post-normalization Table 7. To ensure that all the architectures
are tractable in terms of memory consumption during search we keep the final projection layer (to
1000 dimensionality) in timm.

C.3 Obtained architectures and hyperparameter configurations from
Black-Box-Optimization

In Figure 5 we present the architectures and hyperparameters discovered by SMAC. Particularly we
observe that conv 3x3 followed batch norm is a preferred operation and CosFace is the preferred
head/loss choice.

C.4 Analysis of the Pareto front of different Fairness Metrics

In this section, we include additional plots that support and expand on the main paper. Primarily, we
provide further context of the Figures in the main body in two ways. First, we provide replication
plots of the figures in the main body but for all models. Recall, the plots in the main body only show
models with Error<0.3, since high performing models are the most of interest to the community.
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Figure 5: SMAC discovers the above building blocks with (a) corresponding to architecture with
CosFace, with SGD optimizer and learning rate of 0.2813 as hyperparamters (b) corresponding to
CosFace, with SGD as optimizer and learning rate of 0.32348 and (c) corresponding to CosFace, with
AdamW as optimizer and learning rate of 0.0006

Table 6: Searchable hyperparameter choices.

Hyperparameter Choices
Architecture Head/Loss MagFace, ArcFace, CosFace
Optimizer Type Adam, AdamW, SGD
Learning rate (conditional) Adam/AdamW → [1e− 4, 1e− 2],

SGD → [0.09, 0.8]

Table 7: Operation choices and definitions.

Operation Index Operation Definition
0 BnConv1x1 Batch Normalization → Convolution with 1x1 kernel
1 Conv1x1Bn Convolution with 1x1 kernel → Batch Normalization
2 Conv1x1 Convolution with 1x1 kernel

3 BnConv3x3 Batch Normalization → Convolution with 3x3 kernel
4 Conv3x3Bn Convolution with 3x3 kernel → Batch Normalization
5 Conv3x3 Convolution with 3x3 kernel

6 BnConv5x5 Batch Normalization → Convolution with 5x5 kernel
7 Conv5x5Bn Convolution with 5x5 kernel → Batch Normalization
8 Conv5x5 Convolution with 5x5 kernel

BnConv1x1
BnConv3x3

BnConv5x5

Conv1x1

Conv3x3

Conv5x5

Conv1x1Bn

Conv3x3Bn

Conv5x5Bn

Figure 6: DPN block (left) vs. our searchable block (right).
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Figure 7: Replication of CelebA Figure 2 with all data points. Error-Rank Disparity Pareto front of
the architectures with any non-trivial error. Models in the lower left corner are better. The Pareto
front is notated with a dashed line. Other points are architecture and hyperparameter combinations
which are not Pareto-dominant.
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Figure 8: Replication of VGGFace2 Figure 2 with all data points. Error-Rank Disparity Pareto front
of the architectures with any non-trivial error. Models in the lower left corner are better. The Pareto
front is notated with a dashed line. Other points are architecture and hyperparameter combinations
which are not Pareto-dominant.

Second, we also show figures which depict other fairness metrics used in facial identification. The
formulas for these additional fairness metrics can be found in Table 5.

We replicate Figure 2 in Figure 7 and Figure 8. We add additional metrics for CelebA in Figure 9-
Figure 11 and for VGGFace2 in Figure 12-Figure 15.

C.5 Correlation between fairness and model statistics

We examine the correlation of each fairness-metric with model statistics. We compute statistics
like number of parameters, model latency, number of convolutions, number of linear layers, and
number of batch-norms in a model’s definition. Interestingly, we observe very low and non-significant
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Figure 9: Replication of Figure 7 on the CelebA validation dataset with Ratio of Ranks (left) and
Ratio of Errors (right) metrics.

Figure 10: Replication of Figure 7 on the CelebA validation dataset with the Disparity in accuracy
metric.

correlations between parameter sizes and different fairness metrics Figure 16. This observation
supports the claim that increases in accuracy and decreases in disparity are very closely tied to the
architectures and feature representations of the model, irrespective of the parameter size of the model.
Hence, we do not constraint model parameter sizes to help our NAS+HPO approach search in a much
richer search space.

C.6 Comparison to other Bias Mitigation Techniques on all Fairness Metrics

We have shown that our bias mitigation approach Pareto-dominates the existing bias mitigation
techniques in face identification on the Rank Disparity metric. Here, we perform the same experiments
but evaluate on the four other metrics discussed in the face identification literature: Disparity, Rank
Ratio, Ratio, and Error Ratio.
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Figure 11: Replication of Figure 7 on the CelebA validation dataset with the Ratio in accuracy metric.
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Figure 12: Replication of Figure 8 on the VGGFace2 validation dataset with Ratio of Ranks metric.

Recall, we take top performing, Pareto-optimal models from Section 4 and apply the three bias miti-
gation techniques: Flipped, Angular, and SensitiveNets. We also apply these same techniques
to the novel architectures that we found. We report results in Table 1.

In Table 8, we see that in every metric, the SMAC_301 architecture is Pareto-dominant and that the
SMAC_301, demonstrating the robustness of our approach.

C.7 Transferability to other Sensitive Attributes

The superiority of our novel architectures even goes beyond accuracy when transfering to other
datasets — our novel architectures have superior fairness property compared to the existing architec-
tures even on datasets which have completely different protected attributes than were used in
the architecture search. To inspect the generalizability of our approach to other protected attributes,
we transferred our models pre-trained on CelebA and VGGFace2 (which have a gender presentation
category) to the RFW dataset [111] which includes a protected attribute for race. We see that our
novel architectures always outperforms the existing architectures across all five fairness metrics
studied in this work. See Table 10 for more details on each metric. We see example Pareto fronts for
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Figure 13: Replication of Figure 8 on the VGGFace2 validation dataset with Ratio of Errors metric.
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Figure 14: Replication of Figure 8 on the VGGFace2 validation dataset with the Disparity in accuracy
metric.

these transfers in Figure 17. They are always on the Pareto front for all fairness metrics considered,
and mostly Pareto-dominate all other architectures on this task. In this setting, since the race label in
RFW is not binary, the Rank Disparity metric considered in Table 10 and Figure 17 is computed as
the maximum rank disparity between pairs of race labels.

Furthermore, we also evaluate the transfer of fair properties of our models across different age groups
on the AgeDB dataset [77]. In this case we use age as a protected attribute. We group the faces into
4 age groups 1-25, 26-50, 51-75 and 76-110. Then we compute the max disparity across age groups.
As observed in Table 11 the models discovered by NAS and HPO, Pareto-dominate other competitive
hand-crafted models. This further emphasise the generalizabitlity of the fair features learnt by these
models.
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Figure 15: Replication of Figure 8 on the VGGFace2 validation dataset with the Ratio in accuracy
metric.
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Figure 16: Correlation map between different fairness metrics and architecture statistics. We find no
significant correlation between these objectives, e.g. between fairness metrics and parameter count.

Table 11: Taking the highest performing models from the Pareto front of both VGGFace2 and
CelebA, we transfer their evaluation onto a dataset with a different protected attribute – age – on the
AgeDB dataset [77]. The novel architectures which we found with our bias mitigation strategy are
Pareto-dominant with respect to the Accuracy and Disparity metrics

Architecture (trained on VGGFace2) Overall Accuracy ↑ Disparity ↓
Rexnet_200 59.18 28.9150
DPN_SGD 71.87 22.4633
DPN_AdamW 61.32 21.1437
SMAC_301 79.97 18.827

Architecture (trained on CelebA) Accuracy Disparity
DPN_CosFace 65.55 27.2434
DPN_MagFace 68.17 31.2903
SMAC_000 80.23 19.6481
SMAC_010 80.37 26.5103
SMAC_680 79.88 20.0586
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Table 8: Comparison bias mitigation techniques where the SMAC models were found on VGGFace2
with NAS bias mitigation technique and the other three techniques are standard in facial recognition:
Flipped [9], Angular [76], and Discriminator [110]. Items in bold are Pareto-optimal. The values
show (Error;metric).

Rank Disparity Disparity
Model Baseline Flipped Angular SensitiveNets Baseline Flipped Angular SensitiveNets

SMAC_301 (3.66;0.23) (4.95;0.18) (4.14;0.25) (6.20;0.41) (3.66;0.03) (4.95;0.02) (4.14;0.04) (6.14;0.04)
DPN (3.56;0.27) (5.87;0.32) (6.06;0.36) (4.76;0.34) (3.98;0.04) (5.87;0.05) (6.06;0.05) (4.78;0.05)
ReXNet (4.09;0.27) (5.73;0.45) (5.47;0.26) (4.75;0.25) (4.09;0.03) (5.73;0.05) (5.47;0.05) (4.75;0.04)
Swin (5.47;0.38) (5.75;0.44) (5.23;0.25) (5.03;0.30) (5.47;0.05) (5.75;0.04) (5.23;0.04) (5.03;0.04)

Rank Ratio Ratio
Model Baseline Flipped Angular SensitiveNets Baseline Flipped Angular SensitiveNets

SMAC_301 (3.66;0.37) (4.95;0.21) (4.14;0.39) (6.14;0.41) (3.66;0.03) (4.95;0.02) (4.14;0.04) (6.14;0.05)
DPN (3.98;0.49) (5.87;0.49) (6.06;0.54) (4.78;0.49) (3.98;0.04) (5.87;0.06) (6.06;0.06) (4.78;0.05)
ReXNet (4.09;0.41) (5.73;0.53) (5.47;0.38) (4.75;0.34) (4.09;0.04) (5.73;0.05) (5.47;0.05) (4.75;0.04)
Swin (5.47;0.47) (5.75;0.47) (5.23;0.42) (5.03;0.43) (5.47;0.05) (5.75;0.05) (5.23;0.05) (5.03;0.05)

Error Ratio
Model Baseline Flipped Angular SensitiveNets

SMAC_301 (3.66;0.58) (4.95;0.29) (4.14;0.60) (6.14;0.52)
DPN (3.98;0.65) (5.87;0.62) (6.06;0.62) (4.78;0.69)
ReXNet (4.09;0.60) (5.73;0.57) (5.47;0.59) (4.75;0.58)
Swin (5.47;0.60) (5.75;0.56) (5.23;0.60) (5.03;0.60)

Table 9: Taking the highest performing models from the Pareto front of both VGGFace2 and
CelebA, we transfer their evaluation onto six other common face recognition datasets: LFW [53],
CFP_FF [100], CFP_FP [100], AgeDB [77], CALFW [128], CPLPW [127]. The novel architectures
which we found with our bias mitigation strategy significantly out perform all other models.

Architecture (trained on VGGFace2) LFW CFP_FF CFP_FP AgeDB CALFW CPLPW

Rexnet_100 82.60 80.91 65.51 59.18 68.23 62.15
DPN_SGD 93.00 91.81 78.96 71.87 78.27 72.97
DPN_AdamW 78.66 77.17 64.35 61.32 64.78 60.30
SMAC_301 96.63 95.10 86.63 79.97 86.07 81.43

Architecture (trained on CelebA) LFW CFP_FF CFP_FP AgeDB CALFW CPLFW

Rexnet_200 71.533 73.528 54.30 55.933 60.517 52.25
DPN_CosFace 87.78 90.73 69.97 65.55 75.50 62.77
DPN_MagFace 91.13 92.16 70.58 68.17 76.98 60.80
DenseNet161 82.60 80.16 64.07 56.93 66.36 59.35
Ese_Vovnet39 77.00 76.50 64.68 49.38 61.283 61.016
SMAC_000 94.98 95.60 74.24 80.23 84.73 64.22
SMAC_010 94.30 94.63 73.83 80.37 84.73 65.48
SMAC_680 94.16 95.68 72.67 79.88 84.78 63.96

Table 10: Taking the highest performing models from the Pareto front of both VGGFace2 and CelebA,
we transfer their evaluation onto a dataset with a different protected attribue – race – on the RFW
dataset [111]. The novel architectures which we found with our bias mitigation strategy are always
on the Pareto front, and mostly Pareto-dominant of the traditional architectures.

Fairness Metric Transfer from CelebA Transfer from VGGFace2

Rank Disparity Pareto-dominant Pareto-optimal
Disparity Pareto-dominant Pareto-dominant
Rank Ratio Pareto-optimal Pareto-optimal
Ratio Pareto-dominant Pareto-dominant
Error Ratio Pareto-optimal Pareto-optimal
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Figure 17: Models trained on CelebA (left) and VGGFace2 (right) evaluated on a dataset with a
different protected attribute, specifically on RFW with the racial attribute, and with the Rank Disparity
metric. The novel architectures out perform the existing architectures in both settings.

(a) (b)

(c) (d)

Figure 18: TSNE plots for models pretrained on VGGFace2 on the test-set (a) SMAC model last
layer (b) DPN MagFace on the last layer (b) SMAC model second last layer (b) DPN MagFace on
the second last layer. Note the better linear separability for DPN MagFace in comparison with the
SMAC model
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