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S1 Limitations and Potential Further Develop-
ment

Unlike distance metric learning where the subsequent tasks utilizing the esti-
mated distance metric is the usual focus, the proposal focuses on the estimated
metric characterizing the geometry structure. Despite the illustrated taxi and
MNIST examples, it is still open to finding more compelling applications that
target the data space geometry. Interpreting mathematical concepts such as
Riemannian metric and geodesic in the context of potential application (e.g.,
cognition and perception research where similarity measures are common) could
be inspiring.

Our proposal requires sufficiently dense data, which could be demanding,
especially for high-dimensional data due to the curse of dimensionality. Di-
mensional reduction (e.g., manifold embedding as in the MNIST example) can
substantially alleviate the curse of dimensionality, and the dense data require-
ment will more likely hold true.

The proposed estimator does not guarantee a positive definite metric. The
positive-definiteness of the estimator is justified by the large data size and the
asymptotic consistency (Proposition 4.1). We inspect the positive-definiteness of
the estimated metrics in Subsection S4.6, where most are with a few exceptions
near the boundary due to the lack of neighboring observations.

Moreover, the estimated Christoffel symbol is not guaranteed to be the
derivative of the estimated metric, which is common in local polynomial deriva-
tives estimation. Theoretically, the estimated derivative should reflect the true
derivative rather than being the derivative of the estimated curve. In practice,
this may be annoying, especially for geodesic computation where numeric error
accumulates fast while solving ODE. In such a situation, we recommend impos-
ing further post-smoothing, or utilizing the numeric derivative of the estimated
metric (as in the MNIST example, see Subsection S4.5). We consider this an
issue open for further development beyond the scope of this paper.

We also encourage the readers to refer to https://openreview.net/forum?

id=VhLU3pStsl for many helpful reviews and discussion. We are deeply grateful
for the reviewers’ time and consideration.

S2 Additional Definition

A cost ellipse visualizes the metric by an ellipse

Ep =

(x1, . . . , xd) :

d∑
i,j=1

(
xi − pi

) (
xj − pj

)
Gij = r2

 (S2.1)

for some constant r > 0, which shows, approximately, the intrinsic distance on
the manifold when traveling a unit length on the coordinate chart along each
direction. More precisely, it shows the norm of tangent vectors vi∂i ∈ TpM
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subject to
∑d
i=1 v

ivi = r2 at p pointing to the corresponding direction. For
example in a d = 2-dimensional manifold at p = 0, under G = diag (λ1, λ2)
with λ1 > λ2 and r = 1. The long axis,

(
±
√
λ1, 0

)
, is the norm of the tangent

vector ±∂1. Thus, the direction in which the ellipse is larger corresponds to the
direction of the larger geodesic distance. One can see (S2.1) as the “inverse” of
the Tissot’s indicatrix, where the latter shows a local equidistance contour to
the ellipse’s center.

Frobenius norm of tensors is denoted as ‖·‖F , defined as

‖G‖F =

Ñ
d∑

i,j=1

GijGij

é1/2

, ‖Γ‖F =

Ñ
d∑

i,j,k=1

ΓkijΓ
k
ij

é1/2

, (S2.2)

for metric tensor G and Christoffel symbol Γ.

S3 Implementation Notes

An R (R Core Team, 2022) package is developed to implement the proposed
methods and all numerical experiments. It is available at https://github.

com/jiamingqiu/remeloc. A desktop computer (12-core 24-thread CPU, 128
GB RAM) is used to run all experiments. Most experiments were finished within
several hours.

We utilized an efficient procedure to obtain estimates Ĝij over the entire

manifold M as follows. We first obtain estimates Ĝij(pn) over a dense grid
of points p1, p2, . . . , pn grid ∈ M by following (3.7)–(3.9). Next, the estimate

Ĝij(x) at an arbitrary x ∈M is obtained by the post-smoothing estimate

Ĝij(x) =

∑n grid
n=1 K (‖x− pn‖ /hps) Ĝij(pn)∑n grid

n=1 K (‖x− pn‖ /hps)
,

for some kernel K and bandwidth hps > 0. Note that it is the component

functions Ĝij that we average, but not the metric tensor Gijdx
idxj . The post-

smoothing process averages neighboring estimates to create a smoother tensor
field, and also alleviate potential positive-definiteness issues. Local regression
(Loader, 1999) for post-smoothing could also be used. The grid for the examples
(Section 5, Section 6, and Section 7) are 128×128 for the unit sphere, and 80×80
for the double spirals, 250 × 250 meters cells for the New York taxi example,
and 64× 64 for the MNIST example.

The estimated geodesics are computed by numerically solving ordinary dif-
ferential equations system, either given the start point and initial velocity, or
given the start and the end points. It suffices to notice that the geodesic equa-
tions (2.1) are equivalently written as, after plugging-in the estimated Christoffel
symbol Γ̂,

vi(t) = γ̇i(t),

v̇k(t) = −vi(t)vj(t)Γ̂kij ◦ γ(t),
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for i, j, k = 1, . . . , d. Here, Γ̂kij ◦ γ(t) is the value of the estimated Christoffel

symbol at point
(
γ1(t), . . . , γd(t)

)
. Further supplying initial condition γi(0) =

pi0, vi(0) = vi0, i = 1, . . . , d for point p0 ∈ M and tangent vector v0 ∈ Tp0M
constitute an initial value problem, whose solution reflects the geodesic curve
starting from p0 with initial velocity v0. On the other hand, supplying boundary
condition γi(0) = pi0, γi(1) = pi1, i = 1, . . . , d for p0, p1 ∈ M constitute a
boundary value problem, whose solution reflects the geodesic curve from p0 to
p1. we use deSolve (Soetaert et al., 2010) and bvpSolve (Mazzia et al., 2014) for
initial value problems and boundary value problems respectively. See reference
therein for further details of numeric solution to ODE.

S4 Additional Experiment Details

This section provides further detail to complete Section 5, Section 6, and Sec-
tion 7 of the main text including how we generated the simulated data, and
more figures.

S4.1 Unit Sphere and Round Metric

The stereographic coordinate of the d-dimensional sphere Sd identifies points on
the sphere by mapping it to its stereographic projection in Rd from the north
pole. The round metric on the sphere Sd is the metric induced by embedding of
Sd ↪→ Rd+1. For detail, see for example page 30 of Lee (2013) and chapter 3 of
Lee (2018). We generated endpoints Xu0, Xu1 uniformly in the coordinate chart
(−3, 3) × (−3, 3), then pair the endpoints so that the difference in coordinates
of the endpoints |δiu0 − δiu1| = |Xi

u0 − Xi
u1| would not exceed 0.2 for i = 1, 2,

u = 1, . . . , N .
More precisely, data were generated on d = 2-dimensional sphere under

stereographic projection coordinate. A total of N = 5× 105 pairs of endpoints
with Xi

u0, X
i
u1 ∈ (−3, 3) were generated subject to |Xi

u0−Xi
u1| ≤ 0.2 for all u =

1, . . . , N ; i = 1, . . . , d. For a reasonable signal-to-noise ratio, we set σ(p) = σ ≈
9×10−4 for all p, which is approximately one-tenth of the marginal expectation
of squared distance, i.e., σ ≈ E dist (Xu0, Xu1)

2
/10.

For simplicity of presentation, we scaled the distance for the binary similarity
response model (3.3). More precisely, we use dist

c
(·, ·) =

√
cdist (·, ·) induced

by the scaled metric Gij,c = cG̊ij for some constant c and i, j = 1, . . . , d. The
experiment here used c = 300. Intuitively, the constant c regulates the signal-
to-noise ratio without changing the form of geodesics. Given the endpoints,
a smaller c leads to a smaller value of geodesic distance and hence smaller
variation in the linear predictors ηu, so the response Yu will take less influence
from the distance, representing a higher amount of noise. Then h(p) was set to
be the average local squared distances within a local neighborhood of p under
the scaled distance.

In the end, the responses were generated following (3.2) and (3.3) respec-
tively.
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In addition, Figure S4.1 illustrates the relative Frobenius error for estimated
tensors using noiseless or binary responses.
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Figure S4.1: Relative errors w.r.t. Frobenius norm (S2.2) of the estimated ten-
sors with noiseless or binary response for 2-dimensional sphere under stereo-
graphic projection coordinate chart.

S4.1.1 Bandwidth Selection

Like local regression, the proposed method relies on a neighborhood specification
for optimal bias-variance trade-off. The simulation in Subsection 5.1 uses the
rectangular kernelK(x) = 1[−1,1](x) for (3.10), where 1 is the indicator function,
so the estimation only utilizes observations with endpoints Xu0, Xu1 are both
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lying in the neighborhood Up =
{(
x1, . . . , xd

)
: |xi − pi| ≤ h, i = 1, . . . , d

}
of

the target point p.
We propose a train–test set scheme for data-driven bandwidth selection.

To simplify computation, we only considered additive error under (3.2). A
16 × 16 grid p1, . . . , p256 ∈ (−3, 3) × (−3, 3) were used as target points where
metric tensors were estimated, with a test set of Ntest = 31246 observations
that were within close proximity to the grid. Estimation of the tensors were
computed w.r.t. bandwidth h utilizing a train set containing Ntrain = 400158
(approximately 80% of the data) randomly selected observations outside of the
test set. For the test set, Ŷu,test = η̂u,test were then computed under identity
link by plugging the estimated tensors into (3.6).

The bandwidth minimizing the squared loss
∑Ntest

u=1

Ä
Yu,test − Ŷu,test

ä2
/Ntest

is then chosen. The proposed bandwidth selection resulted in h = 0.18 according
to the loss shown in the left panel of Figure S4.2, which corresponds to an
effectively local sample size of approximately 1000 in the training step (right
panel of Figure S4.2). These tuning parameter choices were applied in the
results shown in Subsection 5.1. Other bandwidth selection methods developed
for local regression (see e.g. Fan and Gijbels, 1996, section 4.10) can also be
adopted here.
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Figure S4.2: Root mean squared error (RMSE) for the test set (Left) and the
average number of local training observations (Right) as the bandwidth h varies.

S4.1.2 Error Bar

The performance is stable among data generated following the same setup
w.r.t. different random seeds. Figure S4.3 shows the fluctuation of Frobenius
errors over 15 repeated experiments. Let Ĝ(i)(p) denotes the estimated metric
tensor at point p during the i-th repeat. Compute the sample standard devia-

tion σ(p) and mean µ(p) of
∥∥∥Ĝ(1)(p)−G(p)

∥∥∥
F
, . . . ,

∥∥∥Ĝ(N∗)(p)−G(p)
∥∥∥
F

, where

G is the true round metric, N∗ is the number of repeated experiments. Then the
ratio σ(p)/µ(p) serves as a relative quantification of the variation of estimation
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errors. Figure S4.3 shows that the proposal is stable, and so are the reported
errors in the main text. Note that there are more variation in the errors when
observations are noisier.
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Figure S4.3: Fluctuation of errors in the estimated tensors among 15 repeats
under different random seed for data generation, quantified by ratio of standard
deviation to mean at the target points.
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S4.2 Ellipsoid

Our previous example of sphere only considers a model space of constant cur-
vature. To illustrate that the proposed method also applies to manifolds of
non-constant curvature, we include in the following example on the ellipsoid.

For simplicity, we resort to spheroids, i.e., ellipsoids of revolution character-
ized by {(

x1, x2, x3
)
, (xi)2ci = 1

}
⊂ R3

for some constant c1, c2, c3 > 0 with c1 = c2. It can be parameterized by

x1(β, λ) = a cosβ cosλ, x2(β, λ) = a cosβ sinλ, x3(β, λ) = b sinβ

for −π/2 < β < π/2 and −π < λ < π, where a ≥ b > 0 are the semi-major
and semi-minor axis, β is the parametric latitude, and λ is the longitude. The
parametric latitude is slightly different to the usual geodetic latitude ϕ, they
are related by tanβ = (1 − f) tanϕ, where f = (a − b)/a is the flattening. In
the following we use the geodetic latitude unless otherwise specified. We write
both latitude and longitude in radian. The Riemannian metric on the spheroid
is

a4b4(
a2 cos2 ϕ+ b2 sin2 ϕ

)3 dϕ2 +
a4

a2 + b2 tan2 ϕ
dλ2.

We modified the codes in the R library geosphere (Hijmans, 2022) to use the
C++ library of GeographicLib (Karney, 2013) to compute geodesic distance
on spheroids.

In a setup similar to the sphere example, we take 106 noisy continuous
similarity measures on a spheroid with a = 2, b = 1, the estimated Riemannian
metric and geodesic curves are shown in Figure S4.4.
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Figure S4.4: The estimated metric and geodesics on a 2-dimensional spheroid
with semimajor axis of 2 and flattening of 0.5. The “horizontal” curve is com-
puted starting from (−2, 0) with initial velocity (1, 1), while the “vertical” one
between points (−π/3,−π/3) and (π/3, π/3).
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S4.3 The Double Spirals

Define a class of spiral functions as S : R→ R2 with

t 7→ (cos(5t+ φ), t sin(5t+ φ)) .

The underlying spirals for class A and B are SA = S(·, φ = 0) and SB = S(·, φ =
π) respectively. For endpoints, we first generate points X̊m independently and
uniformly on SA or SB , then the endpoints are generated following X̊m+0.15Zm
for i.i.d. standard Gaussian random variables Zm, m = 1, . . . , 70000. Provided
with those candidate endpoints, we pair them to form relative comparison sub-
ject to the restriction that |Xi

u0 −Xi
uj | ≤ 0.35 for i, j = 1, 2, n = 1, . . . , N . The

responses Yu are then generated based on the class of involving endpoints by
their corresponding X̊ on the spirals.

For estimation, we used a larger local neighborhood Up =
{(
x1, x2

)
: |xi − pi| ≤ h for i = 1, 2

}
with h = π/2 and weights wu = 1{Xu0,Xu1,Xu2∈Up} for u = 1, . . . , N to avoid
degenerate estimates.

Note that different starting points and initial velocities will generate different
geodesics, not all resembling a spiral, as shown in Figure S4.5.
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Figure S4.5: Geodesics with different starting points and initial velocities under
estimated metric, crosses indicate starting points.

S4.4 NYC Taxi Trips

We focus on the 8,809,982 sensible records between 7 a.m. to 10 a.m. on busi-
ness days from May to September (summer months to hopefully avoid snow) of
2015 in New York City areas other than the Staten Island. Sensible in terms
of GPS coordinates not falling in to the rivers, travel time not being several
seconds, and that inferred traveling speed is not 120 mph, and e.t.c. We mea-
sure the cost to travel Yu by the squared trip duration (instead of the trip
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distance). For each target location p, estimation was computed using trips
among the M ≤ 5 × 104 closest pickup/dropoff endpoints in the neighbor-
hood Up =

{
(x1, x2) : |xi − pi| ≤ 5 kilometers for i = 1, 2

}
, and weights given

by h = 2.5 kilometers with the kernel K being the density function of the
standard normal distribution.

S4.5 The MNIST Example

The dimension reduction is computed using R package dimRed (Kraemer et al.,
2018). The Wasserstein distance and optimal transport are computed using
package transport (Schuhmacher et al., 2022). To show image transitions,
weighted average is adopted to approximate the inverse of the tSNE embedding
so as to map the trajectories back to image space, similar to, e.g., equation (3.9)
of Chen and Müller (2012), but with Gaussian kernel and a sufficiently small
bandwidth. To compute kNN graph and find shortest path along the graph, we
use FNN (Beygelzimer et al., 2022) and igraph (Csardi and Nepusz, 2006).

To simplify computation, we only embed the first 3 × 104 images (half of
the entire data), and the resulting embedding coordinates were scaled (i.e.,
centered by the mean and divided by standard deviation). We generated N =
105 comparison by selecting nearby points in the embedded space subject to
‖Xu0 −Xu1‖∞ ≤ 0.75, whose response Yu were computed based on the same-
digit-or-not indicator and 2–Wasserstein distance between the corresponding
images:

dist (Xu0, Xu0) = Cdistwass (picu0,picu1) + 1{lblu0 6=lblu1},

where for u = 1, . . . , N ,

• Xu0, Xu1 ∈ R2 are coordinates in the embedded space;

• picu0 and picu0 are the 28× 28 grey scale images;

• lblu0 and lblu1 are the image labels (0–9);

• distwass (·, ·) is the 2–Wasserstein distance treating images as 2-dimensional
probability distributions;

• 1{event} is the indicator for whether the event is true (1) or false (0).

We multiply the Wasserstein distance by C = 4 to balance the magnitude of
the two summands, otherwise the later could be overly dominating.

As for the graphs involved, the neighborhood graph on the embedded space
(i.e., on the chart) is constructed by connecting all points together with ‖Xu0−
Xu1‖∞ ≤ 0.1, and the edges are weighted by to the previously mentioned dis-
tance. Again, the ‖·‖∞ is computed on the 2-dimensional chart. In total there
were 1,788,166 edges for this graph. We did not use the graph based on the
training data of the proposed method (‖Xu0−Xu1‖∞ ≤ 0.75) because that led
to very long edge and abrupt graph path. Another graph we used is the kNN
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graph in the raw Euclidean space R28×28. We used k = 5 and there were 75,003
edges weighted by Euclidean distance of the images.

Estimation was drawn under model (3.2) with squared loss Q(y, µ) = (y −
µ)2 and the identity link. We included the intercept term (β(0) in (3.6)) to
capture intrinsic variation. Since the dimensional reduction embedding map
is not necessarily an injection, so that different images with non-zero similarity
measures could share identical coordinates in the embedded space. Figure S4.6a
shows the estimated intercepts, which is larger among class boundaries, coherent
to a greater variation in the similarity measure. Those few blank pixels indicate
failure to obtain positive definite metric due to lack of local observations, which
are alleviated by averaging neighboring estimated values.

For each target location p, estimation was computed using comparisons in the
neighborhood Up =

{(
x1, x2

)
: |xi − pi| ≤ 0.85, i = 1, 2

}
, and weights given by

h = 0.275 with the kernel K being the density function of the standard normal
distribution. We also dropped the terms for Christoffel symbols from (3.6) for
better numeric stability. Consequently, the estimated Christoffel symbols were
computed by numeric differential following the definition in Section 2. Results
are similar if we include the Christoffel symbol terms in the linear predictor,
but less stable and requires larger bandwidth h.

Figure S4.6b shows the cost ellipses for addition visualization.
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Figure S4.6: More figures for the induced geometry by adding Wasserstein dis-
tance and same-digit-or-not indicator.

Notably, the proposal also work supplied with binary similarity measures
using only the same-digit-or-not indicator (i.e., setting C = 0 to remove the
Wasserstein distance), and retains the “fewer label switching” tendency as illus-
trated in Figure S4.7. We see this as an real data example for binary responses.
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Estimation were now drawn under model (3.3) with loss (3.11) and the logit
link. We would also like to remark that not all geodesics are different from
straight lines on the chart, and it is not guaranteed that geodesic must travel
within the same class whenever possible, since its travel is jointly determined
by the metric and the displacement of the endpoints.
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Figure S4.7: Induced geodesics of only the same-digit-or-not indicator.

S4.6 Stability and Positive-definiteness

To ensure the proposal captures underlying geometry of the data space rather
than the random artifact, we assess the stability of estimated tensor fields among
multiple repeats of the experiments. Since the underlying true tensor fields are
either difficult to compute or unavailable (expect for the round metric example
discussed in Subsubsection S4.1.2), we assess the fluctuation of the estimates di-
rectly. Training data in each repeat were generated under different random seed
for the simulated experiments. For the real data experiments, we resampled the
data by random dropping out 10% of available similarity measures during each
repeat to introduce variation to the training process. Let Ĝ(i)(p) denotes the
estimated metric tensor at point p during the i-th repeat. Compute the sam-
ple standard deviation σ(p) of the relative deviation from mean, i.e., standard

deviation of
∥∥∥Ĝ(1)(p)− Ḡ(p)

∥∥∥
F
/
∥∥Ḡ(p)

∥∥
F
, . . . ,

∥∥∥Ĝ(N∗)(p)− Ḡ(p)
∥∥∥
F
/
∥∥Ḡ(p)

∥∥
F

,

where Ḡ(p) is the (element-wise) average of the estimated tensors, N∗ is the
number of repeated experiments. Then σ(p) serves as a quantification of the
sensitivity of estimated tensor subject to data variation. Similar assessment
applies to the estimated Christoffel symbol Γ̂ and intercept β(0). Figure S4.8 –
Figure S4.10 indicates the proposed method is stable, as the larger fluctuation
only appears near the boundary. A smaller relative deviation indicates that
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the estimator is less sensitive to specific data, and captures the underlying data
space geometry. The increased variation in estimated Christoffel symbols as
shown in Figure S4.8a is caused by the noisiest data type of relative compari-
son.
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(a) Map over the coordinate chart, values greater than 0.5
grayed out.
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(b) Same as the previous map but histogram.

Figure S4.8: Variation of estimated tensors among 15 repeated experiments for
the double spiral example (Subsection 5.2 of main text), quantified by standard
deviation of relative deviation to mean.
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(a) Map over the coordinate chart, values greater than 0.25 grayed
out. The rectangle box shows the plotting range of Figure 6.1 in the
main text.
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(b) Same as the previous map but histogram.

Figure S4.9: Variation of estimated tensors among 15 resampled data for the
New York taxi example (Section 6 of main text), quantified by standard devia-
tion of relative deviation to mean.
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(b) Same as the previous map but histogram.

Figure S4.10: Variation of estimated tensors among 15 resampled data for the
MNIST example (Section 7 of main text), quantified by standard deviation of
relative deviation to mean.
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This resampling process also provide insight to the positive-definiteness of
the estimated metric tensors, which was only justified asymptotically. At each
targeted point p, we examine the proportion of positive definite estimated met-
rics

1

N∗

N∗∑
i=1

1
Ä
Ĝ(i)(p) � 0

ä
.

Figure S4.11 indicates the majority are positive definite except those near the
data boundary. We omit the figures for the double spiral example, since only 7
out of 96000 estimated metric tensor fail to be positive definite.
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(a) the taxi example
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(b) the MNIST example

Figure S4.11: Proportion of positive definite estimated metric tensors among
multiple resampled data. Grayed out pixels indicate no estimate due to insuffi-
cient neighboring observation.

S5 Spread of Geodesics

Here we provide proof to the Proposition 3.1 in the main text, which charac-
terizes the distance between geodesics departing from a same starting point.
Proposition 3.1 is a result of combining Proposition S5.1 and Proposition S5.2.

Proposition S5.1 (spread of geodesics). Let p ∈ M and v, w ∈ TpM be two
tangent vector at p. Then the squared distance of separation satisfies Taylor
expansion of

dist
(
expp(tv), expp(tw)

)2
= t2 ‖v − w‖2 − 1

3
t4 〈R(v, w)w, v〉+O(t5)

as t→ 0.
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Here, R is the (1, 3)-curvature tensor defined as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

where X,Y, Z are vector fields and [X,Y ] = XY − Y X is the Lie bracket (c.f.,
e.g., Lee, 2018, page 385). Further, the Riemann curvature tensor is defined as

Rm(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉 ,

where W is also a vector field. Note that R and Rm are both tensor fields,
so 〈R(v, w)w, v〉 (equivalently Rm(v, w,w, v)) are those evaluated at p, since
v, w ∈ TpM. See Lee (2018), pp. 196–199 for detail.

However, additional terms are introduced when computing via coordinate
charts, as a result of approximating the initial velocities v and w.

Proposition S5.2 (approximation of velocity). For any p ∈ M, let v ∈ TpM
be a tangent vector at p and γ(t) = expp(tv) be the geodesic from p with initial

velocity v. Given any local coordinate chart, write v = vi∂i. For i = 1, . . . , d,
denote δi = δi(t) = γi(t) − γi(0) as the difference in coordinate after traveling
t along γ, we have

vi = t−1δi(t) + Ri(t),

where the remainder is

Ri(t) =
1

2t
δmδnΓimn +

1

6t
δmδnδl

(
ΓkmnΓikl + ∂lΓ

i
mn

)
+O(t3) (S5.1)

as t → 0, where Γ and ∂Γ denote the the Christoffel symbols and their deriva-
tives at p.

expp(tv)

expp(tw)

v

w

spread ofgeodesics

p
TpM

M

Figure S5.1: A visualization for the spread of geodesics as in Proposition 3.1.
A tangent space (blue plane) and tangent vectors are annotated in red.
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S5.1 Proofs

Proof of Proposition S5.1. Similar results can be found at Proposition 2.7 of
do Carmo (1992), Proposition 5.4, of (Lang, 1999, IX, §5). We use the form
presented by Meyer (1989). In the following, we reproduce the proof to the
equation (9) of Meyer (1989) with some additional clarification.

Let γ0(s) = expp(sv) and γ1(s) = expp(sw), define a family of curves

V (s, t) = expγ0(s)
Ä
t exp−1γ0(s) γ1(s)

ä
,

so that the curves Vs : t 7→ V (s, t) are geodesics connecting γ0(s) and γ1(s)
(c.f., e.g., proposition 5.19 and equation (10.2) of Lee (2018)), and that V is a
variation through geodesics Vs. Further, let T = ∂tV , which is a tangent field
of velocities. Let E = ∂sV , which is a Jacobi field through geodesics Vs that
vanishes at p. Denote H(s) = dist (γ0(s), γ1(s))

2
= ‖T‖2 |s,t for any t ∈ [0, 1],

where the “|s,t” means to take value at point V (s, t). Then by the chain rules
for covariant derivatives (see, e.g. Lee, 2018, chapter 4), we have

d

ds
H(s) =

d

ds
〈T, T 〉 |s,t = 2 〈DsT, T 〉 |s,t,Å

d

ds

ã2
H(s) = 2

Ä〈
D2
sT, T

〉
+ ‖DsT‖2

ä
|s,t,Å

d

ds

ã3
H(s) = 2

(〈
D3
sT, T

〉
+ 3

〈
D2
sT,DsT

〉)
|s,t,Å

d

ds

ã4
H(s) = 2

(〈
D4
sT, T

〉
+ 3

∥∥D2
sT
∥∥+ 4

〈
D3
sT,DsT

〉)
|s,t.

Note that V0 = p for all t, so that T |s=0,t = 0 for all t, hence H ′(0) = 0.
Note that Vs : t 7→ V (s, t), s 7→ V (s, 0) and s 7→ V (s, 1) are geodesics; thus

DtT = 0 for all t, DsE|s,t=0 = 0 and DsE|s,t=1 = 0 for all s. In addition, by
lemma 6.2 of Lee (2018), DsT = DtE.

By Jacobi equation, D2
tE+R(E, T )T = 0 for all s, which implies D2

tE|s=0 =
0 since T |s=0 = 0. This means the vector field t 7→ E|s=0,t at p is linear in t,
together with E|s=0,t=0 = v and E|s=0,t=1 = w, we can write

E|s=0,t = v + t(w − v)

for t ∈ [0, 1]. Therefore DsT |s=0,t = DtE|s=0,t = w− v, which implies H ′′(0) =

2 ‖v − w‖2.
Proceeding to the third order derivatives, observe that

H ′′′(0) = 6
〈
D2
sT,DsT

〉
|s=0,t,

and by proposition 7.5 of Lee (2018), D2
sT = DsDtE = DtDsE + R(E, T )E,

thus it suffices to show
DsE|s=0,t = 0, for all t, (S5.2)
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in order to argue H ′′′(0) = 0. Since it is known that DsE|s=0,t=0 = 0 =
DsE|s=0,t=1, it suffices to consider its derivative for (S5.2). Use proposition 7.5
of Lee (2018) repeatedly, we have

D2
tDsE|s=0,t

= DtDsDtE|s=0,t +Dt (R(T,E)E) |s=0,t

= DtD
2
sT |s=0,t

= (DsDtDsT −R(E, T )(DsT )) |s=0,t

= DsDtDsT |s=0,t

= Ds (DsDtT −R(E, T )T ) |s=0,t

= Ds (R(T,E)T ) |s=0,t,

where the last equation is due to DtT = 0. Further, by chain rule of covariant
derivative (c.f. e.g. proposition 4.15 of Lee (2018)),

Ds (R(T,E)T ) = (∇ER) (T,E)T +R(DsT,E)T +R(T,DsE)T +R(T,E)DsT,

which equals to zero at s = 0, t since T |s=0,t = 0 for all t. Hence t 7→ DsE|s=0,t

is also a linear vector field, implying (S5.2) and subsequently H ′′′(0) = 0.
For the fourth order derivative, note that (S5.2) also implies thatDtDsE|s=0,t =

0 and that D2
sT |s=0,t = 0 for all t. Therefore,

H(4)(0) = 8
〈
D3
sT,DsT

〉
|s=0,t.

Further,

D3
sT = D2

sDtE

= Ds (DtDsE +R(E, T )E)

= DsDtDsE + (∇ER) (E, T )E +R(DsE, T )E +R(E,DsT )E +R(E, T )(DsE),

so D3
sT |s=0,t = (DsDtDsE +R(E,DsT )E) |s=0,t. Thus,〈
D3
sT,DsT

〉
|s=0,t = (〈DsDtDsE,DsT 〉+ 〈R(E,DsT )E,DsT 〉) |s=0,t.

Recall at s = 0, DsT |s=0,t = DtE|s=0,t = w − v, therefore

〈R(E,DsT )E,DsT 〉 |s=0,t

= Rm(E,DsT,E,DsT )|s=0,t

= Rm(v, w − v, v, w − v) + tRm(v, w − v, w − v, w − v)

= Rm(v, w, v, w).

Further,

〈DsDtDsE,DsT 〉 |s=0,t

=
(
Ds 〈DtDsE,DsT 〉 −

〈
DtDsE,D

2
sT
〉)
|s=0,t

= Ds 〈DtDsE,DsT 〉 |s=0,t

= DsDt 〈DsE,DsT 〉 |s=0,t −Ds

〈
DsE,D

2
tE
〉
|s=0,t,
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where the second term in the last line vanishes sinceD2
tE|s=0,t = 0 andDsE|s=0,t =

0. Moreover, since the Levi–Civita connection is torsion free, we have

〈DsDtDsE,DsT 〉 |s=0,t = DsDt 〈DsE,DsT 〉 |s=0,t = DtDs 〈DsE,DsT 〉 |s=0,t,

which should be irrelevant to t, so that Ds 〈DsE,DsT 〉 |s=0,t is linear in t. Yet

Ds 〈DsE,DsT 〉 =
〈
D2
sE,DsT

〉
+
〈
DsE,D

2
sT
〉
,

which vanishes at s = 0 and t = 0, 1. Hence Ds 〈DsE,DsT 〉 |s=0,t = 0 for all
t ∈ [0, 1]. Combining those with the symmetries of Riemann curvature tensor
leads to the desired expansion.

Proof of Proposition S5.2. Under the coordinate chart, we can write the geodesic
curve as γ : t 7→

(
γ1(t), . . . , γd(t)

)
for some smooth function γ1, . . . , γd. Then

for any i = 1, . . . , d, univariate Taylor expansion provides

γi(t) = γi(0) + γ̇i(0)t+
1

2
t2γ̈i(0) +

1

6
t3

...
γi(0) +O(t4)

as t→ 0, where γ̇i, γ̈i, and
...
γi are the first, second, and third order derivative of

γi w.r.t. t. Note that the first derivative γ̇i(0) = vi, and the geodesic equation
and its derivative give

γ̈i(0) = −vmvnΓimn,
...
γi(0) = vmvnvl

(
2ΓkmnΓikl − ∂lΓimn

)
.

Plugging into the initial Taylor expansion gives the desired result.

Proof of Proposition 3.1 in the maintext. By Proposition S5.1 and Proposition S5.2,
as t→ 0, we have

t2 ‖v − w‖2

=
(
δi0−1 + tRi

0(t)− tRi
1(t)

)
Gij
Ä
δj0−1 + tRj

0(t)− tRj
1(t)
ä

= δi0−1δ
j
0−1Gij + 2tδi0−1

Ä
R
j
0(t)−R

j
1(t)
ä
Gij +O(t4)

= δi0−1δ
j
0−1Gij + δi0−1

(
δk0δ

l
0 − δk1δl1

) Ä
ΓjklGij

ä
+O(t4),

where

Ri
a(t) =

1

2t
δma δ

n
aΓimn +

1

6t
δma δ

n
a δ

l
a

(
ΓkmnΓikl + ∂lΓ

i
mn

)
+O(t3)

for a = 0, 1, similar to (S5.1). Note that δi0 = δi0(t) = O(t), it suffices to keep
only the first term in the Rj

a(t), which is O(t).
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S6 Asymptotic of the Estimated Metric Tensor

Now we discuss the variance and bias of the estimated metric tensors. For
simplicity, use the squared loss Q(µ, y) = (µ − y)2, the identity link g(µ) = µ,

and exclude the intercept β(0) and the terms β
(2)
ijk for derivative. Given a suitable

order of the indices i, j, we rewrite (3.6) into matrix form. Denote

Du =
Ä
δ1u,0−1δ

1
u,0−1, . . . , δ

i
u,0−1δ

j
u,0−1, . . . , δ

d
u,0−1δ

d
u,0−1

äT
,

β =
Ä
β
(1)
11 , . . . , β

(1)
ij , . . . , β

(1)
dd

äT
,

then the linear predictor ηn = DT
uβ. Further, write

D = (D1, . . . ,DN )
T
, Y = (Y1, . . . , YN )

T
, W = diag (w1, . . . , wN ) ,

so the loss (3.7) becomes

(Y −Dβ)
T

W (Y −Dβ) , (S6.1)

whose minimizer is β̂ =
(
DTWD

)−1
DTWY . Therefore

bias
Ä
β̂|D
ä

=
(
DTWD

)−1
DTWr,

var
Ä
β̂|D
ä

=
(
DTWD

)−1
DTΣD

(
DTWD

)−1
,

where

r =
Ä
E (Yu|D)− δiu,0−1δ

j
u,0−1Gij

ä
1≤n≤N

,

Σ = diag
(
w2
u var (Yu|Xu0, Xu1)

)
1≤n≤N .

The assumptions (A1)– (A4) in the main text are reiterated here.

(A1) The joint density of endpoints Xu0, Xu1 is positive and continuously dif-
ferentiable.

(A2) The functions Gij ,Γ
k
ij are C2-smooth for i, j, k = 1, . . . , d.

(A3) The kernel K in weights (3.10) is symmetric, continuous, and has bounded
support.

(A4) supu var (Yu|Xu0, Xu1) <∞.

Proposition S6.1. Denote

S1N,i1i2i3i4 =

N∑
u=1

wuδ
i1
u,0−1δ

i2
u,0−1δ

i3
u,0−1δ

i4
u,0−1,

S2N,i1i2i3i4 =

N∑
u=1

w2
u var (Yu|Xu0, Xu1) δi1u,0−1δ

i2
u,0−1δ

i3
u,0−1δ

i4
u,0−1,

S3N,i1i2 =

N∑
u=1

wuδ
i1
u,0−1δ

i2
u,0−1Ru,
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where
Ru =

∑
1≤k,l,m,r≤d

δmu,0−1
(
δkn0δ

l
n0 − δkn1δln1

)
ΓrklGmr.

Under (A1), (A2), (A3), and (A4), and suppose that h → 0 and Nh2d → ∞,
then

ES1N,i1i2i3i4 = O
(
Nh4

)
, varS1N,i1i2i3i4 = O

(
Nh8−2d

)
,

ES2N,i1i2i3i4 = O
(
Nh4−2d

)
, varS2N,i1i2i3i4 = O

(
Nh8−6d

)
,

ES3N,i1i2i3i4 = O
(
Nh6

)
, varS3N,i1i2i3i4 = O

(
Nh10−2d

)
,

as h→ 0 and N →∞. So

S1N,i1i2i3i4 = Op
(
Nh4

)
, S2N,i1i2i3i4 = Op

(
Nh4−2d

)
.

If further Nh2+2d →∞, then

S3N,i1i2i3i4 = Op
(
Nh6

)
,

as h→ 0 and N →∞.

Proof. Write
Uu;i1i2i3i4 = wuδ

i1
u,0−1δ

i2
u,0−1δ

i3
u,0−1δ

i4
u,0−1,

so

EUu;i1i2i3i4

=

∫
h−2d

d∏
i=1

(
K
(
δin0/h

)
K
(
δin1/h

))
δi1n,0−1δ

i2
n,0−1δ

i3
n,0−1δ

i4
n,0−1·

f(p1 + δ1n0, . . . , p
d + δdn1)dδ1n0 . . . dδ

d
n1

= h4
∫
K
(
s1u0
)
· · · · ·K

(
sdu1
) Ä
si1u0 − s

i1
u1

ä Ä
si2u0 − s

i2
u1

ä Ä
si3u0 − s

i3
u1

ä Ä
si4u0 − s

i4
u1

ä
·(

f(p1, . . . pd) + o(1)
)
ds1u0 . . . ds

d
u1

= O(h4),

where f is the joint density of endpoints Xu0, Xu1, the second last equality is
due to change of variables, and the last due to (A1). Similar argument implies

varUu;i1i2i3i4 = O
(
h8−2d

)
,

EwuUu;i1i2i3i4 = O
(
h4−2d

)
,

varwuUu;i1i2i3i4 = O
(
h8−6d

)
.

These rates apply uniformly over n, therefore by i.i.d. and that varYu|Xu0, Xu1

is uniformly bounded,

ES1N,i1i2i3i4 = O
(
Nh4

)
, varS1N,i1i2i3i4 = O

(
Nh8−2d

)
,

ES2N,i1i2i3i4 = O
(
Nh4−2d

)
, varS2N,i1i2i3i4 = O

(
Nh8−6d

)
.
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Hence

S1N,i1i2i3i4 = ES1N,i1i2i3i4 +Op
Ä√

varS1N,i1i2i3i4

ä
= Op

(
Nh4

)
,

under h→ 0 and Nh2d →∞. Similarly we have results for S2N,i1i2i3i4 .
Next, write

Vu;i1i2 = wuδ
i1
u,0−1δ

i2
u,0−1Ru.

Note that

EVu;i1i2

=

∫
h−2d

d∏
i=1

(
K
(
δin0/h

)
K
(
δin1/h

))
δi1n,0−1δ

i2
n,0−1×∑

1≤k,l,m,r≤d

δmu,0−1
(
δkn0δ

l
n0 − δkn1δln1

)
Fklm×

f(p1 + δ1n0, . . . , p
d + δdn1)dδ1n0 . . . dδ

d
n1

= h5
∫
K
(
s1u0
)
· · · · ·K

(
sdu1
) Ä
si1u0 − s

i1
u1

ä Ä
si2u0 − s

i2
u1

ä
×∑

1≤k,l,m,r≤d

Ä
si2u0 − s

i2
u1

ä (
sku0s

l
u0 − sku1slu1

)
Fklm×(

f(p1, . . . pd) + h

d∑
r=1

∂f

∂pr
(p) (sru0 + sru1) + o(h)

)
ds1u0 . . . ds

d
u1

= O(h6),

where Fklm = ΓrklGmr. Indeed, since the kernel K is symmetric, and the leading
terms in the integrant is of fifth power of s, thus with some abuse of notation,
EVu;i1i2 = h5F

∫
K(s)s5 (f + hO(s)) ds = O(h6). Similarly

varVu;i1i2 = O(h10−2d).

The rest of the results for S3N,i1i2i3i4 proceeds analogously to that of S1N,i1i2i3i4

and S2N,i1i2i3i4 .

Proposition S6.2. Under the conditions of Proposition S6.1,

bias
Ä
β̂|X
ä

= Op
(
h2
)
, var

Ä
β̂|X
ä

= Op

Å
1

Nh4+2d

ã
,

as h→ 0 and Nh2+2d →∞, where X are the observed endpoints.

Proof. Note that S1N ;i1i2i3i4 are elements of DTWD, where one pair of (i1, i2)
index a row while one pair of (i3, i4) index a column for i1, i2, i3, i4 = 1, . . . , d.
Similarly S2N ;i1i2i3i4 are elements of DTΣD, and S3N ;i1i2 are elements of DTWr
by Proposition 3.1. Applying Proposition S6.1 leads to the result.
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