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Abstract

Recent research has observed that in machine learning optimization, gradient
descent (GD) often operates at the edge of stability (EoS) [Cohen et al., 2021],
where the stepsizes are set to be large, resulting in non-monotonic losses induced
by the GD iterates. This paper studies the convergence and implicit bias of constant-
stepsize GD for logistic regression on linearly separable data in the EoS regime.
Despite the presence of local oscillations, we prove that the logistic loss can be
minimized by GD with any constant stepsize over a long time scale. Furthermore,
we prove that with any constant stepsize, the GD iterates tend to infinity when
projected to a max-margin direction (the hard-margin SVM direction) and converge
to a fixed vector that minimizes a strongly convex potential when projected to
the orthogonal complement of the max-margin direction. In contrast, we also
show that in the EoS regime, GD iterates may diverge catastrophically under the
exponential loss, highlighting the superiority of the logistic loss. These theoretical
findings are in line with numerical simulations and complement existing theories
on the convergence and implicit bias of GD for logistic regression, which are only
applicable when the stepsizes are sufficiently small.

1 Introduction

Gradient descent (GD) is a foundational algorithm for machine learning optimization that motivates
many popular algorithms. Theoretically, the behavior of GD is well understood when the stepsize is
small. In this regard, one of the most classic results is the descent lemma (see, e.g., Section 1.2.3 in
Nesterov et al. [2018]):

Lemma (Descent lemma, simplified version). Suppose that supw
∥∥∇2L(w)

∥∥
2
≤ β1, then

L(w+) ≤ L(w)− η · (1− ηβ/2) · ∥∇L(w)∥22, where w+ := w − η · ∇L(w).

When the targeted function is smooth (such as logistic regression) and the stepsize is small (0 < η <
β/2), the descent lemma ensures a monotonic decrease of the function value by performing each
GD step. Building upon this, a sequence of iterates produced by GD with small stepsizes provably
minimizes the function value in various settings (see, e.g., Lan [2020]).

For a more modern example, a recent line of research has established the implicit bias of GD
with small stepsizes (see Soudry et al. [2018], Ji and Telgarsky [2018] and references thereafter).
Specifically, they consider GD for optimizing logistic regression (besides other loss functions) on

1The uniformly bounded Hessian norm condition is stated for simplicity and can be relaxed in many ways.
For example, it can be replaced by requiring L(·) to be β-smooth. For another example, it can also be replaced
with sup0≤λ≤1

∥∥∇2L(λ ·w + (1− λ) ·w+)
∥∥
2
≤ β.
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Figure 1: The behaviors of GD for optimizing a neural network. We randomly sample 1, 000 data from
the MNIST dataset and then use GD to train a 4-layer fully connected network to fit those data. We use the
cross-entropy loss, i.e., the multi-class version of the logistic loss. The sub-figures (a), (b), and (c) report the
training loss, test accuracy, and sharpness (i.e., ∥∇L(wt)∥2) along the GD trajectories, respectively. The red
curves correspond to GD with a large stepsize η = 0.1, where the training losses oscillate locally and the
sharpnesses can exceed 2/η = 20. The green curves correspond to GD with a small stepsize η = 0.01, where
the training losses decrease monotonically and the sharpnesses are always below 2/η = 200. Moreover, (c)
suggests that large-stepsize GD achieves better test accuracy than small-stepsize GD, consistent with larger-scale
deep learning experiments [Goyal et al., 2017]. More details of the experiments can be found in Appendix D.

linearly separable data. When the stepsizes are sufficiently small, the GD iterates are shown to
decrease the risk monotonically (by a variant of the descent lemma); moreover, the GD iterates tend to
align with a direction that maximizes the ℓ2-margin of the data [Soudry et al., 2018, Ji and Telgarsky,
2018]. The margin-maximization bias of small-stepsize GD sheds important light on understanding
the statistical benefits of GD, as a large margin solution often generalizes well [Bartlett et al., 2017,
Neyshabur et al., 2018].

Nonetheless, in practical machine learning optimization, especially in deep learning, the empirical
risk (or training loss) often varies non-monotonically (while being minimized in the long run) — the
local risk oscillation is not only caused by the algorithmic randomness but is more an effect of using
large stepsizes, as it happens for deterministic GD (with large stepsizes) as well [Wu et al., 2018,
Xing et al., 2018, Lewkowycz et al., 2020, Cohen et al., 2021]. This phenomenon is showcased in
Figures 1(a) and 2(a), and is referred to by Cohen et al. [2021] as the edge of stability (EoS). The
observation sets a non-negligible gap between practical and theoretical GD setups, where in practice,
GD is run with large stepsizes that lead to local risk oscillations, but in theory, GD is only considered
with sufficiently small stepsizes, predicting a monotonic risk descent (with a few exceptions, which
will be discussed later in Section 2). A tension remains to be resolved:

Is the convergence of risk under local oscillation merely a “lucky” occurrence,
or is it predictable based on theory?

Contributions. In this work, we study the behaviors of GD in the EoS regime in arguably the
simplest setting for machine learning optimization — logistic regression on linearly separable data.
We show that with any constant stepsize, while the induced risks may oscillate locally, GD must
minimize the risk in the long run at a rate ofO(1/t), where t is the number of iterates. In addition, we
show that the direction of the GD iterates (with any constant stepsize) must align with a max-margin
direction (the hard-margin SVM direction) at a rate of O(1/ log(t)). These results explain how GD
minimizes a risk non-monotonically, and complement existing theories [Soudry et al., 2018, Ji and
Telgarsky, 2018] on the convergence and implicit bias of GD, which are only applicable when the
stepsizes are sufficiently small.

Some additional notable contributions are

1. We also show that, when projected to the orthogonal complement of the max-margin direction,
the GD iterates (with any constant stepsize) converge to a fixed vector that minimizes a strongly
convex potential at a rate ofO(1/ log(t)). This characterization is conceptually more interpretable
than an existing version [Soudry et al., 2018].

2. We show that in the EoS regime, GD can diverge catastrophically if the logistic loss is replaced
by the exponential loss. This is in stark contrast to the small-stepsize regime, where the behaviors
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of GD are known to be similar under any exponentially-tailed losses including both the logistic
and exponential losses [Soudry et al., 2018, Ji and Telgarsky, 2018]. The difference in the EoS
regime provides insights into why the logistic loss is preferable to the exponential loss in practice.

3. From a technical perspective, we develop a new approach for analyzing GD with large stepsizes.
Our approach views the GD iterates as a coupling of two orthogonal iterates, one along a max-
margin direction and the other along the orthogonal complement of the max-margin direction.
The former iterates tend to infinity and the latter iterates approximate “imaginary” GD iterates
that minimize a strongly convex potential with a decaying stepsize scheduler, controlled by the
former iterates. Our techniques for analyzing large-stepsize GD can be of independent interest.

2 Related Works

In this section, we discuss papers related to our work.

Implicit bias. We first review a set of papers on the implicit bias of GD (with small stepsizes).

Along this line, Soudry et al. [2018] are the very first to show that GD converges along a max-margin
direction when minimizing the empirical risk of an exponentially-tailed loss function (such as the
logistic and exponential losses), a linear model, and linearly separable data. Then, an alternative
analysis is provided by Ji and Telgarsky [2018], which also deals with non-separable data. These
two works directly motivate us for considering GD for logistic regression on linearly separable data.
However, there are at least three notable differences between our work and theirs. Firstly, their
results only apply to GD with small stepsizes, while our results apply to GD with any constant
stepsize. Secondly, their theories predict no difference between the logistic and exponential losses (as
they are limited to the small-stepsize regime). Quite surprisingly, we prove that in the EoS regime,
GD can diverge catastrophically under the exponential loss. Thirdly, from a technical viewpoint,
their implicit bias analysis is built upon the risk convergence analysis, which further relies on a
monotonic risk descent argument, hence only applies to small stepsizes. In comparison, we come up
with a new approach that allows analyzing the implicit bias under risk oscillations; the long-term
risk convergence is simply a consequence of the implicit bias results. Hence our techniques can
accommodate any constant stepsize. See Section 5 for more discussions.

Subsequent works have extended the results by Soudry et al. [2018], Ji and Telgarsky [2018] to other
algorithms such as momentum-based GD [Gunasekar et al., 2018a, Ji et al., 2021] and SGD [Nacson
et al., 2019c], and homogenous but non-linear models [Gunasekar et al., 2017, Ji and Telgarsky,
2019, Gunasekar et al., 2018b, Nacson et al., 2019a, Lyu and Li, 2020] and non-homogenous models
[Nacson et al., 2019a]. All these theories require the stepsizes to be small or even infinitesimal, in a
regime away from our focus, the EoS regime.

It is worth noting that Nacson et al. [2019b] consider GD with an increasing stepsize scheduler that
achieves a faster margin-maximization rate than constant-stepsize GD. However, their stepsize at
each iteration is still appropriately small, resulting in a monotonic risk descent by a variant of the
descent lemma.

Edge of stability. The risk oscillation phenomenon has been observed in several deep learning
papers [Wu et al., 2018, Xing et al., 2018, Lewkowycz et al., 2020], and the work by Cohen et al.
[2021] coins the term, edge of stability (EoS), that formally refers to it. In the remainder of this part,
we focus on reviewing the current theoretical progress in understanding EoS.

Zhu et al. [2023] rigorously characterize EoS for a two-dimensional function (u, v) 7→ (u2v2 − 1)2.
Chen and Bruna [2022] study EoS for a one-dimensional function u 7→ (u2 − 1)2 and for a special
two-layer single-neuron network. Similar to these two works, Kreisler et al. [2023] study EoS
in a 1-dimensional linear network. Ahn et al. [2022a] consider functions (u, v) 7→ ℓ(uv), where
ℓ is assumed to be convex, even, and Lipschitz; notably, they show a statistical gap between the
small-stepsize regime and the EoS regime. Finally, Even et al. [2023], Andriushchenko et al. [2023]
consider the regularization effect of large stepsizes in a diagonal linear network. Compared to their
settings, our problem, i.e., logistic regression, is a natural machine-learning problem with fewer
artifacts (if any).

EoS has also been theoretically investigated for general functions [Ma et al., 2022, Ahn et al., 2022b,
Damian et al., 2022, Wang et al., 2022b], but these theories are often subject to subtle assumptions
that are hard to interpret or verify. Specifically, Ma et al. [2022] require the function to grow
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“subquadratically”. Ahn et al. [2022b] assume the existence of a “forward invariant subset” near
the set of minima of the function. Damian et al. [2022] assume a negative correlation between the
gradient direction and the largest eigenvalue direction of the Hessian. Wang et al. [2022b] consider a
two-layer neural network but require the norm of the last layer parameter and the sharpness to change
in the same direction along the GD trajectory. Indirectly connected to EoS, the work by Kong and
Tao [2020] shows a chaotic behavior of GD with a non-small stepsize when optimizing a “multi-scale”
loss function. In comparison, our assumptions are more natural and interpretable.

Besides, the work by Lyu et al. [2022] considers EoS induced by GD for scale-invariant loss, e.g., a
network with normalization layers and weight decay, and the work by Wang et al. [2022a] shows
a balancing effect in matrix factorization induced by GD with a constant stepsize that is nearly
4/∥∇2L(w0)∥2 and is larger than 2/∥∇2L(w0)∥2. The objectives in their works are different from
ours, i.e., logistic regression.

The unstable convergence has also been studied for normalized GD [Arora et al., 2022] and regularized
GD [Bartlett et al., 2022]. These algorithms are apart from our focus on the vanilla GD.

Finally, the work by Liu et al. [2023] considers logistic regression with non-separable data (such that
the objective is strongly convex), where GD with sufficiently large stepsize diverges. In contrast,
we consider logistic regression with separable data, where GD with an arbitrarily large stepsize still
converges.

3 Preliminaries

We use x ∈ Rd to denote a feature vector and y ∈ {±1} to denote a binary label, respectively. Let
(xi, yi)

n
i=1 be a set of training data. Throughout the paper, we assume that (xi, yi)

n
i=1 is linearly

separable [Soudry et al., 2018].

Assumption 1 (Linear separability). Assume there is w ∈ Rd such that yix⊤
i w > 0 for i = 1, . . . , n.

Let w ∈ Rd be the parameter of a linear model. In logistic regression, we aim to minimize the
following empirical risk

L(w) :=

n∑
i=1

log
(
1 + exp(−yi · ⟨xi,w⟩)

)
, w ∈ Rd.

We study a sequence of iterates (wt)t≥0 produced by constant-stepsize gradient descent (GD), where
w0 denotes the initialization and the remaining iterates are sequentially generated by:

wt = wt−1 − η · ∇L(wt−1), t ≥ 1, (GD)

where η > 0 is a constant stepsize. We are especially interested in a regime where η is very large
such that L(wt) oscillates as a function of t. For the simplicity of presentation, we will assume that
w0 = 0. Our results can be easily extended to allow general initialization.

The following notations are useful for presenting our results.

Definition 1 (Margins and support vectors). Under Assumption 1, define the following notations:

(A) Let γ be the max-ℓ2-margin (or max-margin in short), i.e.,

γ := max
∥w∥2=1

min
i∈[n]

yi · ⟨xi,w⟩.

(B) Let ŵ be the hard-margin support-vector-machine (SVM) soluion, i.e.,

ŵ := arg min
w∈Rd

∥w∥2, s.t. yi · ⟨xi,w⟩ ≥ 1, i = 1, . . . , n.

It is clear that ŵ exists and is uniquely defined (see, e.g., Section 5.2 in Mohri et al. [2018]).
Note that ∥ŵ∥2 = 1/γ and ŵ/∥ŵ∥2 is a max-margin direction. Also note that by duality, ŵ
can be written as (see, e.g., Section 5.2 in Mohri et al. [2018])

ŵ =
∑
i∈S

αi · yixi, αi ≥ 0.
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(C) Let S be the set of indexes of the support vectors, i.e.,

S := {i ∈ [n] : yi · ⟨xi, ŵ/∥ŵ∥2⟩ = γ}.
(D) If there exists non-support vector (S ⊊ [n]), let θ be the second smallest margin, i.e.,

θ := min
i/∈S

yi · ⟨xi, ŵ/∥ŵ∥2⟩.

It is clear from the definitions that θ > γ > 0. In addition, from the definitions we have∑
i∈S

αi =
∑
i∈S

αi · yix⊤
i ŵ = ∥ŵ∥22 =

1

γ2
.

In addition to Assumption 1, we make the following two mild assumptions to facilitate our analysis.
Assumption 2 (Regularity conditions). Assume that:

(A) ∥xi∥2 ≤ 1, i = 1, . . . , n.
(B) rank{xi, i = 1, . . . , n} = d.

Assumption 2 is only made for the convenience of presentation. In particular, Assumption 2(A)
can be made true for any dataset by scaling the data vectors with a factor of maxi ∥xi∥2. Without
Assumption 2(B), our theorems still hold under a minor revision by replacing all the vectors of
interests with their projections to span{xi, i = 1, . . . , n}.
Assumption 3 (Non-degenerate data). In addition to Assumption 1, assume that

(A) rank{xi, i ∈ S} = rank{xi, i = 1, . . . , n}.
(B) There exist αi > 0, i ∈ S such that ŵ =

∑
i∈S αi · yixi.

Assumption 3 has been used in Soudry et al. [2018] (see their Theorem 4), which requires that the
support vectors span the dataset and are associated with strictly positive dual variables. Assumption
3(B) holds almost surely for every linearly separable dataset sampled from a continuous distribution
according to Appendix B in Soudry et al. [2018]. Assumption 3 provides convenience to our analysis,
but we conjecture it might not be necessary. Removing/relaxing Assumption 3 is left as a future work.

3.1 Space Decomposition

Conceptually, our analysis is built on a novel space decomposition viewpoint, which relies on the
following lemma.
Lemma 3.1 (Non-separable subspace). Suppose that Assumptions 1, 2, and 3 hold. Then (xi, yi)i∈S
is not linearly separable in the subspace orthogonal to the max-margin direction ŵ/∥ŵ∥2. That is,

for every v such that ⟨v, ŵ⟩ = 0, there exist i, j ∈ S such that yi · ⟨xi,v⟩ < 0, yj · ⟨xj ,v⟩ > 0.

Proof of Lemma 3.1. By Assumption 3 and ⟨v, ŵ⟩ = 0, we have

0 = ⟨v, ŵ⟩ =
∑
i∈S

αi · yix⊤
i v.

By Assumptions 2 and 3 we have

rank{yixi, i ∈ S} = rank{xi, i ∈ S} = rank{xi, i = 1, . . . , n} = d,

so there must exist i ∈ S such that yix⊤
i v ̸= 0. Without loss of generality, assume that yix⊤

i v < 0.
Then since αi > 0 for i ∈ S by Assumption 3, there must exist j ∈ S such that yjx⊤

j v > 0.

Lemma 3.1 shows that, although the dataset can be (linearly) separated by ŵ, it cannot be separated
by any vector orthogonal to ŵ. This motivates us to decompose the d-dimensional ambient space into
a 1-dimensional “separable” subspace and a (d− 1)-dimensional “non-separable” subspace. This
idea is formally realized as follows.

Fix d− 1 orthogonal vectors f1, . . . , fd−1 ∈ Rd such that
(
ŵ/∥ŵ∥2, f1, . . . , fd−1

)
forms an orthog-

onal basis of the ambient space Rd. Then define two projection operators:

P : Rd → R given by v 7→ v⊤ŵ/∥ŵ∥2,
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P̄ : Rd → Rd−1 given by v 7→ (v⊤f1, . . . ,v
⊤fd−1).

The two operators together define a natural space decomposition, i.e., Rd = P(Rd) ⊕ P(Rd).
Moreover,

(
P(xi), yi

)n
i=1

are linearly separable with an max-ℓ2-margin γ according to Definition
1, and

(
P̄(xi), yi

)
i∈S (hence

(
P̄(xi), yi

)n
i=1

) are non-separable according to Lemma 3.1. So the
decomposition of space can also be understood as the decomposition of data features into “max-
margin features” and “non-separable features”.

In what follows, we will callP(Rd) the max-margin subspace and P̄(Rd) the non-separable subspace,
respectively. In addition, we define a “margin offset” that quantifies to what extent the “non-separable
features” are not separable.

Definition 2 (Margin offset for the non-separable features). Under Assumptions 1, 2, and 3, it holds
that

(
P̄(xi), yi

)
i∈S is non-separable. Let b be a margin offset such that

−b := max
w̄∈Rd−1, ∥w̄∥2=1

min
i∈S

yi ·
〈
P̄(xi), w̄

〉
.

Then b > 0 due to the non-separability. The definition immediately implies that:

for every v̄ ∈ Rd−1, there exists i ∈ S such that yi ·
〈
P̄(xi), v̄

〉
≤ −b · ∥v̄∥2.

Comparison to Ji and Telgarsky [2018]. The work by Ji and Telgarsky [2018] also conducts
space decomposition (see their Section 2). However, our approach is completely different from theirs.
Firstly, they consider a non-separable dataset but we consider a linearly separable dataset. Secondly,
at a higher level, they decompose the “dataset” (into two subsets), while we decompose the “features”
(into two kinds of features). More specifically, Ji and Telgarsky [2018] first group the non-separable
dataset into the “maximal linearly separable subset” and the complement, non-separable subset, then
decompose the ambient space according to the subspace spanned by the non-separable subset and its
orthogonal complement. In comparison, we consider a linearly separable dataset and decompose the
ambient space according to a max-margin direction (i.e., P) and its orthogonal complement (i.e., P̄).

4 Main Results

We are now ready to present our main results. All proofs are deferred to Appendix C. To begin with,
we provide the following theorem that captures the behaviors of constant-stepsize GD for logistic
regression on linearly separable data.

Theorem 4.1 (The implicit bias of GD for logistic regression). Suppose that Assumptions 1, 2,
and 3 hold. Consider (wt)t≥0 produced by (GD) with initilization2 w0 = 0 and constant stepsize
η > 0. Then there exist positive constants c1, c2, c3 > 0 that are upper bounded by a polynomial of{
eη, en, e1/b, 1/η, 1/(θ − γ), 1/γ, eθ/γ

}
but are independent of t, such that:

(A) The risk is upper bounded by
L(wt) ≤ c1/t, t ≥ 3.

(B) In the max-margin subspace,

P(wt) ≥ log(t)/γ + log(ηγ2/2)/γ, t ≥ 1.

(C) In the non-separable subspace, ∥∥P̄(wt)
∥∥
2
≤ c2, t ≥ 0.

(D) In addition, in the non-separable subspace,

G
(
P̄(wt)

)
−minG(·) ≤ c3/log(t), t ≥ 3,

where G(·) is a strongly convex potential defined by

G(v) :=
∑
i∈S

exp
(
− yi ·

〈
P̄(xi), v

〉)
, v ∈ Rd−1.
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Figure 2: The behaviors of GD for logistic regression. We randomly sample 1, 000 data with labels “0” and “8”
from the MNIST dataset and then use GD to perform logistic regression on those data. The sub-figures (a) and
(b) report the risk (i.e., the logistic loss) and sharpness (i.e., ∥∇L(wt)∥2) along the GD trajectories, respectively.
For GD with stepsizes η larger than or equal to 0.1, the training losses oscillate locally and the sharpnesses
can exceed 2/η. For GD with a small stepsize η = 0.01, the training losses decrease monotonically and the
sharpnesses are always below 2/η. More details of the experiments can be found in Appendix D.

Note that Theorem 4.1 applies to GD with any positive constant stepsize, therefore allowing GD to
be in the EoS regime. We next discuss the implications of Theorem 4.1 in detail.

Risk minimization. Theorem 4.1(A) guarantees that the GD iterates minimize the logistic loss
at a rate of O(1/t) for any constant stepsize, even for those large stepsizes that cause local risk
oscillations. This result explains the risk convergence of GD in the EoS regime, as illustrated in
Figure 2, and is also consistent with the observations in neural network experiments (see Figure 1).

Margin maximization. Theorem 4.1(B) shows that the GD iterates, when projected to the max-
margin direction, tend to infinity at a rate of O(log(t)). Moreover, Theorem 4.1(C) shows that the
GD iterates, when projected to the non-separable subspace, are uniformly bounded. These two
results together imply that the direction of the GD iterates will tend to a max-margin direction, i.e.,
the hard-margin SVM direction, at a rate of O(1/ log(t)). Therefore, the implicit bias of GD that
maximizes the ℓ2-margin is consistent in both the EoS regime and the small-stepsize regime [Soudry
et al., 2018, Ji and Telgarsky, 2018].

Iterate convergence in the non-separable subspace. Theorem 4.1(D) shows that the GD iterates,
when projected to the non-separable subspace, converge to the minimizer of a strongly convex
potential G(·). Here, G(·) measures the exponential loss of a parameter on the support vectors with
their non-separable features. This provides a more precise characterization of the implicit bias of GD:
the direction of the GD iterates converges to the hard-margin SVM direction, moreover, the limit of
the projections of the GD iterates to the orthogonal complement to the hard-margin SVM direction
minimizes the exponential loss on the non-separable features of the support vectors.

Comparison to Theorem 9 in Soudry et al. [2018]. Theorem 9, in particular, equation (18), in
Soudry et al. [2018] indirectly characterizes the convergence of GD iterates in the non-separable
subspace. It reads in our notations that: w̃ := limt→∞

(
wt − ŵ log(t)

)
exists and satisfies

for every i ∈ S, η · exp(−yi · ⟨xi, w̃⟩) = αi, where αi is defined in Assumption 3. (1)

In Appendix A, we show that Theorem 4.1(D) is equivalent to condition (1) in terms of describing
P̄(w∞). Despite their equivalence, (1) is less interpretable than Theorem 4.1(D), as (1) entangles
an effect of P(w∞) with P̄(w∞), while Theorem 4.1 completely decouples P(w∞) and P̄(w∞).
In particular, (1) seems to suggest P̄(w∞) to be a function of stepsize η since w̃ depends on η.
However, this is only an illusion brought by the lack of interpretability of (1); it is clear that P̄(w∞)
is independent of η according to Theorem 4.1(D).

Exponential loss. Until now, our theory for GD is consistent for large and small stepsizes. However,
this is a particular benefit thanks to the design of the logistic loss, and may not hold for other losses.
Our next result suggests that, in the EoS regime where the stepsizes are large, GD can diverge
catastrophically under the exponential loss.

2The theorem can be easily extended to allow any w0 that has a bounded ℓ2-norm.
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Theorem 4.2 (The catastrophic divergence of GD under the exponential loss). Consider a dataset of
two samples, where

x1 = (γ, 1), y1 = 1; x2 = (γ, −1), y2 = 1.

It is clear that (xi, yi)i=1,2 is linearly separable and (1, 0) is the max-margin direction. Consider a
risk defined by the exponential loss:

L(w, w̄) := exp(−y1⟨x1,w⟩) + exp(−y2⟨x2,w⟩) = e−γw ·
(
e−w̄ + ew̄

)
, where w = (w, w̄).

Let (wt, w̄t)t≥0 be the iterates produced by GD with constant stepsize η for optimizing L(w, w̄). If

0 ≤ w0 ≤ 2, |w̄0| ≥ 1, 0 < γ < 1/4, η ≥ 4,

then:

(A) L(wt, w̄t)→∞.
(B) wt →∞.
(C) For every t ≥ 0, |w̄t| ≥ 2γwt.
(D) Moreover, the sign of w̄t flips every iteration.

As a consequence, (wt, w̄t)t≥0 diverge in terms of either magnitude or direction; in particular, the
direction of (wt, w̄t)t≥0 cannot converge to the max-margin direction (which is (1, 0)).

Theorem 4.2 shows that with a large constant stepsize, the GD iterates no longer minimize the risk
defined by the exponential loss and no longer converge along the max-margin direction. In fact, the
directions of the GD iterates flip every step, thus the direction of the GD iterates necessarily diverges,
resulting in no meaningful implicit bias at all.

In the EoS regime, large-stepsize GD still behaves nicely under the logistic loss (Theorem 4.1) but can
behave catastrophically under the exponential loss (Theorem 4.2). From a mathematical standpoint,
this difference is rooted in the fact that the gradient of the logistic loss is uniformly bounded while
the gradient of the exponential loss could be extremely large. From a practical standpoint, it provides
insights into why the logistics loss (and its multi-class version, the cross-entropy loss) is preferable to
the exponential loss in practice.

The different behaviors of large-stepsize GD under the logistic and exponential losses also sharply
contrast the EoS regime with the small-stepsize regime. Because in the small-stepsize regime, the
convergence and implicit bias of GD are known to be similar under any exponentially-tailed losses,
including the logistic and exponential losses [Soudry et al., 2018, Ji and Telgarsky, 2018].

5 Techniques Overview

The proofs of Theorems 4.1 and 4.2 are deferred to Appendix C. In this section, we explain the proof
ideas of Theorem 4.1 by analyzing a simple dataset considered in Theorem 4.2 (the treatment to the
general datasets can be found in Appendix B). But this time we work with the logistic loss instead of
the exponential loss, that is,

L(w, w̄) = log(1 + e−γw−w̄) + log(1 + e−γw+w̄).

Then the GD iterates can be written as

wt+1 = wt − η · gt, w̄t+1 = w̄t − η · ḡt,

where

gt := −γ ·
(

1

1 + eγwt+w̄t
+

1

1 + eγwt−w̄t

)
, ḡt := −

(
1

1 + eγwt+w̄t
− 1

1 + eγwt−w̄t

)
.

For simplicity, assume that
w0 = 0, |w̄0| > 0.

Different from Soudry et al. [2018], Ji and Telgarsky [2018], our approach begins with showing the
implicit bias (despite that the risk may oscillate). The long-term risk convergence is then simply a
consequence of the implicit bias results.
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Step 1: (w̄t)t≥0 is uniformly bounded. Observe that ḡt and w̄t always share the same sign and
that |ḡt| ≤ 1, so we have

|w̄t+1| =
∣∣|w̄t| − η · |ḡt|

∣∣ ≤ max
{
|w̄t|, η · |ḡt|

}
≤ max

{
|w̄t|, η

}
.

By induction, we get that
(
|w̄t|

)
t≥0

is uniformly bounded by max{|w̄0|, η} = Θ(1).

Step 2: wt ≈ log(t)/γ. We turn to study the max-margin subspace. It is clear that gt ≤ 0 for every
t ≥ 0. So we have wt ≥ 0 by induction. Moreover, we have

−gt
γ

=
e−γwt−w̄t

1 + e−γwt−w̄t
+

e−γwt+w̄t

1 + e−γwt+w̄t
≤ e−γwt · e−w̄t + e−γwt · ew̄t ≤ e−γwt ·Θ(1),

where the last inequality is because |w̄t| is uniformly bounded. We also have

−gt
γ

=
e−γwt−w̄t

1 + e−γwt−w̄t
+

e−γwt+w̄t

1 + e−γwt+w̄t
≥ 0.5 ·min{1, e−γwte−w̄t}+ 0.5 ·min{1, e−γwtew̄t}

≥ 0.5 ·min{1, e−γwte−w̄t + e−γwtew̄t} ≥ 0.5 ·min{1, e−γwt} = 0.5 · e−γwt ,

where the third inequality is because e−w̄t + ew̄t ≥ 1 and the last equality is because wt ≥ 0. Putting
these together, we have

gt ≈ −γ · e−γwt ·Θ(1) ⇒ wt+1 ≈ wt − ηγ · e−γwt ·Θ(1) ⇒ wt = log(t)/γ ±Θ(1). (2)

Step 3: ḡt ≈ exp(−γwt) · ∇G(w̄t). We turn back to the non-separable subspace. Note that ḡt is
an odd function of w̄t. Without loss of generality, let us assume w̄t ≥ 0 in this part. Notice that

for every fixed a > 1, f(t) :=
1

t+ 1/a
− 1

t+ a
is a decreasing function of t ≥ 0. (3)

Then we have

ḡt = e−γwt ·
(

1

e−γwt + e−w̄t
− 1

e−γwt + ew̄t

)
≤ e−γwt ·

(
1

e−w̄t
− 1

ew̄t

)
=: e−γwt · ∇G(w̄t),

where the inequality is by (3), and G(w̄) := ew̄ + e−w̄ is defined as in Theorem 4.1(D). On the other
hand, since |w̄t| is bounded and wt is increasing (and tends to infinity), there must exist a time t0
such that e−γwt ≤ e−|w̄t| for every t ≥ t0. Then for t ≥ t0 we have

ḡt = e−γwt ·
(

1

e−γwt + e−w̄t
− 1

e−γwt + ew̄t

)
≥ e−γwt ·

(
1

2e−w̄t
− 1

e−w̄t + ew̄t

)
= e−γwt · e

w̄t − e−w̄t

2e−2w̄t + 2
≥ e−γwt · e

w̄t − e−w̄t

4
=:

1

4
· e−γwt · ∇G(w̄t),

where the first inequality is by (3) and e−γwt ≤ e−w̄t , and the last inequality is because we assume
w̄t ≥ 0. Putting these together, and using (2), we obtain that

for every t ≥ t0, w̄t+1 = w̄t − ηt · ∇G(w̄t), where ηt ≈ η · e−γwt ·Θ(1) ≈ Θ(1)/t. (4)

Step 4: a modified descent lemma. Using (4) and Taylor’s expansion, we have

for every t ≥ t0, G(w̄t+1) ≤ G(w̄t)− ηt · ∥∇G(w̄t)∥2 +
β

2
· η2t · ∥∇G(w̄t)∥2 ≤ G(w̄t) +

Θ(1)

t2
,

where β := sup|v̄|≤max{|w̄0|,η} ∥∇
2G(v̄)∥2 = Θ(1). Taking a telescoping sum from t to T , we have

for every T ≥ t ≥ t0, G(w̄T ) ≤ G(w̄t) + Θ(1)/t. (5)

Step 5: the convergence of w̄t. What remains is adapted from classic convergence arguments.
Choose w̄∗ = argminG(·), then

∥w̄t+1 − w̄∗∥22 = ∥w̄t − w̄∗∥22 − 2ηt · ⟨w̄t − w̄∗,∇G(w̄t)⟩+ η2t · ∥∇G(w̄t)∥22
≤ ∥w̄t − w̄∗∥22 − 2ηt · (G(w̄t)−G(w̄∗)) + Θ(1)/t2, t ≥ t0,
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where the equality is by (4), and the inequality is because of the convexity of G(·), |w̄t| ≤ Θ(1), and
(4). Taking a telescoping sum, we have

T∑
t=t0

2ηt · (G(w̄t)−G(w̄∗)) ≤ ∥w̄t0 − w̄∗∥22 − ∥w̄T+1 − w̄∗∥22 +
T∑

t=t0

Θ(1)/t2 ≤ Θ(1).

Combing the above with (5) and using ηt ≈ Θ(1)/t from (4), we get

T∑
t=t0

ηt · (G(w̄T )−G(w̄∗)) ≤
T∑

t=t0

ηt · (G(w̄t)−G(w̄∗)) +

T∑
t=t0

ηt ·Θ(1)/t ≤ Θ(1).

Finally, since
∑T

t=t0
ηt ≥ Θ(1) · (log(T )− log(t0)) according to (4), we get that G(w̄T )−G(w̄∗) ≤

Θ(1)/(log(T )− log(t0)).

Step 6: risk convergence. The long-term risk convergence result can be easily established by
making use of the implicit bias results we have obtained so far.

6 Conclusion

We consider constant-stepsize GD for logistic regression on linearly separable data. We show that
with any constant stepsize, GD minimizes the logistic loss; moreover, the GD iterates tend to infinity
when projected to a max-margin direction and tend to a fixed minimizer of a strongly convex potential
when projected to the orthogonal complement of the max-margin direction. We also show that GD
with a large stepsize may diverge catastrophically if the logistic loss is replaced by the exponential
loss. Our theory explains how GD minimizes a risk non-monotonically.
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A On the Equivalence between Theorem 4.1(D) and (1)

Note that w̃ in (1) contains components in both the max-margin and non-separable subspaces, and
we need to disentangle those two components.

Under the coordinate system that defines P and P̄ , we can represent a vector v ∈ Rd as

v :=
(
P(v), P̄(v)

)
.

Then for i ∈ S, we have

yi · ⟨xi, w̃⟩ = yi ·
〈(
P(xi), P̄(xi)

)
,
(
P(w̃), P̄(w̃)

)〉
= yi · P(xi) · P(w̃) + yi ·

〈
P̄(xi), P̄(w̃)

〉
since P and P̄ are orthogonal

= γP(w̃) + yi ·
〈
P̄(xi), P̄(w̃)

〉
. since yiP(xi) = γ for i ∈ S

So (1) is equivalent to

for every i ∈ S, η exp
(
− γP̄(w̃)

)
· exp

(
− yi ·

〈
P̄(xi), P̄(w̃)

〉)
= αi.

Recall that
∑

i∈S αi = 1/γ2 according to Definition 1. So focusing on P̄ , the above is equivalent to
the following condition on P̄(w̃):

αi ∝ exp
(
− yi ·

〈
P̄(xi), P̄(w̃)

〉)
, i ∈ S. (6)

Here we ignore a shared normalization factor.

Now, recall from Assumption 3(B) that (αi)i∈S are such that

ŵ =
∑
i∈S

αi · yixi, αi > 0.

Note that as long as
∑

i∈S αi = 1/γ2, we have

P(ŵ) =
∑
i∈S

αi · yiP(xi) = γ · 1

γ2
=

1

γ
.

Now consider P̄ . Note that P̄(ŵ) = 0 by the choice of P̄ , then apply P̄ on both sides of the above
equation, we get

0 = P̄(ŵ) =
∑
i∈S

αi · yiP̄(xi). (7)

Under (7), (6) is equivalent to the following condition on P̄(w̃):

0 =
∑
i∈S

exp
(
− yi ·

〈
P̄(xi), P̄(w̃)

〉)
· yiP̄(xi),

which is precisely the first-order condition of

P̄(w̃) ∈ argminG(·), where G(v) :=
∑
i∈S

exp
(
− yi ·

〈
P̄(xi), v

〉)
.

Hence we have shown that: the condition that w̃ satisfies (1) is equivalent to the condition that P̄(w̃)
minimizes the strongly convex potential G(·).

B The Behaviors of Constant-Stepsize GD

B.1 Notation Simplifications

Without loss of generality, we assume that

yi = 1, i = 1, . . . , n.

Otherwise, we replace yi with 1 and xi with yi · xi, respectively, and the following analysis does not
change.

Then the risk becomes

L(w) :=

n∑
i=1

log(1 + e−w⊤xi).
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Rotating the hard-margin SVM solution. Note that the (GD) iterates (under linear models) are
rotation equivariant. Specifically, let R be an orthogonal matrix, then applying R on both sides of
(GD), we obtain

Rwt+1 = Rwt + η

n∑
i=1

(
1− s(x⊤

i wt)
)
·Rxi

= Rwt + η

n∑
i=1

(
1− s((Rxi)

⊤(Rwt))
)
·Rxi,

which is equivalent to the GD iterates under changes of variables, w← Rw and x← Rx.

Therefore, without loss of generality, we can apply a rotation to the dataset such that ŵ ∥ e1. Then
for v ∈ Rd,

Pv = v[1] ∈ R, P̄v = v[2 : d] ∈ Rd−1.

Slightly abusing notations, in what follows we will write

xi = (xi, x̄i)
⊤ ∈ R⊕ Rd−1, i = 1, . . . , n,

where
xi := xi[1] ∈ R, x̄i := xi[2 : d] ∈ Rd−1.

Similarly, we define

w = (w, w̄)⊤ ∈ R⊕ Rd−1.

Then we have

x⊤
i w = xiwi + x̄⊤

i w̄.

So the loss can be written as:

L(w, w̄) :=

n∑
i=1

log(1 + e−wxi−w̄⊤x̄i).

So (GD) can be written as:

w0 = 0, wt = wt−1 − η · ∇wL(wt−1, w̄t−1), t ≥ 1;

w̄0 = 0, w̄t = w̄t−1 − η · ∇w̄L(wt−1, w̄t−1), t ≥ 1.
(8)

The above two recursions capture the GD iterates projecting to the max-margin and non-separable
subspaces, respectively.

B.2 Boundedness of GD in the Non-Separable Subspace

We first show that (w̄t)t≥0 stay bounded for every fixed stepsize η.

Lemma B.1 (Positiveness of wt). Suppose that Assumption1 holds. Consider (wt)t≥0 defined by (8)
with constant stepsize η > 0. Then for every t ≥ 0, it holds that wt ≥ 0.

Proof. Recall that

w0 = 0, wt = wt−1 − η · ∇wL(wt−1, w̄t−1), t ≥ 1.

We only need to show that∇wL(w, w̄) ≤ 0. This is because

∇wL(w, w̄) = −
n∑

i=1

1

1 + ewxi+w̄⊤x̄i
· xi

< 0. since xi ≥ γ > 0 by Definition 1
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Lemma B.2 (A recursion of ∥w̄t∥2). Suppose that Assumptions 1, 2, and 3 hold. Consider (w̄t)t≥0

defined by (8) with constant stepsize η > 0. Then for every t ≥ 0, there exists j ∈ [n] such that

∥w̄t+1∥22 ≤ ∥w̄t∥22 + 2ηe−wtγ ·
(
n− b · ∥w̄t∥2

4

)
+

η

1 + ewtxj+w̄⊤
t x̄j
·
(
ηn2 − b · ∥w̄t∥2

)
.

As a direct consequence,

∥w̄t∥2 ≥ max{4n/b, ηn2/b} implies that ∥w̄t+1∥2 ≤ ∥w̄t∥2.

Proof. We first make a few useful notations. Fix a time index t.

• Let k be the index of the “most negatively classified” support sample, i.e.,

k := argmin
i∈S
{⟨w̄t, x̄i⟩},

then by Definition 2 it holds that

⟨w̄t, x̄k⟩ ≤ −b · ∥w̄t∥2. (9)

• Let j be the index of the “most negatively classified” sample, i.e.,

j := arg min
1≤i≤n

{wtxi + ⟨w̄t, x̄i⟩}.

Then

wtxj + ⟨w̄t, x̄j⟩ ≤ wtxi + ⟨w̄t, x̄i⟩ for every i ∈ [n]. (10)

In particular, we must have

⟨w̄t, x̄j⟩ ≤ −b∥w̄t∥2, (11)

since

wtγ + ⟨w̄t, x̄j⟩ ≤ wtxj + ⟨w̄t, x̄j⟩ by Definition 1
≤ min

i∈S
{wtxi + ⟨w̄t, x̄i⟩} by (10)

= wtγ +min
i∈S
{⟨w̄t, x̄i⟩} by Definition 1

≤ wtγ − b∥w̄t∥2. by Definition 2

We remark that it is possible that k = j.

Step 0: an iterate norm recursion. Recall that

w̄t+1 = w̄t − η∇w̄L(wt, w̄t), ∇w̄L(wt, w̄t) = −
n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i
· x̄i.

Then

∥w̄t+1∥22 = ∥w̄t∥22 − 2η · ⟨w̄t,∇w̄L(wt, w̄t)⟩+ η2 ·
∥∥∇w̄L(wt, w̄t)

∥∥2
2
.

Step 1: gradient norm bounds. By definition, we have∥∥∇w̄L(wt, w̄t)
∥∥
2
=
∥∥∥ n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i
· x̄i

∥∥∥
2

≤
n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i
· ∥x̄i∥2

≤
n∑

i=1

1

1 + ewtxi+w̄⊤
t x̄i

by Assumption 2

≤ n

1 + ewtxj+w̄⊤
t x̄j

by (10) (12)
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≤ n. (13)
Here, we use a property of logistic loss that the gradient is uniformly bounded. Therefore, we have∥∥∇w̄tL(wt, w̄t)

∥∥2
2
≤
(

n

1 + ewtxj+w̄⊤
t x̄j

)
·
∥∥∇w̄tL(wt, w̄t)

∥∥
2

by (12)

≤ n2

1 + ewtxj+w̄⊤
t x̄j

. by (13) (14)

Step 2: cross-term bounds. We aim to show that the negative parts in the cross-term can cancel
both the positve parts in the cross-term and the squared gradient norm term.

Note that the following holds for either j = k or j ̸= k:
− ⟨w̄t,∇w̄t

L(wt, w̄t)⟩

=

n∑
i=1

1

1 + ewtxi+w̄⊤
t x̄i
· w̄⊤

t x̄i

≤
∑

w̄⊤
t x̄i>0

1

1 + ewtxi+w̄⊤
t x̄i
· w̄⊤

t x̄i

+
1

2
· 1

1 + ewtxj+w̄⊤
t x̄j
· w̄⊤

t x̄j +
1

2
· 1

1 + ewtxk+w̄⊤
t x̄k
· w̄⊤

t x̄k.

(15)

The first term in (15) can be bounded by∑
w̄⊤

t x̄i>0

1

1 + ewtxi+w̄⊤
t x̄i
· w̄⊤

t x̄i

=
∑

w̄⊤
t x̄i>0

e−wtxi

1 + e−wtxi−w̄⊤
t x̄i
· e−w̄⊤

t x̄i · w̄⊤
t x̄i

≤
∑

w̄⊤
t x̄i>0

e−wtxi

1 + e−wtxi−w̄⊤
t x̄i

since e−t · t ≤ 1

≤
∑

w̄⊤
t x̄i>0

e−wtxi

≤ ne−γwt . since xi ≥ γ for i ∈ [n] (16)
The second term in (15) can be bounded by

1

2
· 1

1 + ewtxj+w̄⊤
t x̄j
· w̄⊤

t x̄j ≤
1

2
· −b · ∥w̄t∥2
1 + ewtxj+w̄⊤

t x̄j
. by (11) (17)

The third term in (15) can be bounded by
1

2
· 1

1 + ewtxk+w̄⊤
t x̄k
· w̄⊤

t x̄k ≤
1

2
· −b · ∥w̄t∥2
1 + ewtγ+w̄⊤

t x̄k
by (9) and the choice of k

=
−b · ∥w̄t∥2

2
· e−wtγ

e−wtγ + ew̄
⊤
t x̄k

≤ −b · ∥w̄t∥2
2

· e
−wtγ

2
, since e−wtγ , ew̄

⊤
t x̄k ≤ 1 (18)

since
wtγ ≥ 0, by Lemma B.1

w̄⊤
t x̄k ≤ 0. by the choice of k

Now, bringing (16), (17), and (18) into (15), we obtain

−⟨w̄t,∇w̄t
L(wt, w̄t)⟩ ≤ e−wtγ ·

(
n− b · ∥w̄t∥2

4

)
− b · ∥w̄t∥2

2
· 1

1 + ewtxj+w̄⊤
t x̄j

. (19)

Here, we use a property of logistic loss that the gradients from incorrectly classified samples dominate
the gradients from correctly classified samples.
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Step 3: iterate norm recursion bounds. Using (14) and (19), we can obtain

∥w̄t+1∥22 = ∥w̄t∥22 − 2η · ⟨w̄t,∇w̄L(wt, w̄t)⟩+ η2 ·
∥∥∇w̄L(wt, w̄t)

∥∥2
2

≤ ∥w̄t∥22 + 2ηe−wtγ ·
(
n− b · ∥w̄t∥2

4

)
− ηb · ∥w̄t∥2 ·

1

1 + ewtxj+w̄⊤
t x̄j

+ η2 · n2

1 + ewtxj+w̄⊤
t x̄j

= ∥w̄t∥22 + 2ηe−wtγ ·
(
n− b · ∥w̄t∥2

4

)
+

η

1 + ewtxj+w̄⊤
t x̄j
·
(
ηn2 − b · ∥w̄t∥2

)
.

We have completed the proof.

Lemma B.3 (Boundedness of w̄). Suppose that Assumptions 1, 2, and 3 hold. Consider (w̄t)t≥0

defined by (8) with constant stepsize η > 0. Then for every t ≥ 0, it holds that

∥w̄t∥2 ≤Wmax := max{4n/b, ηn2/b}+ ηn.

Proof. We prove the claim by induction. Clearly, ∥w̄0∥2 = 0 ≤ max{4n/b, ηn2/b} + ηn. Now
suppose that

∥w̄t∥2 ≤ max{4n/b, ηn2/b}+ ηn,

and discuss the following two cases:

1. If ∥w̄t∥2 ≤ max{4n/b, ηn2/b}, then

∥w̄t+1∥2 ≤ ∥w̄t∥2 + ∥η · ∇w̄L(wt, w̄t)∥2 by triangle inequality
≤ ∥w̄t∥2 + ηn by (13)

≤ max{4n/b, ηn2/b}+ ηn.

2. Else, we have

max{4n/b, ηn2/b} ≤ ∥w̄t∥2 ≤ max{4n/b, ηn2/b}+ ηn,

which implies

∥w̄t+1∥2 ≤ ∥w̄t∥2 by Lemma B.2

≤ max{4n/b, ηn2/b}+ ηn.

This completes the induction.

B.3 Divergence of GD in the Max-Margin Subspace

Definition 3 (Some loss measurements in the non-separable subspace). Under Assumptions 1, 2, and
3, we define the following notations:

(A) Define two loss functions

G(w̄) :=
∑
i∈S

e−w̄⊤x̄i , H(w̄) :=
∑
i/∈S

e−w̄⊤x̄i .

In the case where S = [n], we define H(w̄) = 0.

(B) Define
Gmin := min

w̄∈Rd−1
G(w̄),

It is clear that Gmin ≥ 1 since (x̄i)i∈S are non-separable by Definition 2.

(C) Define
w̄∗ := arg min

w̄∈Rd−1
G(w̄).

It is clear that G(w̄∗) = Gmin. Moreover, it holds that ∥w̄∗∥2 ≤Wmax by Lemma B.4.
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(D) Recall that ∥w̄t∥2 ≤Wmax according to Lemma B.3. We then define

Gmax := sup
∥w̄∥2≤Wmax

G(w̄), Hmax := sup
∥w̄∥2≤Wmax

H(w̄).

It is clear that
G(w̄t) ≤ Gmax, H(w̄t) ≤ Hmax,

and that Gmax, Hmax are polynomials on eη , en, and e1/b, and are independent of t.
Lemma B.4. For the w̄∗ in Definition 3, it holds that

∥w̄∗∥2 ≤
log(n)

b
≤Wmax.

Proof. By Definition 2, there exists j ∈ S such that

w̄⊤
∗ x̄j ≤ −b · ∥w̄∗∥2,

which implies that

G(w̄∗) =
∑
i∈S

e−w̄⊤
∗ x̄i ≥ e−w̄⊤

∗ x̄j ≥ eb·∥w̄∗∥2 .

On the other hand, by the definition of w̄∗, we have

G(w̄∗) ≤ G(0) = n.

Therefore, we have eb·∥w̄∗∥2 ≤ n, that is, ∥w̄∗∥2 ≤ log(n)/b ≤Wmax.

We now consider (wt)t≥0.
Lemma B.5. Suppose Assumptions 1, 2, and 3 hold. Then for every t ≥ 0, it holds that

wt+1 ≥ wt +
ηγ

2
·min

{
1, e−γwt ·G(w̄t)

}
,

wt+1 ≤ wt + η ·min
{
γn, γ · e−γwt ·G(w̄t) + η · e−θwt ·H(w̄t)

}
.

Proof. Recall that

wt+1 = wt − η · ∇wL(wt, w̄t), ∇wL(wt, w̄t) = −
n∑

i=1

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi.

We only need to provide upper and lower bounds on −∇wL(wt, w̄t). The lower bound is because:

−∇wL(wt, w̄t) =

n∑
i=1

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi

≥
∑
i∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi since xi ≥ γ > 0 by Definition 1

=
∑
i∈S

e−γwt−x̄⊤
i w̄t

1 + e−γwt−x̄⊤
i w̄t
· γ since xi = γ for i ∈ S

≥ γ

2
·
∑
i∈S

min{1, e−γwt−x̄⊤
i w̄t} since et/(1 + et) ≥ 0.5min{1, et}

≥ γ

2
·min

{
1, e−γwt ·

∑
i∈S

e−x̄⊤
i w̄t

}
=

γ

2
·min

{
1, e−γwt ·G(w̄t)

}
.

The upper bound is because:

−∇wL(wt, w̄t) =

n∑
i=1

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi

18



=
∑
i∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi +

∑
i/∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t
· xi

≤
∑
i∈S

e−γwt−x̄⊤
i w̄t

1 + e−γwt−x̄⊤
i w̄t
· γ +

∑
i/∈S

e−xiwt−x̄⊤
i w̄t

1 + e−xiwt−x̄⊤
i w̄t

since xi = γ for i ∈ S, and xi ≤ 1 for i ∈ [n]

≤ γ ·
∑
i∈S

min{1, e−γwt−x̄⊤
i w̄t}+

∑
i/∈S

min{1, e−wtxi−x̄⊤
i w̄t}

since et/(1 + et) ≤ min{1, et}

≤ γ ·
∑
i∈S

min
{
1, e−γwt−x̄⊤

i w̄t

}
+
∑
i/∈S

min
{
1, e−θwt−x̄⊤

i w̄t

}
since xt ≥ θ > γ for i /∈ S

≤ γ ·
∑
i∈S

e−γwt−x̄⊤
i w̄t +

∑
i/∈S

e−θwt−x̄⊤
i w̄t

= γe−γwt ·G(w̄t) + e−θwt ·H(w̄t).

We have completed the proof.

Lemma B.6 (A lower bound on wt). Suppose Assumptions 2, 1, and 3 hold. Then it holds that

wt ≥
1

γ
· log

(
1 +

ηγ2

2
· t
)
, t ≥ 0.

As a direct consequence, it holds that

e−γwt ≤ 2

2 + ηγ2 · t
, t ≥ 0.

Proof. Observe that

wt+1 ≥ wt +
ηγ

2
·min

{
1, e−γwt ·G(w̄t)

}
by Lemma B.5

≥ wt +
ηγ

2
·min

{
1, e−γwt · 1

}
by Definition 3

≥ wt +
ηγ

2
· e−γwt , since wt ≥ 0 by Lemma B.1 (20)

which implies that wt is increasing. Furthermore, we have

eγwt+1 − eγwt = eγwt ·
(
eγ(wt+1−wt) − 1

)
≥ eγwt · γ(wt+1 − wt) since et − 1 ≥ t for t ≥ 0, and wt+1 ≥ wt

≥ ηγ2

2
, by (20)

which implies that

eγwt ≥ eγw0 +
ηγ2

2
· t

= 1 +
ηγ2

2
· t. since w0 = 0

We then get

wt ≥
1

γ
· log

(
1 +

ηγ2

2
· t
)
, t ≥ 0.
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Lemma B.7 (An upper bound on wt). Suppose Assumptions 1, 2, and 3 hold. Then it holds that

wt ≤
1

γ
· log

((
eηγ2Gmax + eηγHmax

)
· (t+ 1)

)
, t ≥ 0.

As a direct consequence, it holds that

e−γwt ≥ 1(
eηγ2Gmax + eηγHmax

)
· (t+ 1)

, t ≥ 0.

Proof. Observe that

wt+1 − wt ≤ ηγ · e−γwt ·G(w̄t) + η · e−θwt ·H(w̄t) by Lemma B.5

≤ ηγ · e−γwt ·G(w̄t) + η · e−γwt ·H(w̄t) since θ > γ by Definition 1

≤ η ·
(
γGmax +Hmax

)
· e−γwt by Definition 3 (21)

Let
t0 := min

{
t : γη ·

(
γGmax +Hmax

)
· e−γwt ≤ 1

}
.

Recall that wt is increasing according to (20). So we have

for t ≤ t0, wt ≤
1

γ
· log

(
ηγ2Gmax + ηγHmax

)
; (22)

for t ≥ t0, γη ·
(
γGmax +Hmax

)
· e−γwt ≤ 1. (23)

(21) and (23) together imply that

for t ≥ t0, 0 ≤ γ ·
(
wt+1 − wt

)
≤ 1. (24)

Then for t ≥ t0, we have

eγwt+1 − eγwt = eγwt
(
eγ(wt+1−wt) − 1

)
≤ eγwt · e · γ(wt+1 − wt) by (24) and that et − 1 ≤ e · t for 0 ≤ t ≤ 1

≤ eηγ2Gmax + eηγHmax, by (21).

which implies

eγwt ≤ eγwt0 +
(
eηγ2Gmax + eηγHmax

)
· (t− t0)

≤ ηγ2Gmax + ηγHmax +
(
eηγ2Gmax + eηγHmax

)
· (t− t0) by (22)

≤
(
eηγ2Gmax + eηγHmax

)
· (t+ 1).

Therefore, for t ≥ t0, we have

wt ≤
1

γ
· log

((
eηγ2Gmax + eηγHmax

)
· (t+ 1)

)
.

Note that the above also holds for 0 ≤ t ≤ t0 according to (22). We have completed the proof.

B.4 Convergence of GD in the Non-Separable Subspace

We show that the vanilla gradient on the non-separable subspace,∇w̄L(wt, w̄t), can be understood as
the gradient on a modified loss with a rescaling factor, e−γwt∇G(w̄t), ignoring higher order errors.

Lemma B.8 (Gradients comparison lemma). Suppose Assumptions 1, 2, and 3 hold. Then it holds
that ∥∥∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)

∥∥
2
≤ e−2γwt ·G2

max + e−θwt ·Hmax, t ≥ 0.

As a direct consequence, for every vector v̄ ∈ Rd−1, it holds that

⟨v̄, ∇w̄L(wt, w̄t)⟩ ≤ e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ∥v̄∥2 ·
(
e−2γwt ·G2

max + e−θwt ·Hmax

)
.
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Proof. Recall that

∇w̄L(wt, w̄t) = −
n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i ∇G(w̄t) = −

∑
i∈S

e−w̄⊤
t x̄i · x̄i.

By the triangle inequality, we have∥∥∇w̄L(wt, w̄t)− e−γwt∇G(w̄t)
∥∥
2

=

∥∥∥∥∑
i∈S

(
e−γwt−w̄⊤

t x̄i − e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

)
· x̄i −

∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥∥
2

≤
∥∥∥∥∑

i∈S

(
e−γwt−w̄⊤

t x̄i − e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

)
· x̄i

∥∥∥∥
2︸ ︷︷ ︸

(♣)

+

∥∥∥∥∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥∥
2︸ ︷︷ ︸

(♡)

. (25)

The (♣) term can be bounded by

(♣) =
∥∥∥∥∑

i∈S

(
e−γwt−w̄⊤

t x̄i − e−γwt−w̄⊤
t x̄i

1 + e−γwt−w̄⊤
t x̄i

)
· x̄i

∥∥∥∥
2

since xi = γ for i ∈ S

=

∥∥∥∥∑
i∈S

e−γwt−w̄⊤
t x̄i

1 + e−γwt−w̄⊤
t x̄i
· e−γwt−w̄⊤

t x̄i · x̄i

∥∥∥∥
2

= e−2γwt ·
∥∥∥∥∑

i∈S

1

1 + e−γwt−w̄⊤
t x̄i
· e−2w̄⊤

t x̄i · x̄i

∥∥∥∥
2

≤ e−2γwt ·
∑
i∈S

1

1 + e−γwt−w̄⊤
t x̄i
· e−2w̄⊤

t x̄i · ∥x̄i∥2 by triangle inequality

≤ e−2γwt ·
∑
i∈S

1

1 + e−γwt−w̄⊤
t x̄i
· e−2w̄⊤

t x̄i since ∥x̄i∥2 ≤ 1 by Assumption 2

≤ e−2γwt ·
∑
i∈S

e−2w̄⊤
t x̄i

≤ e−2γwt ·
(∑

i∈S
e−w̄⊤

t x̄i

)2

= e−2γwt ·G(w̄t)
2

≤ e−2γwt ·G2
max. by Definition 3

The (♡) term can be bounded by

(♡) =
∥∥∥∥∑

i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥∥
2

≤
∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· ∥x̄i∥2 by triangle inequality

≤
∑
i/∈S

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

since ∥x̄i∥2 ≤ 1 by Assumption 2

≤
∑
i/∈S

e−wtxi−w̄⊤
t x̄i

≤ e−θwt ·
∑
i/∈S

e−w̄⊤
t x̄i xi ≥ θ > γ for i /∈ S

= e−θwt ·H(w̄)
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≤ e−θwt ·Hmax. by Definition 3

Bringing the bounds on the (♣) and (♡) into (25), we obtain∥∥∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)
∥∥
2
≤ e−2γwt ·G2

max + e−θwt ·Hmax, t ≥ 0.

We have shown the first conclusion. The second conclusion follows from the first conclusion: for
every v ∈ Rd−1,

⟨v̄,∇w̄L(wt, w̄t)⟩ = e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ⟨v̄, ∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)⟩
≤ e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ∥v̄∥2 · ∥∇w̄L(wt, w̄t)− e−γwt · ∇G(w̄t)∥2
≤ e−γwt · ⟨v̄, ∇G(w̄t)⟩+ ∥v̄∥2 ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
.

We have completed the proof.

Lemma B.9 (A gradient norm bound). Suppose Assumptions 1, 2, and 3 hold. Then it holds that∥∥∇w̄L(wt, w̄t)
∥∥
2
≤ e−γwt · (Gmax +Hmax), t ≥ 0.

Proof. The inequality is because:∥∥∇w̄t
L(wt, w̄t)

∥∥
2
=
∥∥∥ n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· x̄i

∥∥∥
2

≤
n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i
· ∥x̄i∥2 by triangle inequality

≤
n∑

i=1

e−wtxi−w̄⊤
t x̄i

1 + e−wtxi−w̄⊤
t x̄i

since ∥x̄i∥2 ≤ 1 by Assumption 2

≤
n∑

i=1

e−wtxi−w̄⊤
t x̄i

≤ e−γwt ·
n∑

i=1

e−w̄⊤
t x̄i since xi ≥ γ for i ∈ [n]

= e−γwt ·
(
G(w̄t) +H(w̄t)

)
≤ e−γwt · (Gmax +Hmax).

The next lemma shows that the function value is “non-increasing” ignoring higher order terms.
Lemma B.10 (A modified descent lemma). Suppose Assumptions 1, 2, and 3 hold. Then it holds that

G(w̄t+1) ≤ G(w̄t) + 2(η + η2) ·Gmax ·
(
G2

max +H2
max

)
·
(
e−2γwt + e−θwt

)
, t ≥ 0.

As a direct consequence of the above and Lemma B.6, it holds that

G(w̄t+k) ≤ G(w̄t) + c0 · 2(1 + η)Gmax ·
(
(t− 1)−1 + (t− 1)1−

θ
γ

)
, k ≥ 0, t ≥ 1,

where θ/γ > 1 by Definition 1 and c0 is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is
independent of t, given by

c0 := η ·
(
G2

max +H2
max

)
· θ

θ − γ
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
.

Proof. Note that

∥∇2G(w̄)∥2 =

∥∥∥∥∑
i∈S

e−w̄⊤x̄ixix
⊤
i

∥∥∥∥
2
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≤
∑
i∈S

e−w̄⊤x̄i∥xi∥22 by triangle inequality

≤
∑
i∈S

e−w̄⊤x̄i since ∥x̄i∥2 ≤ 1 by Assumption 2

= G(w̄).

Recall that ∥w̄t∥2 ≤Wmax. So we have

sup
t
∥∇2G(w̄t)∥2 ≤ sup

∥w̄∥2≤Wmax

∥∇2G(w̄)∥2 ≤ sup
∥w̄∥2≤Wmax

G(w̄) =: Gmax. (26)

Then we can apply Taylor’s theorem to obtain that

G(w̄t+1) ≤ G(w̄t) + ⟨∇G(w̄t), w̄t+1 − w̄t⟩+
Gmax

2
· ∥w̄t+1 − w̄t∥22 by (26)

= G(w̄t)− η · ⟨∇G(w̄t), ∇w̄L(wt, w̄t)⟩+
Gmax

2
· ∥∇w̄L(wt, w̄t)∥22.

Next we use Lemma B.8 with v = −∇G(w̄t) to get The cross-term is bounded by

− ⟨∇G(w̄t), ∇w̄L(wt, w̄t)⟩

≤ −e−γwt ·
∥∥∇G(w̄t)

∥∥2
2
+ ∥∇G(w̄t)∥2 ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
≤ −e−γwt ·

∥∥∇G(w̄t)
∥∥2
2
+Gmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
. by (26)

Using the above and the gradient norm bound from Lemma B.9, we get that

G(w̄t+1) ≤ G(w̄t)− ηe−γwt ·
∥∥∇G(w̄t)

∥∥2
2

+ ηe−2γwt ·G3
max + ηe−θwt ·Gmax ·Hmax + η2e−2γwt · (Gmax +Hmax)

2

≤ G(w̄t) + ηe−2γwt ·G3
max + ηe−θwt ·Gmax ·Hmax + η2e−2γwt · (Gmax +Hmax)

2

≤ G(w̄t) + 2(η + η2) ·Gmax ·
(
G2

max +H2
max

)
·
(
e−2γwt + e−θwt

)
,

where in the last inequality we use that Gmax ≥ Gmin ≥ 1 by Definition 3.

From the above we have

G(w̄t+k) ≤ G(w̄t) + 2(η + η2) ·Gmax ·
(
G2

max +H2
max

)
·
s+k∑
s=t

(
e−2γws + e−θws

)
. (27)

The summation is small by Lemma B.6, because

s+k∑
s=t

(
e−2γws + e−θws

)
≤

s+k∑
s=t

(
2

2 + ηγ2 · s

)2

+

s+k∑
s=t

(
2

2 + ηγ2 · s

) θ
γ

by Lemma B.6

≤
(

2

ηγ2

)2

·
s+k∑
s=t

s−2 +

(
2

ηγ2

) θ
γ

·
s+k∑
s=t

s−
θ
γ

≤
(

2

ηγ2

)2

· (t− 1)−1 +

(
2

ηγ2

) θ
γ

· (t− 1)1−
θ
γ

θ
γ − 1

by integral inequality

≤ max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
· θ

θ − γ
·
(
(t− 1)−1 + (t− 1)1−

θ
γ

)
.

Inserting the above into (27) completes the proof.

We now prove the convergence of the iterates projected on the non-separable subspace.
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Lemma B.11 (Convergence on the non-separable subspace). Suppose Assumptions 1, 2, and 3 hold.
Then it holds that

G(w̄T )−G(w̄∗) ≤
c1

log(T )
, T ≥ 3,

where c1 > 0 is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is independent of T .

Proof. The proof is conducted in several steps.

Step 1: one-step function value bound. Observe that

∥w̄t+1 − w̄∗∥22 = ∥w̄t − w̄∗∥22 + 2 · ⟨w̄t − w̄∗, w̄t+1 − w̄t⟩+ ∥w̄t+1 − w̄t∥22
= ∥w̄t − w̄∗∥22 − 2η · ⟨w̄t − w̄∗,∇w̄L(wt, w̄t)⟩+ η2 · ∥∇w̄L(wt, w̄t)∥22.

For the cross-term, we apply Lemma B.8 with v = −(w̄t − w̄∗) to obtain

− ⟨w̄t − w̄∗,∇w̄L(wt, w̄t)⟩
≤ −e−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩+ ∥w̄t − w̄∗∥2 ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
≤ −e−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩+ (Wmax + ∥w∗∥2) ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
≤ −e−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩+ 2Wmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
,

where the second inequality is by Lemma B.3, and the last inequality is by Lemma B.4. Using the
above and the gradient norm bound from Lemma B.9, we get that

∥w̄t+1 − w̄∗∥22 ≤ ∥w̄t − w̄∗∥22 − 2ηe−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩
+ 4η ·Wmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
+ η2 · e−2γwt · (Gmax +Hmax)

2.

(28)

By the convexity of G(·), we have

⟨w̄t − w̄∗,∇G(w̄t)⟩ ≥ G(w̄t)−G(w̄∗). (29)

So we get

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
≤ 2ηe−γwt · ⟨w̄t − w̄∗,∇G(w̄t)⟩ by (29)

≤ ∥w̄t − w̄∗∥22 − ∥w̄t+1 − w̄∗∥22
+ 4η ·Wmax ·

(
e−2γwt ·G2

max + e−θwt ·Hmax

)
+ η2 · e−2γwt · (Gmax +Hmax)

2 by (28)

≤ ∥w̄t − w̄∗∥22 − ∥w̄t+1 − w̄∗∥22
+ 6η ·Wmax ·

(
G2

max +H2
max

)
·
(
e−2γwt + e−θwt

)
, (30)

where we use η ≤Wmax := max{4n/b, ηn2/b}+ ηn in the last inequality.

Step 2: the sum of function values stays bounded. Observe that

T∑
t=2

(
e−2γwt + e−θwt

)
≤

T∑
t=2

(
2

2 + ηγ2 · t

)2

+

T∑
t=2

(
2

2 + ηγ2 · t

) θ
γ

by Lemma B.6

≤
(

2

ηγ2

)2

·
T∑

t=2

t−2 +

(
2

ηγ2

) θ
γ

·
T∑

t=2

t−
θ
γ

≤
(

2

ηγ2

)2

· 1 +
(

2

ηγ2

) θ
γ

· 1

θ/γ − 1

≤ max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
· θ

θ − γ
. (31)
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Taking telescope summation over (30), we obtain

T∑
t=2

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
≤ ∥w̄2 − w̄∗∥22 − ∥w̄T+1 − w̄∗∥22

+ 6η ·Wmax ·
(
G2

max +H2
max

)
·

T∑
t=2

(
e−2γwt + e−θwt

)
by (30)

≤ 2Wmax + 6η ·Wmax ·
(
G2

max +H2
max

)
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}
· θ

θ − γ
by (31)

= 2Wmax + 18Wmax · c0,

where

c0 := η ·
(
G2

max +H2
max

)
· θ

θ − γ
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}

is a constant (a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is independent of t) defined in
Lemma B.10.

Step 3: function value decreases, approximately. For T ≥ t ≥ 1, we have

G(w̄T ) ≤ G(w̄t) + c0 · 2(1 + η)Gmax ·
(
(t− 1)−1 + (t− 1)1−

θ
γ

)
, by Lemma B.10

which implies that

2ηe−γwt ·
(
G(w̄T )−G(w̄∗)

)
≤ 2ηe−γwt ·

(
G(w̄t)−G(w̄∗)

)
+ 2ηe−γwt · c0 · 2(1 + η)Gmax ·

(
(t− 1)−1 + (t− 1)1−

θ
γ

)
≤ 2ηe−γwt ·

(
G(w̄t)−G(w̄∗)

)
+ 2η · 2

2 + ηγ2 · t
· c0 · 2(1 + η)Gmax ·

(
(t− 1)−1 + (t− 1)1−

θ
γ

)
by Lemma B.6

≤ 2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
+

8(1 + η)c0
γ2

·
(
(t− 1)−2 + (t− 1)−

θ
γ

)
. (32)

Step 4: the last function value is small. Taking summation of (32) over t = 2, . . . T , we get

T∑
t=2

2ηe−γwt ·
(
G(w̄T )−G(w̄∗)

)
≤

T∑
t=2

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
+

8(1 + η)c0
γ2

·
T∑

t=2

(
(t− 1)−2 + (t− 1)−

θ
γ

)
≤

T∑
t=2

2ηe−γwt ·
(
G(w̄t)−G(w̄∗)

)
+

8(1 + η)c0
γ2

·
(
2 + 1 +

1

θ/γ − 1

)
≤ 2Wmax + 18Wmax · c0 +

8(1 + η)c0
γ2

· 3θ

θ − γ
. by (31)

We also have
T∑

t=2

e−γwt ≥ 1

eηγ2Gmax + eηγHmax
·

T∑
t=2

1

t+ 1
by Lemma B.7

≥ 1

eηγ2Gmax + eηγHmax
·
(
log(T + 1)− log(3)

)
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Putting these together, we get

G(w̄T )−G(w̄∗) ≤

(
2Wmax + 18Wmax · c0 +

8(1 + η)c0
γ2

· 3θ

θ − γ

)
· eηγ

2Gmax + eηγHmax

log(T + 1)− log(3)
,

where

c0 := η ·
(
G2

max +H2
max

)
· θ

θ − γ
·max

{(
2

ηγ2

)2

,

(
2

ηγ2

)θ/γ
}

is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

. So for T ≥ 3, we have

G(w̄T )−G(w̄∗) ≤
1

log(T )
· c1,

where c1 is a polynomial on
{
eη, en, e1/b, 1

η ,
1

θ−γ ,
1
γ , e

θ/γ
}

and is independent of T .

C Proofs Missing from the Main Paper

C.1 Proof of Theorem 4.1

Proof of Theorem 4.1. Theorem 4.1 is a consequence of our analysis in Appendix B.

(C) is because of Lemma B.3.

(B) is because of Lemma B.6.

(D) is because of Lemma B.11.

(A) is because of the following:

L(wt) =

n∑
i=1

log(1 + exp(−wtxi −w⊤
t xi))

≤
n∑

i=1

exp(−wtxi −w⊤
t xi)

≤ exp(−wt · γ) ·
n∑

i=1

exp(−w⊤
t xi)

≤ c/ log(t),

where the last inequality is because that

exp(−wt · γ) ≤
2

2 + ηγ2 · t

by Lemma B.6 and that
∑n

i=1 exp(−w⊤
t xi) is uniformly bounded by a constant by Definition 3.

C.2 Proof of Theorem 4.2

Proof of Theorem 4.2. The GD iterates can be written as

wt+1 = wt + ηγ · e−γwt ·
(
e−w̄t + ew̄t

)
, (33)

w̄t+1 = w̄t − ηe−γwt ·
(
e−w̄t − ew̄t

)
. (34)

We claim that: for every t ≥ 0,

1. wt ≥ 0.

2. |w̄t| ≥ 1.

3. |w̄t| ≥ 2γwt.
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We prove the claim by induction. For t = 0, it holds by assumption. Now suppose that the claim
holds for t and consider the case of t+ 1.

1. wt+1 ≥ 0 holds since wt+1 ≥ wt by (33) and wt ≥ 0 by the induction hypothesis.

2. |w̄t+1| ≥ 1 holds because

|w̄t+1| ≥ ηe−γwt · |e−w̄t − ew̄t | − |w̄t| by (34)

≥ ηe−γwt · e
|w̄t|

2
− |w̄t| since |w̄t| ≥ 1 and that et − e−t ≥ et

2
for t ≥ 1

(35)

≥ 2e|w̄t|−γwt − |w̄t| since η ≥ 4

≥ 2e|w̄t|/2 − |w̄t| since
|w̄t|
2
≥ γwt

≥ 1. since 2et/2 ≥ t+ 1 for t ∈ R

3. To prove that |w̄t+1| ≥ 2γwt, first observe that

wt+1 = wt + ηγ · e−γw ·
(
e−w̄ + ew̄

)
≤ wt + ηγ · e−γw · 2 · e|w̄t|. (36)

Then we have

|w̄t+1| − 2γwt+1

≥ ηe−γwt · e
|w̄t|

2
− |w̄t| − 2γ

(
wt + ηγ · e−γw · 2 · e|w̄t|

)
by (35) and (36)

=
η

2
· (1− 8γ2) · e|w̄t|−γwt − |w̄t| − 2γwt

≥ e|w̄t|−γwt − |w̄t| − 2γwt since η ≥ 4 ≥ 2/(1− 8γ2)

≥ e|w̄t|−γwt − |w̄t| since wt ≥ 0

≥ e|w̄t|/2 − |w̄t| since
|w̄t|
2
≥ γwt

≥ 0. since et/2 ≥ t for t ∈ R

We have completed the induction.

Finally, we prove the claims in Theorem 4.2 using the above results.

(B) is because of

wt+1 ≥ wt + ηγ · e−γwt

from (33).

We have already proved (C) by induction.

To show (D), without lose of generality, let us assume w̄t ≥ 0, then

w̄t+1 ≤ w̄t − ηe−γwt · |e−w̄t − ew̄t | by (34)

≤ w̄t − ηe−γwt · e
|w̄t|

2
since |w̄t| ≥ 1 and that et − e−t ≥ et

2
for t ≥ 1

≤ w̄t − 2e|w̄t|−γwt since η ≥ 4

≤ w̄t − 2e|w̄t|/2 since
|w̄t|
2
≥ γwt

≤ −1. since 2et/2 ≥ t+ 1 for t ∈ R

We can repeat the above argument to show that w̄t+1 > 0 if w̄t ≤ 0.

27



0 2000 4000 6000 8000 10000
iteration

10 4

10 3

10 2

10 1

100

101

102

tra
in

in
g 

lo
ss

= 0.1
= 0.01

0 50 100 150 200

0

2

4

6

8

10

0 2000 4000 6000 8000 10000
iteration

10 8

10 7

10 6

no
rm

al
ize

d 
m

ar
gi

n

= 0.1
= 0.01

(a) Training loss (b) Normalized margin for homogenous network

Figure 3: The behaviors of GD for optimizing a homogenous neural network. The experiment setting follows
that of Figure 1 in the main paper, except that we disable all bias parameters so that the neural network is
homogenous [Lyu and Li, 2020]. The sub-figures (a) and (b) report the training loss and the margin along
the GD trajectories, respectively. Here, we follow Lyu and Li [2020] and measure the normalized margin
by min(x,y)

(
f(x;wt)[y] − maxy′ ̸=y f(x;wt)[y

′]
)
/∥wt∥L2 , where f(·; ·) refers to the homogenous neural

network, L = 4 is the depth of the homogenous neural network, wt is the weight at the t-th GD step, and
min(x,y) is taken with respect to all training data.

To show (A), we apply wt →∞ and that |w̄t| ≥ 2γwt:

L(wt, w̄t) = e−γwt ·
(
e−w̄t + ew̄t

)
≥ e−γwt · e|w̄t|

≥ eγwt →∞.

We have completed all the proofs.

D Experimental Setups

Neural network experiments. We randomly sample 1, 000 data from the MNIST3 dataset as the
training set and use the remaining data as the test set. The feature vectors are normalized such that
each feature is within [−1, 1].
We use a fully connected network with the following structure

784→ ReLU→ 500→ ReLU→ 500→ ReLU→ 500→ ReLU→ 10.

The network is initialized with Kaiming initialization. We use the cross-entropy loss.

We consider constant-stepsize GD with two types of stepsizes, η = 0.1 and η = 0.01.

The results are presented in Figure 1.

Logistic regression experiments. We randomly sample 1, 000 data with labels “0” and “8” from
the MNIST dataset as the training set. The feature vectors are normalized such that each feature is
within [−1, 1].
We use a linear model without bias. So the number of parameters is 784. The model is initialized
from zero. We use the binary cross-entropy loss, i.e., the logistic loss.

We consider constant-stepsize GD with various stepsizes.

The results are presented in Figure 2.

Additional experiments. We conduct additional experiments on the margin maximization effect of
large stepsize GD on a homogenous neural network. Results are presented in Figure 3.

3http://yann.lecun.com/exdb/mnist/
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