
Inner Product-based Neural Network Similarity

Wei Chen†, Zichen Miao†, Qiang Qiu
Department of ECE
Purdue University

{chen2732, miaoz, qqiu}@purdue.edu

Abstract

Analyzing representational similarity among neural networks (NNs) is essential
for interpreting or transferring deep models. In application scenarios where nu-
merous NN models are learned, it becomes crucial to assess model similarities
in computationally efficient ways. In this paper, we propose a new paradigm for
reducing NN representational similarity to filter subspace distance. Specifically,
when convolutional filters are decomposed as a linear combination of a set of
filter subspace elements, denoted as filter atoms, and have those decomposed atom
coefficients shared across networks, NN representational similarity can be signifi-
cantly simplified as calculating the cosine distance among respective filter atoms,
to achieve millions of times computation reduction over popular probing-based
methods. We provide both theoretical and empirical evidence that such simplified
filter subspace-based similarity preserves a strong linear correlation with other
popular probing-based metrics, while being significantly more efficient to obtain
and robust to probing data. We further validate the effectiveness of the proposed
method in various application scenarios where numerous models exist, such as
federated and continual learning as well as analyzing training dynamics. We hope
our findings can help further explorations of real-time large-scale representational
similarity analysis in neural networks.

1 Introduction

Deep neural networks (NNs) have shown unprecedented performance in a large variety of tasks [24,
46]. In many scenarios, numerous models are learned and their relations can be beneficial to exploit.
For example, as illustrated in Figure 1(a), to aggregate knowledge across space, federated learning
(FL) trains models over a large number of clients while keeping data localized. To preserve knowledge
across time while learning new ones, continual learning (CL) can be addressed by training a large
group of models, one for each timestep. Finding the relations among models is the cornerstone to
boosting performance in these scenarios, such as improving personalization for FL [53] or providing
knowledge retrieval for CL [40]. Considering the large number of NNs potentially allowed in those
scenarios, e.g., to model growing spatial/temporal coverage, it becomes crucial to have a highly
computationally efficient way to assess NN model similarity.

We are inspired by one recent state-of-the-art CL framework in [35], where each convolutional
filter is represented as a linear combination of a set of filter subspace elements, denoted as filter
atoms. It is easy to notice that each convolutional layer now becomes two convolutional layers, a
filter atom layer followed by an atom coefficient layer with 1 × 1 filters. Then, motivated by the
literature on task subspace modeling [10, 25, 33, 45, 64] that tasks can be modeled as a set of latent
basis tasks and their linear combinations, a group of tasks are sequentially modeled using NNs by
learning for each task a different set of filter atoms, while sharing common atom coefficients across

†Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

…

Federated Learning

Space

𝐶! 𝐶" 𝐶# 𝐶$%! 𝐶$

Time

Continual Learning

…

𝑇! 𝑇" 𝑇# 𝑇&

…

𝐸! 𝐸" 𝐸# 𝐸'

Model Training

N: number of FL clients, M: number of CL tasks, K: number of training epochs

(a)

…

…

… …

… …

…

…

… …

…

…

…

…

…

…

… …

…

…

× ×

× ×𝒁𝟏
(𝟐)

𝒁𝟏
(𝟏)

𝒁𝟐
(𝟐)

𝒁𝟐
(𝟏)

Probing data 𝑿𝒑

𝑫𝟏
(𝟐)

𝑫𝟏
(𝟏)

𝑫𝟐
(𝟐)

𝑫𝟐
(𝟏)

𝜶(𝟐)

𝜶(𝟏)

Model 1 Model 2

Deep
Features

Shared atom
coefficient

Filter
atom

Feature Space
Similarity

Filter Subspace
SimilarityModel 1 Model 2

Layer (2)

Layer (1)

Layer (2)

Layer (1)

Layer (2)

Layer (1)

Layer (2)

Layer (1)

𝜶(𝟐)

𝜶(𝟏)
Cosine Similarity

CCA

CCA

Cosine Similarity

(b)

Figure 1: (a) The illustration of scenarios where numerous models exist, such as federated learning
(FL), continual learning (CL), and model training process. The relations among models are usually
critical, and the computational cost to assess the model relation can be a major bottleneck. (b)
Comparison between our method and probing-based methods. (left) Feature space similarity metrics,
e.g., CCA, rely on probing data, and calculate the correlation between large groups of features
generated by the forward pass of probing data through NNs. (right) In comparison, our filter subspace-
based method decomposes convolutional filters W as filter atoms D (filter subspace elements) and
atom coefficients α, W = α×D, and only calculates the filter subspace similarity between a small
portion of parameters, i.e., filter atoms, which is independent from probing data and computation
efficient. The proposed filter subspace-based method can achieve millions of times computation
reduction than popular probing-based methods.

tasks. [35] has in detail analyzed and validated this framework in the CL context. This learning
framework with individually modeled filter subspaces but shared rules of linear combinations is
generally applicable to many multi-model scenarios, especially CL and FL settings, where numerous
NNs with the same architecture are learned. For example, FL learns a single global model to fit the
data on all clients, and the majority of aggregating methods in FL require NNs to maintain the same
network structure [28, 29, 34].

In the above setting, it is easy to observe that the representation variations across different NNs
now become dominated by respective filter atoms. Thus, [35] adopts in experiments filter subspace
distance to assess task relevancy, however, without formal justification. In this paper, we formally
explore NN representational similarity using filter subspace distance, with detailed theoretical and
empirical justifications. We first simplify the filter subspace distance to the cosine distance of two sets
of filter atoms, to eliminate the computation of singular value decomposition in calculating principal
angles. Then, we show both theoretically and empirically that the obtained filter subspace similarity
preserves a strong linear correlation with other popular probing-based similarity measures such as
CCA [43], which require external probing data as input stimuli. Our representational similarity is
also immune to inappropriate choices of probing data, while probing-based metrics can be perturbed
drastically.

Previous works [37, 43] measure representational similarity directly relying on deep representations
revealed by input data. These approaches introduce heavy computation from both the forward pass
of numerous probing data and the calculation of high-dimensional covariance matrices. As these
similarity metrics are probing-dependent, their quality can potentially deteriorate when probing data
are inappropriately chosen, scarce or unavailable. Such properties make the popular probing-based
approaches less appropriate for our target scenarios where a large number of NN models are present.

The proposed filter subspace similarity shows extreme efficiency in both memory and computation.
Since our similarity computation does not involve network forward pass, no GPU memory access
is required, whereas other probing-based measures consume the same amount of GPU memory as
regular inference. On the other hand, the proposed method involves only inner product calculations
on filter atoms, which takes negligible time for similarity evaluation. The evaluation time of probing-
based measures includes the time of both the forward pass of probing data and the calculation of
high-dimensional covariance matrices. We report later the dramatically improved evaluation time of
the proposed method against other popular probing-based methods, e.g., CKA [21]. These unique

2

properties make our method highly desirable for exploring NN similarity under scenarios with a large
number of NN models.

We further validate our filter subspace similarity for knowledge transfer with various CL and FL tasks,
as sample examples to exploit NN model relations. In both settings, we fix the atom coefficients, learn
the filter atoms for each task, and finally conduct knowledge transfer among tasks by recalling the
most similar models for the ensemble. Compared with probing-based similarity metrics, the proposed
measure achieves competitive performance with millions of times reduction in the computational cost.

We summarize our contributions as follows,

• We formally explore NN representational similarity measure using filter subspace distance.
• We show both theoretically and empirically that the proposed filter subspace-based measure

preserves a strong linear correlation with other popular probing-based measures, while being
significantly more robust and efficient in both memory and computation.

• We demonstrate the effectiveness of the proposed similarity measure using several simple
examples, such as federated and continual learning as well as analyzing training dynamics.

2 Methodology

In this section, we first review probing-based representational similarities and show their limitations.
Then, we provide a filter subspace formulation for NNs, and propose a NN similarity metric based
on a simplified filter subspace distance. We further demonstrate that under certain assumptions, the
proposed measure shows a strong linear relationship with popular probing-based measures, while
exhibiting dramatic improvement in computational efficiency and data robustness. These unique
characteristics of the proposed measure can potentially enable real-time large-scale NN similarity
assessment, e.g., helping fast knowledge retrieval across a large number of NN models.

2.1 Revisiting Representational Similarity in Feature Space

Intuitively, the NN representational similarity can be directly assessed via features generated from
different neural networks. As shown in Figure 1(b), it usually includes three steps to evaluate
probing-based representational similarity between two NNs Fu and Fv: (1) Collect an appropriate
and sufficient amount of external probing data Xp ∈ Rn×c′×h′×w′

that can represent the whole
data distribution. (2) Generate the feature Zu and Zv (Zu,Zv ∈ Rn×c×h×w) by the forward pass
of probing data through different neural networks, Zu = Fu(Xp, θu) and Zv = Fv(Xp, θv), where
θu, θv denote parameters of two NNs. (3) Choose a probing-based metric to assess the model
similarity. Several popular probing-based methods can be adopted in step (3), and we will give a brief
introduction below.

CCA. [43] proposes to analyze the NN representational similarity by conducting canonical correla-
tion analysis on Zu,Zv , which is a recursive process of finding projection directions for two matrices
that their correlation is maximized. Specifically, let Qu, Qv denote the orthonormal bases of Zu,Zv ,
the CCA can be denoted as,

SCCA(Fu,Fv) =

√√√√1

c

c∑
l=1

σ2
l , (1)

where σl denotes the l-th eigenvalue of Λu,v = Q⊺
uQv .

CKA. [21] proposes another way to assess the NN similarity based on Centered Kernel Alignment
(CKA). Let Ku = ZuZ

⊺
u,Kv = ZvZ

⊺
v denote the Gram matrices of two feature space, the CKA is

computed by,

SCKA(Fu,Fv) =
HSIC(Ku,Kv)√

HSIC(Ku,Kv) HSIC(Ku,Kv)
, (2)

where HSIC is the Hilbert-Schmidt Independence Criterion [11].

However, in addition to the forward pass, all the aforementioned approaches further introduce
significant computational costs while performing evaluation in the representation space. Nevertheless,

3

G
ra

ss
m

an
n

Si
m

ila
rit

y

Filter Subspace Similarity

Correlation: 0.9469

(a)

C
C

A

Filter Subspace Similarity

Correlation: 0.9327

(b)

Correlation

CCA [43] 0.9327
CKA [21] 0.9550
Grassmann Distance [35] 0.9469

Figure 2: (a) Correlation between Grassmann similarity and filter subspace similarity; (b) Correlation
between CCA and filter subspace similarity. (Table) Correlation between filter subspace similarity
and other approaches.

their qualities rely heavily on the mindful choice of probing data Xp, which undermines their
robustness.

2.2 Representational Similarity in Filter Subspace

Filter subspace. As in [41], the convolutional filter W ∈ Rc′×c×k×k (c′ and c are the number of
input and output channels, k is the kernel size) can be decomposed over m filter atoms (filter subspace
elements) D[i] ∈ Rk×k(i = 1, ...,m), linearly combined by atom coefficients α ∈ Rm×c′×c as
W = α×D. Note that each convolutional layer now becomes two convolutional layers, a filter atom
layer followed by an atom coefficient layer with 1× 1 filters. The filter subspace is then expressed as
V = Span{D[1], ...,D[m]}. With this formulation, we consider a paradigm where filter subspaces
are model-specific, and subspace linear combination rules, i.e., atom coefficients, are shared across
different networks. The intuition and detailed validation of this learning paradigm can be found in
[35], where state-of-the-art performance in the continual learning context is reported.

In this setting, we dive deep into the relationship between filter subspaces and representations. For
simplicity, let c = c′ = 1, and the argument extends. Given an input image X(b) (b ∈ B,B ⊂ Z2),
define the local input norm ||X||F,Nb

:= (
∑

b′∈Nb
X(b− b′)2)1/2 and the convolution ⟨X, w⟩Nb

:=∑
b′∈Nb

X(b− b′)w(b′), where Nb ⊂ B is a local Euclidean grid centered at b. Then the decomposed
convolution can be written as Z(b) =

∑m
i=1 αi⟨X,Di⟩Nb

, where D[i] denotes the i-th atom, αi is
the corresponded i-th coefficient.
Proposition 2.1. Suppose Du and Dv are two different sets of filter atoms for a convolutional layer
with the common atom coefficients α, we can upper bound the changes in the corresponding features
Zu,Zv with atom changes,

||Zu − Zv||F ≤ (||α||Fλ)
√
|B| · ||Du −Dv||F , with λ = sup

b∈B
||X||F,Nb

. (3)

The proof is provided in Appendix A.1. We further empirically validate this relationship in Sec-
tion A.3.

Filter subspace similarity The above theorem suggests the possibility to measure the representa-
tional similarity of two NNs by simply measuring the distance of their filter subspaces. As proposed
in [35], the representational similarity of two NNs with different filter subspaces Vu,Vv can be
assessed by the similarity based on Grassmann distance between Vu,Vv as,

SGras(Fu,Fv) = d(Vu,Vv) =
1

m

∑
i

cosθi, (4)

where θi is the i-th principal angle between Vu and Vv .

However, the above metric requires costly singular value decomposition. Note that filter atoms in
different NNs are intrinsically aligned under shared atom coefficients, which allows us to approximate
the filter subspace similarity using the cosine similarity of the corresponding filter atoms. To this end,
as shown in Figure 1(b), we propose a significantly simplified representational similarity measure
with filter atom similarity.

4

Definition 2.2. Suppose two convolution neural networks Fu,Fv share atom coefficients layer-wise,
and their model-specific filter atoms are Du,Dv , then the filter subspace representational similarity
is simplified as,

SAtom(Fu,Fv) = cos(Du,Dv) =
< vec(Du), vec(Dv) >

||vec(Du)|| · ||vec(Dv)||
. (5)

The above definition is a layer-wise similarity, allowing us to compare the similarity of different
networks per layer, and we simply average layer-wise similarities for the network-wise similarity.
Remark 2.3. The filter subspace similarity measure becomes a proper metric after taking the arccosine,
i.e., arccos(SAtom(Fu,Fv)) is a proper metric.

We further show that SAtom and SGras are equivalent under certain assumption.

Proposition 2.4. Assume Du,Dv ∈ Rk2×m are orthogonal matrices, then SGras = SAtom.

The proof is provided in Appendix A.1. We empirically show in Figure 2(a) that the above simplified
filter subspace similarity has still a strong linear correlation with the Grassmann subspace similarity
even without imposing the above orthogonality over atoms.

Note that our filter subspace similarity measure only involves linear operations of vectorized atoms of
around hundreds of dimensions, which requires negligible computation. Additionally, the proposed
method depends solely on models themselves and eliminates the reliance on external probing data,
equipping our similarity with robustness to inappropriate choice of probing data.

2.3 Algorithm Complexity Analysis

Here, we provide a detailed comparison of computation complexity between the proposed filter
subspace similarity and probing-based similarities. Consider one convolutional layer with filter
W ∈ Rc′×c×k×k (W = α×D, D ∈ Rm×k×k) which transforms the input Xp ∈ Rn×c′×h′×w′

to
output Z ∈ Rn×c×h×w. The complexity of our method is dominated by inner product of two tiny
filter atoms, O(m · k2), e.g., m = 9, k = 3 in a typical setting.

In contrast, probing-based similarity measure first forward feeds n probing samples with a complexity
of O(n · h′w′ · k2 · cc′), then calculates covariance matrix with the complexity of O(n2 · hw · c).
In total, the time complexity of CCA is O(n · h′w′ · k2 · cc′ + n2 · hw · c). Our method is at
least n·h′w′·k2·cc′+n2·hw·c

m·k2 times more efficient than probing-based similarity measures. As h ≫ k,
cc′ ≫ m, the computational cost of our method is negligible. For example, with 10k probing
datapoints, the CCA calculation requires 1.14× 107 times more FLOPs than the proposed method.

2.4 Relationship with Probing-based Similarities

The proposed filter subspace similarity not only shows extreme efficiency but also exhibits a strong
linear relationship with other popular probing-based similarities. Here, we analyze the proposed
filter subspace similarity SAtom with CCA, SCCA [43]. Suppose forward passes of decomposed
convolutional layer for Fu and Fv are Zu = αXpDu, Zv = αXpDv, respectively. † To start with,
we show that the SCCA is upper bounded by the proposed SAtom.
Theorem 2.5. Let T = Tr(X⊺

pα
⊺αXp), C = σmin(X

⊺
pα

⊺αXp). Assume K(Z⊺
uZu),K(Z⊺

vZv) ≤
γ. Then SCCA(Fu,Fv) is upper bounded by SAtom(Fu,Fv),

C
γc

3
2 T

· SCCA(Fu,Fv) ≤ SAtom(Fu,Fv), (6)

where Tr(·) denotes trace of a matrix, σmin indicates the minimum eigenvalue, K(A) denotes the
condition number of matrix A. We provide the proof in Appendix A.1.

†Specifically, the formulation writes as Zu = αXp ⋆ Du, where ⋆ is the convolutional operation. By
converting convolutional kernel Du into a Toeplitz matrix, we can replace the convolution operation Xp ⋆Du

with matrix multiplication XpDu. We also modify α by Ihw
⊗

α, where
⊗

is Kronecker product, to enable
the matrix multiplication αXpDu.

5

Federated Learning (100 models) Continual Learning (10 models)

of

 ti
m

es
 m

or
e

ef
fic

ie
nt

 th
an

 C
C

A

13,611,052

120,650

5,031

325

∞ ∞∞

… …

Ours
CKA
CCA

(a)

Si
m
ila
rit
y

Similarity measured by CCA/CKA is affected by the choice of probing data

In-Distribution Probing Data

Out-of-Distribution Probing Data

(b)

Figure 3: (a) The ratio of the computational cost savings of our filter subspace similarity over
probing-based similarities. (b) The performance of probing-based similarities can be compromised
by poorly selected probing data. For models trained on CIFAR-100, they have high CCA and CKA
similarities with probing from CIFAR-100 but low similarities with probing from other datasets. In
contrast, our filter subspace similarity does not rely on probing data and shows a high similarity
between the networks, aligning with our expectations.

Since SCCA is probing-dependent, the calculated value varies depending on the choice of probing
data, and the value range shows bounded by our filter subspace similarity, as in the theorem above.

With additional assumptions imposed, we can further show a near-linear relationship between CCA
and our filter subspace similarity.
Assumption 2.6. Suppose the diagonal elements of Z⊺

uZu, Z⊺
uZv and Z⊺

vZv are larger than non-
diagonal element, i.e., (Z⊺

uZu)ii ≫ (Z⊺
uZu)ij .

The Assumption 2.6 suggests different channels of feature Z have a low correlation. Reducing
channel-wise dependencies has been studied in [63] and has been shown to benefit model stability.
We provide the empirical verification of the assumption in Appendix A.3.
Theorem 2.7. If Assumption 2.6 holds, SCCA(Fu,Fv) is approximately linear to filter subspace
similarity, √

c

γ1γ2γ3
· SCCA(Fu,Fv) = SAtom(Fu,Fv), (7)

where γ1, γ2 and γ3 contain higher order of features, which can be found in detail with the proof
in Appendix A.1. Specifically, we have γ2 =

√
1− ∆

γ2
1γ

2
3

1
cos2(Du,Dv)

, and since ∆ are small, with

Taylor expansion, γ2 ≈ 1 − 1
2

∆
γ2
1γ

2
3

1
cos2(Du,Dv)

. The term 1
cos2(Du,Dv)

causes non-linearity in the
relation between CCA and filter subspace similarity.

As in Figure 2, we empirically observe the linear correlation between CCA and filter subspace
similarity, which agrees with our theoretical findings. In addition, we find that the proposed similarity
also shows a strong correlation with CKA.

3 Experiments

In this section, we first validate our theorems with several validation experiments and then demonstrate
simple example applications of the proposed filter subspace similarity in efficiently analyzing training
dynamics as well as in federated and continual learning scenarios.

3.1 Validation Experiments

We conduct empirical validation to confirm the near-linear relationship between filter subspace
similarity and probing-based similarity and explored the limitations of probing-based similarities.

Correlation of CCA and filter subspace similarity. The empirical verification of the correlation
between CCA and filter subspace similarity is presented in Figure 2. In this experiment, 10 tasks are

6

36 42 43

>0.99 >0.99 >0.99

(a) (b) (c)
Tr

ai
ni

ng
 E

po
ch

Training Epoch Training Epoch Training Epoch

Tr
ai

ni
ng

 E
po

ch

Tr
ai

ni
ng

 E
po

ch

0 150 0 150 0 150

5 17 19(d) (e) (f)

Tr
ai

ni
ng

 E
po

ch
Training Epoch Training Epoch Training Epoch

Tr
ai

ni
ng

 E
po

ch

Tr
ai

ni
ng

 E
po

ch

0 20 0 20 0 20

Figure 4: Layer-wise similarity matrices that show relations of model parameters of different training
time points. (a)(b)(c) are the 1st, 3rd and 5th convolutional layer of AlexNet trained on CIFAR-100.
(d)(e)(f) are the 1st, 4th and 8th convolutional layer of VGG11 trained on ImageNet. We mark the
epoch when the parameter reaches 0.99/ 0.999 similarity to its final state with white lines. For both
models, we observe bottom-up learning dynamics where layers closer to the input solidify into their
final states faster than very top layers, which is in accord with previous studies [37, 43].

generated from CIFAR-100 dataset [23], each consisting of 10 classes. We employ the ResNet18
model [12], training only the filter atoms while keeping the atom coefficients fixed on each task.
The CCA and filter subspace similarity are calculated among 45 pairs of models. The correlation
between CCA and filter subspace similarity is 0.9327, as depicted in Figure 2(b). Furthermore, the
correlation between Centered Kernel Alignment (CKA) and filter subspace similarity is also reported
in Table 2. These findings clearly indicate that the proposed filter subspace similarity exhibits a strong
linear relationship with well-established probing-based similarities, supporting the claims made in
Theorem 2.5 and Theorem 2.7.

Limitations of probing-based similarities. The consistency of probing-based similarities can
vary depending on the probing data. Ideally, we anticipate a high similarity value when comparing
models trained on the same dataset. To investigate this, we conduct an experiment where models
are trained on the CIFAR-100 dataset. Figure 3(b) displays the distribution of model similarity
with different probing data, where the y-axis represents the similarity and the x-axis represents the
corresponding density of models. And with CIFAR-100 probing data, the CCA similarity between
models yields a value over 0.8. However, when the probing data are derived from the other datasets
including CIFAR-10, SVHN [38], CelebA [31], and etc., the CCA similarity drops to 0.59. A similar
inconsistency in values is observed with the CKA similarity using different probing data. In contrast,
the average of our proposed filter subspace similarity between models is 0.91, which aligns well with
our expectation of high similarity. This finding demonstrates the effectiveness of our approach in
capturing the inherent similarities between models trained on the same dataset, irrespective of the
specific choice of probing data.

3.2 Learning Dynamics

The filter subspace similarity has various applications in analyzing NNs. It is capable of reflecting the
data similarity and measuring the evolution of model similarity during the training time. We examine
the training dynamics based on the heat map of filter subspace similarities. In this experiment,
AlexNet [24] is trained on CIFAR-100 [23] for 150 epochs and VGG11 [50] is fine-tuned on
ImageNet [47] for 20 epochs. For both models, we train and store atoms at each epoch. Figure 4
shows heat maps of similarities of the model among different training epochs.

Figure 4(a-c) are heat maps of the 1st, 3rd and 5th convolutional layers of Alexnet. We mark the
epoch when the parameters of each layer reaches 0.99 similarity with the their states in the last

7

SVHN

SV
H
N

CIFAR100

C
IF
A
R
10
0

Task 20 19 18 17 16 15 14 13

(a) 10th epoch

SVHN

SV
H
N

CIFAR100

C
IF
A
R
10
0

Task 20 19 18 17 16 15 14 13

(b) 50th epoch

SVHN

SV
H
N

CIFAR100

C
IF
A
R
10
0

Task 20 19 18 17 16 15 14 13

(c) 90th epoch

Figure 5: Similarity matrices that show relations among 60 users in FL with our filter subspace
similarity through the training process. The labels of x-axis represent the ID’s of CIFAR tasks. We
can clearly see user clusters in all three figures. Specifically, the last 20 clients with SVHN data show
higher similarities with themselves than the first 40 clients with CIFAR data, while every five of the
first 40 clients sharing the same CIFAR task also show high similarities within themselves.

epoch. The first layer reaches 0.99 similarity at epoch 36 which is earlier than final layers. In
Figure 4(d-f), VGG11 shows a similar behavior. Several previous works have also indicated this
bottom-up learning dynamics where layers closer to the input solidify into their final states faster than
very top layers [37, 43]. Our filter subspace similarity provides a highly efficient way to examine the
training dynamics while showing results in accord with previous studies. Moreover, we can apply our
method to calculate the similarity of a model trained on different tasks, so we can track the process of
the same model interacting with different datasets. The details are shown in Appendix A.2.

3.3 Federated Learning

Federated learning (FL) aims at learning models collaboratively by leveraging the local computational
power and data of all users with the concern of privacy [34]. Personalized Federated Learning (PFL)
emerges to address some challenges in FL, such as poor convergence on heterogeneous data and lack
of solution personalization [53].

In this setting, our framework achieves personalization by enforcing FL models with the shared atom
coefficients for all users and specific filter atoms for each user. As illustrated in Figure 6, the shared
coefficients preserve common knowledge, while user-specific atoms hold personalized information
about each user. Then, we can assess model relationships with our filter subspace similarity without
any probing data, which meets the privacy requirement of the FL scenario.

The shared atom coefficients can be achieved in different ways. With our framework, the coefficient
can be obtained from a model pre-trained on a public dataset or from a global model trained by
other FL approaches. We can also get the coefficients by training the model locally and evolving the
coefficients at each communication round.

Measuring user similarity. With the shared atom coefficients and user-specific filter atoms, we
can simply get relations of users by calculating filter subspace similarity. To be specific, we expect
that users with similar data have a higher similarity. In this experiment, we distribute data of
CIFAR-100 [23] and SVHN [38] to 120 clients, containing 20 SVHN clients and 100 CIFAR clients.
Specifically, the SVHN dataset is randomly distributed in 20 SVHN clients. And the CIFAR-100
dataset is split into 20 subtasks with 5 classes in each subtask, and each subtask is shared by 5 CIFAR
clients. The model is AlexNet [24] with 3 convolutional layers. The models share the same random
initialization and filter atoms are trained independently without communication with other clients.
All models are trained for T = 100 communication rounds on datasets. At each round, the client
executes 1 epoch of SGD with momentum to train the local model, the learning rate is 0.01 and the
momentum is 0.9. The experimental details are described in Appendix A.2.

Figure 5 shows the filter subspace similarity among the last 40 clients of the CIFAR-100 task and 20
clients of the SVHN task. Specifically, a distinct cluster of the 20 SVHN clients is observed, indicating
a higher similarity among these clients and dissimilarity with the CIFAR clients. Additionally, every
group of 5 CIFAR clients, who share the same task, also exhibit a high similarity among themselves.

8

Table 1: Classification accuracy of model ensemble using different FL methods and model selection
strategies: Models are selected with different similarity measures in each setting. The model ensemble
using our filter subspace-based method is millions of times faster and consumes much fewer resources
than probing-based methods while producing comparable performance.

FL Results Base +Ours +CCA [43] +CKA [21]

FedAvg [34] 83.78± 0.08 85.82 ± 0.35 85.65 ± 0.21 85.29 ± 0.18
Ditto [27] 82.98 ± 0.13 85.49 ± 0.21 85.54 ± 0.19 85.37 ± 0.2
FedRep [8] 76.44 ± 0.06 78.35 ± 0.24 78.18 ± 0.18 77.73 ± 0.19
FedProx [29] 80.6 ± 0.1 82.95 ± 0.16 82.55 ± 0.19 82.86 ± 0.16
FedPer [2] 83.57 ± 0.07 85.21 ± 0.2 84.91 ± 0.18 84.9 ± 0.14
Pretrain 81.77 ± 0.08 85.41 ± 0.19 85.24 ± 0.13 86.33 ± 0.14

Similarity Computation Cost
GFLOPs 0.019 258,610 2,225
Time (s) 0.016 1930.4 92.6
GPU Memory (MB) 0 4915 3965

Table 2: Continual Learning Results. The model ensemble using our filter subspace similarity
is significantly faster and consumes much fewer resources than probing-based methods, while
maintaining comparable classification accuracy.

Method CIFAR-100 Similarity Computation Cost
MFLOPs Time (s) GPU Memory (MB)

AtomCL (base) 78.11 ± 0.13 - - -

+CCA [43] 79.83 ± 0.04 35.2 0.26 1996
+CKA [21] 80.01 ± 0.06 111 0.3 1637
+Ours 80.19 ± 0.09 0.007 0.0008 0

This clustering capability holds great potential for facilitating efficient cluster identification in
federated learning scenarios [53]. Refer to Appendix Figure 7 for the results of all 120 clients.

The computational cost of three different approaches is shown in Figure 3(a). Notably, calculating
the filter subspace similarity is significantly faster (million times), requiring 0 GPU memory usage
than probing-based methods. Note that the advantages in computational efficiency of filter subspace
similarity become more prominent as the number of models increases.

Improving personalized model with ensemble of similar users. Once we get the relationships of
users, we can further improve the accuracy of the current model by the ensemble of similar models,
which is effective to mitigate the data heterogeneity problem in FL. The experiment is described in
detail in Appendix A.2. The final results are shown in Table 1. With ensemble, the accuracies of all
FL methods can be improved. Note that the results of model ensemble selected by our filter subspace
similarity are comparable with probing-based methods while consuming much fewer resources.

3.4 Continual Learning

Continual learning is an open problem in machine learning in which data from multiple tasks arrive
sequentially and the model is learned to adapt to new tasks while not forgetting the knowledge from
the past [40]. Some of the tasks in continual learning are related, so models trained with these tasks
can be benefited from aggregating knowledge from each other. We adopt the setting in [35], and apply
filter subspace similarity to find related models. Specifically, we 10-Split CIFAR-100 dataset, where
the 100 classes is broken down into 10 tasks with 10 classes per task. We train AlexNet including
atoms and atom coefficients on the first task, and train only the atoms on the following tasks. Then,
we calculate the task similarity with filter subspace similarity, and report the model ensemble result
with most similar members. The accuracy and the similarity computation costs are shown in Table 2.
Our method provides higher results and has faster speed compared with probing-based methods.

9

4 Related Work

Model similarity. Representational similarity analysis (RSA) [22] demonstrates the method of
understanding brain activities by computing similarities between brain responses in different regions.
Measuring the similarity of models is beneficial for understanding neural network (NN) architectures
and learning dynamics [9, 21, 37, 43]. Model similarity can be used to understand or incorporate
various machine learning paradigms across different areas, including contrastive learning [13, 15],
knowledge distillation [52], meta-learning [42], and transfer learning [5, 39, 44].

Multiple approaches are proposed to estimate the representational similarity of NNs. Some early
works show that individual neurons can capture meaningful information [3, 4, 61, 65]. Later, gradient-
based methods emerge to provide a visual explanation of deep neural networks [49]. Current popular
representational similarity methods rely on features of NN. [43] proposes SVCCA to measure
similarity by calculating the covariance matrix of the features of each layer after channel alignments.
[21] discusses the invariance properties of similarity indices and proposes CKA with consistent
correspondences between layers. probing-based similarities are data-dependent and computationally
expensive. But our method measures the representational similarity only via atoms, a portion of
model parameters, which is data-agnostic and much more efficient.

Learning paradigm with numerous models. Some machine learning tasks involve numerous
models. For example, in Federated learning [53], thousands of models are trained across clients. In
Continual learning, there are multiple models generated across time [18]. Federated learning (FL)
aims to improve the performance of the system by continuously training and aggregating models from
users without collecting data [20, 34, 51]. FL requires communication efficiency while thousands or
even millions of clients may be involved [28]. It also required to achieve personalization [14, 53]
considering data heterogeneity of different users [6, 17, 28]. Estimating user similarity can effectively
address these challenges in FL. Continual learning (CL) aims at providing long-term knowledge
accumulation, and the main challenge is to avoid catastrophic forgetting by learning new tasks while
remembering the old ones [1, 18, 19, 26, 62]. One promising way is to store neural networks for each
task [16, 30, 32, 48, 60]. As the number of tasks increases, a large number of models are generated
and stored. It is important to find a way to access their relations to reuse models.

Filter atom decomposition. The research in task subspace modeling treats tasks as compositions
of latent basis tasks and their linear combinations [10, 25, 33, 45, 64]. In the context of convolutional
filter decomposition, DCFNet [41] introduces the filter subspace as an expansion of convolutional
filters using a predetermined set of filter atoms. With the filter subspace, a group of tasks are separately
modeled using neural networks, with sets of filter atoms learned for individual tasks, while a common
set of atom coefficients is shared among tasks. The applications of filter subspace span among various
domains, including domain adaptation [54, 57], continual learning [35], adaptive convolution [56, 59],
image generation [55, 58], video comprehension [36], and graph convolution [7].

5 Conclusion

In this paper, we proposed a new paradigm for reducing representational similarity analysis in CNNs
to filter subspace distance assessment, which is targeted for application scenarios where numerous
models are learned. The proposed approach is targeted for application scenarios where numerous
models are learned, and a computationally efficient method to assess model similarities is critical
in these scenarios. We provided both theoretical and empirical evidence that the proposed filter
subspace-based similarity exhibits a strong linear correlation with popular probing-based metrics
while being significantly more efficient and robust in probing data. It was evaluated on both federated
learning and continual learning tasks and achieves competitive performance with millions of times
reduction in computational cost.

The majority of approaches in FL or CL are applied to the models with the same architecture, the
proposed similarity measure with shared atom coefficient is more advantageous to be incorporated
in these tasks. Our method currently assumes respective layers among compared CNNs to have
coefficients with the same dimension. For our future work, we will explore the way to share atom
coefficients among layers to achieve filter subspace similarity with different dimensions.

10

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-

laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), 2018.

[2] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary.
Federated learning with personalization layers. arXiv preprint arXiv:1912.00818, 2019.

[3] Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir Durrani, Fahim Dalvi, and James Glass.
Identifying and controlling important neurons in neural machine translation. In International
Conference on Learning Representations, 2018.

[4] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissec-
tion: Quantifying interpretability of deep visual representations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017.

[5] Daniel Bolya, Rohit Mittapalli, and Judy Hoffman. Scalable diverse model selection for
accessible transfer learning. Advances in Neural Information Processing Systems, 2021.

[6] Wei Chen, Kartikeya Bhardwaj, and Radu Marculescu. Fedmax: mitigating activation di-
vergence for accurate and communication-efficient federated learning. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, 2021.

[7] Xiuyuan Cheng, Zichen Miao, and Qiang Qiu. Graph convolution with low-rank learnable local
filters. In International Conference on Learning Representations, 2020.

[8] Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting shared
representations for personalized federated learning. In International Conference on Machine
Learning, 2021.

[9] Kshitij Dwivedi and Gemma Roig. Representation similarity analysis for efficient task taxonomy
& transfer learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2019.

[10] An Evgeniou and Massimiliano Pontil. Multi-task feature learning. Advances in neural
information processing systems, 19:41, 2007.

[11] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring statistical
dependence with hilbert-schmidt norms. In International conference on algorithmic learning
theory, 2005.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[13] Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On
feature decorrelation in self-supervised learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2021.

[14] Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong
Zhang. Personalized cross-silo federated learning on non-iid data. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2021.

[15] Ashraful Islam, Chun-Fu Richard Chen, Rameswar Panda, Leonid Karlinsky, Richard Radke,
and Rogerio Feris. A broad study on the transferability of visual representations with contrastive
learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.

[16] Ghassen Jerfel, Erin Grant, Thomas L Griffiths, and Katherine Heller. Reconciling meta-
learning and continual learning with online mixtures of tasks. Advances in Neural Information
Processing Systems, 2019.

11

[17] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Ar-
jun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings,
et al. Advances and open problems in federated learning. Foundations and Trends® in Machine
Learning, 2021.

[18] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the national academy of
sciences, 2017.

[19] Soheil Kolouri, Nicholas Ketz, Xinyun Zou, Jeffrey Krichmar, and Praveen Pilly. Attention-
based structural-plasticity. arXiv preprint arXiv:1903.06070, 2019.

[20] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

[21] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International Conference on Machine Learning, 2019.

[22] Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity
analysis-connecting the branches of systems neuroscience. Frontiers in systems neuroscience,
2008.

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
PhD thesis, University of Toronto, 2009.

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 2012.

[25] Abhishek Kumar and Hal Daume III. Learning task grouping and overlap in multi-task learning.
International Conference on Machine Learning, 2012.

[26] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems, 2017.

[27] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, 2021.

[28] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Chal-
lenges, methods, and future directions. IEEE Signal Processing Magazine, 2020.

[29] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. Proceedings of Machine Learning
and Systems, 2020.

[30] Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A
continual structure learning framework for overcoming catastrophic forgetting. In International
Conference on Machine Learning, 2019.

[31] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

[32] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
Advances in neural information processing systems, 2017.

[33] Andreas Maurer, Massi Pontil, and Bernardino Romera-Paredes. Sparse coding for multitask
and transfer learning. In International conference on machine learning, pages 343–351. PMLR,
2013.

[34] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, 2017.

12

[35] Zichen Miao, Ze Wang, Wei Chen, and Qiang Qiu. Continual learning with filter atom swapping.
In International Conference on Learning Representations, 2021.

[36] Zichen Miao, Ze Wang, Xiuyuan Cheng, and Qiang Qiu. Spatiotemporal joint filter decomposi-
tion in 3d convolutional neural networks. Advances in Neural Information Processing Systems,
2021.

[37] Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural
networks with canonical correlation. Advances in Neural Information Processing Systems,
2018.

[38] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. Advances in Neural
Information Processing Systems, 2011.

[39] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? Advances in neural information processing systems, 2020.

[40] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 2019.

[41] Qiang Qiu, Xiuyuan Cheng, Guillermo Sapiro, and Robert Calderbank. DCFNet: Deep neural
network with decomposed convolutional filters. In International Conference on Machine
Learning, 2018.

[42] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In International Conference on
Learning Representations, 2019.

[43] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and interpretability. Advances
in neural information processing systems, 2017.

[44] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. Transfusion: Understanding
transfer learning for medical imaging. Advances in neural information processing systems,
2019.

[45] Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, and Massimiliano Pontil.
Multilinear multitask learning. In International Conference on Machine Learning, pages
1444–1452. PMLR, 2013.

[46] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, 2015.

[47] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision
(IJCV), 2015.

[48] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick,
Koray Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv
preprint arXiv:1606.04671, 2016.

[49] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international conference on computer vision, 2017.

[50] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[51] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. Federated multi-task
learning. In Advances in Neural Information Processing Systems, 2017.

13

[52] Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and Andrew G Wilson.
Does knowledge distillation really work? Advances in Neural Information Processing Systems,
2021.

[53] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Toward personalized federated
learning. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[54] Ze Wang. Efficient Adaptation of Deep Vision Models. PhD thesis, Purdue University, 2023.

[55] Ze Wang, Xiuyuan Cheng, Guillermo Sapiro, and Qiang Qiu. Stochastic conditional generative
networks with basis decomposition. In International Conference on Learning Representations,
2019.

[56] Ze Wang, Xiuyuan Cheng, Guillermo Sapiro, and Qiang Qiu. Acdc: Weight sharing in atom-
coefficient decomposed convolution. arXiv preprint arXiv:2009.02386, 2020.

[57] Ze Wang, Xiuyuan Cheng, Guillermo Sapiro, and Qiang Qiu. A dictionary approach to domain-
invariant learning in deep networks. Advances in neural information processing systems, 2020.

[58] Ze Wang, Seunghyun Hwang, Zichen Miao, and Qiang Qiu. Image generation using continuous
filter atoms. Advances in Neural Information Processing Systems, 2021.

[59] Ze Wang, Zichen Miao, Jun Hu, and Qiang Qiu. Adaptive convolutions with per-pixel dynamic
filter atom. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
2021.

[60] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. In International Conference on Learning Representations,
2018.

[61] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, 2014.

[62] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In International Conference on Machine Learning, 2017.

[63] Xingxuan Zhang, Peng Cui, Renzhe Xu, Linjun Zhou, Yue He, and Zheyan Shen. Deep stable
learning for out-of-distribution generalization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2021.

[64] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 2021.

[65] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016.

14

A Appendix

A.1 Theoretical Proofs

Notations of Convolutional Operations. In our paper, we express convolution operation as
Zu = αXpDu. More explicitly, the formulation writes as Zu = αXp ⋆ Du, where ⋆ is the
convolutional operation. By converting convolutional kernel Du into a Toeplitz matrix, we can
replace the convolution operation Xp ⋆Du with matrix multiplication XpDu. We also modify α by
Ihw

⊗
α, where

⊗
is Kronecker product, to enable the matrix multiplication αXpDu.

Proposition A.1. Suppose Du and Dv are two different sets of filter atoms for a convolutional layer
with the common atom coefficients α, we can upper bound the changes in the corresponding features
Zu,Zv with atom changes,

||Zu − Zv||F ≤ (||α||Fλ)
√
|B| · ||(Du −Dv)||F , with λ = sup

b∈B
||X||F,Nb

, (8)

Proof. Recall the decomposed convolution can be expressed as,

Z =

m∑
i=1

αi⟨X,D[i]⟩Nb
(9)

∀b we have,

|Zu(b)− Zv(b)| = |
m∑
i=1

αi⟨X,Du[i]⟩Nb
−

m∑
i=1

αi⟨X,Dv[i]⟩Nb
|

≤ ||α||F (
m∑
i=1

|⟨X, (Du[i]−Dv[i])⟩Nb
|2)1/2.

(10)

By Cauchy-Schwarz inequality,

|⟨X, (Du[i]−Dv[i])⟩Nb
| ≤ ||X||F,Nb

· ||Du[i]−Dv[i]||F,Nb

≤ λ · ||Du[i]−Dv[i]||F,Nb

(11)

we have that∑
b∈B

|Zu(b)− Zv(b)|2 ≤ ||α||2F
∑
b

m∑
i=1

|⟨X, (Du[i]−Dv[i])⟩Nb
|2

≤ ||α||2F
∑
b

m∑
i=1

||X||2F,Nb
· ||(Du[i]−Dv[i])||2F,Nb

≤ (||α||Fλ)2
∑
b,i

||(Du[i]−Dv[i])||2F,Nb

(12)

and observe that∑
b,i

||(Du[i]−Dv[i])||2F,Nb
=

∑
b∈B

m∑
i=1

||(Du[i]−Dv[i])||2F,Nb
= |B| · ||(Du −Dv)||2F , (13)

where |B| is the area of the domain of X. Then Eq. 12 becomes∑
b∈B

|Zu(b)− Zv(b)|2 ≤ (||α||Fλ)2|B| · ||(Du −Dv)||2F , (14)

which proves that ||Zu − Zv||F ≤ (||α||Fλ)
√
|B| · ||(Du −Dv)||F as claimed.

Proposition A.2. Assume filter atoms Du,Dv are orthogonal matrices, then SGras = SAtom.

15

Proof. Since Du,Dv ∈ Rk2×m are orthogonal matrices, i.e., DT
uDu = DT

v Dv = I , the Grassmann
similarity can be represented as,

SGras(Fu,Fv) =
1

m

m∑
i

cosθi =
1

m

m∑
i

σi, (15)

where σi = Σii, UΣV = DT
uDv .

SAtom is defined as,

SAtom(Fu,Fv) = cos(Du,Dv) =
< vec(Du), vec(Dv) >

||vec(Du)||F · ||vec(Dv)||F
. (16)

Analyze each part separately, we have < vec(Du), vec(Dv) >= Tr(DT
uDv) =

∑m
i σi,

||vec(Du)||F =
√

Tr(DT
uDu) =

√
Tr(I) =

√
m, and also ||vec(Dv)||F =

√
m. In total,

the filter subspace similarity becomes,

SAtom(Fu,Fv) = cos(Du,Dv) =

∑m
i σi

m
, (17)

which equals SGras. The claimed theorem is proved.

Lemma A.3. For two positive semidefinite matrices A,B,

Tr(AB) ≥ σmin(A)Tr(B), (18)

where σmin denotes the minimum eigenvalue of A.

Proof. It is equivalent to prove that,

Tr((A− σmin(A)I)B) ≥ 0. (19)

Let C,D be matrices such that A− σmin(A)I = C⊺C, B = D⊺D, then

Tr((A− σmin(A)I)B) = Tr(C⊺CD⊺D)

= Tr(CD⊺DC⊺)

= Tr((DC⊺)⊺(DC⊺)) ≥ 0.

(20)

Theorem A.4. Suppose the forward of decomposed convolution layer for the u-th model is Zu =
αXDu. Zu,Zv nearly have zero-mean since Xp is preprocessed to be normalized. CCA coefficient

is defined as S(Zu,Zv) =
√

1
c

∑c
i=1 σ

2
i , where σ2

i denotes the i-th eigenvalue of Λu,v = Qu
⊺Qv,

Qu = Zu(Z
⊺
uZu)

− 1
2 . Then S(Zu,Zv) is upper bounded,

S(Zu,Zv) ≤
c

3
2 T
C

cos(Du,Dv), (21)

where T = Tr(X⊺α⊺αX), C = σmin(X
⊺α⊺αX).

Proof. Consider S2 = 1
c

∑c
i=1 σ

2
i .

S2 =
1

c

c∑
i=1

σ2
i =

1

c
Tr(Λu,vΛ

⊺
u,v). (22)

where
Tr(Λu,vΛ

⊺
u,v) = Tr(Q⊺

uQvQ
⊺
vQu) = Tr(QvQ

⊺
vQuQ

⊺
u). (23)

16

As defined above, we have

QuQ
⊺
u = Zu(Z

⊺
uZu)

− 1
2 (Z⊺

uZu)
− 1

2Z⊺
u = Zu(Z

⊺
uZu)

−1Z⊺
u

QvQ
⊺
v = Zv(Z

⊺
vZv)

− 1
2 (Z⊺

vZv)
− 1

2Z⊺
v = Zv(Z

⊺
vZv)

−1Z⊺
v .

(24)

Then Equation 23 becomes,

Tr(Λu,vΛ
⊺
u,v) = Tr(Zu(Z

⊺
uZu)

−1Z⊺
uZv(Z

⊺
vZv)

−1Z⊺
v)

= Tr((Z⊺
uZu)

−1Z⊺
uZv(Z

⊺
vZv)

−1Z⊺
vZu).

(25)

By Cauchy-Schwartz Inequality,

Tr(Λu,vΛ
⊺
u,v) ≤ Tr((Z⊺

uZu)
−1)Tr((Z⊺

vZv)
−1)Tr(Z⊺

uZv)
2. (26)

Then we analyze these terms individually,

Tr(Z⊺
uZv) = Tr(D⊺

uX
⊺α⊺αXDv) = Tr(X⊺α⊺αXDvD

⊺
u)

≤ Tr(X⊺α⊺αX)Tr(D⊺
uDv) ≤ T ·Tr(D⊺

uDv)
(27)

As for Tr((Z⊺
uZu)

−1), let λ1, λ2, ..., λc be eigenvalues for Z⊺
uZu listed in descending order (λ1 ≥

λ2 ≥ ... ≥ λc), and assume the condition number of Z⊺
uZu and Z⊺

vZv satisfy λmax/λmin ≤ γ, then,

Tr((Z⊺
uZu)

−1) =

c∑
i=1

1

λi
≤ c · 1

λc
≤ γc

λ1
, (28)

where λ1 = ||Z⊺
uZu||2, || · ||2 denotes the operator norm induced by the vector L2-norm. With the

norm inequalities of any positive semidefinite matrix A,

||A||2 ≥ 1√
c
||A||F ≥ 1

c
||A||∗ ≥ 1

c
Tr(A), (29)

where || · ||F , || · ||∗ denote the Frobenius norm and the nuclear norm, respectively.

Equation (30) then becomes,

Tr((Z⊺
uZu)

−1) ≤ c · 1

||Z⊺
uZu||2

≤ γc2

Tr(Z⊺
uZu)

. (30)

By Lemma A.3,
Tr(Z⊺

uZu) = Tr(D⊺
uX

⊺α⊺αXDu)

= Tr(X⊺α⊺α⊺XDuD
⊺
u)

≥ σmin(X
⊺α⊺α⊺X)Tr(D⊺

uDu)

≥ C ·Tr(D⊺
uDu)

≥ C · ||vec(Du)||22,

(31)

where vec(·) denotes vectorization of a matrix.

Then Equation 30 is further derived as,

Tr((Z⊺
uZu)

−1) ≤ γc2

C · ||vec(Du)||22
. (32)

Similarly, we have

Tr((Z⊺
vZv)

−1) ≤ γc2

C · ||vec(Dv)||22
. (33)

17

Finally, with Tr(D⊺
uDv) =< vec(Du), vec(Dv) >, we have

Tr(Λu,vΛ
⊺
u,v) ≤

γ2T 2c4(< vec(Du), vec(Dv) >)2

C2||vec(Du)||22 · ||vec(Dv)||22

≤ γ2T 2c4

C2
· cos2(Du,Dv),

(34)

and thus,

S(Zu,Zv) =

√
1

c
Tr(Λu,vΛ

⊺
u,v)

≤ γT c
3
2

C
· cos(Du,Dv).

(35)

Then the claimed theorem is proved.

Lemma A.5. For two matrices A, B, their frobenius norm satisfies,

∥AB∥F = ∥A∥F ∥B∥F

√
1− ∆1

∥A∥2F ∥B∥2F
, (36)

where ∆1 =
∑

ij(
∑

k A
2
ik)(

∑
k B

2
kj) · sin

2 (⟨Ai:, B:j⟩).

Proof. According to the definition of frobenius norm ∥A∥F =
√∑

ij |Aij |2 we have,

∥AB∥F =

√∑
ij

(
∑
k

AikBkj)2. (37)

Note that (
∑

i xiyi)
2 = (

∑
i x

2
i)(

∑
i y

2
i) · cos2 (⟨x, y⟩) = (

∑
i x

2
i)(

∑
i y

2
i) − (

∑
i x

2
i)(

∑
i y

2
i) ·

sin2 (⟨x, y⟩), where ⟨x, y⟩ is the angle of two vectors x and y. We have,√∑
ij

(
∑
k

AikBkj)2

=

√√√√∑
ij

[
(
∑
k

A2
ik)(

∑
k

B2
kj)− (

∑
k

A2
ik)(

∑
k

B2
kj) · sin

2 (⟨Ai:, B:j⟩)

]

=

√∑
ik

A2
ik

√∑
kj

B2
kj

√√√√1−
∑

ij(
∑

k A
2
ik)(

∑
k B

2
kj) · sin

2 (⟨Ai:, B:j⟩)∑
ik A

2
ik

∑
kj B

2
kj

=∥A∥F ∥B∥F

√
1−

∑
ij(

∑
k A

2
ik)(

∑
k B

2
kj) · sin

2 (⟨Ai:, B:j⟩)
∥A∥2F ∥B∥2F

=∥A∥F ∥B∥F

√
1− ∆1

∥A∥2F ∥B∥2F
,

(38)

where Ai: is the i-th row of A and B:j is the j-th column of B, ∆1 =
∑

ij(
∑

k A
2
ik)(

∑
k B

2
kj) ·

sin2 (⟨Ai:, B:j⟩). As Ai: and B:j are more correlated, ⟨Ai:, B:j⟩ −→ 0, thus, ∆1 ≪ ∥A∥2F ∥B∥2F .

Lemma A.6.
∥A1/2∥F = ∥A∥1/2F (1 +

∆1A1/2

∥A∥2F
)1/4. (39)

18

Proof. According to Lemma A.5, we have,

∥A∥2F = ∥A1/2∥4F −∆1. (40)

Thus,

∥A1/2∥F = ∥A∥1/2F (1 +
∆1A1/2

∥A∥2F
)1/4, (41)

where ∆1A1/2 =
∑

ij(
∑

k(A
1/2)2ik)(

∑
k(A

1/2)2kj) · sin
2 (⟨(A1/2)i:, (A

1/2):j⟩). As (A1/2)i: and
(A1/2):j are more correlated, ⟨(A1/2)i:, (A

1/2):j⟩ −→ 0, thus, ∆1A1/2 ≪ ∥A∥2F .

Lemma A.7. For three matrices A, B, and C, their frobenius norm satisfies,

∥A∥F = ∥A∥F ∥B∥F ∥C∥F

√
1− ∆2 +∆3

∥A∥2F ∥B∥2F ∥C∥2F
, (42)

where ∆2 = 1
2 [∥A∥2F

∑
kj(

∑
l B

2
kl)(

∑
l C

2
lj) · sin

2 (⟨Bk:, C:j⟩) + ∥C∥2F
∑

il(
∑

k A
2
ik)(

∑
k B

2
kl) ·

sin2 (⟨Ai:, B:l⟩)] and ∆3 = 1
2 [
∑

ij(
∑

k A
2
ik)(

∑
k(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩) +∑

ij(
∑

l(AB)2il)(
∑

l C
2
lj) · sin

2 (⟨(AB)i:, C:j⟩)].

Proof. Based on Lemma A.5, we have,

∥ABC∥2F
=∥AB∥2F ∥C∥2F −

∑
ij

(
∑
l

(AB)2il)(
∑
l

C2
lj) · sin2 (⟨(AB)i:, C:j⟩)

=∥A∥2F ∥B∥2F ∥C∥2F − ∥C∥2F
∑
il

(
∑
k

A2
ik)(

∑
k

B2
kl) · sin2 (⟨Ai:, B:l⟩)

−
∑
ij

(
∑
l

(AB)2il)(
∑
l

C2
lj) · sin2 (⟨(AB)i:, C:j⟩)

(43)

Symmetrically, we also have,

∥ABC∥2F
=∥A∥2F ∥BC∥2F −

∑
ij

(
∑
k

A2
ik)(

∑
k

(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩)

=∥A∥2F ∥B∥2F ∥C∥2F − ∥A∥2F
∑
kj

(
∑
l

B2
kl)(

∑
l

C2
lj) · sin2 (⟨Bk:, C:j⟩)

−
∑
ij

(
∑
k

A2
ik)(

∑
k

(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩)

(44)

Thus,
∥ABC∥2F

=
1

2
[∥A∥2F ∥B∥2F ∥C∥2F − ∥A∥2F

∑
kj

(
∑
l

B2
kl)(

∑
l

C2
lj) · sin2 (⟨Bk:, C:j⟩)

−
∑
ij

(
∑
k

A2
ik)(

∑
k

(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩)

+ ∥A∥2F ∥B∥2F ∥C∥2F − ∥C∥2F
∑
il

(
∑
k

A2
ik)(

∑
k

B2
kl) · sin2 (⟨Ai:, B:l⟩)

−
∑
ij

(
∑
l

(AB)2il)(
∑
l

C2
lj) · sin2 (⟨(AB)i:, C:j⟩)]

=∥A∥2F ∥B∥2F ∥C∥2F −∆2 −∆3,

(45)

19

where ∆2 = 1
2 [∥A∥2F

∑
kj(

∑
l B

2
kl)(

∑
l C

2
lj) · sin

2 (⟨Bk:, C:j⟩) + ∥C∥2F
∑

il(
∑

k A
2
ik)(

∑
k B

2
kl) ·

sin2 (⟨Ai:, B:l⟩)] and ∆3 = 1
2 [
∑

ij(
∑

k A
2
ik)(

∑
k(BC)2kj) · sin2 (⟨Ai:, (BC):j⟩) +∑

ij(
∑

l(AB)2il)(
∑

l C
2
lj) · sin

2 (⟨(AB)i:, C:j⟩)]. Therefore,

∥ABC∥F = ∥A∥F ∥B∥F ∥C∥F

√
1− ∆2 +∆3

∥A∥2F ∥B∥2F ∥C∥2F
. (46)

As Ai: and B:l, Bk: and C:j are more correlated, ⟨Ai:, B:l⟩, ⟨Bk:, C:j⟩, ⟨Ai:, (BC):j⟩, ⟨(AB)i:, C:j⟩ −→
0, thus, ∆2 ≪ ∥A∥2F ∥B∥2F ∥C∥2F and ∆3 ≪ ∥A∥2F ∥B∥2F ∥C∥2F .

Lemma A.8.

∥A−1/2BC−1/2∥F = κF (A
1/2)κF (C

1/2)
∥B∥F

∥A1/2∥F ∥C1/2∥F

√
1− ∆2 +∆3

∥A−1/2∥2F ∥B∥2F ∥C−1/2∥2F
,

(47)
where κF (A

1/2) and κF (C
1/2) are the condition number of A1/2 and C1/2, κF (A

1/2) =√
(
∑

σ2
i (A

1/2))(
∑

1
σ2
i (A

1/2)
) and κF (C

1/2) =
√

(
∑

σ2
i (C

1/2))(
∑

1
σ2
i (C

1/2)
); σ2

i (A
1/2) are sin-

gular value of A1/2 and σ2
i (C

1/2) are singular value of C1/2.

Proof. Based on Lemma A.7, we have,

∥A−1/2BC−1/2∥F = ∥A−1/2∥F ∥B∥F ∥C−1/2∥F

√
1− ∆2 +∆3

∥A−1/2∥2F ∥B∥2F ∥C−1/2∥2F
. (48)

By the definition of condition number κF (X) = ∥X∥F ∥X−1∥F =
√
(
∑

σ2
i (X))(

∑
1

σ2
i (X)

),

∥A−1/2BC−1/2∥F = κF (A
1/2)κF (C

1/2)
∥B∥F

∥A1/2∥F ∥C1/2∥F

√
1− ∆2 +∆3

∥A−1/2∥2F ∥B∥2F ∥C−1/2∥2F
.

(49)

Theorem A.9. Suppose the forward of decomposed convolution layer for the u-th model is Zu =

αXDu, CCA coefficient be S(Zu,Zv) =
√

1
c

∑c
i=1 σ

2
i , where σ2

i denotes the i-th eigenvalue of

Λu,v = Qu
⊺Qv, Qu = Zu(Z

⊺
uZu)

− 1
2 . Then S(Zu,Zv) is approximately linear to filter subspace

similarity,

S(Zu,Zv) =
γ1γ2γ3√

c
cos(Du,Dv), (50)

Proof. Based on S(Zu,Zv) =
√

1
c

∑c
i=1 σ

2
i and ∥Λu,v∥F =

√∑c
i=1 σ

2
i , where σi are the singular

value of Λu,v ,

S =

√√√√1

c

c∑
i=1

σ2
i =

1√
c
∥Λu,v∥F =

1√
c
∥(Z⊺

uZu)
− 1

2Z⊺
uZv(Z

⊺
vZv)

− 1
2 ∥F . (51)

According to Lemma. A.8, we have

1√
c
∥(Z⊺

uZu)
− 1

2Z⊺
uZv(Z

⊺
vZv)

− 1
2 ∥F =

γ1γ2√
c

∥Z⊺
uZv∥F

∥(Z⊺
uZu)

1
2 ∥F ∥(Z⊺

vZv)
1
2 ∥F

, (52)

20

where γ1 = κF ((Z
⊺
uZu)

1
2) · κF ((Z

⊺
vZv)

1
2) and γ2 =

√
1− ∆2+∆3

∥(Z⊺
uZu)−1/2∥2

F ∥Z⊺
uZv∥2

F ∥(Z⊺
vZv)−1/2∥2

F
.

As Zu = αXDu and Zv = αXDv , we have

γ1γ2√
c

∥Z⊺
uZv∥F

∥(Z⊺
uZu)

1
2 ∥F ∥(Z⊺

vZv)
1
2 ∥F

=
γ1γ2√

c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)
1
2 ∥F ∥(D⊺

vX⊺α⊺αXDv)
1
2 ∥F

.

(53)

According to Lemma A.6,

γ1γ2√
c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)
1
2 ∥F ∥(D⊺

vX⊺α⊺αXDv)
1
2 ∥F

=
γ1γ2γ3√

c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)∥
1
2

F ∥(D
⊺
vX⊺α⊺αXDv)∥

1
2

F

,
(54)

where γ3 = (1 + ∆1

∥(D⊺
uX⊺α⊺αXDu)∥2

F
)−

1
4 (1 + ∆1

∥(D⊺
vX⊺α⊺αXDv)∥2

F
)−

1
4 .

As Assumption 2.6 holds, it becomes

γ1γ2γ3√
c

∥D⊺
uX

⊺α⊺αXDv∥F
∥(D⊺

uX⊺α⊺αXDu)∥
1
2

F ∥(D
⊺
vX⊺α⊺αXDv)∥

1
2

F

=
γ1γ2γ3√

c

∥D⊺
uDv∥F ∥X⊺α⊺αX∥F

∥D⊺
u∥

1
2

F ∥X⊺α⊺αX∥
1
2

F ∥Du∥
1
2

F ∥D
⊺
v∥

1
2

F ∥X⊺α⊺αX∥
1
2

F ∥Dv∥
1
2

F

=
γ1γ2γ3√

c

∥D⊺
uDv∥F

∥Du∥F ∥Dv∥F
=
γ1γ2γ3√

c
cos(Du,Dv).

(55)

Thus, we have

S(Zu,Zv) =
γ1γ2γ3√

c
cos(Du,Dv). (56)

Specifically, we have γ2 =
√
1− ∆

γ2
1γ

2
3

1
cos2(Du,Dv)

, and since ∆ are small, with Taylor expansion,

γ2 ≈ 1 − 1
2

∆
γ2
1γ

2
3

1
cos2(Du,Dv)

. The term 1
cos2(Du,Dv)

causes non-linearity in the relation between
CCA and filter subspace similarity.

A.2 Experiment Settings

Model training of Federated Learning. In each experiment we have 100 clients in total and
sample a ratio r = 0.1 of all the clients on every round. All models are randomly initialized and
trained for T = 100 communication rounds for the CIFAR datasets. At each round, the client
executes 15 epochs of SGD with momentum to train the local model, the learning rate is 0.01 and
momentum is 0.9. Accuracies are computed by taking the average local accuracies for all users at the
final communication round. As shown in the Table 3, we have different settings for CIFAR-10 and
CIFAR-100. For example, (100, 2) means 100 clients with 2 classes on each client. For each method,
the training takes about 12 hours on Nvidia RTX A5000.

Comparison with other FL approaches. We compare our approach by evolving shared atom
coefficients with various personalized federated learning methods and federated learning methods
with local finetuning. Among these methods, FedPer [2] and FedRep[8] have the similar ideas by
learning shared global representation and personalized local heads. Ditto [27] and FedProx [29]
induce global regularization to improve the model performance. We also compare our method with
FedAvg [34]. FedRep [8] approaches the common knowledge with shared representation. The codes

21

Table 3: Compare accuracy with different approaches
CIFAR-100 CIFAR-10

(# client, # classes per client) (100, 5) (100, 20) (100, 2) (100, 5) (1000, 2)

FedAvg 82.39 62.92 86.37 70.63 86.12
FedProx 80.77 59.7 85.90 69.94 84.83
FedPer 81.46 62.52 81.74 68.24 81.74
FedRep 72.98 37.71 80.55 67.3 82.98
Local 81.21 49.25 90.24 72.05 97.80

Ours 81.03 52.13 83.37 65.63 82.54

are adapted from †. We evaluate the test accuracy on CIFAR-10 and CIFAR-100 with different FL
setting. As shown in Table 3, our method achieves comparable performance among different methods.

Fine-tuning models for ensemble. We select 3 models with different similarity measures for
ensemble. For feature-based similarity methods, we randomly select 1000 examples from CIFAR-100
dataset. The fully-connected layer of each model is fine-tuned on the user’s local data with 100
epochs. The fine-tuning takes about 12 hours on Nvidia RTX A5000. After fine-tuning, the accuracy
is measured on local test data, with the predictions of current model and 3 selected models.

A.3 Extra Experiments

Representation dependency on filter atoms. We first validate the dependency of deep features on
filter atoms in Proposition 2.1 with a simple experiment. The model F here is a 2-layer CNN with
coefficient α and atom D generated from normal distribution N (0, 1). The input sample X is also
generated from normal distribution N (0, 1). Figure 8(a) shows the relation between ∥Zu − Zv∥F
and ∥Du −Dv∥F by fixing coefficient α and input sample X and randomly varying filter atoms D.
All the points are below the line which is the bound provided by Proposition 2.1, reflecting that the
representation variations are dominated by filter atoms.

Correlation between probing-based and filter subspace-based methods. In addition, we em-
pirically verify that CCA and filter subspace similarity have a strong correlation with AlexNet. In
this experiment, 10 tasks are generated from CIFAR100 [23] with 10 classes in each task. Only the
filter atoms of each task are trained while the atom coefficients are fixed. We calculate CCA and filter
subspace similarity among 45 pairs of models. The correlation between CCA and filter subspace
similarity is 0.8638 which is shown in Figure 9(b). Similarly, the correlation between CKA and filter
subspace similarity is also reported in Figure 9 (Table). These results clearly show that the proposed
filter subspace similarity has high linear relationship with popular probing-based similarities, which
agrees with Theorem 2.5 and Theorem 2.7.

†https://github.com/lgcollins/FedRep

0.97

0.63

0.71 𝛂
0.971 0.71

10.97 0.63

0.630.71 1

Figure 6: The shared coefficients and user-specific atoms represent common knowledge and personal-
ized information. The filter subspace similarity is used to calculate the relations among users. Users
with heterogeneous data result in lower similarity, as illustrated in a similarity matrix.

22

https://github.com/lgcollins/FedRep

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

(a) 10th epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b) 50th epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) 90th epoch
Figure 7: Similarity matrices that show relations among 120 users in FL with our filter subspace
similarity through the training process.

𝐙! − 𝐙" # = (𝜆 𝛂 #) ℬ 𝐃! − 𝐃" #
Upper Bound

𝐃! − 𝐃" #

𝐙 !
−
𝐙 "

#

(a)

𝛽
C

or
re

la
tio

n

0.985

Linear Relationship

(b)

Figure 8: (a) The change of features ∥Zu − Zv∥F is bounded by the change of atoms ∥Du −Dv∥F .
(b) The channel decorrelation leads to a higher correlation between CCA and filter subspace similarity.
And the correlation can reach 0.985 with β = 3× 10−3, which means a near linear relation between
CCA and filter subspace similarity.

Effect of channel decorrelation. We further design a regularization term β
∑

i ̸=j(Z
⊺
uZu)

2
ij to

approach (Z⊺
uZu)ii ≫ (Z⊺

uZu)ij in Assumption. 2.6. As shown in Figure 8(b), the correlation
between CCA and filter subspace similarity keeps increasing as β increases. The correlation reaches
0.985 when β = 3× 10−3, indicating a near-linear relationship, which is aligned with Theorem. 2.7.

Similar representations across datasets. Similar to [21], we can use filter subspace similarity to
compare networks trained on different datasets. In Figure 10(a), we show that pairs of models that
are both trained on CIFAR-10 and CIFAR-100 have high atom-based similarities. Models learned
on two datasets respectively still show high similarity. In contrast, similarities between trained and
untrained models are significantly lower.

Limitation of probing-based methods. As shown in Figure 10(b), to illustrate sensitivity of
probing-based similarities to probing data, we perform a simple regression task with data, {(xi =
0, yi, zi)}ni=1, where zi = f(xi, yi) + ϵi and yi, ϵi ∼ N (0.5, 0.1). Two NN models F1 and F2

G
ra

ss
m

an
n

Si
m

ila
rit

y

Atom-based Similarity

Correlation: 0.8793

(a)

C
C

A

Atom-based Similarity

Correlation: 0.8638

(b)

Correlation

CCA [43] 0.8638
CKA [21] 0.7358
Grassmann Distance [35] 0.8793

Figure 9: (a) Correlation between Grassmann similarity and filter subspace similarity; (b) Correlation
between CCA and filter subspace similarity. (Table) Correlation between filter subspace similarity
and other approaches.

23

A
to

m
-b

as
ed

 S
im

ila
rit

y

Layer Index
(a)

x
y

z
𝑧 = 10 𝑦 − 𝑥 + 𝜖

(b)
Figure 10: (a) Using filter subspace similarity, models trained on different datasets (CIFAR-10 and
CIFAR-100) are similar among themselves, but they differ from untrained models. (b) Illustration
of limitations of probing-based similarities. Input data from “red” ({(xi = 0, yi)}) and “blue”
({(x′

i = yi, y
′
i = 0)}) are orthogonal. Since two models are learned on “red” data, their similarity

should be 1, which can be faithfully indicated by our atom similarity. However, probing-based
similarities will become 0 with the “blue” probing data.

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(a) 1st conv

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(b) 2nd conv

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(c) 3rd conv

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(d) 4th conv

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(e) 5th conv

Figure 11: Similarity of AlexNet with atoms from different time point during the training.

with the same initialization and atom coefficients are trained for their different atoms to learn
F : (X,Y) −→ Z. It is can be simply found that the filter subspace similarity of F1 and F2 is 1 and
the probing-based similarity is also 1 with the same {(xi = 0, yi)} as the probing data. However,
if we choose {(x′

i = yi, y
′
i = 0)} as the probing data, then the probing-based similarities directly

become 0 as the data are now orthogonal to model parameters.

A.4 Training dynamics.

We investigate the training dynamics of AlexNet [24] and VGG [50] separately on CIFAR-100 [23]
and ImageNet [47]. The details of training dynamics of models with atoms from different time point
during the training are shown in Figure 11 and Figure 12. Moreover, we examine the similarity
between the two participated models shared the same initialization trained only with atoms on two
different tasks. The results is shown in Figure 13 and Figure 14. The difference is less on the first few
layers, but more on the middle layers. It reflects the middle layer is more critical than other layers,
which is aligned with previous work [39].

24

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(a) 1st conv

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(b) 2nd conv

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(c) 3rd conv

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(d) 4th conv

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(e) 5th conv

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(f) 6th conv

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(g) 7th conv

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1.000

(h) 8th conv
Figure 12: Similarity of VGG with atoms from different time point during the training.

0 20 40 60 80 100 120 140

0.6

0.7

0.8

0.9

1.0 layer_1
layer_2
layer_3
layer_4
layer_5

(a) Model 0 vs. 1

0 20 40 60 80 100 120 140
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 layer_1
layer_2
layer_3
layer_4
layer_5

(b) Model 0 vs. 2

0 20 40 60 80 100 120 140

0.70

0.75

0.80

0.85

0.90

0.95

1.00

layer_1
layer_2
layer_3
layer_4
layer_5

(c) Model 0 vs. 3

0 20 40 60 80 100 120 140

0.5

0.6

0.7

0.8

0.9

1.0

layer_1
layer_2
layer_3
layer_4
layer_5

(d) Model 0 vs. 4

0 20 40 60 80 100 120 140
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

layer_1
layer_2
layer_3
layer_4
layer_5

(e) Model 0 vs. 5

0 20 40 60 80 100 120 140

0.70

0.75

0.80

0.85

0.90

0.95

1.00

layer_1
layer_2
layer_3
layer_4
layer_5

(f) Model 0 vs. 6

0 20 40 60 80 100 120 140

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 layer_1
layer_2
layer_3
layer_4
layer_5

(g) Model 0 vs. 7

0 20 40 60 80 100 120 140

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00 layer_1
layer_2
layer_3
layer_4
layer_5

(h) Model 0 vs. 8

0 20 40 60 80 100 120 140

0.80

0.85

0.90

0.95

1.00 layer_1
layer_2
layer_3
layer_4
layer_5

(i) Model 0 vs. 9
Figure 13: Similarity of AlexNet trained on different tasks during the training.

25

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.984

0.986

0.988

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(a) Model 0 vs. 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.988

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(b) Model 0 vs. 2

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.988

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(c) Model 0 vs. 3

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(d) Model 0 vs. 4

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(e) Model 0 vs. 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
0.988

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(f) Model 0 vs. 6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(g) Model 0 vs. 7

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.990

0.992

0.994

0.996

0.998

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(h) Model 0 vs. 8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0.988

0.990

0.992

0.994

0.996

0.998

1.000

layer_0
layer_3
layer_6
layer_8
layer_11
layer_13
layer_16
layer_18

(i) Model 0 vs. 9
Figure 14: Similarity of VGG trained on different tasks during the training.

26

	Introduction
	Methodology
	Revisiting Representational Similarity in Feature Space
	Representational Similarity in Filter Subspace
	Algorithm Complexity Analysis
	Relationship with Probing-based Similarities

	Experiments
	Validation Experiments
	Learning Dynamics
	Federated Learning
	Continual Learning

	Related Work
	Conclusion
	Appendix
	Theoretical Proofs
	Experiment Settings
	Extra Experiments
	Training dynamics.

