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Abstract

State-space models have gained popularity in sequence modelling due to their
simple and efficient network structures. However, the absence of nonlinear ac-
tivation along the temporal direction limits the model’s capacity. In this paper,
we prove that stacking state-space models with layer-wise nonlinear activation is
sufficient to approximate any continuous sequence-to-sequence relationship. Our
findings demonstrate that the addition of layer-wise nonlinear activation enhances
the model’s capacity to learn complex sequence patterns. Meanwhile, it can be seen
both theoretically and empirically that the state-space models do not fundamentally
resolve the issue of exponential decaying memory. Theoretical results are justified
by numerical verifications.

1 Introduction

State-space model [1–5] is an emerging family of neural networks specialized in learning long
sequence relationships. It achieves significantly better performance compared with attention-based
transformers in the long range arena (LRA) dataset [6, 7]. Despite its effectiveness, the state-
space model is built on a relatively simple foundation of linear-RNN-like layers. One of the key
advantages of state-space models is their simple recurrence, which enables efficient acceleration. In
fact, this recurrence allows for an asymptotic computational complexity of only O(T log T ), which is
significantly better than the O(T 2) complexity of traditional full-attention approaches [8]. A natural
question would be whether SSM achieves this speedup with certain sacrifices in model capacity or
memory property. It is currently unclear whether the state-space model’s linear architecture with
layerwise nonlinearity possesses sufficient expressive capacity to approximate any target sequence-to-
sequence relationship. This knowledge would be important to answer pertinent questions regarding
the model’s ability to handle the complexity of real-world datasets characterized by diverse and
intricate sequence relationships. In particular, considering the speed advantage of SSM over attention-
based transformers, the universal approximation property impacts whether a state-space model could
be a suitable replacement for a transformer.

In this paper, we study the universality of state-space model. Furthermore, the memory property is
investigated and we show that state-space models also have an asymptotically exponential decaying
memory.

The main contributions can be summarized as follow

1. We give a constructive proof for the universal approximation property for multi-layer state-
space models. The width dependency on sequence length is analyzed.
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Figure 1: Network structure of two-layer state-space model.

2. The state-space models are shown to have an exponentially decaying memory, which
coincides with usual recurrent neural networks.

3. Numerical verifications for the memory property are given on synthetic datasets.

2 Background

In this section, we introduce the general form of the state-space models. The classical results on
universal approximation for recurrent neural networks are summarized. Based on the approximation
result, the well-documented challenge of learning long-term memory via recurrent networks is
summarized. In particular, we give the definition of memory function which we shall use in the
derivation of memory decay.

2.1 State-space models

Single-layer state-space model can be viewed as a recurrent neural network without nonlinear
recurrent activation. As is shown in Figure 1, the discrete time version of SSM [9] is

hk+1 = Whk + Uxk+1, h0 = 0 (1)

yk = Chk +Dxk = CW kh0 +

k∑
i=1

CW k−iUxi +Dxk. (2)

where x ∈ Rdin , y ∈ Rdout , h ∈ Rm, W ∈ Rm×m, U ∈ Rm×din , C ∈ Rdout×m, D ∈ Rdout×din .
Notice that we drop the bias term for simplicity. For multi-layer state-space model, the nonlinear
activation is added layer-wise.

The continuous time version of a single layer is

dht

dt
= Wht + Uxt, h0 = 0 (3)

yt = Cht +Dxt =

∫ T

0

CeW (t−s)Uxsds+Dxt. (4)

It can be seen in Equation (4) that the first component of output y is the convolution between kernel
function ρ(t) = CeW (t−s)U and x. In discrete case, the convolution operator∗ is represented by

y[0,T ] = ρ(t)∗x[0,T ] ⇒ yk =

k∑
i=0

ρk−ixi. (5)

Compared with temporal convolution network (TCN) [10], which has a finite kernel size, state-space
models can be regarded as implementing global convolution (ρ(t) = CeW (t−s)U, t ≥ 0) over the
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temporal axis. Numerically, since the kernel size is the same as the sequence length, the convolution
implemented via fast Fourier transform can lead to significant accelerations [11]. Compared with
attention-based transformer, it is shown that SSM can speed up the training 100x in learning sequences
with length 64K [12]. The state-space model’s temporal efficiency is achieved by eliminating the
nonlinear activation function in its recurrent layers hk+1 = Whk + Uxk + b, resulting in faster
processing of sequential data via parallel scan [11].

2.2 Universal approximation in RNN

It is long-known that recurrent neural networks with nonlinear sigmoidal activations (such as tanh
and sigmoid) are universal approximators.
Theorem 2.1 (Simplified universality statement). For any sequence to sequence map: H : x → y
and tolerance ϵ, there exists a hidden dimension m and weights c,W,U, b such that the RNN with
weights (c,W,U, b) can approximate the target sequence to sequence map:

∥y − ŷ∥ ≤ ϵ. (6)

where prediction sequence ŷ is given by

hk+1 = σ(Whk + Uxk + b), (7)

ŷk = C⊤hk. (8)

Universal approximation establishes the feasibility of learning sequence to sequence relationships
via recurrent neural networks. However, typical approximation rate results depend on the sequence
length [13]. Sequence length dependent approximation rate does not generalize to the case of sequence
of infinite length. In learning sequences with infinite length, Li et al. [14] shows that linear RNNs
have difficulty in learning non-exponential decaying memory. Various numerical experiments [15]
confirm that adding nonlinear recurrent activation does not fundamentally change the decay. In
state-space models, the nonlinearity is included in a layer-wise approach. It is unknown whether such
layer-wise nonlinearity alone is sufficient to approximate any sequence to sequence relationships.

2.3 Memory function and curse of memory

In this paper we study the memory property of state-space model. Before we introduce the main
results, we present a simple memory function definition in sequence modelling. Li et al. [14] proves
that a bounded causal continuous regular time-homogeneous linear functional has the following Riesz
representation:

yt = Ht(x) =

∫ t

−∞
ρ(t− s)xsds. (9)

Here ρ : R+ → R is an L1-integrable function. If ρt rapidly decreases with t, then the target sequence
relationship has a short-term memory.

Since ρt fully captures the memory property of a linear functional [14], we call it the memory
function (of the linear functional). In particular, when approximating the linear functional with linear
RNNs, the model’s memory function is ρ̂(t− s) = C⊤eW (t−s)U .

The curse of memory refers to the phenomenon that if a target linear functional can be approximated
by a sequence of linear RNNs, the memory function ρt decays exponentially.

Take the test input to be xtest =

{
1 t ≥ 0,

0 t < 0.
Notice that the derivative of the linear functional at

test input extracts the memory function
∣∣ d
dtHt(xtest)

∣∣ = |ρ(t)|2. Therefore a natural extension of
the memory function [16] to the bounded causal continuous regular time-homogeneous nonlinear
functionals will be:

ρ̂(t) =

∣∣∣∣dŷtdt

∣∣∣∣
2

, ŷt = Ĥt(xtest). (10)

It can be seen this definition is compatible with the memory function definition of linear functional.
Also, this memory function can be evaluated by computing the models’ derivative at the test input
using finite difference method.
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Figure 2: Two-layer state-space model can approximate any continuous element-wise function

3 Main results

In this section, we first give a simple constructive proof to show that any element-wise function
on input sequence can be approximated by a two-layer state-space model. Next, we show any
temporal convolution can be approximated by a state-space model. The constructive proof for general
nonlinear sequence to sequence functional is given based on the above propositions. Moreover, as the
Kolmogorov-Arnold-representation-based construction has a weight number dependent on sequence
length, it can be highly inefficient to construct a shallow wide network to learn long sequences.
To reduce the widths dependency on the sequence length, a Volterra-series-based construction is
demonstrated.

3.1 Two-layer SSM approximates element-wise function

By element-wise function, we mean learning sequence relationship with form (x1, . . . , xT ) →
(f(x1), . . . , f(xT )).

Proposition 3.1. For any given continuous function f over a compact set K, let the activation σ be
sigmoidal function.

lim
z→∞

σ(z) = 1, lim
z→−∞

σ(z) = −1. (11)

There exists a sequence of two-layer state-space model with weights {W1,W2, U1, U2, b1, b2} that
can approximate sequence relationship H : (x1, . . . , xT ) → (y1, . . . , yT ).

sup
t

sup
x

|f(x)− ŷ| ≤ ϵ. (12)

Here the two-layer state-space model is constructed by

h
(1)
k+1 = W1h

(1)
k + U1xk + b1, (13)

h
(2)
k+1 = W2h

(2)
k + U2σ(h

(1)
k+1) + b2 (14)

yk = h
(2)
k . (15)

The proof is included in Appendix B.2. The main idea is to approximate element-wise function f(x)
with U2σ(U1x+ b1). A graphical demonstration is given in Figure 2. It can be seen the two-layer
state-space model can approximate any element-wise function by setting W1 = W2 = b2 = 0.

3.2 SSM approximates temporal convolution

In this part we show that state-space models can approximate temporal convolution: yk =∑k
i=1 ρk−ixi, 1 ≤ k ≤ T. According to Equation (3), the hidden state of SSM is the con-

volution between input sequence and exponentially decaying function ρ̂k = CW kU . yk =∑k
i=1 CW k−iUxi + CW kh0 +Dxk.
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Therefore the approximation problem of temporal convolution by state-space models is reduced
to the approximation problem of general convolution kernel ρk, 1 ≤ k ≤ T by exponentially
decaying convolution kernel ρ̂k, 1 ≤ k ≤ T . The optimal weights are defined by C,W,U =
argminC,W,U supk |ρk − CW kU |.
Proposition 3.2. For any given convolution kernel ρk, 1 ≤ k ≤ T , the single-layer state-space model
is universal approximator for temporal convolution.

In other words, for any ϵ > 0, there exists a hidden dimension m and corresponding weights C,W,U
such that ρk = CW kU satisfies

sup
k

|ρk − ρ̂k| < ϵ. (16)

See Appendix B.3 for the proof. The main idea is to represent the single-layer state-space model output
as a convolution between input and kernel function. The approximation of temporal convolution is
then reduced to the approximation of general kernel with the SSM-induced kernels.
Remark 3.3. Although the Proposition 3.2 indicates that we can use single-layer state-space model
to approximate any convolution, it does not reveal the necessary hidden dimension m for such
approximation.

3.3 Universality of SSM

Now we show that five-layer state-space model is universal. Without loss of generality, assume the
output y is one-dimensional. The main proof is based on the famous Kolmogorov-Arnold repre-
sentation theorem [17]. By Kolmogorov-Arnold representation theorem, we know any multivariate
continuous function f : Rd → R can be represented by

f(x1, . . . , xd) =

2d∑
q=0

Φq

(
d∑

p=1

ϕq,p(xp)

)
. (17)

Remark 3.4. George Lorentz [18] shows that we can use the same Φ: f(x1, . . . , xd) =∑2d
q=0 Φ

(∑d
p=1 ϕq,p(xp)

)
. Sprecher [19] proves that it can be further reduced to the same ϕ:

f(x1, . . . , xd) =
∑2d

q=0 Φ
(∑d

p=1 λpϕ(xp + ηp) + cq

)
. Braun and Griebel [20] gives the first con-

structive proof for the superposition. Moreover, the inner function ϕ is shown to be independent
of target function f . It means the learning of function ϕ can be approximated without retraining for
different target functionals.

We summarize the Kolmogorov-Arnold theorem as follow:
Theorem 3.5 ([17, 20]). Fix dimension d ≥ 2. There are real numbers a, bp, cq and a continuous
and monotone function ϕ : R → R, such that for any continuous function f : [0, 1]d → R, there
exists a continuous function Φ : R → R with

f(x1, . . . , xd) =

2d∑
q=0

Φ

(
d∑

p=1

bpϕ(xp + qa) + cq

)
. (18)

Proposition 3.6. For any bounded causal continuous sequence to sequence relationship H :
{xk}Tk=1 → {yk}Tk=1 and tolerance ϵ > 0, there exists a hidden dimension m and correspond-
ing state-space model (as constructed in Figure 3) such that the error of approximation

|yk − ŷk| ≤ ϵ, k ∈ {1, . . . , T}. (19)

See the proof in Appendix B.4. The main idea is demonstrated in Figure 3, the nonlinear functions
are separately approximated by two-layer state-space model.
Remark 3.7. The Kolmogorov theorem provides a construction for achieving universality in a five-
layer state-space model. However, the quantity of hidden neurons increases linearly with the sequence
length. This can become exceedingly burdensome when the sequence length escalates.

Another approach is from the perspective of Volterra Series, which features the sequence-length
independent neurons.
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Figure 3: Multi-layer state-space models are universal approximators: Drawing from the Kolmogorov-
Arnold representation theorem, we have f(x1, . . . , xd) =

∑2d
q=0 Φ

(∑d
p=1 bpϕ(xp + qa) + cq

)
.

Here, both element-wise nonlinear functions ϕ and Φ can be approximated by a two-layer state-space
model, as shown in Proposition 3.1. Additionally, the temporal convolution is represented by a
single-layer state-space model, as detailed in Proposition 3.2.

Theorem 3.8 ([21]). For any continuous time-invariant system with x(t) as input and y(t) as output
can be expanded in the Volterra series as follow

y(t) = h0 +

N∑
n=1

∫ t

0

· · ·
∫ t

0

hn(τ1, . . . , τn)

n∏
j=1

x(t− τj)dτj . (20)

In particular, we call the expansion order N to be the series’ order.

A simplified interpretation of the N -th Volterra Series expansion is the “N -th Taylor expansion in the
sequence variable x”.
Proposition 3.9. For any bounded causal continuous time-homgeneous sequence to sequence
relationship H : {xk}Tk=1 → {yk}Tk=1 and tolerance ϵ > 0, there exists a hidden dimension m and
corresponding state-space model (as constructed in Figure 4) such that the error of approximation

|yk − ŷk| ≤ ϵ, k ∈ {1, . . . , T}. (21)

Moreover, the neurons of the state-space model do not explicitly depend on the sequence length T .

See the proof in Appendix B.5. The main idea is to approximate the convolution kernels
hn(τ1, . . . , τn) by the low-rank tensor product of first-order convolution kernel.
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Figure 4: Volterra-series-type construction for state-space models

Remark 3.10. The advantage of Volterra-series-type construction is the approximation of the convolu-
tion kernel with SSM-induced kernel as well as the approximation of multivariable convolution kernel
with tensor product of one-dimensional convolution kernel do not explicitly depend on the sequence
length. Similar approaches have been adopted by idea of implicit convolution in CKConv [22].

3.4 Memory decay of SSM

In the ensuing discourse, we turn our focus towards an examination of the memory property inherent
in state-space models. It has been thoroughly studied in literature that recurrent neural networks
exhibit a phenomenon of exponential memory decay [14]. An intriguing question that naturally
arises in this context is whether state-space models are plagued by similar challenges. Upon careful
investigation, it is concluded that state-space models, much like their neural network counterparts, do
possess an asymptotically exponential decaying memory.
Proposition 3.11. Assume there exists a constant c0 > 0 such that

lim
t→∞

ec0t∥xt − x∗∥ → 0, x∗ := lim
t→∞

xt. (22)

Assume the output yt is the output of single-layer state-space model with parameters C,W,U . Then,
for the same constant c0, if the output’s derivative satisfies dyt

dt → 0

lim
t→∞

ec0t∥yt − y∗∥ → 0. (23)

At the same time, general smooth nonlinear activation does not change the exponential decay property
of a sequence:
Proposition 3.12. Assume there exists a constant c0 > 0 such that

lim
t→∞

ec0t∥xt − x∗∥ → 0, x∗ := lim
t→∞

xt. (24)

For given Lipschitz continuous layer-wise activations σ, there exists a positive constant c0 such that
the output memory function dyt

dt → 0

lim
t→∞

ec0t∥yt − y∗∥ → 0. (25)
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See the proofs for above two propositions in Appendix B.6 and Appendix B.7.

Based on the above two propositions, by induction we have the following theorem:

Theorem 3.13. Assume H is a multi-layer state-space model with Lipschitz continuous function
as the layer-wise activations. Assume the state-space model is stable in the sense that matrix W ’s
eigenvalue are bounded by 1.

There exists a positive constant c0 such that the memory function (defined in Equation (10)) of
state-space model is decaying exponentially

lim
t→∞

ec0tρ̂(t) → 0. (26)

4 Numerical verifications

Based on the generalization of memory function ρ in linear functional, we verify the asymptotic
memory decay of state-space models with simple randomly generated models. The definition is
given in one-dimensional case, but it can be generalized to multi-variable case by taking different
unit inputs in various coordinates. The motivation for the above definition is based on the idea of
measuring the earlier input at the later output.

In our experiment, we construct various RNN models and SSM with random generated weights.
It can be seen in Figure 5 that the memory of naive state-space models also has an exponentially
decay memory. It is consistent with the previous theorem that state-space model has an asymptotic
exponentially decaying memory. Notice that here the naive SSM is simply adding a tanh activation
across layers without specially tuning the weights. Such random initialization can expose the memory
issue more significantly as the S4 layer is constructed with several parameterization techniques.
However, the manually constructed S4 still has an asymptotic exponential decaying memory as is
shown in Figure 6.

5 Related Work

In this section, we introduce the previous works on state-space models. As the single-layer state-
space model is a linear RNN, we summarize the related approximation work on RNN. In particular,
the approximation result and memory result is emphasized as this paper works on the universal
approximation property and memory decay property of SSM.

State-space models State-space models originate from the HIPPO matrix which is optimal in the
online function approximation sense [2–4]. The Hippo matrix initialization for recurrent matrix W
enables the state-space model to have a slow decaying memory. The universal approximation idea
is heuristically demonstrated in Orvieto et al. [23]. However, the proof from the Koopman theory
perspective only guarantees the existence of universal approximation. Our proof is a constructive
proof which can be further generalized to study the approximation rate with respect to the hidden
dimensions and network depths.

Recurrent neural networks Recurrent neural networks (RNNs) [24] are one of the most popular
neural networks for sequence modelling. Various results have been established in RNNs approx-
imation theory, see Sontag [25], Hanson et al. [13]. Apart from the universal approximation, the
exponential decaying memory property is the notorious phenomenon in recurrent neural networks
which prohibits the scale up of the models in terms of the sequence length [14, 26].

6 Discussion

In Table 1 we compare the classical sequence models including RNN, TCN and attention-based
transformer. The state-space model can be considered as an enhancement of Recurrent Neural
Networks (RNNs) due to its superior optimization and inference speed. Despite maintaining a similar
network topology, inference cost, and memory pattern, it provides a more efficient and streamlined
approach. The effort to extend the long-memory learning is also carried out in convolutional networks
and attention-based transformers. Romero et al. [22] proposes to parameterize the convolution
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(d) Naive SSM

Figure 5: Memory functions of a randomly initialized recurrent networks. The shadow indicates the
error bar for 100 repeats.

kernel implicitly, which utilizes the power of spline function approximation y = sin(w0(Wx+ b)).
Similar idea has been adopted in Poli et al. [12]. To summarize, we regard SSM, CKConv and linear
transformer as the sequence models’ improvement in learning long-memory for long sequences.

Table 1: Comparison of sequence models: T is the sequence length, L is the number of layers, m
is the hidden dimension, C and K are the total number of channels and convolution kernel sizes in
TCN. Input and output dimensions are dinput and doutput. Despite TCN’s inference cost is independent
of sequence length, it depends on the kernel size K, which typically bears a similar scale to T .

RNN TCN Transformer

Number of weights Lm(m+ dinput + doutput) LCKdinput 3Lmdinput
Single-step inference cost O(1) O(1) O(T 2)

Memory pattern exponential decay low rank no restriction
Memory improved version SSM CKConv Linear Transformer

7 Conclusion

In this paper, we give a constructive proof for the universal approximation property of multi-layer
state-space models. It is shown that the nonlinear recurrent activations in classical recurrent neural
networks are not necessary when there are nonlinear activations across different hidden layers. This
result implies state-space model is as powerful as the classical recurrent neural networks in the
approximation sense. Furthermore, we study the memory decay in multi-layer state-space models,
which is a notorious issue in classical recurrent neural networks. While empirical evidence suggests
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Figure 6: Memory function of a randomly initialized S4. For each model, as the time increases, the
memory function can be “capped” by a straight line, which indicate that the memories are decaying
exponentially. Compared with Figure 5(d), the results indicate that the smart initialization from S4
provides the memory function with a slower decay.

that state-space models do not experience significant memory decay, they nonetheless exhibit a
memory pattern that decays exponentially in the asymptotic sense.

Our research has exciting implications for future work in state-space models. By extending our work
to the approximation rate of state-space models, we can obtain better understanding of state-space
models’ hypothesis space. Such result is important to further optimize the architecture in various
real-world applications. We aim to unlock the full potential of state-space models by identifying the
ideal network structure (including depth and hidden dimension) for specific tasks and applications.
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A Memory of multi-layer linear RNNs

In this section, we study the memory function of linear RNN. The depth of linear RNN does not
directly expand the memroy pattern as the memory are still decaying exponentially. Nonetheless,
although the depth does not increase the approximation capacity, a deeper model is endowed with
more structural property.

Take the two-layer Linear RNN as an example:

ŷt =

∫ t

0

CeW1(t−s)U1

∫ s

0

eW2(s−r)U2xrdrds (27)

=

∫ t

0

CP1e
Λ1(t−s)P−1

1 U1

∫ s

0

P2e
Λ2(s−r)P−1

2 U2xrdrds (28)

=

∫ t

0

CeΛ1(t−s)U1

∫ s

0

eΛ2(s−r)U2xrdrds (29)

=

∫
0<r<s<t

drds
(
CeΛ1(t−s)U1e

Λ2(s−r)U2xr

)
(30)

=

∫
0<r<t

∫
r<s<t

drds
(
CeΛ1(t−s)U1e

Λ2(s−r)U2xr

)
(31)

=

∫ t

0

dr

∫ t

r

ds
(
CeΛ1(t−s)U1e

Λ2(s−r)U2xr

)
(32)

=

dh1∑
i=1

dh2∑
j=1

∫ t

0

dr

∫ t

r

ds
(
Ceλ1i(t−s)U1,ije

λ2j(s−r)U2xr

)
(33)

=

dh1∑
i=1

dh2∑
j=1

∫ t

0

dr

∫ t

r

ds
(
eλ1i(t−s)U1,ije

λ2j(s−r)CU2xr

)
(34)

=
∑
ij

∫ t

0

dr

∫ t

r

ds
(
eλ1i(t−s)+λ2j(s−r)U1,ijCU2xr

)
(35)

=
∑
ij

∫ t

0

dr

(∫ t

r

ds e(λ2j−λ1i)s

)(
eλ1it−λ2jrU1,ijCU2xr

)
(36)

=
∑
ij

∫ t

0

dr

(
1

λ2j − λ1i
(e(λ2j−λ1i)t − e(λ2j−λ1i)r)

)(
eλ1it−λ2jrU1,ijCU2xr

)
(37)

=
∑
ij

∫ t

0

dr

(
1

λ2j − λ1i
(eλ2j(t−r) − eλ1i(t−r))U1,ijCU2xr

)
(38)

=

∫ t

0

dr
∑
ij

(
1

λ2j − λ1i
(eλ2j(t−r) − eλ1i(t−r))U1,ijCU2

)
xr (39)

The memory function of two-layer linear RNN is

ρ̂t =
∑
ij

(
1

λ2j − λ1i
(eλ2j(t) − eλ1i(t))U1,ijCU2

)
. (40)

The main advantage of two-layer linear RNN, compared with single-layer linear RNN, is that it can
learn unbounded combination of exponential decay function as long as λ2j and λ1i are close enough.
Notice that for simplicity we do not include the bias term in the evaluation of memory function. The
multi-layer linear Recurrent Neural Network (RNN), including a bias term, can be perceived as a
linear combination of various depth-specific linear RNNs, devoid of a bias term.
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B Proof

B.1 Universal approximation

Here we include the universal approximation from Barron [27], it is frequently used in the later
constructive proof for state-space models.

Theorem B.1 (Cybenko [28], Barron [27]). For any continous function f : Rd → R and compact
set K ⊆ Rd. Assume the activation function σ : R → R is bounded and sigmoidal:

lim
z→∞

σ(z) = 1, lim
z→−∞

σ(z) = −1. (41)

For any ϵ > 0, there exists m ∈ N, A ∈ Rm×d, b ∈ Rk, C ∈ Rm×k such that

sup
x∈K

∥f(x)− g(x)∥ ≤ ϵ, (42)

where
g(x) = Cσ(Ax+ b). (43)

B.2 Proof for Proposition 3.1

Proof. Fix the bounded continuous function f .

For any ϵ > 0, according to the universal approximation theorem in Theorem B.1, there exists
U1, U2, b1 such that

|f(x)− U2σ(U1x+ b1)| ≤ ϵ. (44)

Take W1 = W2 = b2 = 0, the two-layer state-space model can approximate element-wise continuous
functions. (Here the element-wise function mean the sequences that for each k, yk only depends on
xk.)

B.3 Proof for Proposition 3.2

Proof. The original statement is given in the discrete index. We prove the result for the continuous
index and the discrete case can be derived by discretization.

Without loss of generality, assume the input output sequence are all one-dimensional. Otherwise we
shall stacking the C,W,U for different input-output channels.

Since the input and output are one-dimensional, we know c, u are vectors and W is a square matrix.
To approximate the target convolution:

yt =

∫ t

0

ρt−sxsds (45)

by state-space model

ŷt =

∫ t

0

c⊤eW (t−s)uxsds. (46)

Since the prediction error can be decomposed into following form

yt − ŷt =

∫ t

0

(
ρt−s − c⊤eW (t−s)u

)
xsds. (47)

Approximating the temporal convolution with state-space model over all bounded inputs x can be
reduced to function approximating problem:

max
s∈[0,T ]

∣∣∣∣∣ρs −
m∑
i=1

cie
−λis

∣∣∣∣∣ < ϵ, λi ≥ 0. (48)

In other words, approximating a convolution layer with state-space model is equivalent to approxi-
mating a general integrable function by function with exponential form ρ̂s =

∑m
i=1 cie

−λis.
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By change of variable, we have

max
τ∈[e−T ,1]

|f(τ)−
m∑
i=1

ciτ
λi | < ϵ. (49)

Here f(τ) = ρ− log(τ). Since polynomials are universal approximators on compact intervals, we
know there exists ci, λi such that the aforementioned inequality is satisfied. (For example, if f is
smooth, we can take the Taylor expansion of function f .)

B.4 Proof for Proposition 3.6

Proof. Our proof is based on Equation (18), for any sequence relationship H : {xk}Tk=1 → {yk}Tk=1,
we need to approximate ϕ and Φ, and subsequently approximate the representation prescribed by the
Kolmogorov-Arnold theorem.

Fix tolerance ϵ.

As is shown in Figure 3, the first element-wise function ϕ(·) can be approximated by two-layer
state-space model. This is a result from the direct application of Proposition 3.1. In math terms, there
exists U1, U2, b1 such that two-layer state-space model approximate function ϕ.

∥ϕ(x)− U2σ(U1x+ b1)∥ ≤ ϵ. (50)

We shall denote U2σ(U1x+ b1) by ϕ̂(x).

Next, according to Proposition 3.2, we know the (temporal) convolution can be approximated via
single-layer state-space model. There exists weights C3,W3, U3 such that∥∥∥∥∥

T∑
p=1

ρT−pϕ̂(xp + qa)−
T∑

p=1

C3W
T−p
3 U3ϕ̂(xp + qa)

∥∥∥∥∥ ≤ ϵ. (51)

The last layer is again an element-wise function Φ(·), which can be approximate by two-layer
state-space model with weights U4, U5, b4. (Figure 3)∥∥∥∥∥Φ(

T∑
p=1

C3W
T−p
3 U3ϕ̂(xp + qa))− U5(U4(

T∑
p=1

C3W
T−p
3 U3ϕ̂(xp + qa)) + b4)

∥∥∥∥∥ ≤ ϵ. (52)

Based on the above result, without loss of generality we assume the outer function Φ is Lipschitz
continuous with coefficient L, then the final approximation error is bounded by L∥ρ∥L1ϵ+ Lϵ+ ϵ.∥∥∥∥∥Φ(

T∑
p=1

ρT−pϕ(xi + qa))− U5(U4(
T∑

p=1

C3W
T−p
3 U3ϕ̂(xp + qa)) + b4)

∥∥∥∥∥ (53)

≤

∥∥∥∥∥Φ(
T∑

p=1

ρT−pϕ(xi + qa))− Φ(

T∑
p=1

ρT−pϕ̂(xp + qa))

∥∥∥∥∥ (54)

+

∥∥∥∥∥Φ(
T∑

p=1

ρT−pϕ̂(xp + qa))− Φ(

T∑
p=1

C3W
T−p
3 U3ϕ̂(xp + qa))

∥∥∥∥∥ (55)

+

∥∥∥∥∥Φ(
T∑

p=1

C3W
T−p
3 U3ϕ̂(xp + qa))− U5(U4(

T∑
p=1

C3W
T−p
3 U3ϕ̂(xp + qa)) + b4)

∥∥∥∥∥ (56)

≤L∥ρ∥L1ϵ+ Lϵ+ ϵ. (57)

To summarize, we achieve the approximation of general nonlinear sequence-to-sequence relationship
with representation (with Lipschitz continuous Φ) via five-layer state-space model.

Since the Lipscthiz continuous function is dense in the set of continuous function, therefore the
universal approximation can be generalized to the representation with Φ not necessarily Lipschitz
continuous.
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B.5 Proof for Proposition 3.9

Proof. For simplicity, we will only present the approximation of an n-th order component of the
Volterra Series. The general approximation of nonlinear sequence-to-sequence relationship can be
achieved by approximating different order component separately and taking the linear combination.

Consider the target functional

yn(t) =

∫ t

0

· · ·
∫ t

0

hn(τ1, . . . , τn)

n∏
j=1

x(t− τj)dτj . (58)

The state-space model’s n-th order term can be represented by

ŷn(t) =

m∑
i=1

∫ t

0

· · ·
∫ t

0

 n∏
j=1

ĥ
(m)
j (τj)

 n∏
j=1

x(t− τj)dτj . (59)

It can be seen the kernel function of state-space model is ĥn(τ1, . . . , τn) =
∑m

i=1

∏n
j=1 ĥ

(m)
j (τj)

while the original n-th order kernel is multi-variable function hn(τ1, . . . , τn). For any tolerance
ϵ, there exists a sufficiently large hidden dimension m such that the multi-variable function is
approximated by the single-variable function’s product:∣∣∣∣∣∣

m∑
i=1

n∏
j=1

ĥ
(m)
j (τj)− hn(τ1, . . . , τn)

∣∣∣∣∣∣ ≤ ϵ. (60)

For example, we may consider ĥn to be polynomial of τj and take the Taylor expansion of kernel
hn.

Remark B.2. While the aforementioned proof for approximation is provided through a polynomial
method, it’s commonly accepted that polynomials may not be the most efficient means to parameterize
kernel functions. Consequently, a variety of techniques have been empirically investigated to represent
convolutional layers [22].

B.6 Proof for Proposition 3.11

Proof. As xt converges to x∗ exponentially and ρ is integrable, we know the limit of yt exists

lim
t→∞

yt = lim
t→∞

∫ ∞

0

ρsxt−sds =

∫ ∞

0

ρs lim
t→∞

xt−sds =

∫ ∞

0

ρsx
∗ds. (61)

Here ρs = C⊤eWsU, s ≥ 0 is the memory function for (continuous) state-space model.

By the dominated convergence theorem, as ρ is integrable and ec0t|xt−s−x∗| is a bounded sequence,

lim
t→∞

ec0t∥yt − y∗∥ = lim
t→∞

ec0t
∥∥∥∥∫ ∞

0

ρs(xt−s − x∗)ds

∥∥∥∥ (62)

≤
∥∥∥∥∫ ∞

0

|ρs| lim
t→∞

ec0t|xt−s − x∗|ds
∥∥∥∥ (63)

=

∥∥∥∥∫ ∞

0

|ρs| · 0ds
∥∥∥∥ = 0. (64)

B.7 Proof for Proposition 3.12

Proof. Since limt→∞ xt = x∗, by continuity of the activation function σ(·)

lim
t→∞

yt = lim
t→∞

σ(xt) = σ( lim
t→∞

xt) = σ(x∗). (65)

Hereafter we define y∗ = σ(x∗).
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Since σ is Lipschitz continuous, let L be its Lipschitz constant

lim
t→∞

ec0t∥yt − y∗∥ = lim
t→∞

ec0t∥σ(xt)− σ(x∗)∥ (66)

≤ lim
t→∞

ec0tL∥xt − x∗∥ (67)

= L lim
t→∞

ec0t∥xt − x∗∥ (68)

= 0. (69)

The Lipschitz continuity is a weak assumption that most of the activations such as ReLU, GeLU,
tanh, hardtanh satisfy.

C Limitations

Theoretical results on approximation do not have quantitative results. Therefore it is not easy to
directly compare the efficiency of different types of models over a specific task. The good news is
that the general memory function servers as a guideline in constructing models. Take the Hyena [12]
architecture as an example, as the implicit representation of convolution kernel is utilized in the
network, Hyena is not a recurrent model. If we replace the convolution layer by state-space model,
we can “translate” a non-recurrent neural network into a recurrent neural network without sacrificing
the approximation capacity. The main advantage of recurrent networks, compared with implicit
convolution form, lies in the lower inference memory cost.

This study primarily explores the qualitative attributes of the state space model within the context of
approximation theory. To better delineate it from other architectures like linear transformers, a more
in-depth investigation into the rate of approximation is necessary.

D Comparisons between RNNs, SSMs and S4

In Table 2, we compare different recurrent models in terms of the recurrence, universality, temporal
parallel and the memory decay speed.

Our core findings are established for SSM; however, we argue that they are applicable to S4 as
well. The primary differences between the vanilla state-space models (SSMs) and S4 involve
model parameterisation, weight initialisation, discretisation, normalisation, dropout, and residual
connections. The model architectures of SSMs and S4 are almost identical, as both alternately stack
linear RNNs and nonlinear activation layers. Therefore, in terms of universal approximation, the
approximation capacities of both SSMs and S4 are equivalent.

Linear RNN Nonlinear RNN SSMs S4

Recurrence Yes Yes Yes Yes
Universality No Yes (hardtanh, tanh) Yes (ours) Yes (ours)

Temporal Parallel Yes No Yes Yes
Exponential decay Yes [14] Yes [16] Yes (ours) Yes, moderated (ours)

Table 2: Comparisons between RNNs, SSMs and S4

E Further discussion on the two proofs for universality of SSMs

We provided comparison between the two proof methods: An analogy between Kolmogorov-theorem
and classical fully-connected neural networks can be drawn because of the finite number of layers in
both. It is shown in Eldan and Shamir [29] that a simple function expressible by a small 3-layer feed-
forward neural networks cannot be approximated to a certain accuracy unless the network’s width is
exponential in the dimension. In contrast, Volterra-Series shares similarities with deep learning, and
as a result, the advantages of deep learning over classical fully-connected neural networks carry over
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to this approach. The authors are inclined to consider Volterra-Series based construction as relatively
superior, and increasing the depth to be a more efficient way to scale up the model.
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