
A Appendix483

A.1 Theoretical Proofs484

Notations of Convolutional Operations. In our paper, we express convolution operation as485

Zu = αXpDu. More explicitly, the formulation writes as Zu = αXp ⋆ Du, where ⋆ is the486

convolutional operation. By converting convolutional kernel Du into a Toeplitz matrix, we can487

replace the convolution operation Xp ⋆Du with matrix multiplication XpDu. We also modify α by488

Ihw
⊗

α, where
⊗

is Kronecker product, to enable the matrix multiplication αXpDu.489

Proposition A.1. Suppose Du and Dv are two different sets of filter atoms for a convolutional layer490

with the common atom coefficients α, we can upper bound the changes in the corresponding features491

Zu,Zv with atom changes,492

||Zu − Zv||F ≤ (||α||Fλ)
√
|B| · ||(Du −Dv)||F , with λ = sup

b∈B
||X||F,Nb

, (8)

Proof. Recall the decomposed convolution can be expressed as,493

Z =

m∑
i=1

αi⟨X,D[i]⟩Nb
(9)

∀b we have,494

|Zu(b)− Zv(b)| = |
m∑
i=1

αi⟨X,Du[i]⟩Nb
−

m∑
i=1

αi⟨X,Dv[i]⟩Nb
|

≤ ||α||F (
m∑
i=1

|⟨X, (Du[i]−Dv[i])⟩Nb
|2)1/2.

(10)

By Cauchy-Schwarz inequality,495

|⟨X, (Du[i]−Dv[i])⟩Nb
| ≤ ||X||F,Nb

· ||Du[i]−Dv[i]||F,Nb

≤ λ · ||Du[i]−Dv[i]||F,Nb

(11)

we have that496 ∑
b∈B

|Zu(b)− Zv(b)|2 ≤ ||α||2F
∑
b

m∑
i=1

|⟨X, (Du[i]−Dv[i])⟩Nb
|2

≤ ||α||2F
∑
b

m∑
i=1

||X||2F,Nb
· ||(Du[i]−Dv[i])||2F,Nb

≤ (||α||Fλ)2
∑
b,i

||(Du[i]−Dv[i])||2F,Nb

(12)

and observe that497 ∑
b,i

||(Du[i]−Dv[i])||2F,Nb
=

∑
b∈B

m∑
i=1

||(Du[i]−Dv[i])||2F,Nb
= |B| · ||(Du −Dv)||2F , (13)

where |B| is the area of the domain of X. Then Eq. 12 becomes498 ∑
b∈B

|Zu(b)− Zv(b)|2 ≤ (||α||Fλ)2|B| · ||(Du −Dv)||2F , (14)

which proves that ||Zu − Zv||F ≤ (||α||Fλ)
√

|B| · ||(Du −Dv)||F as claimed.499

500

Proposition A.2. Assume filter atoms Du,Dv are orthogonal matrices, then SGras = SAtom.501
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Proof. Since Du,Dv ∈ Rk2×m are orthogonal matrices, i.e., DT
uDu = DT

v Dv = I , the Grassmann502

similarity can be represented as,503

SGras(Fu,Fv) =
1

m

m∑
i

cosθi =
1

m

m∑
i

σi, (15)

where σi = Σii, UΣV = DT
uDv .504

SAtom is defined as,505

SAtom(Fu,Fv) = cos(Du,Dv) =
< vec(Du), vec(Dv) >

||vec(Du)||F · ||vec(Dv)||F
. (16)

Analyze each part separately, we have < vec(Du), vec(Dv) >= Tr(DT
uDv) =

∑m
i σi,506

||vec(Du)||F =
√

Tr(DT
uDu) =

√
Tr(I) =

√
m, and also ||vec(Dv)||F =

√
m. In total,507

the filter subspace similarity becomes,508

SAtom(Fu,Fv) = cos(Du,Dv) =

∑m
i σi

m
, (17)

which equals SGras. The claimed theorem is proved.509

510

Lemma A.3. For two positive semidefinite matrices A,B,511

Tr(AB) ≥ σmin(A)Tr(B), (18)

where σmin denotes the minimum eigenvalue of A.512

Proof. It is equivalent to prove that,513

Tr((A− σmin(A)I)B) ≥ 0. (19)

Let C,D be matrices such that A− σmin(A)I = C⊺C, B = D⊺D, then514

Tr((A− σmin(A)I)B) = Tr(C⊺CD⊺D)

= Tr(CD⊺DC⊺)

= Tr((DC⊺)⊺(DC⊺)) ≥ 0.

(20)

515

Theorem A.4. Suppose the forward of decomposed convolution layer for the u-th model is Zu =516

αXDu. Zu,Zv nearly have zero-mean since Xp is preprocessed to be normalized. CCA coefficient517

is defined as S(Zu,Zv) =
√

1
c

∑c
i=1 σ

2
i , where σ2

i denotes the i-th eigenvalue of Λu,v = Qu
⊺Qv,518

Qu = Zu(Z
⊺
uZu)

− 1
2 . Then S(Zu,Zv) is upper bounded,519

S(Zu,Zv) ≤
c

3
2 T
C

cos(Du,Dv), (21)

where T = Tr(X⊺α⊺αX), C = σmin(X
⊺α⊺αX).520

Proof. Consider S2 = 1
c

∑c
i=1 σ

2
i .521

S2 =
1

c

c∑
i=1

σ2
i =

1

c
Tr(Λu,vΛ

⊺
u,v). (22)

where522

Tr(Λu,vΛ
⊺
u,v) = Tr(Q⊺

uQvQ
⊺
vQu) = Tr(QvQ

⊺
vQuQ

⊺
u). (23)
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As defined above, we have523

QuQ
⊺
u = Zu(Z

⊺
uZu)

− 1
2 (Z⊺

uZu)
− 1

2Z⊺
u = Zu(Z

⊺
uZu)

−1Z⊺
u

QvQ
⊺
v = Zv(Z

⊺
vZv)

− 1
2 (Z⊺

vZv)
− 1

2Z⊺
v = Zv(Z

⊺
vZv)

−1Z⊺
v .

(24)

Then Equation 23 becomes,524

Tr(Λu,vΛ
⊺
u,v) = Tr(Zu(Z

⊺
uZu)

−1Z⊺
uZv(Z

⊺
vZv)

−1Z⊺
v)

= Tr((Z⊺
uZu)

−1Z⊺
uZv(Z

⊺
vZv)

−1Z⊺
vZu).

(25)

By Cauchy-Schwartz Inequality,525

Tr(Λu,vΛ
⊺
u,v) ≤ Tr((Z⊺

uZu)
−1)Tr((Z⊺

vZv)
−1)Tr(Z⊺

uZv)
2. (26)

Then we analyze these terms individually,526

Tr(Z⊺
uZv) = Tr(D⊺

uX
⊺α⊺αXDv) = Tr(X⊺α⊺αXDvD

⊺
u)

≤ Tr(X⊺α⊺αX)Tr(D⊺
uDv) ≤ T ·Tr(D⊺

uDv)
(27)

As for Tr((Z⊺
uZu)

−1), let λ1, λ2, ..., λc be eigenvalues for Z⊺
uZu listed in descending order (λ1 ≥527

λ2 ≥ ... ≥ λc), and assume the condition number of Z⊺
uZu and Z⊺

vZv satisfy λmax/λmin ≤ γ, then,528

Tr((Z⊺
uZu)

−1) =

c∑
i=1

1

λi
≤ c · 1

λc
≤ γc

λ1
, (28)

where λ1 = ||Z⊺
uZu||2, || · ||2 denotes the operator norm induced by the vector L2-norm. With the529

norm inequalities of any positive semidefinite matrix A,530

||A||2 ≥ 1√
c
||A||F ≥ 1

c
||A||∗ ≥ 1

c
Tr(A), (29)

where || · ||F , || · ||∗ denote the Frobenius norm and the nuclear norm, respectively.531

Equation (30) then becomes,532

Tr((Z⊺
uZu)

−1) ≤ c · 1

||Z⊺
uZu||2

≤ γc2

Tr(Z⊺
uZu)

. (30)

By Lemma A.3,533

Tr(Z⊺
uZu) = Tr(D⊺

uX
⊺α⊺αXDu)

= Tr(X⊺α⊺α⊺XDuD
⊺
u)

≥ σmin(X
⊺α⊺α⊺X)Tr(D⊺

uDu)

≥ C ·Tr(D⊺
uDu)

≥ C · ||vec(Du)||22,

(31)

where vec(·) denotes vectorization of a matrix.534

Then Equation 30 is further derived as,535

Tr((Z⊺
uZu)

−1) ≤ γc2

C · ||vec(Du)||22
. (32)

Similarly, we have536

Tr((Z⊺
vZv)

−1) ≤ γc2

C · ||vec(Dv)||22
. (33)
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Finally, with Tr(D⊺
uDv) =< vec(Du), vec(Dv) >, we have537

Tr(Λu,vΛ
⊺
u,v) ≤

γ2T 2c4(< vec(Du), vec(Dv) >)2

C2||vec(Du)||22 · ||vec(Dv)||22

≤ γ2T 2c4

C2
· cos2(Du,Dv),

(34)

and thus,538

S(Zu,Zv) =

√
1

c
Tr(Λu,vΛ

⊺
u,v)

≤ γT c
3
2

C
· cos(Du,Dv).

(35)

Then the claimed theorem is proved.539

540

Lemma A.5. For two matrices A, B, their frobenius norm satisfies,541

∥AB∥F = ∥A∥F ∥B∥F

√
1− ∆1

∥A∥2F ∥B∥2F
, (36)

where ∆1 =
∑

ij(
∑

k A
2
ik)(

∑
k B

2
kj) · sin

2 (⟨Ai:, B:j⟩).542

Proof. According to the definition of frobenius norm ∥A∥F =
√∑

ij |Aij |2 we have,543

∥AB∥F =

√∑
ij

(
∑
k

AikBkj)2. (37)

Note that (
∑

i xiyi)
2 = (

∑
i x

2
i )(

∑
i y

2
i ) · cos2 (⟨x, y⟩) = (

∑
i x

2
i )(

∑
i y

2
i ) − (

∑
i x

2
i )(

∑
i y

2
i ) ·544

sin2 (⟨x, y⟩), where ⟨x, y⟩ is the angle of two vectors x and y. We have,545 √∑
ij

(
∑
k

AikBkj)2

=

√√√√∑
ij

[
(
∑
k

A2
ik)(

∑
k

B2
kj)− (

∑
k

A2
ik)(

∑
k

B2
kj) · sin

2 (⟨Ai:, B:j⟩)

]

=

√∑
ik

A2
ik

√∑
kj

B2
kj

√√√√1−
∑

ij(
∑

k A
2
ik)(

∑
k B

2
kj) · sin

2 (⟨Ai:, B:j⟩)∑
ik A

2
ik

∑
kj B

2
kj

=∥A∥F ∥B∥F

√
1−

∑
ij(

∑
k A

2
ik)(

∑
k B

2
kj) · sin

2 (⟨Ai:, B:j⟩)
∥A∥2F ∥B∥2F

=∥A∥F ∥B∥F

√
1− ∆1

∥A∥2F ∥B∥2F
,

(38)

where Ai: is the i-th row of A and B:j is the j-th column of B, ∆1 =
∑

ij(
∑

k A
2
ik)(

∑
k B

2
kj) ·546

sin2 (⟨Ai:, B:j⟩). As Ai: and B:j are more correlated, ⟨Ai:, B:j⟩ −→ 0, thus, ∆1 ≪ ∥A∥2F ∥B∥2F .547

548

Lemma A.6.
∥A1/2∥F = ∥A∥1/2F (1 +

∆1A1/2

∥A∥2F
)1/4. (39)
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Proof. According to Lemma A.5, we have,549

∥A∥2F = ∥A1/2∥4F −∆1. (40)

Thus,550

∥A1/2∥F = ∥A∥1/2F (1 +
∆1A1/2

∥A∥2F
)1/4, (41)

where ∆1A1/2 =
∑

ij(
∑

k(A
1/2)2ik)(

∑
k(A

1/2)2kj) · sin
2 (⟨(A1/2)i:, (A

1/2):j⟩). As (A1/2)i: and551

(A1/2):j are more correlated, ⟨(A1/2)i:, (A
1/2):j⟩ −→ 0, thus, ∆1A1/2 ≪ ∥A∥2F .552

553

Lemma A.7. For three matrices A, B, and C, their frobenius norm satisfies,554

∥A∥F = ∥A∥F ∥B∥F ∥C∥F

√
1− ∆2 +∆3

∥A∥2F ∥B∥2F ∥C∥2F
, (42)

where ∆2 = 1
2 [∥A∥2F

∑
kj(

∑
l B

2
kl)(

∑
l C

2
lj) · sin

2 (⟨Bk:, C:j⟩) + ∥C∥2F
∑

il(
∑

k A
2
ik)(

∑
k B

2
kl) ·555

sin2 (⟨Ai:, B:l⟩)] and ∆3 = 1
2 [
∑

ij(
∑

k A
2
ik)(

∑
k(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩) +556 ∑

ij(
∑

l(AB)2il)(
∑

l C
2
lj) · sin

2 (⟨(AB)i:, C:j⟩)].557

Proof. Based on Lemma A.5, we have,558

∥ABC∥2F
=∥AB∥2F ∥C∥2F −

∑
ij

(
∑
l

(AB)2il)(
∑
l

C2
lj) · sin2 (⟨(AB)i:, C:j⟩)

=∥A∥2F ∥B∥2F ∥C∥2F − ∥C∥2F
∑
il

(
∑
k

A2
ik)(

∑
k

B2
kl) · sin2 (⟨Ai:, B:l⟩)

−
∑
ij

(
∑
l

(AB)2il)(
∑
l

C2
lj) · sin2 (⟨(AB)i:, C:j⟩)

(43)

Symmetrically, we also have,559

∥ABC∥2F
=∥A∥2F ∥BC∥2F −

∑
ij

(
∑
k

A2
ik)(

∑
k

(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩)

=∥A∥2F ∥B∥2F ∥C∥2F − ∥A∥2F
∑
kj

(
∑
l

B2
kl)(

∑
l

C2
lj) · sin2 (⟨Bk:, C:j⟩)

−
∑
ij

(
∑
k

A2
ik)(

∑
k

(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩)

(44)

Thus,560

∥ABC∥2F

=
1

2
[∥A∥2F ∥B∥2F ∥C∥2F − ∥A∥2F

∑
kj

(
∑
l

B2
kl)(

∑
l

C2
lj) · sin2 (⟨Bk:, C:j⟩)

−
∑
ij

(
∑
k

A2
ik)(

∑
k

(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩)

+ ∥A∥2F ∥B∥2F ∥C∥2F − ∥C∥2F
∑
il

(
∑
k

A2
ik)(

∑
k

B2
kl) · sin2 (⟨Ai:, B:l⟩)

−
∑
ij

(
∑
l

(AB)2il)(
∑
l

C2
lj) · sin2 (⟨(AB)i:, C:j⟩)]

=∥A∥2F ∥B∥2F ∥C∥2F −∆2 −∆3,

(45)
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where ∆2 = 1
2 [∥A∥2F

∑
kj(

∑
l B

2
kl)(

∑
l C

2
lj) · sin

2 (⟨Bk:, C:j⟩) + ∥C∥2F
∑

il(
∑

k A
2
ik)(

∑
k B

2
kl) ·561

sin2 (⟨Ai:, B:l⟩)] and ∆3 = 1
2 [
∑

ij(
∑

k A
2
ik)(

∑
k(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩) +562 ∑

ij(
∑

l(AB)2il)(
∑

l C
2
lj) · sin

2 (⟨(AB)i:, C:j⟩)]. Therefore,563

∥ABC∥F = ∥A∥F ∥B∥F ∥C∥F

√
1− ∆2 +∆3

∥A∥2F ∥B∥2F ∥C∥2F
. (46)

As Ai: and B:l, Bk: and C:j are more correlated, ⟨Ai:, B:l⟩, ⟨Bk:, C:j⟩, ⟨Ai:, (BC):j⟩, ⟨(AB)i:, C:j⟩ −→564

0, thus, ∆2 ≪ ∥A∥2F ∥B∥2F ∥C∥2F and ∆3 ≪ ∥A∥2F ∥B∥2F ∥C∥2F .565

566

Lemma A.8.

∥A−1/2BC−1/2∥F = κF (A
1/2)κF (C

1/2)
∥B∥F

∥A1/2∥F ∥C1/2∥F

√
1− ∆2 +∆3

∥A−1/2∥2F ∥B∥2F ∥C−1/2∥2F
,

(47)
where κF (A

1/2) and κF (C
1/2) are the condition number of A1/2 and C1/2, κF (A

1/2) =567 √
(
∑

σ2
i (A

1/2))(
∑

1
σ2
i (A

1/2)
) and κF (C

1/2) =
√

(
∑

σ2
i (C

1/2))(
∑

1
σ2
i (C

1/2)
); σ2

i (A
1/2) are sin-568

gular value of A1/2 and σ2
i (C

1/2) are singular value of C1/2.569

Proof. Based on Lemma A.7, we have,570

∥A−1/2BC−1/2∥F = ∥A−1/2∥F ∥B∥F ∥C−1/2∥F

√
1− ∆2 +∆3

∥A−1/2∥2F ∥B∥2F ∥C−1/2∥2F
. (48)

By the definition of condition number κF (X) = ∥X∥F ∥X−1∥F =
√
(
∑

σ2
i (X))(

∑
1

σ2
i (X)

),571

∥A−1/2BC−1/2∥F = κF (A
1/2)κF (C

1/2)
∥B∥F

∥A1/2∥F ∥C1/2∥F

√
1− ∆2 +∆3

∥A−1/2∥2F ∥B∥2F ∥C−1/2∥2F
.

(49)

572

Theorem A.9. Suppose the forward of decomposed convolution layer for the u-th model is Zu =573

αXDu, CCA coefficient be S(Zu,Zv) =
√

1
c

∑c
i=1 σ

2
i , where σ2

i denotes the i-th eigenvalue of574

Λu,v = Qu
⊺Qv, Qu = Zu(Z

⊺
uZu)

− 1
2 . Then S(Zu,Zv) is approximately linear to filter subspace575

similarity,576

S(Zu,Zv) =
γ1γ2γ3√

c
cos(Du,Dv), (50)

Proof. Based on S(Zu,Zv) =
√

1
c

∑c
i=1 σ

2
i and ∥Λu,v∥F =

√∑c
i=1 σ

2
i , where σi are the singular577

value of Λu,v ,578

S =

√√√√1

c

c∑
i=1

σ2
i =

1√
c
∥Λu,v∥F =

1√
c
∥(Z⊺

uZu)
− 1

2Z⊺
uZv(Z

⊺
vZv)

− 1
2 ∥F . (51)

According to Lemma. A.8, we have579

1√
c
∥(Z⊺

uZu)
− 1

2Z⊺
uZv(Z

⊺
vZv)

− 1
2 ∥F =

γ1γ2√
c

∥Z⊺
uZv∥F

∥(Z⊺
uZu)

1
2 ∥F ∥(Z⊺

vZv)
1
2 ∥F

, (52)
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where γ1 = κF ((Z
⊺
uZu)

1
2 ) · κF ((Z

⊺
vZv)

1
2 ) and γ2 =

√
1− ∆2+∆3

∥(Z⊺
uZu)−1/2∥2

F ∥Z⊺
uZv∥2

F ∥(Z⊺
vZv)−1/2∥2

F
.580

As Zu = αXDu and Zv = αXDv , we have581

γ1γ2√
c

∥Z⊺
uZv∥F

∥(Z⊺
uZu)

1
2 ∥F ∥(Z⊺

vZv)
1
2 ∥F

=
γ1γ2√

c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)
1
2 ∥F ∥(D⊺

vX⊺α⊺αXDv)
1
2 ∥F

.

(53)

According to Lemma A.6,582

γ1γ2√
c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)
1
2 ∥F ∥(D⊺

vX⊺α⊺αXDv)
1
2 ∥F

=
γ1γ2γ3√

c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)∥
1
2

F ∥(D
⊺
vX⊺α⊺αXDv)∥

1
2

F

,
(54)

where γ3 = (1 + ∆1

∥(D⊺
uX⊺α⊺αXDu)∥2

F
)−

1
4 (1 + ∆1

∥(D⊺
vX⊺α⊺αXDv)∥2

F
)−

1
4 .583

As Assumption 2.6 holds, it becomes584

γ1γ2γ3√
c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)∥
1
2

F ∥(D
⊺
vX⊺α⊺αXDv)∥

1
2

F

=
γ1γ2γ3√

c

∥D⊺
uDv∥F ∥X⊺α⊺αX∥F

∥D⊺
u∥

1
2

F ∥X⊺α⊺αX∥
1
2

F ∥Du∥
1
2

F ∥D
⊺
v∥

1
2

F ∥X⊺α⊺αX∥
1
2

F ∥Dv∥
1
2

F

=
γ1γ2γ3√

c

∥D⊺
uDv∥F

∥Du∥F ∥Dv∥F
=
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(55)

Thus, we have585

S(Zu,Zv) =
γ1γ2γ3√

c
cos(Du,Dv). (56)

Specifically, we have γ2 =
√
1− ∆

γ2
1γ

2
3

1
cos2(Du,Dv)

, and since ∆ are small, with Taylor expansion,586

γ2 ≈ 1 − 1
2

∆
γ2
1γ

2
3

1
cos2(Du,Dv)

. The term 1
cos2(Du,Dv)

causes non-linearity in the relation between587

CCA and filter subspace similarity.588

A.2 Experiment Settings589

Model training of Federated Learning. In each experiment we have 100 clients in total and590

sample a ratio r = 0.1 of all the clients on every round. All models are randomly initialized and591

trained for T = 100 communication rounds for the CIFAR datasets. At each round, the client592

executes 15 epochs of SGD with momentum to train the local model, the learning rate is 0.01 and593

momentum is 0.9. Accuracies are computed by taking the average local accuracies for all users at the594

final communication round. As shown in the Table 3, we have different settings for CIFAR-10 and595

CIFAR-100. For example, (100, 2) means 100 clients with 2 classes on each client. For each method,596

the training takes about 12 hours on Nvidia RTX A5000.597

Comparison with other FL approaches. We compare our approach by evolving shared atom598

coefficients with various personalized federated learning methods and federated learning methods599

with local finetuning. Among these methods, FedPer [2] and FedRep[6] have the similar ideas by600

learning shared global representation and personalized local heads. Ditto [25] and FedProx [27]601

induce global regularization to improve the model performance. We also compare our method with602

FedAvg [32]. FedRep [6] approaches the common knowledge with shared representation. The codes603
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Table 3: Compare accuracy with different approaches
CIFAR-100 CIFAR-10

(# client, # classes per client) (100, 5) (100, 20) (100, 2) (100, 5) (1000, 2)

FedAvg 82.39 62.92 86.37 70.63 86.12
FedProx 80.77 59.7 85.90 69.94 84.83
FedPer 81.46 62.52 81.74 68.24 81.74
FedRep 72.98 37.71 80.55 67.3 82.98
Local 81.21 49.25 90.24 72.05 97.80

Ours 81.03 52.13 83.37 65.63 82.54

are adapted from 1. We evaluate the test accuracy on CIFAR-10 and CIFAR-100 with different FL604

setting. As shown in Table 3, our method achieves comparable performance among different methods.605

Fine-tuning models for ensemble. We select 3 models with different similarity measures for606

ensemble. For feature-based similarity methods, we randomly select 1000 examples from CIFAR-100607

dataset. The fully-connected layer of each model is fine-tuned on the user’s local data with 100608

epochs. The fine-tuning takes about 12 hours on Nvidia RTX A5000. After fine-tuning, the accuracy609

is measured on local test data, with the predictions of current model and 3 selected models.610

A.3 Extra Experiments611

Representation dependency on filter atoms. We first validate the dependency of deep features on612

filter atoms in Proposition 2.1 with a simple experiment. The model F here is a 2-layer CNN with613

coefficient α and atom D generated from normal distribution N (0, 1). The input sample X is also614

generated from normal distribution N (0, 1). Figure 8(a) shows the relation between ∥Zu − Zv∥F615

and ∥Du −Dv∥F by fixing coefficient α and input sample X and randomly varying filter atoms D.616

All the points are below the line which is the bound provided by Proposition 2.1, reflecting that the617

representation variations are dominated by filter atoms.618

Correlation between probing-based and filter subspace-based methods. In addition, we em-619

pirically verify that CCA and filter subspace similarity have a strong correlation with AlexNet. In620

this experiment, 10 tasks are generated from CIFAR100 [21] with 10 classes in each task. Only the621

filter atoms of each task are trained while the atom coefficients are fixed. We calculate CCA and filter622

subspace similarity among 45 pairs of models. The correlation between CCA and filter subspace623

similarity is 0.8638 which is shown in Figure 9(b). Similarly, the correlation between CKA and filter624

subspace similarity is also reported in Figure 9 (Table). These results clearly show that the proposed625

filter subspace similarity has high linear relationship with popular probing-based similarities, which626

agrees with Theorem 2.5 and Theorem 2.7.627

1https://github.com/lgcollins/FedRep
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Figure 6: The shared coefficients and user-specific atoms represent common knowledge and personal-
ized information. The filter subspace similarity is used to calculate the relations among users. Users
with heterogeneous data result in lower similarity, as illustrated in a similarity matrix.
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Figure 7: Similarity matrices that show relations among 120 users in FL with our filter subspace
similarity through the training process.
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Figure 8: (a) The change of features ∥Zu − Zv∥F is bounded by the change of atoms ∥Du −Dv∥F .
(b) The channel decorrelation leads to a higher correlation between CCA and filter subspace similarity.
And the correlation can reach 0.985 with β = 3× 10−3, which means a near linear relation between
CCA and filter subspace similarity.

Effect of channel decorrelation. We further design a regularization term β
∑

i ̸=j(Z
⊺
uZu)

2
ij to628

approach (Z⊺
uZu)ii ≫ (Z⊺

uZu)ij in Assumption. 2.6. As shown in Figure 8(b), the correlation629

between CCA and filter subspace similarity keeps increasing as β increases. The correlation reaches630

0.985 when β = 3× 10−3, indicating a near-linear relationship, which is aligned with Theorem. 2.7.631

Similar representations across datasets. Similar to [19], we can use filter subspace similarity to632

compare networks trained on different datasets. In Figure 10(a), we show that pairs of models that633

are both trained on CIFAR-10 and CIFAR-100 have high atom-based similarities. Models learned634

on two datasets respectively still show high similarity. In contrast, similarities between trained and635

untrained models are significantly lower.636

Limitation of probing-based methods. As shown in Figure 10(b), to illustrate sensitivity of637

probing-based similarities to probing data, we perform a simple regression task with data, {(xi =638

0, yi, zi)}ni=1, where zi = f(xi, yi) + ϵi and yi, ϵi ∼ N (0.5, 0.1). Two NN models F1 and F2639
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CCA [40] 0.8638
CKA [19] 0.7358
Grassmann Distance [33] 0.8793

Figure 9: (a) Correlation between Grassmann similarity and filter subspace similarity; (b) Correlation
between CCA and filter subspace similarity. (Table) Correlation between filter subspace similarity
and other approaches.
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Figure 10: (a) Using filter subspace similarity, models trained on different datasets (CIFAR-10 and
CIFAR-100) are similar among themselves, but they differ from untrained models. (b) Illustration
of limitations of probing-based similarities. Input data from “red” ({(xi = 0, yi)}) and “blue”
({(x′

i = yi, y
′
i = 0)}) are orthogonal. Since two models are learned on “red” data, their similarity

should be 1, which can be faithfully indicated by our atom similarity. However, probing-based
similarities will become 0 with the “blue” probing data.
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Figure 11: Similarity of AlexNet with atoms from different time point during the training.

with the same initialization and atom coefficients are trained for their different atoms to learn640

F : (X,Y ) −→ Z. It is can be simply found that the filter subspace similarity of F1 and F2 is 1 and641

the probing-based similarity is also 1 with the same {(xi = 0, yi)} as the probing data. However,642

if we choose {(x′
i = yi, y

′
i = 0)} as the probing data, then the probing-based similarities directly643

become 0 as the data are now orthogonal to model parameters.644

A.4 Training dynamics.645

We investigate the training dynamics of AlexNet [22] and VGG [47] separately on CIFAR-100 [21]646

and ImageNet [44]. The details of training dynamics of models with atoms from different time point647

during the training are shown in Figure 11 and Figure 12. Moreover, we examine the similarity648

between the two participated models shared the same initialization trained only with atoms on two649

different tasks. The results is shown in Figure 13 and Figure 14. The difference is less on the first few650

layers, but more on the middle layers. It reflects the middle layer is more critical than other layers,651

which is aligned with previous work [36].652
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Figure 12: Similarity of VGG with atoms from different time point during the training.
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Figure 13: Similarity of AlexNet trained on different tasks during the training.
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Figure 14: Similarity of VGG trained on different tasks during the training.
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