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Abstract

We consider a federated data analytics problem in which a server coordinates the1

collaborative data analysis of multiple users with privacy concerns and limited2

communication capability. The commonly adopted compression schemes introduce3

information loss into local data while improving communication efficiency, and it4

remains an open problem whether such discrete-valued mechanisms provide any5

privacy protection. In this paper, we study the local differential privacy guaran-6

tees of discrete-valued mechanisms with finite output space through the lens of7

f -differential privacy (DP). More specifically, we advance the existing literature by8

deriving tight f -DP guarantees for a variety of discrete-valued mechanisms, includ-9

ing the binomial noise and the binomial mechanisms that are proposed for privacy10

preservation, and the sign-based methods that are proposed for data compression,11

in closed-form expressions. We further investigate the amplification in privacy by12

sparsification and propose a ternary stochastic compressor. By leveraging com-13

pression for privacy amplification, we improve the existing methods by removing14

the dependency of accuracy (in terms of mean square error) on communication15

cost in the popular use case of distributed mean estimation, therefore breaking the16

three-way tradeoff between privacy, communication, and accuracy.17

1 Introduction18

Nowadays, the massive data generated and collected for analysis, and consequently the prohibitive19

communication overhead for data transmission, are overwhelming the centralized data analytics20

paradigm. Federated data analytics is, therefore, proposed as a new distributed computing paradigm21

that enables data analysis while keeping the raw data locally on the user devices [1]. Similarly to its22

most notable use case, i.e., federated learning (FL) [2, 3], federated data analytics faces two critical23

challenges: data privacy and communication efficiency. On one hand, the local data of users may24

contain sensitive information, and privacy-preserving mechanisms are needed. On the other hand,25

the user devices are usually equipped with limited communication capabilities, and compression26

mechanisms are often adopted to improve communication efficiency.27

Differential privacy (DP) has become the gold standard for privacy measures due to its rigorous28

foundation and simple implementation. One classic technique to ensure DP is adding Gaussian or29

Laplacian noises to the data [4]. However, they are prone to numerical errors on finite-precision30

computers [5] and may not be suitable for federated data analytics with communication constraints due31

to their continuous nature. With such consideration, various discrete noises with privacy guarantees32

have been proposed, e.g., the binomial noise [6], the discrete Gaussian mechanism [7], and the33

Skellam mechanism [8]. Nonetheless, the additive noises in [7] and [8] assume infinite range, which34

renders them less communication-efficient without appropriate clipping. Unfortunately, clipping35

usually ruins the unbiasedness of the mechanism. [9] develops a Poisson binomial mechanism (PBM)36

that does not rely on additive noise. In PBM, each user adopts a binomial mechanism, which takes a37
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continuous input and encodes it into the success probability of a binomial distribution. The output38

of the binomial mechanism is shared with a central server which releases the aggregated result that39

follows the Poisson binomial distribution. However, [9] focuses on distributed DP in which the server40

only observes the output of the aggregated results instead of the data shared by each individual user,41

and therefore, requires a secure computation function (e.g., secure aggregation [3]).42

In addition to discrete DP mechanisms, existing works have investigated the fundamental tradeoff43

between communication, privacy, and accuracy under the classic (ϵ, δ)-DP framework (e.g., [10, 11,44

12, 13]). Notably, in the case of distributed mean estimation, [13] incorporates Kashin’s representation45

and proposed Subsampled and Quantized Kashin’s Response (SQKR), which achieves order-optimal46

mean square error (MSE) that has a linear dependency on the dimension of the private data d. SQKR47

first computes Kashin’s representation of the private data and quantizes each coordinate into a 1-bit48

message. Then, k coordinates are randomly sampled and privatized by the 2k-Random Response49

mechanism [14]. SQKR achieves an order-optimal three-way tradeoff between privacy, accuracy, and50

communication. Nonetheless, it does not account for the privacy introduced during sparsification.51

Intuitively, as compression becomes more aggressive, less information will be shared by the users,52

which naturally leads to better privacy protection. However, formally quantifying the privacy53

guarantees of compression mechanisms remains an open problem. In this work, we close the gap54

by investigating the local DP guarantees of discrete-valued mechanisms, based on which a ternary55

stochastic compressor is proposed to leverage the privacy amplification by compression and advance56

the literature by achieving a better communication-privacy-accuracy tradeoff. More specifically, we57

focus on the emerging concept of f -DP [15] that can be readily converted to (ϵ, δ)-DP and Rényi58

differential privacy [16] in a lossless way while enjoying better composition property [17].59

Our contributions. In this work, we derive the closed-form expressions of the tradeoff function60

between type I and type II error rates in the hypothesis testing problem for a generic discrete-valued61

mechanism with a finite output space, based on which f -DP guarantees of the binomial noise62

(c.f. Section 4.1) and the binomial mechanism (c.f. Section 4.2) that covers a variety of discrete63

differentially private mechanisms and compression mechanisms as special cases are obtained. Our64

analyses lead to tighter privacy guarantees for binomial noise than [6] and extend the results for65

the binomial mechanism in [9] to local DP. To the best of our knowledge, this is the first work66

that investigates the f -DP guarantees of discrete-valued mechanisms, and the results could possibly67

inspire the design of better differentially private compression mechanisms.68

Inspired by the analytical results, we also leverage the privacy amplification of the sparsification69

scheme and propose a ternary stochastic compressor (c.f. Section 5). By accounting for the privacy70

amplification of compression, our analyses reveal that given a privacy budget µ-GDP (which is a71

special case of f -DP) with µ <
√
4dr/(1− r) (in which r is the ratio of non-zero coordinates72

in expectation for the sparsification scheme), the MSE of the ternary stochastic compressor only73

depends on µ in the use case of distributed mean estimation (which is the building block of FL). In74

this sense, we break the three-way tradeoff between communication overhead, privacy, and accuracy75

by removing the dependency of accuracy on the communication overhead. Compared to SQKR [13],76

the proposed scheme yields better privacy guarantees. For the scenario where each user i observes77

xi ∈ {−c, c}d for some constant c > 0, the proposed scheme achieves the same privacy guarantee78

and MSE as those of the classic Gaussian mechanism in the large d regime, which essentially means79

that the improvement in communication efficiency is achieved for free. We remark that the regime of80

large d is often of interest in practical FL in which d is the number of training parameters.81

2 Related Work82

Recently, there is a surge of interest in developing differentially private data analysis techniques,83

which can be divided into three categories: central differential privacy (CDP) that assumes a trusted84

central server to perturb the collected data [18], distributed differential privacy that relies on secure85

aggregation during data collection [3], and local differential privacy (LDP) that avoids the need for86

the trusted server by perturbing the local data on the user side [19]. To overcome the drawbacks of87

the Gaussian and Laplacian mechanisms, several discrete mechanisms have been proposed. [18]88

introduces the one-dimensional binomial noise, which is extended to the general d-dimensional case89

in [6] with more comprehensive analysis in terms of (ϵ, δ)-DP. [20] analyzes the LDP guarantees of90

discrete Gaussian noise, while [7] further considers secure aggregation. [8] studies the Rényi DP91
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guarantees of the Skellam mechanism. However, both the discrete Gaussian mechanism and the92

Skellam mechanism assume infinite ranges at the output, which makes them less communication93

efficient without appropriate clipping. Moreover, all the above three mechanisms achieve differential94

privacy at the cost of exploding variance for the additive noise in the high-privacy regimes.95

Another line of studies jointly considers privacy preservation and compression. [10, 11] propose96

to achieve DP by quantizing, sampling, and perturbing each entry, while [12] proposes a vector97

quantization scheme with local differential privacy. However, the MSE of these schemes grows98

with d2. [13] investigates the three-way communication-privacy-accuracy tradeoff and incorporates99

Kashin’s representation to achieve order-optimal estimation error in mean estimation. [21] proposes100

to first sample a portion of coordinates, followed by the randomized response mechanism [22].101

[23] and [24] further incorporate shuffling for privacy amplification. [25] proposes to compress102

the LDP schemes using a pseudorandom generator, while [26] utilizes the minimal random coding.103

[27] proposes a privacy-aware compression mechanism that accommodates DP requirement and104

unbiasedness simultaneously. However, they consider pure ϵ-DP, which cannot be easily generalized105

to the relaxed variants. [9] proposes the Poisson binomial mechanism with Rényi DP guarantees.106

Nonetheless, Rényi DP lacks the favorable hypothesis testing interpretation and the conversion to107

(ϵ, δ)-DP is lossy. Moreover, most of the existing works focus on privatizing the compressed data108

or vice versa, leaving the privacy guarantees of compression mechanisms largely unexplored. [28]109

proposes a numerical accountant based on fast Fourier transform [29] to evaluate (ϵ, δ)-DP of general110

discrete-valued mechanisms. Recently, an independent work [30] studies privacy amplification by111

compression for central (ϵ, δ)-DP and multi-message shuffling frameworks. In this work, we consider112

LDP through the lens of f -DP and eliminate the need for a trusted server or shuffler.113

Among the relaxations of differential privacy notions [31, 16, 32], f -DP [15] is a variant of ϵ-DP114

with hypothesis testing interpretation, which enjoys the property of lossless conversion to (ϵ, δ)-DP115

and tight composition [33]. As a result, it leads to favorable performance in distributed/federated116

learning [34, 35]. However, to the best of our knowledge, none of the existing works study the f -DP117

of discrete-valued mechanisms. In this work, we bridge the gap by deriving tight f -DP guarantees of118

various compression mechanisms in closed form, based on which a ternary stochastic compressor is119

proposed to achieve a better communication-privacy-accuracy tradeoff than existing methods.120

3 Problem Setup and Preliminaries121

3.1 Problem Setup122

We consider a set of N users (denoted by N ) with local data xi ∈ Rd. The users aim to share xi’s123

with a central server in a privacy-preserving and communication-efficient manner. More specifically,124

the users adopt a privacy-preserving mechanism M to obfuscate their data and share the perturbed125

results M(xi)’s with the central server. In the use case of distributed/federated learning, each user has126

a local dataset S. During each training step, it computes the local stochastic gradients and shares the127

obfuscated gradients with the server. In this sense, the overall gradient computation and obfuscation128

mechanism M takes the local dataset S as the input and outputs the obfuscated result M(S). Upon129

receiving the shared M(S)’s, the server estimates the mean of the local gradients.130

3.2 Differential Privacy131

Formally, differential privacy is defined as follows.132

Definition 1 ((ϵ, δ)-DP [18]). A randomized mechanism M is (ϵ, δ)-differentially private if for all133

neighboring datasets S and S′ and all O ⊂ O in the range of M, we have134

P (M(S) ∈ O) ≤ eϵP (M(S′) ∈ O) + δ, (1)
in which S and S′ are neighboring datasets that differ in only one record, and ϵ, δ ≥ 0 are the135

parameters that characterize the level of differential privacy.136

3.3 f -Differential Privacy137

Assuming that there exist two neighboring datasets S and S′, from the hypothesis testing perspective,138

we have the following two hypotheses139

H0 : the underlying dataset is S, H1 : the underlying dataset is S′. (2)
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Let P and Q denote the probability distribution of M(S) and M(S′), respectively. [15] formulates140

the problem of distinguishing the two hypotheses as the tradeoff between the achievable type I and141

type II error rates. More precisely, consider a rejection rule 0 ≤ ϕ ≤ 1 (which rejects H0 with a142

probability of ϕ), the type I and type II error rates are defined as αϕ = EP [ϕ] and βϕ = 1− EQ[ϕ],143

respectively. In this sense, f -DP characterizes the tradeoff between type I and type II error rates. The144

tradeoff function and f -DP are formally defined as follows.145

Definition 2 (tradeoff function [15]). For any two probability distributions P and Q on the same146

space, the tradeoff function T (P,Q) : [0, 1] → [0, 1] is defined as T (P,Q)(α) = inf{βϕ : αϕ ≤ α},147

where the infimum is taken over all (measurable) rejection rule ϕ.148

Definition 3 (f -DP [15]). Let f be a tradeoff function. With a slight abuse of notation, a mechanism149

M is f -differentially private if T (M(S),M(S′)) ≥ f for all neighboring datasets S and S′, which150

suggests that the attacker cannot achieve a type II error rate smaller than f(α).151

f -DP can be converted to (ϵ, δ)-DP as follows.152

Lemma 1. [15] A mechanism is f(α)-differentially private if and only if it is (ϵ, δ)-differentially153

private with154

f(α) = max{0, 1− δ − eϵα, e−ϵ(1− δ − α)}. (3)

Finally, we introduce a special case of f -DP with f(α) = Φ(Φ−1(1− α)− µ), which is denoted as155

µ-GDP. More specifically, µ-GDP corresponds to the tradeoff function of two normal distributions156

with mean 0 and µ, respectively, and a variance of 1.157

4 Tight f -DP Analysis for Existing Discrete-Valued Mechanisms158

In this section, we derive the f -DP guarantees for a variety of existing differentially private discrete-159

valued mechanisms in the scalar case (i.e., d = 1) to illustrate the main ideas. The vector case will160

be discussed in Section 6. More specifically, according to Definition 3, the f -DP of a mechanism161

M is given by the infimum of the tradeoff function over all neighboring datasets S and S′, i.e.,162

f(α) = infS,S′ infϕ{βϕ(α) : αϕ ≤ α}. Therefore, the analysis consists of two steps: 1) we163

obtain the closed-form expressions of the tradeoff functions, i.e., infϕ{βϕ(α) : αϕ ≤ α}, for a164

generic discrete-valued mechanism (see Section A in the supplementary material); and 2) given165

the tradeoff functions, we derive the f -DP by identifying the mechanism-specific infimums of the166

tradeoff functions over all possible neighboring datasets. We remark that the tradeoff functions for167

the discrete-valued mechanisms are essentially piece-wise functions with both the domain and range168

of each piece determined by both the mechanisms and the datasets, which renders the analysis for the169

second step highly non-trivial.170

4.1 Binomial Noise171

In this subsection, we consider the binomial noise (i.e., Algorithm 1) proposed in [6], which serves as172

a communication-efficient alternative to the classic Gaussian noise. More specifically, the output of173

stochastic quantization in [6] is perturbed by a binomial random variable.174

Algorithm 1 Binomial Noise [6]

Input: xi ∈ [0, 1, · · · , l], i ∈ N , number of trials M , success probability p.
Privatization: Zi ≜ xi +Binom(M,p).

Theorem 1. Let Z̃ = Binom(M,p), the binomial noise mechanism in Algorithm 1 is f bn(α)-175

differentially private with176

f bn(α) = min{β+
ϕ,inf(α), β

−
ϕ,inf(α)}, (4)

in which177

β+
ϕ,inf(α) =


P (Z̃ ≥ k̃ + l) + P (Z=k̃+l)P (Z̃<k̃)

P (Z̃=k̃)
− P (Z̃=k̃+l)

P (Z̃=k̃)
α,

for α ∈ [P (Z̃ < k̃), P (Z̃ ≤ k̃)], k̃ ∈ [0,M − l],

0, for α ∈ [P (Z̃ ≤ M − l), 1].

(5)
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178

β−
ϕ,inf(α) =


P (Z̃ ≤ k̃ − l) + P (Z̃=k̃−l)P (Z̃>k̃)

P (Z̃=k̃)
− P (Z̃=k̃−l)

P (Z̃=k̃)
α,

for α ∈ [P (Z̃ > k̃), P (Z̃ ≥ k̃)], k̃ ∈ [l,M ],

0, for α ∈ [P (Z̃ ≥ l), 1].

(6)

Given that P (Z̃ = k) =
(
M
k

)
pk(1 − p)M−k, it can be readily shown that when p = 0.5, both179

β+
ϕ,inf(α) and β−

ϕ,inf(α) are maximized, and f(α) = β+
ϕ,inf(α) = β−

ϕ,inf(α).180

Fig. 1 shows the impact of M when l = 8, which confirms the result in [6] that a larger M provides181

better privacy protection (recall that given the same α, a larger βα indicates that the attacker makes182

mistakes in the hypothesis testing more likely and therefore corresponds to better privacy protection).183

Note that the output of Algorithm 1 Zi ∈ {0, 1, ...,M + l}, which reqiures a communication184

overhead of log2(M+ l+1) bits. We can readily convert f(α)-DP to (ϵ, δ)-DP by utilizing Lemma 1.185

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

f(α
)

M=10, p=0.5
M=50, p=0.5
M=100, p=0.5
M=200, p=0.5
M=500, p=0.5

Figure 1: Impact of M on Algo-
rithm 1 with l = 8.

186

Remark 1. The results derived in this work improve [6] in187

two aspects: (1) Theorem 1 in [6] requires Mp(1 − p) ≥188

max(23 log(10d/δ), 2l/s) > max(23 log(10), 2l/s), in which189

1/s ∈ N is some scaling factor. When p = 1/2, it requires M ≥ 212.190

More specifically, for M = 500, [6] requires δ > 0.044. Our results191

imply that there exists some (ϵ, δ) such that Algorithm 1 is (ϵ, δ)-DP192

as long as M > l. For M = 500, δ can be as small as 4.61×10−136.193

(2) Our results are tight, in the sense that no relaxation is applied194

in our derivation. As an example, when M = 500 and p = 0.5,195

Theorem 1 in [6] gives (3.18, 0.044)-DP while Theorem 1 in this paper yields (1.67, 0.039)-DP.196

4.2 Binomial Mechanism197

Algorithm 2 Binomial Mechanism [9]

Input: c > 0, xi ∈ [−c, c], M ∈ N, pi(xi) ∈ [pmin, pmax]

Privatization: Zi ≜ Binom(M,pi(xi)).

In this subsection, we consider the binomial mechanism (i.e., Algorithm 2). Different from Algo-198

rithm 1 that perturbs the data with noise following the binomial distribution with the same success199

probability, the binomial mechanism encodes the input xi into the success probability of the binomial200

distribution. We establish the privacy guarantee of Algorithm 2 as follows.201

Theorem 2. The binomial mechanism in Algorithm 2 is f bm(α)-differentially private with202

f bm(α) = min{β+
ϕ,inf(α), β

−
ϕ,inf(α)}, (7)

in which203

β+
ϕ,inf(α) = 1− [P (Y < k) + γP (Y = k)] = P (Y ≥ k) +

P (Y = k)P (X < k)

P (X = k)
− P (Y = k)

P (X = k)
α,

for α ∈ [P (X < k), P (X ≤ k)] and k ∈ {0, 1, 2, · · · ,M}, where X = Binom(M,pmax) and204

Y = Binom(M,pmin), and205

β−
ϕ,inf(α) = 1− [P (Y > k) + γP (Y = k)] = P (Y ≤ k) +

P (Y = k)P (X > k)

P (X = k)
− P (Y = k)

P (X = k)
α,

for α ∈ [P (X > k), P (X ≥ k)] and k ∈ {0, 1, 2, · · · ,M}, where X = Binom(M,pmin) and206

Y = Binom(M,pmax). When pmax = 1− pmin, we have β+
ϕ,inf(α) = β−

ϕ,inf(α).207

Remark 2 (Comparison to [9]). The binomial mechanism is part of the Poisson binomial mechanism208

proposed in [9]. More specifically, in [9], each user i shares the output of the binomial mechanism209

Zi with the server, in which pi(xi) =
1
2 + θ

cxi and θ is some design parameter. It can be readily210

verified that pmax = 1 − pmin in this case. The server then aggregates the result through x̄ =211
c

MNθ (
∑

i∈N Zi − MN
2 ). [9] requires secure aggregation and considers the privacy leakage of212

releasing x̄, while we complement it by showing the LDP, i.e., the privacy leakage of releasing Zi for213

each user. In addition, we eliminate the constraint θ ∈ [0, 1
4 ], and the results hold for any selection of214

pi(xi). Moreover, the privacy guarantees in Theorem 2 are tight since no relaxation is involved. Fig.215

2 shows the impact of M on the privacy guarantee. In contrast to binomial noise, the privacy of the216

binomial mechanisms improves as M (and equivalently communication overhead) decreases, which217
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implies that it is more suitable for communication-constrained scenarios. We also derive the f -DP of218

the Poisson binomial mechanism, which are presented in Section C in the supplementary material.219
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Figure 2: Impact of M on Algo-
rithm 2.

In the following, we present two existing compressors that are special220

cases of the binomial mechanism.221

Example 1. We first consider the following stochastic sign compres-222

sor proposed in [36].223

Definition 4 (Two-Level Stochastic Compressor [36]). For any224

given x ∈ [−c, c], the compressor sto-sign outputs225

sto-sign(x,A) =

{
1, with probability A+x

2A ,

−1,with probability A−x
2A ,

(8)

where A > c is the design parameter that controls the level of stochasticity.226

With a slight modification (i.e., mapping the output space from {0, 1} to {−1, 1}), sto-sign(x,A)227

can be understood as a special case of the binomial mechanism with M = 1 and pi(xi) =
A+xi

2A . In228

this case, we have pmax = A+c
2A and pmin = A−c

2A . Applying the results in Theorem 2 yields229

fsto-sign(α) = β+
ϕ,inf(α) = β−

ϕ,inf(α) =

{
1− A+c

A−cα, for α ∈ [0, A+c
2A ],

A−c
A+c −

A−c
A+cα, for α ∈ [A+c

2A , 1].
(9)

Combining (9) with (3) suggests that the sto-sign compressor ensures (ln(A+c
A−c ), 0)-DP.230

Example 2. The second sign-based compressor that we examine is CLDP∞(·) [23].231

Definition 5 (CLDP∞(·) [23]). For any given x ∈ [−c, c], the compressor CLDP∞(·) outputs232

CLDP∞(ϵ), which is given by233

CLDP∞(ϵ) =

{
+1,with probability 1

2 + x
2c

eϵ−1
eϵ+1 ,

−1,with probability 1
2 − x

2c
eϵ−1
eϵ+1 .

(10)

CLDP∞(ϵ) can be understood as a special case of sto-sign(x,A) with A = c(eϵ+1)
eϵ−1 . In this case,234

according to (9), we have235

fCLDP∞(α) =

{
1− eϵα, for α ∈ [0, A+c

2A ],

e−ϵ(1− α), for α ∈ [A+c
2A , 1].

(11)

Combining the above result with (3) suggests that CLDP∞(ϵ) ensures (ϵ, 0)-DP, which recovers236

the result in [23]. It is worth mentioning that CLDP∞(ϵ) can be understood as the composition of237

sto-sign with A = c followed by the randomized response mechanism [22], and is equivalent to the238

one-dimensional case of the compressor in [13]. Moreover, the one-dimensional case of the schemes239

in [10, 11] can also be understood as special cases of sto-sign.240

5 The Proposed Ternary Compressor241

The output of the binomial mechanism with M = 1 lies in the set {0, 1}, which coincides with the242

sign-based compressor. In this section, we extend the analysis to the ternary case, which can be243

understood as a combination of sign-based quantization and sparsification (when the output takes244

value 0, no transmission is needed since it does not contain any information) and leads to improved245

communication efficiency. More specifically, we propose the following ternary compressor.246

Definition 6 (Ternary Stochastic Compressor). For any given x ∈ [−c, c], the compressor ternary247

outputs ternary(x,A,B), which is given by248

ternary(x,A,B) =


1, with probability A+x

2B ,

0, with probability 1− A
B ,

−1,with probability A−x
2B ,

(12)

where B > A > c are the design parameters that control the level of sparsity.249

For the ternary stochastic compressor in Definition 6, we establish its privacy guarantee as follows.250
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Figure 3: Sparsification im-
proves privacy.

251

Theorem 3. The ternary stochastic compressor is f ternary(α)-252

differentially private with253

f ternary(α) =


1− A+c

A−cα, for α ∈ [0, A−c
2B ],

1− c
B − α, for α ∈ [A−c

2B , 1− A+c
2B ],

A−c
A+c −

A−c
A+cα, for α ∈ [1− A+c

2B , 1].

(13)

Remark 3 (Privacy amplification by sparsification). It can be254

observed from (9) and (13) that f ternary(α) > fsto-sign when255

α ∈ [A−c
2B , 1 − A+c

2B ], and f ternary(α) = fsto-sign, otherwise. Fig. 3 shows f ternary(α) and256

fsto-sign for c = 0.1, A = 0.25, B = 0.5, and the shaded gray area corresponds to the improve-257

ment in privacy. That being said, communication efficiency and privacy are improved simulta-258

neously. It is worth mentioning that, if we convert the privacy guarantees to (ϵ, 0)-DP, we have259

ϵ = ln( 73 ) for both compressors. However, the ternary compressor ensures (ln(2), 0.05)-DP (i.e.,260

f ternary(α) ≥ max{0, 0.95− 2α, 0.5(0.95− α)}) while the sto-sign compressor does not.261

In the following, we present a special case of the proposed ternary stochastic compressor.262

Example 3. The ternary-based compressor proposed in [37] is formally defined as follows.263

Definition 7 (ternarize(·) [37]). For any given x ∈ [−c, c], the compressor ternarize(·) outputs264

ternarize(x,B) = sign(x) with probability |x|/B and ternarize(x,B) = 0 otherwise, in which265

B > c is the design parameter.266

ternarize(x,B) can be understood as a special case of ternary(x,A,B) with A = |x|. According267

to Theorem 3, f ternary(α) = 1− c
B −α for α ∈ [0, 1− c

B ] and f ternary(α) = 0 for α ∈ [1− c
B , 1].268

Combining the above result with (3), we have δ = c
B and ϵ = 0, i.e., ternarize(·) provides perfect269

privacy protection (ϵ = 0) with a violation probability of δ = c
B . Specifically, the attacker cannot270

distinguish xi from x′
i if the output of ternarize(·) = 0 (perfect privacy protection), while no271

differential privacy is provided if the output of ternarize(·) ̸= 0 (violation of the privacy guarantee).272

Remark 4. It is worth mentioning that, in [37], the users transmit a scaled version of ternarize(·)273

and the scaling factor reveals the magnitude information of xi. Therefore, the compressor in [37] is274

not differentially private.275

6 Breaking the Communication-Privacy-Accuracy Tradeoff276

In this section, we extend the results in Section 5 to the vector case in two different approaches,277

followed by discussions on the three-way tradeoff between communication, privacy, and accuracy.278

The results in Section 4 can be extended similarly. Specifically, in the first approach, we derive the279

µ-GDP in closed form, while introducing some loss in privacy guarantees. In the second approach, a280

tight approximation is presented. Given the results in Section 5, we can readily convert f -DP in the281

scalar case to Gaussian differential privacy in the vector case as follows.282

Theorem 4. Given a vector xi = [xi,1, xi,2, · · · , xi,d] with |xi,j | ≤ c,∀j. Applying the ternary283

compressor to the j-th coordinate of xi independently yields µ-GDP with µ = −2Φ−1( 1
1+(A+c

A−c )
d
).284

Remark 5. Note that ||xi||2 ≤ c is a sufficient condition for |xi,j | ≤ c,∀j. In the proof of Theorem285

4, we first convert f ternary(α)-DP to (ϵ, 0)-DP for the scalar case, and then obtain (dϵ, 0)-DP286

for the d-dimensional case, followed by the conversion to GDP. One may notice that some loss in287

privacy guarantee is introduced since the extreme case |xi,j | = c,∀j actually violates the condition288

||xi||2 ≤ c. To address this issue, following a similar method in [13, 38, 9], one may introduce289

Kashin’s representation to transform the l2 geometry of the data into the l∞ geometry. More290

specifically, [39] shows that for D > d, there exists a tight frame U such that for any x ∈ Rd, one291

can always represent each xi with yi ∈ [−γ0/
√
d,−γ0/

√
d]D for some γ0 and xi = Uyi.292

In Theorem 4, some loss in privacy guarantees is introduced when we convert f -DP to µ-GDP. In293

fact, since each coordinate of the vector is processed independently, the extension from the scalar294

case to the d-dimensional case may be understood as the d-fold composition of the mechanism in the295
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scalar case. The composed result can be well approximated or numerically obtained via the central296

limit theorem for f -DP in [15] or the Edgeworth expansion in [33]. In the following, we present the297

result for the ternary compressor by utilizing the central limit theorem for f -DP.298

Theorem 5. For a vector xi = [xi,1, xi,2, · · · , xi,d] with |xi,j | ≤ c,∀j, the ternary compressor with299

B ≥ A > c is f ternary(α)-DP with300

Gµ(α+ γ)− γ ≤ f ternary(α) ≤ Gµ(α− γ) + γ, (14)
in which301

µ =
2
√
dc√

AB − c2
, γ =

0.56
[
A−c
2B

∣∣1 + c
B

∣∣3 + A+c
2B

∣∣1− c
B

∣∣3 + (
1− A

B

) ∣∣ c
B

∣∣3]
(AB − c2

B2 )3/2d1/2
. (15)

Given the above results, we investigate the communication-privacy-accuracy tradeoff and compare302

the proposed ternary stochastic compressor with the state-of-the-art method SQKR in [13] and the303

classic Gaussian mechanism. According to the discussion in Remark 5, given the l2 norm constraint,304

Kashin’s representation can be applied to transform it into the l∞ geometry. Therefore, for ease of305

discussion, we consider the setting in which each user i stores a vector xi = [xi,1, xi,2, · · · , xi,d]306

with |xi,j | ≤ c = C√
d
,∀j, and ||xi||2 ≤ C.307

Ternary Stochastic Compressor: Let Zi,j = ternary(xi,j , A,B), then E[BZi,j ] = xi,j and308

V ar(BZi,j) = AB − x2
i,j . In this sense, applying the ternary stochastic compressor to each309

coordinate of xi independently yields an unbiased estimator with a variance of ABd− ||xi||22. The310

privacy guarantee is given by Theorem 5, and the communication overhead is (log2(d) + 1)ABd bits311

in expectation.312

SQKR: In SQKR, each user first quantizes each coordinate of xi to {−c, c} with 1-bit stochastic313

quantization. Then, it samples k coordinates (with replacement) and privatizes the k bit message via314

the 2k Random response mechanism with ϵ-LDP [14]. The SQKR mechanism yields an unbiased315

estimator with a variance of d
k (

eϵ+2k−1
eϵ−1 )2C2 − ||xi||22. The privacy guarantee is ϵ-LDP, and the316

corresponding communication overhead is (log2(d) + 1)k bits.317

Gaussian Mechanism: We apply the Gaussian mechanism (i.e., adding independent zero-mean318

Gaussian noise ni,j ∼ N (0, σ2) to xi,j), followed by a sparsification probability of 1−A/B as in319

ternary(xi,j , A,B), which gives ZGauss
i,j = B

A (xi,j + ni,j) with probability A/B and ZGauss
i,j = 0,320

otherwise. It can be observed that E[ZGauss
i,j ] = xi,j and V ar(ZGauss

i,j ) = B
Aσ2+(BA −1)x2

i,j . There-321

fore, the Gaussian mechanism yields an unbiased estimator with a variance of B
Aσ2d+(BA −1)||xi||22.322

By utilizing the post-processing property, it can be shown that the above Gaussian mechanism is323

2
√
dc

σ -GDP [15], and the communication overhead is (log2(d) + 32)ABd bits in expectation.324

Discussion: It can be observed that for SQKR, with a given privacy guarantee ϵ-LDP, the variance325

(i.e., MSE) depends on k (i.e., the communication overhead). When eϵ ≪ 2k (which corresponds326

to the high privacy regime), the variance grows rapidly as k increases. For the proposed ternary327

stochastic compressor, it can be observed that both the privacy guarantee (in terms of µ-GDP) and328

the variance depend on AB. Particularly, with a given privacy guarantee µ <
√
4dr/(1− r) for329

r = A/B, the variance is given by (4d/µ2+1)C2−||xi||22, which remains the same regardless of the330

communication overhead. In this sense, we essentially remove the dependency of accuracy on the331

communication overhead and therefore break the three-way tradeoff between communication332

overhead, privacy, and accuracy. This is mainly realized by accounting for privacy amplification333

by sparsification. At a high level, when fewer coordinates are shared (which corresponds to a larger334

privacy amplification and a larger MSE), the ternary stochastic compressor introduces less ambiguity335

to each coordinate (which corresponds to worse privacy protection and a smaller MSE) such that336

both the privacy guarantee and the MSE remain the same. Since we use different differential privacy337

measures from [13] (i.e., µ-GDP in this work and ϵ-DP in [13]), we focus on the comparison between338

the proposed ternary stochastic compressor and the Gaussian mechanism (which is order-optimal in339

most parameter regimes, see [30]) in the following discussion and present the detailed comparison340

with SQKR in the experiments in Section 7.341

Let AB = c2 + σ2, it can be observed that the f -DP guarantee of the ternary compressor ap-342

proaches that of the Gaussian mechanism as d increases, and the corresponding variance is given343

by V ar(BZi,j) = σ2 + c2 − x2
i,j . When A = B, i.e., no sparsification is applied, we have344
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Figure 4: For the left figure, we set k = 10 and derive the corresponding variance for SQKR, based
on which A and B for the ternary stochastic compressor are computed such that they have the same
communication overhead and MSE in expectation. The middle and right figures show the tradeoff
between µ-GDP and MSE. For the middle figure, we set σ ∈ {2

5 ,
1
2 ,

2
3 , 1, 2, 4, 6, 8, 10} for the

Gaussian mechanism, given which A and B are computed such that AB = c2 + σ2 and the sparsity
ratio is A/B. For the right figure, we set A ∈ {5c, 10c, 20c, 30c} and A/B ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
given which the corresponding σ’s are computed such that AB = c2 + σ2.

V ar(BZi,j) − V ar(ZGauss
i,j ) = c2 − x2

i,j . Specifically, when xi,j ∈ {−c, c},∀1 ≤ j ≤ d, the345

ternary compressor demonstrates the same f -DP privacy guarantee and variance as that for the Gaus-346

sian mechanism, i.e., the improvement in communication efficiency is obtained for free (in the347

large d regime). When B > A, we have V ar(BZi,j)− V ar(ZGauss
i,j ) = (1− B

A )σ2 + c2 − B
Ax2

i,j ,348

and there exists some B such that the ternary compressor outperforms the Gaussian mechanism349

in terms of both variance and communication efficiency. It is worth mentioning that the privacy350

guarantee of the Gaussian mechanism is derived by utilizing the post-processing property. We believe351

that sparsification brings improvement in privacy for the Gaussian mechanism as well, which is,352

however, beyond the scope of this paper.353

7 Experiments354

In this section, we examine the performance of the proposed ternary compressor in the case of355

distributed mean estimation. We follow the set-up of [9] and generate N = 1000 user vectors with356

dimension d = 250, i.e., x1, ..., xN ∈ R250. Each local vector has bounded l2 and l∞ norms, i.e.,357

||xi||2 ≤ C = 1 and ||xi||∞ ≤ c = 1√
d

.358

Fig. 4 compares the proposed ternary stochastic compressor with SQKR and the Gaussian mechanism.359

More specifically, the left figure in Fig. 4 compares the privacy guarantees (in terms of the tradeoff360

between type I and type II error rates) of the ternary stochastic compressor and SQKR given the361

same communication overhead and MSE. It can be observed that the proposed ternary stochastic362

compressor outperforms SQKR in terms of privacy preservation, i.e., given the same type I error363

rate α, the type II error rate β of the ternary stochastic compressor is significantly larger than that364

of SQKR, which implies better privacy protection. The middle and right figures in Fig. 4 show the365

tradeoff between MSE and DP guarantees for the Gaussian mechanism and the proposed ternary366

compressor. Particularly, in the middle figure, the tradeoff curves for the ternary compressor with367

all the examined sparsity ratios overlap with that of the Gaussian mechanism with A/B = 1 since368

they essentially have the same privacy guarantees, and the difference in MSE is negligible. For369

the Gaussian mechanism with A
B < 1, the MSE is larger due to sparsification, which validates370

our discussion in Section 6. In the right figure, we examine the MSEs of the proposed ternary371

compressor with various A’s and B’s. It can be observed that the corresponding tradeoff between372

MSE and privacy guarantee matches that of the Gaussian mechanism well, which validates that the373

improvement in communication efficiency for the proposed ternary compressor is obtained for free.374

8 Conclusion375

In this paper, we derived the privacy guarantees of discrete-valued mechanisms with finite output376

space in the lens of f -differential privacy, which covered various differentially private mechanisms377

and compression mechanisms as special cases. Through leveraging the privacy amplification by378

sparsification, a ternary compressor that achieves better accuracy-privacy-communication tradeoff379

than existing methods is proposed. It is expected that the proposed methods can find broader380

applications in the design of communication efficient and differentially private federated data analysis381

techniques.382
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Breaking the Communication-Privacy-Accuracy Tradeoff with486

f -Differential Privacy: Supplementary Material487

A Tradeoff Functions for a Generic Discrete-Valued Mechanism488

We consider a general randomization protocol M(·) with discrete and finite output space. In this489

case, we can always find a one-to-one mapping between the range of M(·) and a subset of Z.490

With such consideration, we assume that the output of the randomization protocol is an integer,491

i.e., M(S) ∈ ZM ⊂ Z,∀S, without loss of generality. Given the randomization protocol and the492

hypothesis testing problem in (2), we derive its tradeoff function as a function of the type I error rate493

in the following lemma.494

Lemma 2. For two neighboring datasets S and S′, suppose that the range of the randomized495

mechanism R(M(S)) ∪R(M(S′)) = ZU
M = [ZU

L , . . . ,ZU
R ] ⊂ Z and R(M(S)) ∩R(M(S′)) =496

ZI
M = [ZI

L, . . . ,ZI
R] ⊂ Z. Let X = M(S) and Y = M(S′). Then,497

Case (1) If M(S) ∈ [ZI
L,ZI

L + 1, . . . ,ZU
R ], M(S′) ∈ [ZU

L ,ZU
L + 1, . . . ,ZI

R], and P (Y=k)
P (X=k) is a498

decreasing function of k for k ∈ ZI
M, the tradeoff function in Definition 2 is given by499

β+
ϕ (α) =


P (Y ≥ k) + P (Y=k)P (X<k)

P (X=k) − P (Y=k)
P (X=k)α,

if α ∈ (P (X < k), P (X ≤ k)], k ∈ [ZI
L,ZI

R].

0, if α ∈ (P (X < ZI
R + 1), 1].

(16)

Case (2) If M(S) ∈ [ZU
L ,ZU

L + 1, · · · ,ZI
R], M(S′) ∈ [ZI

L,ZI
L + 1, · · · ,ZU

R ], and P (Y=k)
P (X=k) is an500

increasing function of k for k ∈ ZI
M, the tradeoff function in Definition 2 is given by501

β−
ϕ (α) =


P (Y ≤ k) + P (Y=k)P (X>k)

P (X=k) − P (Y=k)
P (X=k)α,

if α ∈ (P (X > k), P (X ≥ k)], k ∈ [ZI
L,ZI

R].

0, if α ∈ (P (X > ZI
L − 1), 1].

(17)

Remark 6. It is assumed in Lemma 2 that P (Y=k)
P (X=k) is a decreasing function (for part (1)) or an502

increasing function (for part (2)) of k ∈ ZI
M, without loss of generality. In practice, thanks to the503

post-processing property of DP [15], one can relabel the output of the mechanism to ensure that this504

condition holds and Lemma 2 can be adapted accordingly.505

Remark 7. We note that in Lemma 2, both X and Y depend on both the randomized mechanism506

M(·) and the neighboring datasets S and S′. Therefore, the infimums of the tradeoff functions in507

(16) and (17) are mechanism-specific, which should be analyzed individually. After identifying the508

neighboring datasets S and S′ that minimize β+
ϕ (α) and β−

ϕ (α) for a mechanism M(·) (which is509

highly non-trivial), we can obtain the distributions of X and Y in (16) and (17) and derive the510

corresponding f -DP guarantees.511

Remark 8. Since β+
ϕ (α) is a piecewise function with decreasing slopes w.r.t k (see, e.g., Fig. 1), it can512

be readily shown that β+
ϕ (α) ≥ max{P (Y ≥ k) + P (Y=k)

P (X=k)P (X < k)− P (Y=k)
P (X=k)α, 0},∀k ∈ ZI

M.513

As a result, utilizing Lemma 1, we may obtain different pairs of (ϵ, δ) given different k’s.514

Remark 9. Although we assume a finite output space, a similar method can be applied to the515

mechanisms with an infinite range. Taking the discrete Gaussian noise [20] as an example, M(x) =516

x + V with P (V = v) = e−v2/2σ2∑
v∈Z e−v2/2σ2 . One may easily verify that P (M(xi)=k)

P (M(x′
i)=k) is a decreasing517

function of k if x′
i > xi (and increasing otherwise). Then we can find some threshold v for the rejection518

rule ϕ such that αϕ = P (M(xi) ≤ v) = α, and the corresponding βϕ(α) = 1− P (M(x′
i) ≤ v).519

The key to proving Lemma 2 is finding the rejection rule ϕ such that βϕ(α) is minimized for a520

pre-determined α ∈ [0, 1]. To this end, we utilize the Neyman-Pearson Lemma [40], which states521

that for a given α, the most powerful rejection rule is threshold-based, i.e., if the likelihood ratio522
P (Y=k)
P (X=k) is larger than/equal to/smaller than a threshold h, H0 is rejected with probability 1/γ/0. More523
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specifically, since X and Y may have different ranges, we divide the discussion into two cases (i.e.,524

Case (1) and Case (2) in Lemma 2). The Neyman-Pearson Lemma [40] is given as follows.525

Lemma 3. (Neyman-Pearson Lemma [40]) Let P and Q be probability distributions on Ω with526

densities p and q, respectively. For the hypothesis testing problem H0 : P vs H1 : Q, a test527

ϕ : Ω → [0, 1] is the most powerful test at level α if and only if there are two constants h ∈ [0,+∞]528

and γ ∈ [0, 1] such that ϕ has the form529

ϕ(x) =


1, if q(x)

p(x) > h,

γ, if q(x)
p(x) = h,

0, if q(x)
p(x) < h,

(18)

and EP [ϕ] = α. The rejection rule suggests that H0 is rejected with a probability of ϕ(x) given the530

observation x.531

Given Lemma 3, the problem is then reduced to finding the corresponding h and γ such that the532

type I error rate αϕ = α. For part (1) (the results for part (2) can be shown similarly), we divide the533

range of α (i.e., [0, 1]) into multiple segments, as shown in Fig. 5. To achieve α = 0, we set h = ∞534

and γ = 1, which suggests that the hypothesis H0 is always rejected when k < ZI
L and accepted535

otherwise. To achieve α ∈ (P (X < k), P (X ≤ k)], for k ∈ [ZI
L,ZI

R], we set h = P (Y=k)
P (X=k) and536

γ = α−P (X<k)
P (X=k) . In this case, it can be shown that αϕ = α ∈ (P (X < k), P (X ≤ k)]. To achieve537

α ∈ (P (X < ZI
R + 1), 1], we set h = 0, and γ =

α−P (X<ZI
R+1)

P (X>ZI
R)

. In this case, it can be shown that538

αϕ = α ∈ (P (X < ZI
R + 1), 1]. The corresponding βϕ can be derived accordingly, which is given539

by (16). The complete proof is given below.540

Proof. Given Lemma 3, the problem is reduced to finding the parameters h and γ in (18) such that541

EP [ϕ] = α, which can be proved as follows.542

Case (1) We divide α ∈ [0, 1] into ZU
R −ZI

L + 1 segments: [P (X < ZU
L ), P (X < ZI

L)]∪ (P (X <543

ZI
L), P (X ≤ ZI

L)] ∪ · · · ∪ (P (X < k), P (X ≤ k)] ∪ · · · ∪ (P (X < ZU
R ), P (X ≤ ZU

R )], as shown544

in Fig. 5.545
 (!")

 (!)

#$
%

&

& = ' * + < , -* + . , * + < #/
0 - * + . #/

0

#/
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Figure 5: Dividing α into multiple segments for part (1).
When α = P (X < ZU

L ) = P (X < ZI
L) = 0, we set h = +∞. In this case, noticing that546

P (Y=k)
P (X=k) = h for k < ZI

L, and P (Y=k)
P (X=k) < h otherwise, we have547

EP [ϕ] = γP (X < ZI
L) = 0 = α, (19)

and548

β+
ϕ (0) = 1− EQ[ϕ] = 1− γP (Y < ZI

L). (20)
The infimum is attained when γ = 1, which yields β+

ϕ (0) = P (Y ≥ ZI
L).549

When α ∈ (P (X < k), P (X ≤ k)] for k ∈ [ZI
L,ZI

R], we set h = P (Y=k)
P (X=k) . In this case, P (Y=k′)

P (X=k′) =550

h for k′ = k, and P (Y=k′)
P (X=k′) > h for k′ < k, and therefore551

EP [ϕ] = P (X < k) + γP (X = k). (21)

We adjust γ such that EP [ϕ] = α, which yields552

γ =
α− P (X < k)

P (X = k)
, (22)

and553

β+
ϕ (α) = 1− [P (Y < k) + γP (Y = k)]

= P (Y ≥ k)− P (Y = k)
α− P (X < k)

P (X = k)

= P (Y ≥ k) +
P (Y = k)P (X < k)

P (X = k)
− P (Y = k)

P (X = k)
α

(23)
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When α ∈ (P (X < k), P (X ≤ k)] for k ∈ (ZI
R,ZU

R ], we set h = 0. In this case, P (Y=k′)
P (X=k′) = h for554

k′ > ZI
R, and P (Y=k′)

P (X=k′) > h for k′ ≤ ZI
R. As a result,555

EP [ϕ] = P (X ≤ ZI
R) + γP (X > ZI

R), (24)
and556

β+
ϕ (α) = 1− [P (Y ≤ ZI

R) + γP (Y > ZI
R)] = 0 (25)

Similarly, we can prove the second part of Lemma 2 as follows.557

Case (2) We also divide α ∈ [0, 1] into ZU
R − ZI

L + 1 segments: [P (X > ZU
L ), P (X ≥ ZU

L )] ∪558

· · · ∪ (P (X > k), P (X ≥ k)] ∪ · · · ∪ (P (X > ZI
R), P (X ≥ ZI

R)], as shown in Fig. 6.559
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Figure 6: Dividing α in to multiple segments for part (2).

When α ∈ (P (X > k), P (X ≥ k)] for k ∈ [ZU
L ,ZI

L), we set h = 0. In this case,560

EP [ϕ] = P (X ≥ ZI
L) + γP (X < ZI

L), (26)
and561

β−
ϕ (α) = 1− [P (Y ≥ ZI

L) + γP (Y < ZI
L)] = 0 (27)

When α ∈ (P (X > k), P (X ≥ k)] for k ∈ [ZI
L,ZI

R], we set h = P (Y=k)
P (X=k) . In this case,562

EP [ϕ] = P (X > k) + γP (X = k). (28)

Setting EP [ϕ] = α yields563

γ =
α− P (X > k)

P (X = k)
, (29)

and564

β−
ϕ (α)

= 1− [P (Y > k) + γP (Y = k)]

= P (Y ≤ k)− P (Y = k)
α− P (X > k)

P (X = k)

= P (Y ≤ k) +
P (Y = k)P (X > k)

P (X = k)
− P (Y = k)

P (X = k)
α

(30)

When α = P (X > ZI
R) = 0, we set h = +∞. In this case,565

EP [ϕ] = γP (X > ZI
R) = 0 = α, (31)

and566

β+
ϕ (0) = 1− EQ[ϕ] = 1− γP (Y > ZI

R). (32)
The infimum is attained when γ = 1, which yields β−

ϕ (0) = P (Y ≤ ZI
R).567

B Proofs of Theoretical Results568

B.1 Proof of Theorem 1569

Theorem 1. Let Z̃ = Binom(M,p), the binomial noise mechanism in Algorithm 1 is f bn(α)-570

differentially private with571

f bn(α) = min{β+
ϕ,inf(α), β

−
ϕ,inf(α)}, (33)

in which572

β+
ϕ,inf(α) =


P (Z̃ ≥ k̃ + l) + P (Z=k̃+l)P (Z̃<k̃)

P (Z̃=k̃)
− P (Z̃=k̃+l)

P (Z̃=k̃)
α,

for α ∈ [P (Z̃ < k̃), P (Z̃ ≤ k̃)], k̃ ∈ [0,M − l],

0, for α ∈ [P (Z̃ ≤ M − l), 1].

(34)
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573

β−
ϕ,inf(α) =


P (Z̃ ≤ k̃ − l) + P (Z̃=k̃−l)P (Z̃>k̃)

P (Z̃=k̃)
− P (Z̃=k̃−l)

P (Z̃=k̃)
α,

for α ∈ [P (Z̃ > k̃), P (Z̃ ≥ k̃)], k̃ ∈ [l,M ],

0, for α ∈ [P (Z̃ ≥ l), 1].

(35)

Given that P (Z̃ = k) =
(
M
k

)
pk(1 − p)M−k, it can be readily shown that when p = 0.5, both574

β+
ϕ,inf(α) and β−

ϕ,inf(α) are maximized, and f(α) = β+
ϕ,inf(α) = β−

ϕ,inf(α).575

Before proving Theorem 1, we first show the following lemma.576

Lemma 4. Let X = xi +Binom(M,p) and Y = x′
i +Binom(M,p). Then, if xi > x′

i,577

β+
ϕ (α) =


P (Y ≥ k) + P (Y=k)P (X<k)

P (X=k) − P (Y=k)
P (X=k)α,

if α ∈ [P (X < k), P (X ≤ k)], k ∈ [xi, x
′
i +M ].

0, if α ∈ (P (X < x′
i +M + 1), 1].

(36)

If xi < x′
i,578

β−
ϕ (α) =


P (Y ≤ k) + P (Y=k)P (X>k)

P (X=k) − P (Y=k)
P (X=k)α,

if α ∈ [P (X > k), P (X ≥ k)], k ∈ [x′
i, xi +M ].

0, if α ∈ (P (X > x′
i − 1), 1]

(37)

Proof of Lemma 4. When xi > x′
i, it can be easily verified that P (X = k) > 0 only for k ∈ [xi, xi+579

1, · · · , xi +M ], P (Y = k) > 0 only for k ∈ [x′
i, x

′
i + 1, · · · , x′

i +M ]. For k ∈ [xi, · · · , x′
i +M ],580

we have581

P (Y = k)

P (X = k)
=

(
M

k−x′
i

)
pk−x′

i(1− p)M−k+x′
i(

M
k−xi

)
pk−xi(1− p)M−k+xi

=
(N − k + x′

i + 1)(N − k + x′
i + 2) · · · (N − k + xi)

(k − xi + 1)(k − xi + 2) · · · (k − x′
i)

(
1− p

p
)x

′
i−xi .

(38)

It can be observed that P (Y=k)
P (X=k) is a decreasing function of k.582

When xi < x′
i, it can be easily verified that P (X = k) > 0 only for k ∈ [xi, xi + 1, · · · , xi +M ],583

P (Y = k) > 0 only for k ∈ [x′
i, x

′
i + 1, · · · , x′

i +M ]. For k ∈ [x′
i, · · · , xi +M ], we have584

P (Y = k)

P (X = k)
=

(
M

k−x′
i

)
pk−x′

i(1− p)M−k+x′
i(

M
k−xi

)
pk−xi(1− p)M−k+xi

=
(k − x′

i + 1)(k − x′
i + 2) · · · (k − xi)

(N − k + xi + 1)(N − k + xi + 2) · · · (N − k + x′
i)
(
1− p

p
)x

′
i−xi .

(39)

It can be observed that P (Y=k)
P (X=k) is an increasing function of k, and invoking Lemma 2 completes the585

proof.586

Given Lemma 4, we are ready to prove Theorem 1.587

Proof of Theorem 1. Let Z̃ = Binom(M,p), X = xi + Z̃ and Y = x′
i + Z̃. Two cases are588

considered:589

Case 1: xi > x′
i.590

In this case, according to Lemma 4, we have591

β+
ϕ (α) =


P (Y ≥ k) + P (Y=k)P (X<k)

P (X=k) − P (Y=k)
P (X=k)α,

for α ∈ [P (X < k), P (X ≤ k)], k ∈ [xi, x
′
i +M ],

0, for α ∈ [P (X ≤ x′
i +M), 1],

(40)
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In the following, we show the infimum of β+
ϕ (α). For the ease of presentation, let k̃ = k − xi and592

xi − x′
i = ∆. Then, we have593

P (Y ≥ k) = P (x′
i + Z̃ ≥ k) = P (Z̃ ≥ k̃ +∆),

P (Y = k) = P (Z̃ = k̃ +∆),

P (X < k) = P (xi + Z̃ < k) = P (Z̃ < k̃),

P (X = k) = P (xi + Z̃ = k) = P (Z̃ = k̃).

(41)

(40) can be rewritten as594

β+
ϕ (α) =


P (Z̃ ≥ k̃ +∆) + P (Z̃=k̃+∆)P (Z̃<k̃)

P (Z̃=k̃)
− P (Z̃=k̃+∆)

P (Z̃=k̃)
α, for α ∈ [P (Z̃ < k̃), P (Z̃ ≤ k̃)],

k̃ ∈ [0,M −∆],

0, for α ∈ [P (Z ≤ M −∆), 1].

(42)

Let J(∆, k̃) = P (Z̃ ≥ k̃ +∆) + P (Z̃=k̃+∆)P (Z̃<k̃)

P (Z̃=k̃)
− P (Z̃=k̃+∆)

P (Z̃=k̃)
α, we have595

J(∆ + 1, k̃)− J(∆, k̃) = −P (Z̃ = k̃ +∆)

+
P (Z̃ = k̃ +∆+ 1)− P (Z̃ = k̃ +∆)

P (Z̃ = k̃)
[P (Z̃ < k̃)− α].

(43)

Since α ∈ [P (Z̃ < k̃), P (Z̃ ≤ k̃)], we have P (Z̃ < k̃) − α ∈ [−P (Z̃ = k̃), 0]. If P (Z̃ =596

k̃ + ∆ + 1) − P (Z̃ = k̃ + ∆) > 0, J(∆ + 1, k̃) − J(∆, k̃) < −P (Z̃ = k̃ + ∆) < 0. If597

P (Z̃ = k̃ +∆+ 1)− P (Z̃ = k̃ +∆) < 0, J(∆ + 1, k̃)− J(∆, k̃) < −P (Z̃ = k̃ +∆+ 1) < 0.598

As a result, the infimum of β+
ϕ (α) is attained when ∆ = l, i.e., xi = l and x′

i = 0, which yields599

β+
ϕ,inf(α) =


P (Z̃ ≥ k̃ + l) + P (Z̃=k̃+l)P (Z̃<k̃)

P (Z=k̃)
− P (Z̃=k̃+l)

P (Z̃=k̃)
α,

for α ∈ [P (Z̃ < k̃), P (Z̃ ≤ k̃)], k̃ ∈ [0,M − l],

0, for α ∈ [P (Z̃ ≤ M − l), 1].

(44)

Case 2: xi < x′
i.600

In this case, according to Lemma 4, we have601

β−
ϕ (α) =


P (Y ≤ k) + P (Y=k)P (X>k)

P (X=k) − P (Y=k)
P (X=k)α,

for α ∈ [P (X > k), P (X ≥ k)], k ∈ [x′
i, xi +M ],

0, for α ∈ [P (X ≥ x′
i), 1],

(45)

In the following, we show the infimum of β(α). For the ease of presentation, let k̃ = k − xi and602

x′
i − xi = ∆. Then, we have603

P (Y ≤ k) = P (x′
i + Z̃ ≤ k) = P (Z̃ ≤ k̃ −∆),

P (Y = k) = P (Z̃ = k̃ −∆),

P (X > k) = P (xi + Z̃ > k) = P (Z̃ > k̃),

P (X = k) = P (xi + Z̃ = k) = P (Z̃ = k̃).

(46)

(45) can be rewritten as604

β−
ϕ (α) =


P (Z̃ ≤ k̃ −∆) + P (Z̃=k̃−∆)P (Z̃>k̃)

P (Z̃=k̃)
− P (Z̃=k̃−∆)

P (Z̃=k̃)
α,

for α ∈ [P (Z̃ > k̃), P (Z̃ ≥ k̃)], k̃ ∈ [∆,M ],

0, for α ∈ [P (Z̃ ≥ ∆), 1].

(47)

Let J(∆, k̃) = P (Z̃ ≤ k̃ −∆) + P (Z̃=k̃−∆)P (Z̃>k̃)

P (Z̃=k̃)
− P (Z̃=k̃−∆)

P (Z̃=k̃)
α, we have605

J(∆ + 1, k̃)− J(∆, k̃) = −P (Z̃ = k̃ −∆)

+
P (Z̃ = k̃ −∆− 1)− P (Z̃ = k̃ −∆)

P (Z̃ = k̃)
[P (Z̃ > k̃)− α]

(48)
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Since α ∈ [P (Z̃ > k̃), P (Z̃ ≥ k̃)], we have P (Z̃ > k̃) − α ∈ [−P (Z̃ = k̃), 0]. If P (Z̃ =606

k̃ − ∆ − 1) − P (Z̃ = k̃ − ∆) > 0, then J(∆ + 1, k̃) − J(∆, k̃) < −P (Z̃ = k̃ − ∆) < 0. If607

P (Z̃ = k̃−∆−1)−P (Z̃ = k̃−∆) < 0, then J(∆+1, k̃)−J(∆, k̃) < −P (Z̃ = k̃−∆−1) < 0.608

As a result, the infimum of β−
ϕ (α) is attained when ∆ = l, i.e., xi = 0 and x′

i = l, which yields609

β−
ϕ,inf(α) =


P (Z̃ ≤ k̃ − l) + P (Z̃=k̃−l)P (Z̃>k̃)

P (Z̃=k̃)
− P (Z̃=k̃−l)

P (Z̃=k̃)
α,

for α ∈ [P (Z̃ > k̃), P (Z̃ ≥ k̃)], k̃ ∈ [l,M ],

0, for α ∈ [P (Z̃ ≥ l), 1].

(49)

Combining (44) and (49) completes the first part of the proof. When p = 0.5, it can be found that610

both β+
ϕ,inf(α) and β−

ϕ,inf(α) are maximized, and f(α) = β+
ϕ,inf(α) = β−

ϕ,inf(α).611

B.2 Proof of Theorem 2612

Theorem 2. The binomial mechanism in Algorithm 2 is f bm(α)-differentially private with613

f bm(α) = min{β+
ϕ,inf(α), β

−
ϕ,inf(α)}, (50)

in which614

β+
ϕ,inf(α) = 1− [P (Y < k) + γP (Y = k)] = P (Y ≥ k) +

P (Y = k)P (X < k)

P (X = k)
− P (Y = k)

P (X = k)
α,

for α ∈ [P (X < k), P (X ≤ k)] and k ∈ {0, 1, 2, · · · ,M}, where X = Binom(M,pmax) and615

Y = Binom(M,pmin), and616

β−
ϕ,inf(α) = 1− [P (Y > k) + γP (Y = k)] = P (Y ≤ k) +

P (Y = k)P (X > k)

P (X = k)
− P (Y = k)

P (X = k)
α,

for α ∈ [P (X > k), P (X ≥ k)] and k ∈ {0, 1, 2, · · · ,M}, where X = Binom(M,pmin) and617

Y = Binom(M,pmax). When pmax = 1− pmin, we have β+
ϕ,inf(α) = β−

ϕ,inf(α).618

Proof. Observing that the output space of the binomial mechanism remains the same for different619

data xi, i.e., ZI
L = ZU

L = 0 and ZI
R = ZU

R = M in Lemma 2. Moreover, let X = Binom(M,p)620

and Y = Binom(M, q), we have P (Y=k)
P (X=k) =

(Mk )q
k(1−q)M−k

(Mk )pk(1−p)M−k
= ( 1−q

1−p )
M ( q(1−p)

p(1−q) )
k. Similarly, we621

consider the following two cases.622

Case 1: q < p.623

In this case, we can find that P (Y=k)
P (X=k) is a decreasing function of k. Therefore, according to Lemma624

2, we have625

β+
ϕ (α) = 1− [P (Y < k) + γP (Y = k)]

= P (Y ≥ k)− P (Y = k)
α− P (X < k)

P (X = k)

= P (Y ≥ k) +
P (Y = k)P (X < k)

P (X = k)
− P (Y = k)

P (X = k)
α

(51)

In the following, we show that the infimum is attained when p = pmax and q = pmin. For Binomial626

distribution Y , we have ∂P (Y <k)
∂q ≤ 0 and ∂P (Y≤k)

∂q ≤ 0, ∀k.627

∂β+
ϕ (α)

∂q
= −∂P (Y < k)

∂q
− γ

∂P (Y = k)

∂q

= −(1− γ)
∂P (Y < k)

∂q
− γ

∂P (Y ≤ k)

∂q

≥ 0.

(52)

Therefore, the infimum is attained when q = pmin.628

Suppose X = Binom(M,p) and X̂ = Binom(M, p̂). Without loss of generality, assume p > p̂.629

Suppose that α ∈ [P (X < k), P (X ≤ k)] and α ∈ [P (X̂ < k̂), P (X̂ ≤ k̂)] for some k and k̂630

are satisfied simultaneously, it can be readily shown that k ≥ k̂. In addition, α ∈ [max{P (X <631
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k), P (X̂ < k̂)},min{P (X ≤ k), P (X̂ ≤ k̂)}]. Let632

β+
ϕ,p(α) = P (Y ≥ k) +

P (Y = k)[P (X < k)− α]

P (X = k)
, (53)

and633

β+
ϕ,p̂(α) = P (Y ≥ k̂) +

P (Y = k̂)[P (X̂ < k̂)− α]

P (X̂ = k̂)
, (54)

β+
ϕ,p(α)− β+

ϕ,p̂(α)

= P (Y ≥ k)− P (Y ≥ k̂) +
P (Y = k)[P (X < k)− α]

P (X = k)
− P (Y = k̂)[P (X̂ < k̂)− α]

P (X̂ = k̂)

= P (Y > k)− P (Y > k̂) +
P (Y = k)[P (X ≤ k)− α]

P (X = k)
− P (Y = k̂)[P (X̂ ≤ k̂)− α]

P (X̂ = k̂)
.

(55)

Obviously, P (Y ≥ k) − P (Y ≥ k̂) ≤ 0 and P (Y > k) − P (Y > k̂) ≤ 0 for k ≥ k̂. Observing634

that β+
ϕ,p(α) − β+

ϕ,p̂(α) is a linear function of α ∈ [max{P (X < k), P (X̂ < k̂)},min{P (X ≤635

k), P (X̂ ≤ k̂)}] given Y , X , X̂ , k and k̂, we consider the following four possible cases:636

1) P (X < k) ≤ P (X̂ < k̂) and α = P (X̂ < k̂): In this case, P (Y=k)[P (X<k)−α]
P (X=k) =637

P (Y=k)[P (X<k)−P (X̂<k̂)]
P (X=k) ≤ 0. As a result, β+

ϕ,p(α)− β+
ϕ,p̂(α) ≤ 0.638

2) P (X < k) > P (X̂ < k̂) and α = P (X < k): In this case,639

β+
ϕ,p(α)− β+

ϕ,p̂(α)

= P (Y ≥ k)− P (Y ≥ k̂) +
P (Y = k)[P (X < k)− α]

P (X = k)
− P (Y = k̂)[P (X̂ < k̂)− α]

P (X̂ = k̂)

= P (Y ≥ k)− P (Y ≥ k̂)− P (Y = k̂)[P (X̂ < k̂)− P (X < k)]

P (X̂ = k̂)
.

(56)

When k = k̂, since p > p̂, we have P (X̂ < k̂)− P (X < k̂) > 0, which violates the condition that640

P (X < k) > P (X̂ < k̂).641

When k > k̂, we have P (Y ≥ k)− P (Y ≥ k̂) ≤ −P (Y = k̂). Therefore,642

β+
ϕ,p(α)− β+

ϕ,p̂(α) ≤ −P (Y = k̂)− P (Y = k̂)[P (X̂ < k̂)− P (X < k)]

P (X̂ = k̂)

= −P (Y = k̂)[P (X̂ ≤ k̂)− P (X < k)]

P (X̂ = k̂)

≤ 0.

(57)

3) P (X ≤ k) ≤ P (X̂ ≤ k̂) and α = P (X ≤ k): In this case,643

P (Y = k)[P (X ≤ k)− α]

P (X = k)
− P (Y = k̂)[P (X̂ ≤ k̂)− α]

P (X̂ = k̂)
=

− P (Y = k̂)[P (X̂ ≤ k̂)− P (X ≤ k)]

P (X̂ = k̂)
≤ 0

(58)

As a result, β+
ϕ,p(α)− β+

ϕ,p̂(α) ≤ P (Y > k)− P (Y > k̂) ≤ 0.644

4) P (X ≤ k) > P (X̂ ≤ k̂) and α = P (X̂ ≤ k̂): In this case, when k = k̂, P (X ≤ k̂)− P (X̂ ≤645

k̂) > 0, which violates the condition that P (X ≤ k) > P (X̂ ≤ k̂).646
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When k > k̂,647

β+
ϕ,p(α)− β+

ϕ,p̂(α)

= P (Y ≥ k)− P (Y ≥ k̂) +
P (Y = k)[P (X < k)− P (X̂ ≤ k̂)]

P (X = k)

− P (Y = k̂)[P (X̂ < k̂)− P (X̂ ≤ k̂)]

P (X̂ = k̂)

= P (Y ≥ k)− P (Y > k̂) +
P (Y = k)[P (X < k)− P (X̂ ≤ k̂)]

P (X = k)
.

(59)

Since k > k̂, P (Y ≥ k) − P (Y > k̂) ≤ 0. In addition, P (X < k) − P (X̂ ≤ k̂) ≤ 0 since648

α ∈ [max{P (X < k), P (X̂ < k̂)}, P (X̂ ≤ k̂)]. As a result, β+
ϕ,p(α) − β+

ϕ,p̂(α) ≤ P (Y >649

k)− P (Y > k̂) ≤ 0.650

Now that β+
ϕ,p(α)−β+

ϕ,p̂(α) is a linear function of α ∈ [max{P (X < k), P (X̂ < k̂)},min{P (X ≤651

k), P (X̂ ≤ k̂)}], which is non-positive in the extreme points (i.e., the boundaries), we can conclude652

that β+
ϕ,p(α) − β+

ϕ,p̂(α) ≤ 0 for any α ∈ [max{P (X < k), P (X̂ < k̂)},min{P (X ≤ k), P (X̂ ≤653

k̂)}]. Therefore, the infimum of β+
ϕ (α) is attained when p = pmax.654

Case 2: q > p.655

In this case, we can find that P (Y=k)
P (X=k) is an increasing function of k. As a result, according to Lemma656

2, we have657

β−
ϕ (α) = P (Y ≤ k) +

P (Y = k)P (X > k)

P (X = k)
− P (Y = k)

P (X = k)
α. (60)

Similarly, it can be shown that the infimum is attained when q = pmax and p = pmin.658

As a result, we have659

T (P,Q)(α) = min{β+
ϕ,inf(α), β

−
ϕ,inf(α)} (61)

660

B.3 Proof of Theorem 3661

Theorem 3. The ternary stochastic compressor is f ternary(α)-differentially private with662

f ternary(α) =


1− A+c

A−cα, for α ∈ [0, A−c
2B ],

1− c
B − α, for α ∈ [A−c

2B , 1− A+c
2B ],

A−c
A+c −

A−c
A+cα, for α ∈ [1− A+c

2B , 1].

(62)

We provide the f -DP analysis for a generic ternary stochastic compressor defined as follows.663

Definition 8 (Generic Ternary Stochastic Compressor). For any given x ∈ [−c, c], the generic664

compressor ternary outputs ternary(x, p1, p0, p−1), which is given by665

ternary(x, p1, p0, p−1) =


1, with probability p1(x),

0, with probability p0,

−1,with probability p−1(x),

(63)

where p0 is the design parameter that controls the level of sparsity and p1(x), p−1(x) ∈ [pmin, pmax].666

It can be readily verified that p1 = A+x
2B ,p0 = 1− A

B , p−1 = A−x
2B (and therefore pmin = A−c

2B and667

pmax = A+c
2B ) for the ternary stochastic compressor in Definition 6.668

In the following, we show the f -DP of the generic ternary stochastic compressor, and the corre-669

sponding f -DP guarantee for the compressor in Definition 6 can be obtained with pmin = A−c
2B ,670

pmax = A+c
2B , and p0 = 1− A

B .671
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Lemma 5. Suppose that p0 is independent of x, pmax+ pmin = 1− p0, and p1(x) > p1(y),∀x > y.672

The ternary compressor is f ternary(α)-differentially private with673

f ternary(α) =


1− pmax

pmin
α, for α ∈ [0, pmin],

p0 + 2pmin − α, for α ∈ [pmin, 1− pmax],
pmin

pmax
− pmin

pmax
α, for α ∈ [1− pmax, 1],

(64)

Proof. Similar to the binomial mechanism, the output space of the ternary mechanism remains the674

same for different inputs. Let Y = ternary(x′
i, p1, p0, p−1) and X = ternary(xi, p1, p0, p−1), we675

have676
P (Y = −1)

P (X = −1)
=

p−1(x
′
i)

p−1(xi)
,

P (Y = 0)

P (X = 0)
= 1,

P (Y = 1)

P (X = 1)
=

p1(x
′
i)

p1(xi)
.

(65)

When xi > x′
i, it can be observed that P (Y=k)

P (X=k) is a decreasing function of k. According to Lemma 2,677

we have678

β+
ϕ (α) =


1− p−1(x

′
i)

p−1(xi)
α, for α ∈ [0, p−1(xi)],

p0 + p1(x
′
i) + p−1(xi)− α, for α ∈ [p−1(xi), 1− p1(xi)],

p1(x
′
i)

p1(xi)
− p1(x

′
i)

p1(xi)
α, for α ∈ [1− p1(xi), 1].

(66)

When xi < x′
i, it can be observed that P (Y=k)

P (X=k) is an increasing function of k. According to Lemma679

2, we have680

β−
ϕ (α) =


1− p1(x

′
i)

p1(xi)
α, for α ∈ [0, p1(xi)],

p0 + p−1(x
′
i) + p1(xi)− α, for α ∈ [p1(xi), 1− p−1(xi)],

p−1(x
′
i)

p−1(xi)
− p−1(x

′
i)

p−1(xi)
α, for α ∈ [1− p−1(xi), 1].

(67)

The infimum of β+
ϕ (α) is attained when p−1(x

′
i) = pmax and p−1(xi) = pmin, while the infimum681

of β−
ϕ (α) is attained when p1(x

′
i) = pmax and p1(xi) = pmin. As a result, we have682

f ternary(α) =


1− pmax

pmin
α, for α ∈ [0, pmin],

p0 + 2pmin − α, for α ∈ [pmin, 1− pmax],
pmin

pmax
− pmin

pmax
α, for α ∈ [1− pmax, 1],

(68)

which completes the proof.683

B.4 Proof of Theorem 4684

Theorem 4. Given a vector xi = [xi,1, xi,2, · · · , xi,d] with |xi,j | ≤ c,∀j. Applying the ternary685

compressor to the j-th coordinate of xi independently yields µ-GDP with µ = −2Φ−1( 1
1+(A+c

A−c )
d
).686

Before proving Theorem 4, we first introduce the following lemma.687

Lemma 6. [41, 42] Any (ϵ, 0)-DP algorithm is also µ-GDP for µ = −2Φ−1( 1
1+eϵ ), in which Φ(·)688

is the cumulative density function of normal distribution.689

Proof. According to Theorem 3, in the scalar case, the ternary stochastic compressor is f ternary(α)-690

differentially private with691

f ternary(α) =


1− A+c

A−cα, for α ∈ [0, A−c
2B ],

1− c
B − α, for α ∈ [A−c

2B , 1− A+c
2B ],

A−c
A+c −

A−c
A+cα, for α ∈ [1− A+c

2B , 1].

(69)
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It can be easily verified that f ternary(α) ≥ max{0, 1− (A+c
A−c )α, (

A−c
A+c )(1−α)}. Invoking Lemma 1692

suggests that it is (log(A+c
A−c ), 0)-DP. Extending it to the d-dimensional case yields (d log(A+c

A−c )
M , 0)-693

DP. As a result, according to Lemma 6, it is −2Φ−1( 1
1+(A+c

A−c )
d
)-GDP.694

B.5 Proof of Theorem 5695

Theorem 5. For a vector xi = [xi,1, xi,2, · · · , xi,d] with |xi,j | ≤ c,∀j, the ternary compressor with696

B ≥ A > c is f ternary(α)-DP with697

Gµ(α+ γ)− γ ≤ f ternary(α) ≤ Gµ(α− γ) + γ, (70)
in which698

µ =
2
√
dc√

AB − c2
, γ =

0.56
[
A−c
2B

∣∣1 + c
B

∣∣3 + A+c
2B

∣∣1− c
B

∣∣3 + (
1− A

B

) ∣∣ c
B

∣∣3]
(AB − c2

B2 )3/2d1/2
. (71)

Before proving Theorem 5, we first define the following functions as in [15],699

kl(f) = −
∫ 1

0

log |f ′(x)|dx, (72)
700

κ2(f) =

∫ 1

0

log2 |f ′(x)|dx, (73)
701

κ3(f) =

∫ 1

0

| log |f ′(x)||3dx, (74)
702

κ̄3(f) =

∫ 1

0

| log |f ′(x)|+ kl(f)|3dx. (75)

The central limit theorem for f -DP is formally introduced as follows.703

Lemma 7 ([15]). Let f1, ..., fn be symmetric trade-off functions such that κ3(fi) < ∞ for all704

1 ≤ i ≤ d. Denote705

µ =
2||kl||1√

||κ2||1 − ||kl||22
, and γ =

0.56||κ̄3||1
(||κ2||1 − ||kl||22)3/2

,

and assume γ < 1
2 . Then, for all α ∈ [γ, 1− γ], we have706

Gµ(α+ γ)− γ ≤ f1 ⊗ f2 ⊗ · · · ⊗ fd(α) ≤ Gµ(α− γ) + γ. (76)

Given Lemma 7, we are ready to prove Theorem 5.707

Proof. Given fi(α) in (62), we have708

kl(f) = −
[
A− c

2B
log

(
A+ c

A− c

)
+

A+ c

2B
log

(
A− c

A+ c

)]
=

[
A+ c

2B
− A− c

2B

]
log

(
A+ c

A− c

)
=

c

B
log

(
A+ c

A− c

)
,

(77)

709

κ2(f) =

[
A− c

2B
log2

(
A+ c

A− c

)
+

A+ c

2B
log2

(
A− c

A+ c

)]
=

A

B
log2

(
A+ c

A− c

)
,

(78)

710

κ3(f) =

[
A− c

2B

∣∣∣∣log(A+ c

A− c

)∣∣∣∣3 + A+ c

2B

∣∣∣∣log(A− c

A+ c

)∣∣∣∣3
]

=
A

B

∣∣∣∣log(A+ c

A− c

)∣∣∣∣3 ,
(79)

711

κ̄3(f) =

[
A− c

2B

∣∣∣1 + c

B

∣∣∣3 + A+ c

2B

∣∣∣1− c

B

∣∣∣3 + (
1− A

B

) ∣∣∣ c
B

∣∣∣3] ∣∣∣∣log(A+ c

A− c

)∣∣∣∣3 . (80)
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The corresponding µ and γ are given as follows712

µ =
2d c

B√
A
Bd− c2

B2 d
=

2
√
dc√

AB − c2
, (81)

γ =
0.56

[
A−c
2B

∣∣1 + c
B

∣∣3 + A+c
2B

∣∣1− c
B

∣∣3 + (
1− A

B

) ∣∣ c
B

∣∣3]
(AB − c2

B2 )3/2d1/2
, (82)

which completes the proof.713

C f -DP of the Poisson Binomial Mechanism714

The Poisson binomial mechanism [9] is presented in Algorithm 3. In the following, we show the
Algorithm 3 Poisson Binomial Mechanism

Input: pi ∈ [pmin, pmax],∀i ∈ N
Privatization: Zpb ≜ PB(p1, p2, · · · , pN ) =

∑
i∈N Binom(M,pi).

715
f -DP guarantee of the Poisson binomial mechanism with M = 1. The extension to the proof for716

M > 1 is straightforward by following a similar technique.717

Theorem 6. The Poisson binomial mechanism with M = 1 in Algorithm 3 is fpb(α)-differentially718

private with719

fpb(α) = min

{
max

{
0, 1− 1− pmin

1− pmax
α,

pmin

pmax
(1− α)

}
,

max

{
0, 1− pmax

pmin
α,

1− pmax

1− pmin
(1− α)

}}
.

(83)

Proof. For Poisson Binomial, let720

X = PB(p1, p2, · · · , pi−1, pi, pi+1, · · · , pN ),

Y = PB(p1, p2, · · · , pi−1, p
′
i, pi+1, · · · , pN ),

Z = PB(p1, p2, · · · , pi−1, pi+1, · · · , pN ),

(84)

in which PB stands for Poisson Binomial. In this case,721

P (Y = k + 1)

P (X = k + 1)
=

P (Z = k + 1)(1− p′i) + P (Z = k)p′i
P (Z = k + 1)(1− pi) + P (Z = k)pi

. (85)

In addition,722

P (Y = k + 1)P (X = k)− P (Y = k)P (X = k + 1)

= [P (Z = k + 1)P (Z = k − 1)− (P (Z = k))2](pi − p′i).
(86)

Since P (Z = k + 1)P (Z = k − 1)− (P (Z = k))2 < 0 for Poisson Binomial distribution, we have723

P (Y = k + 1)P (X = k)− P (Y = k)P (X = k + 1)

{
> 0, if pi < p′i,

< 0, if pi > p′i.
(87)

That being said, P (Y=k)
P (X=k) is an increasing function of k if pi < p′i and a decreasing function of k if724

pi > p′i. Following the same analysis as that in the proof of Theorem 2, for pi > p′i, we have725

β+
ϕ (α) = 1− [P (Y < k) + γP (Y = k)]

= P (Y ≥ k)− P (Y = k)
α− P (X < k)

P (X = k)

= P (Y ≥ k) +
P (Y = k)P (X < k)

P (X = k)
− P (Y = k)

P (X = k)
α,

(88)

for α ∈ [P (X < k), P (X ≤ k)] and k ∈ {0, 1, 2, · · · , N}.726

In the following, we show that the infimum of β+
ϕ (α) is attained when pi = pmax and p′i = pmin.727
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Case 1: k = 0. In this case,728

P (Y ≥ 0) = 1,

P (Y = 0) = P (Z = 0)(1− p′i),

P (X < 0) = 0,

P (X = 0) = P (Z = 0)(1− pi).

(89)

Plugging (89) into (88) yields729

β+
ϕ (α) = 1− 1− p′i

1− pi
α. (90)

It is obvious that the infimum is attained when pi = pmax and p′i = pmin.730

Case 2: k > 0. In this case,731

P (Y ≥ k) = P (Z ≥ k) + P (Z = k − 1)p′i,

P (Y = k) = P (Z = k)(1− p′i) + P (Z = k − 1)p′i,

P (X < k) = P (Z < k)− P (Z = k − 1)pi,

P (X = k) = P (Z = k)(1− pi) + P (Z = k − 1)pi.

(91)

Plugging (91) into (88) yields732

β+
ϕ (α) = p(Z > k) + P (Z = k)p′i + [P (X ≤ k)− α]

[P (Z = k)− [P (Z = k)− P (Z = k − 1)p′i]]

P (X = k)
.

(92)
The p′i related term is given by733 [

P (X = k)P (Z = k)

P (X = k)
− [P (Z = k)− P (Z = k − 1)][P (X ≤ k)− α]

P (X = k)

]
p′i. (93)

Observing that (93) is a linear function of α, we only need to examine α ∈ {P (X < k), P (X ≤ k)}.734

More specifically, when α = P (X ≤ k), it is reduced to P (Z = k)p′i; when α = P (X < k), it is735

reduced to P (Z = k − 1)p′i. In both cases, the infimum is attained when p′i = pmin.736

Given that p′i = pmin, the same technique as in the proof of Theorem 2 can be applied to show that737

the infimum is attained when p = pmax.738

Since P (Y=k)
P (X=k) is a decreasing function of k when pi > p′i, we have739

pmin

pmax
≤ P (Y = k)

P (X = k)
≤ 1− pmin

1− pmax
. (94)

Given that β+
ϕ (α) is a decreasing function of α with β+

ϕ (0) = 1 and β+
ϕ (1) = 0, we can readily740

conclude that β+
ϕ (α) ≥ max{0, 1 − 1−pmin

1−pmax
α} and β+

ϕ (α) ≥ pmin

pmax
(1 − α). That being said,741

β+
ϕ (α) ≥ max{0, 1− 1−pmin

1−pmax
α, pmin

pmax
(1− α)}.742

Similarly, for pi < p′i, we have743

β−
ϕ (α) = 1− [P (Y > k) + γP (Y = k)]

= P (Y ≤ k)− P (Y = k)
α− P (X > k)

P (X = k)

= P (Y ≤ k) +
P (Y = k)P (X > k)

P (X = k)
− P (Y = k)

P (X = k)
α

(95)

for α ∈ [P (X > k), P (X ≥ k)] and k ∈ {0, 1, 2, · · · , N}. The infimum is attained when pi = pmin,744

p′i = pmax.745

Since P (Y=k)
P (X=k) is an increasing function of k when pi < p′i, we have746

1− pmax

1− pmin
≤ P (Y = k)

P (X = k)
≤ pmax

pmin
. (96)

Given that β−
ϕ (α) is an increasing function of α with β−

ϕ (0) = 1 and β−
ϕ (1) = 0, we can easily747

conclude that β−
ϕ (α) ≥ max{0, 1 − pmax

pmin
α} and β−

ϕ (α) ≥ 1−pmax

1−pmin
(1 − α). That being said,748

β−
ϕ (α) ≥ max{0, 1− pmax

pmin
α, 1−pmax

1−pmin
(1− α)}.749
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