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Abstract

We extend metric learning by studying the Riemannian manifold structure of the
underlying data space induced by similarity measures between data points. The
key quantity of interest here is the Riemannian metric, which characterizes the
Riemannian geometry and defines straight lines and derivatives on the manifold.
Being able to estimate the Riemannian metric allows us to gain insights into
the underlying manifold and compute geometric features such as the geodesic
curves. We model the observed similarity measures as noisy responses generated
from a function of the intrinsic geodesic distance between data points. A new
local regression approach is proposed to learn the Riemannian metric tensor and
its derivatives based on a Taylor expansion for the squared geodesic distances,
accommodating different types of data such as continuous, binary, or comparative
responses. We develop theoretical foundation for our method by deriving the rates
of convergence for the asymptotic bias and variance of the estimated metric tensor.
The proposed method is shown to be versatile in simulation studies and real data
applications involving taxi trip time in New York City and MNIST digits.

1 Introduction

With increasing data complexity, it has received increasing attention for capturing the geometric
structure of the data space characterized by a Riemannian manifold, which consists of two vital parts:
the coordinate system and the Riemannian metric. Manifold learning attempts to find low-dimensional
representations as coordinates for the high-dimensional data [23, 27, 7]. Yet existing methods
generally assume the local geometry is given, e.g., by the Euclidean distance between ambient data
points, leading to non-isometric methods that distort the data geometry in the embedded space. On
the other hand, many methods have been proposed to consider the Riemannian metric, including
parametric estimation [17, 16, 15]; multi-metric learning [12]; pushforward via the Laplacian operator
[21]; pull-back via Jacobian of generative models [1, 2]; Bayesian approach based on arc length
of Gaussian process [14]; and dynamics of evolving probability when time-indexed samples are
available [24]. It is also possible to recover the manifold in an abstract setting with only similarity
measures among data points [9].

We propose to estimate the Riemannian metric utilizing similarity measures between data points
when data coordinates are available. Suppose that data are generated from an unknown Riemannian
manifold, while the Euclidean distance between the coordinates may not reflect the underlying
geometry. We model the observed similarity measures between data points as noise-contaminated
intrinsic distances, which are then used to characterize the intrinsic geometry on the Riemannian
manifold. The targeted Riemannian metric is estimated in a data-driven fashion, which enables path
finding via geodesics and calculus on the manifold in which the data reside.
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This problem is closely related to metric learning [3, 26] where a Mahalanobis distance is commonly
used to obtain the best distance for classification [11] and clustering [29] tasks. While a global
metric is often the focus of earlier works, multiple local metrics [10, 28, 22, 5] are found to be useful
because they better capture the data space geometry. Despite the resemblance, our target is to learn
the Riemannian metric instead of the distance metric, which fundamentally differentiates our proposal
from metric learning. We emphasize the data space geometry rather than obtaining a metric optimal
for subsequent supervised learning tasks. The additional smoothness of the Riemannian metric tensor
field allows analysis of finer structures, while the coefficient matrix for the Mahalanobis distance is
locally constant for distance metric learning.

To formulate the problem, let (M, G) be a Riemannian manifold with Riemannian metric G and
induced geodesic distance dist (·, ·) which measures the true intrinsic difference between points.
Knowing the coordinates of data points x0, x1 ∈ M, we identify each point via its coordinates (a
tuple of real numbers). The noisy measures y of the intrinsic distance between data points are referred
to as similarity measures (equivalently dissimilarity). The response is modeled flexibly, and we
consider the following common scenarios: (i) noisy distance, where y = dist (x0, x1)

2
+ ε for error

ε, (ii) similarity/dissimilarity, where y = 0 if the two points x0, x1 are considered similar and y = 1
otherwise, and (iii) relative comparison, where a triplet of points (x0, x1, x2) are given and y = 1
if x0 is more similar to x1 than to x2 and y = 0 otherwise. The binary similarity measurement is
common in computer vision [e.g. 6], while the relative comparison could be useful for perceptional
tasks and recommendation system [e.g. 25, 4]. We aim to estimate the Riemannian metric G and its
derivatives using the coordinates and similarity measures among the data points.

The major contribution of this paper is threefold. First, we formulate a framework for probabilistic
modeling of similarity measures among data on manifold via intrinsic distances. Such a framework
also justifies the distance metric learning from a geometrical perspective and unveils its approximation
error for the first time as we know. Second, a theoretical foundation is developed for the proposed
method including asymptotic consistency. Last and most importantly, the proposed method provides
a geometric interpretation for the structure of the data space induced by the similarity measures, as
demonstrated in the numerical examples that include a taxi travel and an MNIST digit application.

2 Background in Riemannian Geometry

For brevity, metric now refers to Riemannian metric while distance metric is always spelled out.
Throughout the paper, M denotes a d-dimensional manifold endowed with a coordinate chart
(U,ϕ), where ϕ : U → Rd maps a point p ∈ U ⊂ M on the manifold to its coordinate
ϕ(p) =

(
ϕ1(p), . . . , ϕd(p)

)
∈ Rd. Without loss of generality, we identify a point by its coor-

dinate as
(
p1, . . . , pd

)
, suppressing ϕ for the coordinate chart. Upper-script Roman letters denote the

components of a coordinate, e.g., pi is the i-th entry in the coordinate of the point p, and γi is the i-th
component function of a curve γ : R ⊃ [a, b]→M when expressed on chart U . The tangent space
TpM is a vector space consisting of velocities of the form v = γ′(0) where γ is any curve satisfying
γ(0) = p. The coordinate chart induces a basis on the tangent space TpM, as ∂i|p = ∂/∂xi|p
for i = 1, . . . , d, so that a tangent vector v ∈ TpM is represented as v =

∑d
i=1 v

i∂i for some
vi ∈ R, suppressing the subscript p in the basis. We adopt the Einstein summation convention
unless otherwise specified, namely vi∂i denotes

∑d
i=1 v

i∂i, where common pairs of upper- and
lower-indices denotes a summation from 1 to d [see e.g., 18, pp.18–19].

The Riemannian metric G on a d-dimensional manifoldM is a smooth tensor field acting on the
tangent vectors. At any p ∈M, G(p) : TpM× TpM→ R is a symmetric bi-linear tensor/function
satisfying G(p)(v, v) ≥ 0 for any v ∈ TpM and G(p)(v, v) = 0 if and only if v = 0. On a
chart ϕ, the metric is represented as a d-by-d positive definite matrix that quantifies the distance
traveled along infinitesimal changes in the coordinates. With an abuse of notation, the chart rep-
resentation of G is given by the matrix-valued function p 7→ G(p) = [Gij(p)]

d
i,j=1 ∈ Rd×d for

p ∈ M, so the distance traveled by γ at time t for a duration of dt is [Gij(γ(t))γ̇i(t)γ̇j(t)]1/2.
The intrinsic distance induced by G, or the geodesic distance, is computed as dist (p, q) =

infα
∫ 1

0

»∑
1≤i,j≤dGij(α(t))α̇i(t)α̇j(t)dt for two points p, q on the manifoldM, where infimum

is taken over any curve α : [0, 1]→M connecting p to q.
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A geodesic curve (or simply geodesic) is a smooth curve γ : R ⊃ [a, b]→M satisfying the geodesic
equations, represented on a coordinate chart as

γ̈k(t) + γ̇i(t)γ̇j(t)Γkij ◦ γ(t) = 0, for i, j, k = 1, . . . , d, (2.1)

where over-dots represent derivative w.r.t. t; Γkij = 1
2G

kl (∂iGjl + ∂jGil − ∂lGij) are the Christoffel
symbols at p; and Gkl is the (k, l)-element of G−1. Solving (2.1) with initial conditions1 produces
geodesic that traces out the generalization of a straight line on the manifold, preserving travel direction
with no acceleration, and is also locally the shortest path.

Considering the shortest path γ connecting p to q and applying Taylor’s expansion at t = 0, we obtain
dist (p, q)

2 ≈
∑

1≤i,j≤dGij(p)(q
i − pi)(qj − pj), showing the connection between the geodesic

distance the Mahalanobis distance. Our estimation method is inspired by this approximation, and we
will discuss the higher-order terms shortly which unveil finer structure of the manifold.

3 Local Regression for Similarity Measurements

3.1 Probabilistic Modeling for Similarity Measurements

Suppose that we observe N independent triplets (Yu, Xu0, Xu1), u = 1, . . . , N . Here, the Xuj are
locations on the manifold identified with their coordinates

(
X1
uj , . . . , X

d
uj

)
∈ Rd, j = 1, 2, and

Yu are noisy similarity measures of the proximity of (Xu0, Xu1) in terms of the intrinsic geodesic
distance dist (·, ·) onM. To account for different structures of the similarity measures, we model
the response in a fashion analogous to generalized linear models. For Xu0, Xu1 lying in a small
neighborhood Up ⊂M of a target location p ∈M, the similarity measure Yu is modeled as

E (Yu|Xu0, Xu1) = g−1
Ä
dist (Xu0, Xu1)

2
ä
, (3.1)

where g is a given link function that relates the conditional expectation to the squared distance.
Example 3.1. We describe below three common scenarios modeled by the general framework (3.1).

1. Continuous response being the squared geodesic distance contaminated with noise:

Yu = dist (Xu0, Xu1)
2

+ σ(p)εu, (3.2)

where ε1, . . . , εu are i.i.d. mean zero random variables, and σ : M → R+ is a smooth
positive function determining the magnitude of noise near the target point p. This model
will be applied to model trip time as noisy measure of cost to travel between locations.

2. Binary (dis)similarity response:

P (Yu = 1|Xu0, Xu1) = logit−1
Ä
dist (Xu0, Xu1)

2 − h(p)
ä

(3.3)

for some smooth function h :M→ R, where logit(µ) = log (µ/ (1− µ)), µ ∈ (0, 1) is
the logit function. This models the case when there are latent labels for Xuj and Yu is a
measure of whether their labels are in common or not. The function h(p) in (3.3) describes
the homogeneity of the latent labels for points in a small neighborhood of p. The latent
labels could have intrinsic variation even if measures are made for the same data points
x = Xu0 = Xu1, and the strength of which is captured by h(p).

3. Binary relative comparison response, where we extend our model for triplets of points
(Xu0, Xu1, Xu2), where Yu stands for whether Xu0 is more similar to Xu1 than to Xu2:

P (Yu = 1|Xu0, Xu1, Xu2) = logit−1
Ä
dist (Xu0, Xu2)

2 − dist (Xu0, Xu1)
2
ä
, (3.4)

so that the relative comparison Yu reflects the comparison of squared distances.

1See Section S3 of the Supplement for details about solving it in practice.
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3.2 Local Approximation of Squared Distances

It is the squared distance that determines the responses in our model (3.1), which is justified by
the following local approximation. Proposition 3.1 provides a Taylor expansion for the squared
geodesic distance between two geodesics with same starting point but different initial velocities (see
Figure S5.1 for visualization). It is the key tool to estimate model (3.1) through local regression.
Furthermore, (3.5) characterize the error of approximating geodesic distance with Mahalanobis
distance. For a point p on the Riemannian manifold M, let expp : TpM → M denote the
exponential map defined by expp(tv) = γ(t) where γ is a geodesic starting from p at time 0 with
initial velocity γ′(0) = v ∈ TpM. For notational simplicity, we suppress the dependency on p in
geometric quantities (e.g., the metric G is understood to be evaluated at p). For i = 1, . . . , d, denote
δi = δi(t) = γi(t)− γi(0) as the difference in coordinate after a travel of time t along γ.
Proposition 3.1 (spread of geodesics, coordinated). Let p ∈ M and v, w ∈ TpM be two tangent
vectors at p. On a local coordinate chart, the squared geodesic distance between two geodesics
γ0(t) = expp(tv) and γ1(t) = expp(tw) satisfies, as t→ 0,

dist (γ0(t), γ1(t))
2

= δi0−1δ
j
0−1Gij + δi0−1

(
δk0δ

l
0 − δk1δl1

)
ΓjklGij +O(t4), (3.5)

where for i, j, k, l,m = 1, . . . , d,

• δi0 = γi0(t) − pi, δi1 = γi1(t) − pi, and δi0−1 = δi0 − δi1, i.e., δi0, δi1 are differences in i-th
coordinates of γ0(t) and γ1(t) to the origin p, respectively, and δi0−1 = δi0 − δi1 is the
coordinate difference between γ0(t) and γ1(t);

• Gij and Γjkl are the elements of the metric and Christoffel symbols at p, respectively.

Proof. See Section S5 in the Supplement.

To the RHS of (3.5), the first term is the quadratic term in distance metric learning. The second term
is the result of coordinate representation of geodesics. It vanishes under the normal coordinate where
the Christoffel symbols are zero.2 It inspires the use of local regression to estimate the metric tensor
and the Christoffel symbols. For Xu0, Xu1 in a small neighborhood of p, write the linear predictor as

ηu := β(0) + δiu,0−1δ
j
u,0−1β

(1)
ij + δku,0−1

Ä
δiu0δ

j
u0 − δiu1δ

j
u1

ä
β
(2)
ijk, (3.6)

a function of the intercept β(0) and coefficients β(1)
ij , β

(2)
ijk, where δiu0 = Xi

u0−pi, δiu1 = Xi
u1−pi, and

δiu,0−1 = δiu0 − δiu1, for i, j, k, l = 1, . . . , d, and u = 1, . . . , N . The intercept term β(0) is included
for capturing intrinsic variation (e.g., h(p) in (3.3)) and can otherwise be dropped. The link function
connects the linear predictor to the conditional mean via µu := g−1 (ηu) ≈ E (Yu|Xu0, Xu1) as
indicated by (3.1) and (3.5), where µu is seen as a function of the coefficients β(0), β(1)

ij , and β(2)
ijk.

Therefore, upon the specification of a loss function Q : R × R → {0} ∪ R+ and non-negative
weights w1, . . . , wN , the minimizers

(β̂(0), β̂
(1)
ij , β̂

(2)
ijk) = arg min

β(0),β
(1)
ij ,β

(2)
ijk;i,j,k

N∑
u=1

Q (Yu, µu)wu, (3.7)

subject to
β
(1)
ij = β

(1)
ji , β

(2)
ijk = β

(2)
jik, for i, j, k, l = 1, . . . , d, (3.8)

are used to estimate the metric tensor and Christoffel symbols, obtaining

Ĝij = β̂
(1)
ij , Γ̂lij = β̂

(2)
ijkĜ

kl, (3.9)

where Ĝkl is the matrix inverse of Ĝ satisfying ĜklĜkj = 1{j=l}. The symmetry constraints (3.8)
are the result of the symmetries in the metric tensor and Christoffel symbols, and are enforced by
optimizing over only the lower triangular indices 1 ≤ i < j ≤ d without constraints. Asymptotic

2See e.g., [19] pp. 131–133 for normal coordinate. See [20] and Proposition S5.1 of the Supplement for
coordinate-invariant version of Proposition 3.1.
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results provide the positive-definiteness of the metric estimate, as will be shown in Proposition 4.1.
To weigh the pairs of endpoints according to their proximity to the target location p, we apply kernel
weights specified by

wu = h−2d
d∏
i=1

K

Å
Xi
u0 − pi

h

ã
K

Å
Xi
u1 − pi

h

ã
(3.10)

for some h > 0 and non-negative kernel function K. The bandwidth h controls the bias–variance
trade-off of the estimated Riemannian metric tensor and its derivatives.

Altering the link function g and the loss functionQ in (3.7) enables flexible local regression estimation
for models in Example 3.1.
Example 3.2. Consider the following loss functions for estimating the metric tensors and the Christof-
fel symbols when data are drawn from model (3.2)–(3.4), respectively.

1. Continuous noisy response: use squared loss Q (y, µ) = (y − µ)
2 with g being the identity

link function so µu = ηu.

2. Binary (dis)similarity response: use log-likelihood of Bernoulli random variable

Q (y, µ) = y logµ+ (1− y) log (1− µ) , (3.11)

and g the logit link, so µu = logit−1 (ηu). The model becomes a local logistic regression.

3. Binary relative comparison response: apply the same loss function (3.11) and logit
link as in the previous scenario, but here we formulate the linear predictor based on
dist (Xu0, Xu2)

2 − dist (Xu0, Xu1)
2 ≈ ηu1 − ηu2 and

µu = g−1 (ηu1 − ηu2) . (3.12)

Locally, the difference in squared distances is approximated by

ηu1 − ηu2 =
Ä
δiu,0−1δ

j
u,0−1 − δiu,0−2δ

j
u,0−2

ä
β
(1)
ij +

Ä
δku,0−1

Ä
δiu0δ

j
u0 − δiu1δ

j
u1

ää
β
(2)
ijk

−
Ä
δku,0−2

Ä
δiu0δ

j
u0 − δiu2δ

j
u2

ää
β
(2)
ijk, (3.13)

for δiu2 = Xi
u2−pi and δiu,0−2 = δiu2−δiu0, i = 1, . . . , d. Here ηu1 and ηu2 are constructed

in analogy to (3.6) using (Xu0, Xu1) and (Xu0, Xu2) pair respectively.

Examples in Section 5 will further illustrate the proposed method in those scenarios. Besides the
models listed, other choices for the link g and loss function Q can also be considered under this local
regression framework [8], accommodating a wide variety of data. To efficiently estimate the metric
on the entire manifoldM, we apply a procedure based on discretization and post-smoothing, as
detailed in Section S3 of the Supplement. In short, kernel smoothing (weighted average) of estimated
component functions Ĝij over some grid points provides a smooth tensor field, which ease the burden
of re-estimation for every points on the manifold.

4 Bias and Variance of the Estimated Metric Tensor

This subsection provides asymptotic justification for model (3.2) with E (Yu|Xu0, Xu1) =

dist (Xu0, Xu1)
2 under the squared loss Q(µ, y) = (µ − y)2 and the identity link g(µ) = µ.

The estimator we analyzed here fits a local quadratic regression without intercept and approximates
the squared distance by a simplified form of (3.6):

dist (Xu0, Xu1)
2 ≈ ηu := δiu,0−1δ

j
u,0−1β

(1)
ij , (4.1)

for u = 1, . . . , N . Given a suitable order of the indices i, j for vectorization, we rewrite the
formulation into a matrix form. Denote the local design matrix and regression coefficients as

Du =
Ä
δ1u,0−1δ

1
u,0−1, . . . , δ

i
u,0−1δ

j
u,0−1, . . . , δ

d
u,0−1δ

d
u,0−1

äT
,

β =
Ä
β
(1)
11 , . . . , β

(1)
ij , . . . , β

(1)
dd

äT
,
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so that the linear predictor ηu = DT
uβ. Further, write D = (D1, . . . ,DN )

T , Y = (Y1, . . . , YN )
T ,

and W = diag (w1, . . . , wN ), with weights wu specified in (3.10). The objective function in (3.7)
becomes (Y −Dβ)

T
W (Y −Dβ), and the minimizer is β̂ =

(
DTWD

)−1
DTWY , for which

we will analyze the bias and variance.

To characterize the asymptotic bias and variance of the estimator, we assume the following conditions
are satisfied in a neighborhood of the target p. These conditions are standard and analogous to those
assumed in a local regression setting [8].

(A1) The joint density of endpoints (Xu0, Xu1) is positive and continuously differentiable.

(A2) The functions Gij ,Γkij are C2-smooth for i, j, k = 1, . . . , d.

(A3) The kernel K in weights (3.10) is symmetric, continuous, and has a bounded support.

(A4) supu var (Yu|Xu0, Xu1) <∞.

Proposition 4.1. Under (A1)–(A4), bias
Ä
β̂|X
ä

= Op
(
h2
)
, var
Ä
β̂|X
ä

= Op
(
N−1h−4−2d

)
, as

h→ 0 and Nh2+2d →∞, where X = {(Xu0, Xu1)}Nu=1 is the collection of observed endpoints.

Proof. See Section S6 in the Supplement.

The local approximation (4.1) is similar to a local polynomial estimation of the second derivative of
a 2d-variate squared geodesic distance function, explaining the order of h in the rates for bias and
variance.

The positive definite constraints (as in distance metric learning) are dropped based on the asymptotic
properties, thus the estimated metric could fail to be positive definite at some locations. This is
alleviated by sufficient data and post-smoothing that averaging neighboring estimation.

5 Simulation

We illustrate the proposed method using simulated data with different types of responses as described
in Example 3.1. We study whether the proposed method well estimates Riemannian geometric
quantities, including the metric tensor, geodesics, and Christoffel symbols. Additional details includ-
ing assessment on stability and positive-definiteness are included in Section S4 of the Supplement.
Subsection S4.2 also provides an ellipsoid example for manifold of non-constant curvature.

5.1 Unit Sphere

The usual arc-length/great circle distance on the d-dimensional unit sphere is induced by the round
metric, which is expressed under the stereographic projection coordinate

(
x1, . . . , xd

)
as G̊ij =

4
Ä
1 +

∑d
k=1 x

kxk
ä−2

1{i=j}, for i, j = 1, . . . , d. Under the additive model (3.2) in Example 3.1,
we considered either noiseless or noisy responses by setting σ(p) = 0 or σ(p) > 0 respectively.

Experiments were preformed with d = 2 and the finding are summarized in Figure 5.1. For continuous
responses, the left panel of Figure 5.1a visualizes the true and estimated metric tensors via cost ellipses
(S2.1) and the right panel shows the corresponding geodesics by solving the geodesic equations (2.1)
with true and estimated Christoffel symbols. The metrics and the geodesics were well estimated under
the continuous response model with or without additive errors, where the estimates overlap with the
truth. Figure 5.1c evaluates the relative estimation errors

∥∥∥Ĝ−G∥∥∥
F
/ ‖G‖F and

∥∥∥Γ̂− Γ
∥∥∥
F
/ ‖Γ‖F

w.r.t. the Frobenius norm (S2.2) for data from the continuous model (3.2).

For binary responses under model (3.3), Figure 5.1b visualizes the data where the background color
illustrates h. Figure 5.1d and left panel of Figure 5.1a suggest that the intercept and the metric were
reasonably estimated, while the geodesics are slightly away from the truth (Figure 5.1a, right). This
indicates that the binary model has higher complexity and less information is provided by the binary
response (see also Figure S4.1b in the Supplement).
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(a) Estimated and true metric tensors using ellipses representation (left)
and the geodesic curves (right) starting from (1, 0) with unit initial veloc-
ities pointing to 1–12 o’clock directions.
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(c) Relative errors in term of Frobenius norm of the estimated tensors for
the continuous response model (3.2) with additive error.
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Figure 5.1: Simulation results for 2-dimensional sphere under stereographic projection coordinate.

5.2 Relative Comparison on the Double Spirals

A set of 7× 104 points on R2 were generated around two spirals, corresponding to two latent classes
A and B (e.g., green points in Figure 5.2a are from latent class A). We compare neighboring points
(Xu0, Xu1, Xu2) to generate relative comparison response Yu as follows. For u = 1, . . . , N , Yu = 1
if Xu0, Xu1 belong to the same latent class and Xu0, Xu2 belong to different classes; otherwise
Y = 0. Figure 5.2b shows a portion of the N = 6, 965, 312 comparison generated, where the hollow
circles in the middle of each wedge correspond to Xu0.

Here, contrast of the two latent classes induces the intrinsic distance, so the distance is larger across
the supports of the two classes and smaller within a single support. Therefore, the resulting metric
tensor should reflect less cost while moving along the tangential direction of the spirals compared to
perpendicular directions. Estimates were drawn under model (3.4) by minimizing the objective (3.7)
with the link function (3.12) and the local approximation (3.13).

The estimated metric shown in Figure 5.2c is consistent with the interpretation of the intrinsic distance
and metric induced by the class membership discussed above. Meanwhile, the estimated geodesic
curve unveils the hidden circular structure of the data support as shown in Figure 5.2d.
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Figure 5.2: Relative comparison on double spirals. Gray curves (solid and dashed) in the background
represent the approximate support of the two latent classes.

6 New York City Taxi Trip Duration

We study the geometry induced by taxi travel time in New York City (NYC) during weekday morning
rush hours. New York City Taxi and Limousine Commission (TLC) Trip Record Data was accessed
on May 1st, 20223 to obtained business day morning taxi trip records including GPS coordinates for
pickup/dropoff locations as (Xu0, Xu1) and trip duration as Yu. Estimation to the travel time metric
was drawn under model (3.2) with Q(y, µ) = (y − µ)2 and g(µ) = µ.

Figure 6.1a shows the estimated metric for taxi travel time. The background color shows the Frobenius
norm of the metric tensor, where larger values mean that longer travel time is required to pass through
that location. Trips through midtown Manhattan and the financial district were estimated to be the
most costly during rush hours, which is coherent to the fact that these are the city’s primary business
districts. Moreover, the cost ellipses represent the cost in time to travel a unit distance along different
directions. This suggests that in Manhattan, it takes longer to drive along the east–west direction
(narrower streets) compared to the north–south direction (wider avenues).

Geodesic curves in Figure 6.1b show where a 15-minutes taxi ride leads to starting from the Empire
State Building. Each geodesic curve corresponds to one of 12 starting directions (1–12 o’clock).
Note that we apply a continuous Riemannian manifold approximation to the city, so the geodesic
curves provide approximations to the shortest paths between locations and need not conform to the
road network. Travel appears to be faster in lower Manhattan than in midtown Manhattan. The spread
of the geodesics differs along different directions, indicating the existence of non-constant curvature
on the manifold and advocating for estimating the Riemannian metric tensor field instead of applying
a single global distance metric.

7 High-dimensional Data: An Example with MNIST

The curse of dimensionality is challenging for nonparametric methods applied on data sources like
images and audios. However, it is often found that apparent high-dimensional data actually lie close
to some low-dimensional manifold, which is utilized by manifold learning literature to produce
reasonable low-dimensional coordinate representations. The proposed method can be applied to the
resulting low-dimensional coordinates to recover the high-dimensional geometry even implicitly
defined, demonstrated in the following MNIST example.

We embed images in MNIST to a 2-dimensional space via tSNE [13]. Similarity between the objects
was computed by the sum of the Wasserstein distance between images4 and the indicator of whether
the underlying digits are different (1) or not (0). The goal is to infer the geometry of the embedded

3https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. Data format changed after our download.
4After rescaling, see Subsection S4.5 of the Supplement.
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(a) Estimated metric tensors for trip duration: cost
ellipses and Frobenius norm (background color).

(b) Geodesics correspond to 15-minute taxi rides from
the Empire State Building heading to 1–12 o’clock.

Figure 6.1: New York taxi travel time during morning rush hours.

data induced by this similarity measures. Estimation was drawn under model (3.2) with squared loss
Q(y, µ) = (y−µ)2 and the identity link. An intercept term (β(0) in (3.6)) is used to capture intrinsic
variation partially due to the non-injective dimensional reduction.

The geodesics estimated from our method tend to minimize the number of switches between labels.
For example, the geodesic A in Figure 7.1 remains “4” (1st row of panel (b)) throughout, while the
straight line on the tSNE chart translates to a path of images switching between “4” and “9” (2nd
row of panel (b)); similar phenomenon occurs for geodesics B and C (corresponding to 7th and 12th
rows in (b)). Also, our estimated geodesics produce reasonable transition and reside in the space
of digits, while unrestricted optimal transport (3rd, 8th, and 13th rows of panel (b)) could produce
unrecognizable intermediate images. Our estimated geodesic is faithful to the geometric interpretation
that a geodesic is locally the shortest path. Moreover, our proposal provide sensible image transition,
especially compared to the shortest paths along neighborhood graph in the embedded space (dotted
blue lines in (a) and 4, 9, 14 rows in (b)) or kNN graphs in the original Euclidean space R28×28 (5,
10, 15 rows in (b)). This could be useful for complex data interpolation that preserves geometry.

8 Discussion

We present a novel framework for inferring the data geometry based on pairwise similarity measures.
Our framework targets data lying on a low-dimensional manifold where observations are expected
to be dense near the locations where we wish to estimate the metric. However, these assumptions
are general enough for our method to be applied to manifold data with high ambient dimension
in combination with manifold embedding tools. Context-specific interpretation of the geometrical
notions, e.g., for Riemannian metric and geodesics, has been demonstrated in the taxi travel and
MNIST digit examples. Our method could inspire additional compelling applications to other topics
such as cognition and perception research, where psychometric similarity measures are commonly
made. Moreover, further development including (but not limited to) handling sparse data and
ensuring positivity in the Riemannian metric estimation is needed, as discussed in Section S1 of the
Supplement.
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(a) The estimated geodesic curves (solid red), shortest
path along graph (dotted blue), and straight lines on
the chart (dashed black).

(b) Image transitions corresponding to A, B, and C in
(a). Every 5 rows correspond to a set of paths sharing
the same pair of starting and ending images, where the
1st – 5th row correspond to the estimated geodesics, the
straight lines on the chart, the optimal transport (path not
shown in (a)), the paths along neighborhood graph on
the chart, and along kNN graph in the Euclidean space
(path not shown in (a)), respectively.

Figure 7.1: Geometry induced by a sum of Wasserstein distance and same-digit-or-not indicator.
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