
Squared Neural Families:
A New Class of Tractable Density Models

Russell Tsuchida∗
Data61-CSIRO

Cheng Soon Ong
Data61-CSIRO &

Australian National University

Dino Sejdinovic
School of CMS & AIML,

The University of Adelaide

Abstract

Flexible models for probability distributions are an essential ingredient in many
machine learning tasks. We develop and investigate a new class of probability distri-
butions, which we call a Squared Neural Family (SNEFY), formed by squaring the
2-norm of a neural network and normalising it with respect to a base measure. Fol-
lowing the reasoning similar to the well established connections between infinitely
wide neural networks and Gaussian processes, we show that SNEFYs admit closed
form normalising constants in many cases of interest, thereby resulting in flexible
yet fully tractable density models. SNEFYs strictly generalise classical exponential
families, are closed under conditioning, and have tractable marginal distributions.
Their utility is illustrated on a variety of density estimation, conditional density
estimation, and density estimation with missing data tasks.

1 Introduction

Probabilistic modelling lies at the heart of machine learning. In both traditional and contemporary
settings, ensuring the probability model is appropriately normalised (or otherwise bypassing the
need to compute normalising constants) is of central interest for maximum likelihood estimation and
related statistical inference procedures. Tractable normalising constants allow the use of probability
models in a variety of applications, such as anomaly detection, denoising and generative modelling.

Traditional statistical approaches [27, 5] rely on mathematically convenient models such as exponen-
tial families [50]. Such models can often be normalised in closed form, but are often only suitable for
relatively low-dimensional and simple data. Early approaches in deep learning use neural networks
as energy functions inside Gibbs distributions [21, Equation 2]. Such distributions typically have
very intractable normalising constants, and so either surrogate losses for the negative log likelihood
involving the energy function are used or MCMC, score matching [16], variational or sampling
methods [15, 30] are used to approximate the normalising constant. See [35, §2.6.1, §2.2] for more
energy-based and other methods.

Modern computer technology and power allows us more flexible models [8, page 68], by partially or
completely relaxing the requirement for mathematical tractability. Contemporary high-dimensional
modelling, such as generative image models, rely primarily on neural network models [18, 11, 35, 34].
For example, normalising flows [40] use constrained neural network layers to transform random
variables from base measures with tractable Jacobian determinants associated with appropriately
constrained but flexible pushforward maps. Similarly to normalising flows, we use neural networks
to define expressive densities, but we model the densities directly without using constrained transfor-
mations of random variables. Moreover, our approach can be readily applied in conjunction with
normalising flows and other deep learning devices such as deep feature extractors.

∗Software available at https://github.com/RussellTsuchida/snefy.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/RussellTsuchida/snefy

Support
X

Base
measure µ

Sufficient
statistic t(x)

Activation
function σ b ̸= 0

Kernel
kσ,t,µ

Any setting mirroring a previously derived NNGPK, e.g.

Rd ΦC,0 Id(x)

erf ✗ [52]
(·)p+, p ∈ N ✗ [4]
LReLU ✗ [48]

GELU [14] ✗ [47]
cos ✗ [37]

Any tractable exponential family [50, 32] setting, e.g.
Rd ΦC,m

x
∥x∥2

exp

✓ Kernel 3
Sd−1 Uniform Id(x) ✓
Rd ΦC,m ✓ Kernel 7

{0, 1, 2, . . .} (x!)−1ν ✓ Kernel 8
New tractable integration settings, e.g.

Rd ΦC,m Id(x) cos ✓ Kernel 2
[0, 1]d Uniform Φ−1(x)
Rd ΦC,m Id(x) Snakea [55, 39] ✓ Kernel 6

Table 1: Examples of settings admitting a closed-form for the normalising constant z(V ,Θ) (2)
by leveraging a closed-form NNK kσ,t,µ (4). In each case, z(V ,Θ) = Tr(V ⊤V KΘ), where the
entries of the matrix KΘ are described according to the NNK kσ,t,µ in Identity 1. ΦC,m denotes
the CDF of a multivariate normal distribution with meanm and covariance matrix C and ν denotes
counting measure. Rows with citations have been considered previously in the context of NNGPKs,
but not as normalising constants and not with a reversal of the role of input and parameter. Note the
cases where b ̸= 0; this setting is not considered by others, because when the role of parameters
and data is in the usual setting, b = 0 covers a sufficiently general setting. Noticing that SNEFYs
strictly generalise exponential family mixture models (see § 3.2), fixing σ(·) = exp(·/2) and a given
base measure µ and sufficient statistic t for which the exponential family log-partition function is
known also leads to tractable normalising constants. More known closed-form kernels as well as
approximate kernels that can be adapted to our setting are given in [12].

Contributions. Let (Ω,F , µ) denote a measure space with Ω ⊆ Rd, sigma algebra F , and nonneg-
ative measure µ. Let V ∈ Rm×n be the readout parameters of a neural network and letW ∈ Rn×D

and b ∈ Rn be the weights and biases of a hidden layer of a neural network f : RD → Rm with acti-
vation function σ. For some support X ∈ F , define a probability distribution P (and corresponding
probability density p with respect to base measure µ) to be proportional to squared 2-norm of the
evaluation of the neural network f ,

P (dx;V ,Θ) ≜
µ(dx)

z(V ,Θ)

∥∥f (t(x);V ,Θ)
∥∥2
2
, f(t;V ,Θ) = V σ(Wt+ b), Θ = (W , b), (1)

whenever the normalising constant z(V ,Θ) ≜
∫
X
∥∥f (t(x);V ,Θ)

∥∥2
2
µ(dx) is finite and non-zero.

Here we call µ the base measure, t : X → RD the sufficient statistic2 and σ the activation function.
We will call the corresponding family of probability distributions, parametrised by (V ,Θ), a squared
neural family (SNEFY) on X, and denote it by SNEFYX,t,σ,µ. SNEFYs are new flexible probability
distribution models that strike a good balance between mathematical tractability, expressivity and
computational efficiency. When a random vector x follows a SNEFY distribution indexed by parameters
(V ,Θ), we write x ∼ SNEFYX,t,σ,µ(V ,Θ) or simply x ∼ P (·;V ,Θ), where there is no ambiguity.

Our main technical challenge is in exactly computing the normalising constant, z(V ,Θ), where

z(V ,Θ) ≜
∫
X

∥∥f (t(x);V ,Θ)
∥∥2
2
µ(dx), f(t;V ,Θ) = V σ(Wt+ b), Θ = (W , b). (2)

The normalising constants we consider are special cases in the sense that they apply to specific (but
commonly appearing in applications) choices of activation function σ, sufficient statistic t and base
measure µ over support X. See Table 1. Our analysis both exploits and informs a connection with

2We later verify that t is indeed a sufficient statistic, see (7). Note t maps from d to D dimensions.

2

so-called neural network Gaussian process kernels (NNGPKs) [31] in a generalised form, which we
refer to as neural network kernels (NNKs).

We discuss some important theoretical properties of SNEFY such as exact normalising constant calcula-
tion, marginal distributions, conditional distributions, and connections with other probability models.
We then consider a deep learning setting, where SNEFYs can either be used as base distributions in
(non-volume preserving) normalising flows [46], or may describe flexible conditional density models
with deep learning feature extractors. We demonstrate SNEFY on a variety of datasets.

1.1 Background

Notation We use lower case non-bold (like a) to denote scalars, lower case bold to denote vectors
(like a) and upper case bold to denote matrices (like A). Random variables (scalar or vector) are
additionally typeset in sans-serif (like a and a). The special zero vector (0, . . . , 0) and identity matrix
elements are 0 and I . We use subscripts to extract (groups of) indices, so that for example, wi is
the ith row of the matrix W (as a column vector), v·,i is the ith column of the matrix V , and bi
is the ith element of the vector b. We use Θ = (W , b) ∈ Rn×(D+1) to denote the concatenated
hidden layer weights and biases. Correspondingly, we write θi = (wi, bi) ∈ RD+1 for the ith row of
Θ. We will use a number of special functions. ΦC,m denotes the cumulative distribution function
(CDF) of a Gaussian random vector with meanm and covariance matrix C. We also use a shorthand
ΦC = ΦC,0 and Φ = ΦI,0.

Single hidden layer neural networks We consider a feedforward neural network f : RD → Rm,

f(t;V ,Θ) = V σ(Wt+ b) (3)

with activation function σ, hidden weightsW ∈ Rn×D and biases b ∈ Rn and readout parameters
V ∈ Rm×n. Here σ is applied element-wise to its vector inputs, returning a vector of the same shape.

Neural network kernels In certain theories of deep learning, one often encounters a bivariate
Gaussian integral called the neural network Gaussian process kernel NNGPK. The NNGPK first arose
as the covariance function of a well-behaved single layer neural network with random weights [31].
In the limit as the width of the network grows to infinity, the neural network (3) with suitably well-
behaved (say, independent Gaussian) random weights converges to a zero-mean Gaussian process, so
that the NNGPK characterises the law of the neural network predictions. These limiting models can
be used as functional priors in a classical Gaussian process sense [53].

In our setting, the positive semidefinite (PSD) NNGPK appears in an entirely novel context, where
the role of the hidden weights and biases θi = (wi, bi) and the data x is reversed. Instead of
marginalising out the parameters and evaluating at the data, we marginalise out the data and evaluate
at the parameters. The NNGPK kσ,Id,ΦI

admits a representation of the form

kσ,Id,ΦI
(θi,θj) ≜ Ex

[
σ
(
w⊤

i x+ bi
)
σ
(
w⊤

j x+ bj
)]
, x ∼ N

(
0, I

)
. (4)

We do not discuss in detail how it is constructed in earlier works [31, 22, 33, 17], where usually
bi = bj = 03, but not always[49]. When bi = bj = 0, closed-form expressions for the NNGPK are
available for different choices of σ and t [52, 20, 4, 48, 37, 47, 28, 13]. However, the setting of b ̸= 0
is important in our context (as we show in §2.2) and presents additional analytical challenges.

We will require a more general notion of an NNGPK which we call a neural network kernel (NNK).
We introduce a function t which may be thought of as a warping function applied to the input data.
Such warping is common in kernels and covariance functions and can be used to induce desirable
analytical and practical properties [37, 29, 24, §5.4.3]. We also integrate with respect to more general
measures µ instead of the standard Gaussian CDF, Φ. We define the NNK to be

kσ,t,µ(θi,θj) ≜
∫
X
σ
(
w⊤

i t(x) + bi
)
σ
(
w⊤

j t(x) + bj
)
µ(dx). (5)

3After accounting for the reversal of parameters and data.

3

2 Closed form squared neural families

2.1 Normalising constants

Observe from (2) that by swapping the order of integration and multiplication by V , the normalising
constant is quadratic in elements of V . The coefficients of the quadratic depend on Θ = (W , b).
We now characterise these coefficients of the quadratic in terms of the NNK evaluated at rows θi,θj
of Θ, which are totally independent of V . The proof of the following is given in Appendix A.

Identity 1. The integral (2) admits a representation of the form

z(V ,Θ) = Tr
(
V ⊤V KΘ

)
(6)

where kσ,t,µ is as defined in (5), andKΘ is the PSD matrix whose ijth entry is kσ,t,µ(θi,θj).

By Identity 1, the normalised measure (1) then admits the explicit representation

P (dx;V ,Θ) =
Tr
(
V ⊤V K̃Θ(x)

)
Tr
(
V ⊤V KΘ

) µ(dx) =
vec(V ⊤V)⊤ vec(K̃Θ(x))

vec(V ⊤V)⊤ vec(KΘ)
µ(dx),

where K̃Θ(x) is the PSD matrix whose ijth entry is σ(w⊤
i t(x) + bi)σ(w

⊤
j t(x) + bj)

⊤. We used
the cyclic property of the trace, writing the numerator as Tr

(
σ⊤V ⊤V σ

)
= Tr

(
V σσ⊤V ⊤) =

Tr
(
V ⊤V σσ⊤). We emphasise again that the role of the data t(x) and the hidden weights and

biases Θ in the NNK kσ,t,µ are reversed compared with how they have appeared in previous settings.
We may compute evaluations of kσ,t,µ in closed form for special cases of (σ, t, µ) using various
identities in O(d), where d is the dimensionality of the domain of integration, as we soon detail in
§ 2.2. Combined with the trace inner product, this leads to a total cost of computing z(V ,Θ) of
O(m2n+ dn2), where n and m are respectively the number of neurons in the first and second layers.

Remark 1 (Alternative parameterisations). SNEFY models depend on readout parameters V only
through the direction of vec(V ⊤V) and not on its norm or sign. For example, one can always find
another parameterisation of readout parameters that results in the same probability distribution
but has a normalising constant of 1. Furthermore, noticing that V only appears as a PSD matrix
M ≜ V ⊤V of rank at most min(m,n), one may alternatively parameterise a SNEFY by (M ,Θ).

2.2 Neural network kernels

In § 2.1, we reduced computation of the integral (2) to computation of a quadratic involving evalu-
ations of the NNK (5). Several closed-forms are known for different settings of σ, all with t = Id
and b = 0. The motivation behind derivation of existing known results is from the perspective of
inference in infinitely wide Bayesian neural networks [31] or to derive certain integrals involved in
computing predictors of infinitely wide neural networks trained using gradient descent [17]. Here
we describe some new settings that have not been investigated previously that are useful for the new
setting of SNEFY. Recall from (5), that our kernel, kσ,t,µ, is parametrised by activation function σ,
warping function (sufficient statistic) t, and base measure µ. All derivations are given in Appendix B.

The first kernel describes how we may express the kernels with arbitrary Gaussian base measures
ΦC,m in terms of the kernels with isotropic Gaussian base measures Φ. This means that it suffices to
consider isotropic Gaussian base measures in place of arbitrary Gaussian base measures.

Kernel 1. kσ,Id,ΦC,m
(θi,θj) = kσ,Id,Φ(T θi, T θj), where T Θ = (WA, b + Wm), T θi =

(w⊤
i A, bi +w

⊤
i m) andA is a matrix factor such that covariance C = AA⊤.

This kernel can also be used to describe kernels corresponding with Gaussian mixture model base
measures. The second kernel we describe is a minor extension to the case b ̸= 0 of a previously
considered kernel [37].

Kernel 2. kcos,Id,Φ(θi,θj) =
cos |bi−bj |

2 exp
(−∥wj−wj∥2

2

)
+

cos |bi+bj |
2 exp

(−∥wj+wj∥2

2

)
.

A similar result and derivation holds for the case of ksin,Id,Φ, which we do not reproduce here. We
now mention a case that shares a connection with exponential families (see § 3.2 for a detailed
description of this connection). The following and more σ = exp cases are derived in Appendix C.

4

Kernel 3. Define projSd−1(x) ≜ x/∥x∥ to be the projection onto the unit sphere. Then

kexp,projSd−1 ,Φ(θi,θj) = exp(bi + bj)
Γ(d/2)2d/2−1Id/2−1

(
∥wi +wj∥

)
∥wi +wj∥d/2−1

,

where Ip is the modified Bessel function of the first kind of order p. In the special case d = 3, we

have the closed-form kexp,projS2 ,Φ(θi,θj) = exp(bi + bj)

(
e∥wi+wj∥−e−∥wi+wj∥

)
2∥wi+wj∥ .

We end this section with a new analysis of the Snakea activation function, given by

Snakea(z) = z +
1

a
sin2(az) = z − 1

2a
cos(2az) +

1

2a
.

The Snakea function [55] is a neural network activation function that can resemble the ReLU on
an interval for special choices of a, is easy to differentiate, and as we see shortly, admits certain
attractive analytical tractability. We note that a similar activation function has been found using
reinforcement learning to search for good activation functions [39, Table 1 and 2, row 3], up to an
offset and hyperparameter a = 1. The required kernel is expressed in terms of the linear kernel
(Kernel 4) and the kernel corresponding with the activation function of [39], i.e. snake without the
offset, Snakea(·)− 1

2a (Kernel 5). We first describe the linear kernel.

Kernel 4. kId,Id,Φ(θi,θj) = w
⊤
i wj + bibj .

We now derive the kernel corresponding with Snakea activation functions up to an offset.
Kernel 5. The kernel kSnakea(·)− 1

2a ,Id,Φ(θi,θj) is equal to

1

4a2
kcos,Id,Φ(2aθi, 2aθj) +w

⊤
j wj

(
sin(2abj)e

−2a2∥wj∥2

+ sin(2abi)e
−2a2∥wi∥2

)
− bi

2a
cos(2abj)e

−2a2∥wj∥2

− bj
2a

cos(2abi)e
−2a2∥wi∥2

+ kId,Id,Φ(θ
(1)
i ,θ

(1)
j).

The kernel corresponding with Snakea activations is then stated in terms of Kernel 4 and 5.
Kernel 6. The kernel kSnakea,Id,Φ(θi,θj) is equal to

1

2a

(
bi −

1

2a
cos(2abi) exp(−2a2∥wi∥2) + bj −

1

2a
cos(2abj) exp(−2a2∥wj∥2)

)
+ kSnakea(·)− 1

2a ,Id,Φ(θi,θj) +
1

4a2
.

3 Properties of squared neural families

3.1 Fisher-Neyman factorisation and sufficient statistics

If the base measure µ is absolutely continuous with respect to some measure ν, and dµ
dν : Ω → [0,∞)

is the Radon-Nikodym derivative, then the SNEFY admits a probability density function p(· | V ,Θ)
with respect to ν,

p(x | V ,Θ) =
dµ

dν
(x)︸ ︷︷ ︸

Independent of V ,Θ

×
∥∥f (t(x);V ,Θ)

∥∥2
2

z(V ,Θ)
.︸ ︷︷ ︸

Depends on x only through t(x)

(7)

The Fisher-Neyman theorem (for example, see Theorem 6.14 of [6]) says that the existence of such a
factorisation is equivalent to the fact that t is a sufficient statistic for the parameters V ,Θ.

3.2 Connections with exponential families

In this section we will use the activation σ(u) = exp(u/2). We note that we can absorb the bias
terms b into the V parameters4 and obtain as a special case the following family of distributions

P (dx;V ,W) =
1

Tr(V ⊤V KΘ

) n∑
i=1

n∑
j=1

v⊤·,iv·,j exp

(
1

2
(wi +wj)

⊤t(x)

)
µ(dx), (8)

4Note that exp(bi) is independent of x and only appears as a product with vi.

5

which is a mixture5 of distributions Pe

(
·; 1

2 (wi +wj)
)

belonging to a classical exponential family
Pe [50, 32], given in the canonical form by

Pe(dx;w) =
1

ze(w)
exp

(
w⊤t(x)

)
µ(dx), ze(w) =

∫
X
exp

(
w⊤t(x)

)
µ(dx). (9)

It is helpful to identify the following three further cases:

1. When n = m = 1, v211 cancels in the numerator and denominator and we obtain an exponential
family with base measure µ supported on X, sufficient statistic t, canonical parameter w1 and
normalising constant ze(w1). Every exponential family is thus a SNEFY, but not conversely.

2. When m > 1 and n > 1, we obtain a type of exponential family mixture model with coefficients
V ⊤V , some of which may be negative. Advantages of allowing negative weights in mixture
models in terms of learning rates are discussed in [42]. The rank of V ⊤V is at most min(m,n).

3. When m > 1 and n > 1 and V ⊤V is diagonal (i.e. each column in V is orthogonal), there are at
most n non-zero mixture coefficients, all of which are nonnegative. That is, we obtain a standard
exponential family mixture model.

The kernel matrix KΘ in the normalising constant of (8) is tractable whenever the normalising
constant of the corresponding exponential family is itself tractable.

Proposition 1. Denote by ze(w) the normalising constant of the exponential family in (9). Then

kexp(·/2),t,µ(wi,wj) = ze

(
1

2
(wi +wj)

)
. (10)

The above kernel is well defined for any collection ofwi which belong to the canonical parameter
space of Pe, since the canonical parameter space is always convex [50]. This gives us a large
number of tractable instances of SNEFY which correspond to exponential family mixture models
allowing negative weights – a selection of examples is given in Appendix C. It is interesting that some
properties of the exponential families are retained by this generalisation belonging to SNEFYs. For
example, the following proposition, the proof of which is given in Appendix A, links the derivatives
of the log-normalising constant to the mean and the covariance of the sufficient statistic.

Proposition 2. Let σ(u) = exp(u/2) and define the log-normalising constant as Ψ = log z(V ,Θ).

Then
n∑

i=1

∂Ψ

∂wi
= E [t (x)] and

n∑
i=1

n∑
j=1

∂2Ψ

∂wiw⊤
j

= E
[
t (x) t (x)⊤

]
− E [t (x)]E [t (x)]⊤ .

3.3 Conditional distributions under SNEFY

An attractive property of SNEFY is that, under mild conditions, the family is closed under conditioning.

Theorem 1. Let x = (x1, x2) be jointly SNEFYX1×X2,t,σ,µ with parameters V and Θ =
([W1,W2] , b). Assume that µ(dx) = µ1(dx1)µ2(dx2) and t(x) =

(
t1(x1), t2(x2)

)
. Then

the conditional distribution of x1 given x2 = x2 is SNEFYX1,t1,σ,µ1 with parameters V and
Θ1|2 ≜ (W1,W2t2(x2) + b).

The proof, which we detail in Appendix A follows directly by folding the dependence on the
conditioning variable x2 into the bias term. We note that conditional density will typically be
tractable if the joint density is tractable since they share the same activation function σ. Thus,
whenever SNEFY corresponds to a tractable NNK with a non-zero bias, we can construct highly
flexible conditional density models using SNEFY by taking t2 itself to be a jointly trained deep neural
network. Crucially, t2 may be completely unconstrained. We use this observation in the experiments
(§ 4).

5Here we are concerned with the setting where every term in the mixture model belongs to the same family,
i.e. an exponential family mixture model but not a mixture of distinct exponential families.

6

3.4 Marginal distributions under SNEFY

Marginal distributions under SNEFY model for a general activation function σ need not belong to the
same family. In the special case σ = exp(·/2), SNEFY is in fact also closed under marginalisation,
which we prove in Appendix D. Even in the general σ case, marginal distributions are tractable and
admit closed forms whenever the joint SNEFY model and the conditional SNEFY are tractable.
Theorem 2. Let x = (x1, x2) be jointly SNEFYX1×X2,t,σ,µ with parameters V and Θ =
([W1,W2] , b). Assume that µ(dx) = µ1(dx1)µ2(dx2) and t(x) =

(
t1(x1), t2(x2)

)
. Then

the marginal distribution of x1 is

P1(dx1) =
Tr
(
V ⊤V C̃Θ(x1)

)
z(V ,Θ)

µ1(dx1),

where C̃(x1)ij = kσ,t2,µ2

((
w2i,w

⊤
1it1(x1) + bi

)
,
(
w2j ,w

⊤
1jt1(x1) + bj

))
.

The proof is given in Appendix A. Due to this tractability of the marginal distributions, it is straight-
forward to include the likelihood corresponding to incomplete observations (i.e. samples where we
are missing some of the components of x) into the density estimation task.

3.5 Connections with kernel-based methods for nonnegative functions

Figure 1: (Left) An instance of an (untrained)
SNEFYR2,Id,Snakea,Φ density with n = 100,
m = 1, vij ∼ N (0, 1/n), wij ∼ N (0, 4)
and b = 0. Shown are 50 exact samples
found using rejection sampling. Numerical
quadrature for this and every example sup-
ported on Rd in § 4 returns a value of 1.00
for the integral over X. (Right) A trained
SNEFYS2,Id,exp,dx density with n = m = 30.
Shown is the training and testing dataset [44]
also used by [19] for point processes.

SNEFY may be viewed as a neural network variant of
the non-parametric kernel models for non-negative
functions [25], which are constructed as follows. Let
ψ : X → H be a feature mapping to a (possibly
infinite dimensional) Hilbert space H. Let S(H) be
the set of all positive semidefinite (PSD) bounded
linear operatorsA : H → H. Then

hA(x) = ⟨ψ(x),Aψ(x)⟩H (11)

gives an elegant model for nonnegative functions
parametrised by A ∈ S(H), and their applica-
tion to density modelling with respect to a base
measure has also been explored [25, 42]. Note
that by assuming boundedness of A and ψ, the
normalizing constant [25, Proposition 4] is given
by Tr

(
A
∫
Xψ(x) ⊗ ψ(x)µ(dx)

)
, which is anal-

ogous to our work where the normalising constant
is given by z(V ,Θ) = Tr(V ⊤V KΘ). This can
be seen by replacing A with V ⊤V and replacing∫
Xψ(x) ⊗ ψ(x)µ(dx) by KΘ =

∫
X σ(Wt(x) +

b)σ(Wt(x) + b)⊤µ(dx).

Despite feature maps being infinite-dimensional,
model (11) often reduces to an equivalent representation in finite-dimensions. [25] utilise a represen-
ter theorem when (11) is fitted to data using a regularised objective, while [42] more directly assume
that the linear operatorA is inside the span of the features evaluated at the available data {xℓ}Nℓ=1.
The resulting model resembles SNEFY where n equals to the number N of datapoints, i.e.

hM (x) = [κ(x,x1), . . . , . . . , κ(x,xN)]⊤M [κ(x,x1), . . . , . . . , κ(x,xN)] (12)

for a PSD matrixM ∈ RN×N and κ(xi,xj) = ⟨ψ(xi),ψ(x)⟩H.

However, there are fundamental differences between (12) and SNEFY which we list below. The models
can be seen as complementary and they inherit advantages and disdvantages of kernel methods and
neural networks common in other settings, respectively.

• Tractability. Whereas we identify many tractable instances of SNEFY, the normalising constant of
(12) requires computing

∫
κ(xi,x)κ(x,xj)µ(dx) – this is not generally tractable apart from some

7

limited combinations of κ and µ (e.g. for a Gaussian kernel κ and a Gaussian µ). Note that this
kernel is evaluated at the datapoints, whereas SNEFY evaluates the kernel at the learned parameters
wi. [42] focuses on the specific case where κ is a Gaussian kernel, studying properties of the
resulting density class which is a mixture of Gaussian densities allowing for negative weights, a
model equivalent to SNEFY with the exponential activation function as described in Appendix C.
Note that our treatment of SNEFY as a generalisation of the exponential family goes well beyond
the Gaussian case, and that tractable instances arise with many other activation functions.

• Expressivity. Crucially, the feature map ψ and consequently finite dimensional representation via
κ in (12) are treated as fixed feature maps and are not themselves learned – instead, expressivity
in (12) only comes from fitting M (and potentially lengthscale hyperparameters of κ), at the
expense of a more involved optimiisation over the space of PSD matrices. In contrast, we learnW
(analogous to learning ψ) and V jointly using neural-network style gradient optimisers. SNEFY is
fully compatible with end-to-end and jointly optimised neural network frameworks, a property we
leverage heavily in our experiments in § 4.

• Conditioning. By explicitly writing parametrisation which includes the biases, we obtain a family
closed under conditioning and thus a natural model for conditional densities, whereas it is less clear
how to approach conditioning when given a generic feature map ψ.

Other related work After submission, we became aware of another related literature, which
includes mixture models with potentially negative mixture coefficients via squaring [23] and positive
semi-definite probabilistic circuits [43]. We believe a marriage of ideas from SNEFY and probabilistic
circuits will lead to future developments in tractable and expressive probability models.

4 Experiments

Implementation All experiments are conducted on a Dual Xeon 14-core E5-2690 with 30GB
of reserved RAM and a single NVidia Tesla P100 GPU. Full experimental details are given in
Appendix E. We build our implementation on top of normflows [45], a PyTorch package for
normalising flows. SNEFYs are built as a BaseDistribution, which are base distributions inside
a NormalizingFlow with greater than or equal to zero layers. We train all models via maximum
likelihood estimation (MLE) i.e. minimising forward KL divergence.

2D synthetic unconditional density estimation We consider the 2 dimensional problems also
benchmarked in [46]. We compare the test performance, computation time and parameter count of
non-volume preserving flows (NVPs) [7] with four types of base distribution: SNEFY, resampled [46]
(Resampled), diagonal Gaussian (Gauss) and Gaussian mixture model (GMM). We consider flow
depths of 0, 1, 2, 4, 8 and 32 where a flow depth of 0 corresponds with the base distribution only.
We use σ = cos, t = Id, X = Rd and a Gaussian mixture model base density. We set m = 1 and
n = 50. Full architectures and further experimental details are described in Appendix E.1.

Results are shown in Table 2 for the 0 and 16 layer cases, and further tables for 1, 2, 4 and 8 layers
are given in Appendix E.1. Our observations are that all base distributions are able to achieve good
performance, provided they are appended with a normalising flow of appropriate depth. SNEFY is
able to achieve good performance with depth 0 on all three datasets, as are Resampled and GMM
for the Moons dataset. The parameter count for well-performing SNEFY models is very low, but
the computation time can be relatively high. However, SNEFY is the only model which consistently
achieves the highest performance within one standard deviation across all normalising flow depths.

Data on the sphere We compare the three cases mentioned in § 3.2 using Kernel 3, i.e. mixtures
of the von Mises Fisher (VMF) distribution, as shown in Figure 1. Over 50 runs, the unconstrained
V , diagonal V , and n = m = 1 cases respectively obtain test negative log likelihoods of 1.38 ±
9.64× 10−3, 1.46± 0.016 and 2.34± 0.26 each in 111.18± 2.58, 109.12± 0.80 and 61.88± 0.33
seconds (average ± standard deviation). In this setting, allowing for a fully flexible V , going beyond
the classical mixture model, shows clear benefits in performance. Results are summarised in Table 3.
Full details are given in Appendix E.2.

Conditional density estimation on astronomy data Predicting plausible values for the velocity of
distant astronomical objects (such as galaxies or quasars) without measuring their full spectra, but by

8

SNEFY 0 Resampled 0 Gauss 0 GMM 0 SNEFY 16 Resampled 16 Gauss 16 GMM 16
Moons −1.59± 0.02 −1.60± 0.02 −3.29± 0.02 −1.59± 0.04 −1.57± 0.03 −1.59± 0.02 −1.68± 0.24 −1.57± 0.03

241 66817 4 50 19281 85857 19044 19090
1200.84± 109.77 541.11± 12.20 606.35± 20.29 629.11± 14.57 2844.09± 254.02 1867.26± 167.75 2226.37± 174.80 2276.78± 211.15

Circles −1.92± 0.03 −2.42± 0.22 −3.55± 0.01 −2.07± 0.07 −1.92± 0.04 −1.96± 0.04 −2.22± 0.30 −1.93± 0.03
241 66817 4 50 19281 85857 19044 19090

643.80± 150.84 166.35± 20.59 52.63± 3.96 73.52± 5.47 2272.15± 281.76 1533.30± 158.90 1660.77± 169.02 1673.54± 166.84
Rings −2.41± 0.05 −2.62± 0.01 −3.26± 0.01 −2.67± 0.03 −2.34± 0.10 −2.36± 0.14 −2.51± 0.22 −2.31± 0.04

241 66817 4 50 19281 85857 19044 19090
997.73± 107.80 409.77± 19.37 416.23± 18.11 433.82± 16.06 2654.22± 269.14 1774.06± 182.25 2045.65± 170.80 2070.60± 177.06

Table 2: The first quantity is the average ± sample standard deviation over 20 runs of test loglikelihood.
The second quantity is the parameter count. The third quantity is the average ± sample standard
deviation over 20 runs of the computation time (seconds). The number in each column header is the
number of non-volume preserving flow layers appended after the base distribution. Here there are 0
or 16 NVP layers. More tables showing intermediate layer results are given in Appendix E.1.

Method Average Test NLL ↓ Compute time (s) Parameter count
SNEFY n = 32 −2.195± 0.024 495.720± 22.561 179748
SNEFY n = 16 −2.172± 0.034 404.291± 57.605 46356
SNEFY n = 8 −2.108± 0.089 390.870± 16.028 12300
CNF L = 4 −2.156± 0.018 202.1290± 10.380 1413
CNF L = 2 −2.163± 0.024 155.090± 15.809 1155
CNF L = 1 −2.171± 0.012 122.304± 1.194 1026

CKDE −2.148 391.867 (Not GPU-accelerated) Train set size = 74309× 6

Table 3: Performance comparison of methods on astronomy dataset. Excluding CKDE which is
deterministic, an average is taken over 50 random initialisations with ± indicating standard deviation.
SNEFY shows a statistically significant average increase in performance over CNF (using a two-sample
t-test), and over CKDE (using a one-sample t-test). Full experimental details in Appendix E.3.

measuring shifted spectra through broadband filters, is known as photometric redshift. Photometric
redshift is an important problem in modern astronomy, as large surveys have increased the amount
of available data that do not directly measure spectra. We estimate distributions for cosmological
redshift x1 ∈ R conditional on features x2 ∈ R5 using a public dataset [2]. The features x2 are the
magnitude a broadband filter (red) and set of four pairwise distances between broadband colour filters
(ultraviolet-green, green-red, red-infrared1, infrared1-infrared2). We benchmark our own SNEFY
against a conditional kernel density estimator (CKDE) and a conditional normalising flow (CNF) [54].
We use a publically available implementation [10] of CNF. Our SNEFY here is not appended with any
normalising flow layers. We use σ = Snakea, t = Id, X = R and a Gaussian base density. We use a
deep conditional feature extractor with layer widths [25n, 24n, 23n, 22n, 2n], and then set m = n/2.
Full details are given in Appendix E.3.

While CNFs have shown great promise in modelling high dimensional image data, we expect that they
are not as well-suited to nontrivial tabular data with a small to medium number of dimensions. This
is because each layer is required to be an invertible transformation in the variable being modelled, so
the input and output sizes must be the same, thereby significantly limiting the parameter count in
each layer. We could of course increase the number of layers in the CNF model to achieve higher
parameter counts, however this results in a model that is difficult to train. In our experiments, we
found that increasing the depth of the CNF decreased its performance. On the other hand, SNEFY
may utilise any number of parameters, as the conditioning network t2 is completely unrestricted.

Density estimation on astronomy data using partial (marginal) observations We perform joint
probability density estimation using the redshift data. The original training dataset is a matrix in
R74309×6. We partition this matrix into batches of size 256 and randomly set each column of each
batch to NaN with probability q (i.e. the corresponding dimension is missing from observations). We
then train a SNEFY model that utilises partial observations by maximising the marginal likelihood
according to Theorem 2. We leave the original 74557× 6 testing dataset untouched, and measure the
test NLL after training. We plot the NLL as a function of 1−q, as shown in Figure 2. We also compare
the performance of the SNEFY that uses partial observations with the performance of SNEFY that simply
throws away incomplete observations, as well as the same normalising flow baselines that throw away
incomplete observations that were used in the conditional density estimation setting. There do exist
normalising flow approaches that jointly optimises conditional distributions for missing data and

9

Figure 2: Density estimation under par-
tial observations. The right plot is a
zoomed in version of the left plot. NF-
1, NF-2 and NF-4 are respectively nor-
malising flows of depth 1, 2 and 4.
Normalising flow models and SNEFY
without marginalisation discard incom-
plete observations, whereas SNEFY use
Theorem 2 to include partial observa-
tions via maximum marginal likelihood.
Marginal likelihoods allow for an im-
proved NLL.

model parameters [3] or samples from missing data and optimises for model parameters [41], however
these do not allow for maximum likelihood estimation. Our observations are twofold: including partial
observations improves performance, and adding more complete observations improves performance.

5 Discussion and conclusion

We constructed a new class of probability models – SNEFY – by normalising the squared norm of a
neural network with respect to a base measure. SNEFY possesses a number of convenient properties:
tractable exact normalising constants in many instances we identified, closure under conditioning,
tractable marginalisation, and intriguing connections with existing models. SNEFY shows promise
empirically, outperforming competing (conditional) density estimation methods in experiments.

Sampling versus density estimation We focus here on the problem of density estimation, for which
SNEFY is well-suited. While it is sometimes possible to obtain exact SNEFY samples using rejection
sampling, sampling is more computationally expensive than in other models such as normalising
flows. Future work will focus on sampling, as has been done with related models [26], where the
special case of Gaussian σ and hyperrectangular support X is considered. In [26], r approximate
samples with O

(
r log2 |X|+ rd log2

2
ρ

)
evaluations of the normalising constant are obtained. Here

ρ is an approximation tolerance parameter. Note that this complexity significantly improves upon
naive rejection sampling, which typically scales exponentially in dimension d. In the unconditional
setting, SNEFY is constructed as only a 2-layer network, thereby limiting expressivity. However, in
the conditional density estimation setting, we may use any number of layers and any architecture for
the conditioning network t2. Finally, SNEFY inherits all the usual limitations and advantages over
mirroring kernel-based approaches, as discussed in § 3.5.

Future work We see a number of further promising future research directions. First, as we detail in
Appendix F, choosing σ(·) = exp(i·) and identity sufficient statistics results in a kernel kexp(i·),Id,µ
which is the Fourier transform of a nonnegative measure. By Bochner’s theorem, the kernel is
guaranteed to be (real or complex-valued) shift-invariant. The kernel matrix is Hermitian PSD (so
that the normalising constant is positive and nonnegative), and we may also allow (but do not require)
the readout parameters V to be complex. We note that the same result would be obtained if one used
a mixture of real-valued cos and sin activations with shared parameters (see Remark 3). Second, an
alternative deep model to our deep conditional feature extractor might be to use a SNEFY model as
a base measure µ for another SNEFY model; this might be repeated L times. This leads to O(n2L)
integration terms for the normalising constant. The individual terms are tractable in certain cases,
for example when σ is exponential or trigonometric. Third, when modelling discrete distributions
with trigonometric activations, the NNK can be expressed in terms of convergent Fourier series (see
Appendix G) Finally, our integration technique can be applied to other settings. For example, we
may build a Poisson point process intensity function using a squared neural network and compute
the intensity function in closed-form, offering a model that scales quadratically in the number of
neurons O(n2) instead of comparable models which scale cubically in the number of datapoints
O(N3) [9, 51].

10

Acknowledgments and Disclosure of Funding

Russell and Cheng Soon would like to acknowledge the support of the Machine Learning and
Artificial Intelligence Future Science Platform, CSIRO. The authors would like to thank Jia Liu for
early discussions about the idea.

References
[1] Francis Bach. Breaking the curse of dimensionality with convex neural networks. Journal of

Machine Learning Research, 18(19):1–53, 2017.

[2] R Beck, C-A Lin, EEO Ishida, F Gieseke, RS de Souza, MV Costa-Duarte, MW Hattab, and
A Krone-Martins. On the realistic validation of photometric redshifts. Monthly Notices of the
Royal Astronomical Society, 468(4):4323–4339, 2017.

[3] Edgar A Bernal. Training deep normalizing flow models in highly incomplete data scenarios
with prior regularization. arXiv preprint arXiv:2104.01482, 2021.

[4] Youngmin Cho and Lawrence K. Saul. Kernel methods for deep learning. In Advances in
Neural Information Processing Systems, pages 342–350, 2009.

[5] Michael Collins, Sanjoy Dasgupta, and Robert E Schapire. A generalization of principal
components analysis to the exponential family. Advances in neural information processing
systems, 14, 2001.

[6] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for machine learning.
Cambridge University Press, 2020.

[7] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In
International Conference on Learning Representations, 2017.

[8] Bradley Efron and Trevor Hastie. Computer Age Statistical Inference: Algorithms, Evidence,
and Data Science, volume 6. Cambridge University Press, 2021.

[9] Seth Flaxman, Yee Whye Teh, and Dino Sejdinovic. Poisson intensity estimation with repro-
ducing kernels. In Artificial Intelligence and Statistics, pages 270–279. PMLR, 2017.

[10] Thorsten Glüsenkamp. Unifying supervised learning and vaes–automating statistical inference
in (astro-) particle physics with amortized conditional normalizing flows. arXiv e-prints, 2020.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, volume 27, 2014.

[12] Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, and Amin Karbasi. Fast
neural kernel embeddings for general activations. In Advances in Neural Information Processing
Systems, volume 35, pages 35657–35671, 2022.

[13] Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, and Amin Karbasi. Fast
neural kernel embeddings for general activations. Advances in neural information processing
systems, 2022.

[14] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units. arXiv preprint arXiv:1606.08415,
2016.

[15] Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural
computation, 14(8):1771–1800, 2002.

[16] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[17] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

11

[18] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[19] Thomas Joseph Lawrence. Point pattern analysis on a sphere. Master’s thesis, The University
of Western Australia, 2018.

[20] Nicolas Le Roux and Yoshua Bengio. Continuous neural networks. In Artificial Intelligence
and Statistics, pages 404–411, 2007.

[21] Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-
based learning. Predicting structured data, 1(0), 2006.

[22] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as Gaussian processes. In International
Conference on Learning Representations, 2018.

[23] Lorenzo Loconte, Stefan Mengel, Nicolas Gillis, and Antonio Vergari. Negative mixture models
via squaring: Representation and learning. In The 6th Workshop on Tractable Probabilistic
Modeling, 2023.

[24] David JC MacKay. Introduction to Gaussian processes, 1998.

[25] Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-
negative functions. Advances in neural information processing systems, 33:12816–12826,
2020.

[26] Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Sampling from arbitrary functions
via psd models. In International Conference on Artificial Intelligence and Statistics, pages
2823–2861. PMLR, 2022.

[27] P. McCullagh and J.A. Nelder. Generalized Linear Models, Second Edition. Monographs on
Statistics and Applied Probability Series. Chapman & Hall, 1989.

[28] Lassi Meronen, Christabella Irwanto, and Arno Solin. Stationary activations for uncertainty
calibration in deep learning. Advances in Neural Information Processing Systems, 33:2338–
2350, 2020.

[29] Lassi Meronen, Martin Trapp, and Arno Solin. Periodic activation functions induce stationarity.
Advances in Neural Information Processing Systems, 34:1673–1685, 2021.

[30] Charlie Nash and Conor Durkan. Autoregressive energy machines. In International Conference
on Machine Learning, pages 1735–1744, 2019.

[31] Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto,
1995.

[32] Frank Nielsen and Vincent Garcia. Statistical exponential families: A digest with flash cards.
arXiv preprint arXiv:0911.4863, 2009.

[33] Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron, Daniel A
Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian deep convolutional networks
with many channels are Gaussian processes. In The International Conference on Learning
Representations, 2019.

[34] George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji
Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. The Journal
of Machine Learning Research, 22(1):2617–2680, 2021.

[35] Georgios Papamakarios. Neural density estimation and likelihood-free inference. PhD thesis,
University of Edinburgh, 2019.

[36] Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-function
networks. Neural computation, 3(2):246–257, 1991.

12

[37] Tim Pearce, Russell Tsuchida, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. Expressive
priors in Bayesian neural networks: Kernel combinations and periodic functions. In Uncertainty
in Artificial Intelligence, 2019.

[38] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances
in neural information processing systems, 20, 2007.

[39] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for activation functions, 2018.

[40] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
International conference on machine learning, pages 1530–1538, 2015.

[41] Trevor W Richardson, Wencheng Wu, Lei Lin, Beilei Xu, and Edgar A Bernal. Mcflow:
Monte carlo flow models for data imputation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14205–14214, 2020.

[42] Alessandro Rudi and Carlo Ciliberto. PSD representations for effective probability models. In
Advances in Neural Information Processing Systems, volume 34, pages 19411–19422, 2021.

[43] Aleksanteri Sladek. Positive Semi-Definite Probabilistic Circuits. Master’s thesis, Aalto
University. School of Science, 2023.

[44] W. Steinicke. Revised new general catalogue and index catalogue (revised ngc/ic). http:
//www.klima-luft.de/steinicke/index_e.htm. Accessed 2nd May 2015.

[45] Vincent Stimper, David Liu, Andrew Campbell, Vincent Berenz, Lukas Ryll, Bernhard
Schölkopf, and José Miguel Hernández-Lobato. normflows: A PyTorch package for nor-
malizing flows. arXiv preprint arXiv:2302.12014, 2023.

[46] Vincent Stimper, Bernhard Schölkopf, and José Miguel Hernández-Lobato. Resampling Base
Distributions of Normalizing Flows. In Proceedings of The 25th International Conference on
Artificial Intelligence and Statistics, volume 151, pages 4915–4936, 2022.

[47] Russell Tsuchida, Tim Pearce, Chris van der Heide, Fred Roosta, and Marcus Gallagher.
Avoiding kernel fixed points: Computing with ELU and GELU infinite networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 9967–9977, 2021.

[48] Russell Tsuchida, Fred Roosta, and Marcus Gallagher. Invariance of weight distributions in
rectified MLPs. In International Conference on Machine Learning, pages 5002–5011, 2018.

[49] Russell Tsuchida, Fred Roosta, and Marcus Gallagher. Richer priors for infinitely wide multi-
layer perceptrons. arXiv preprint arXiv:1911.12927, 2019.

[50] Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and
variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

[51] Christian J Walder and Adrian N Bishop. Fast bayesian intensity estimation for the permanental
process. In International Conference on Machine Learning, pages 3579–3588. PMLR, 2017.

[52] Christopher KI Williams. Computing with infinite networks. In Advances in neural information
processing systems, pages 295–301, 1997.

[53] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning.
MIT press Cambridge, MA, 2006.

[54] Christina Winkler, Daniel Worrall, Emiel Hoogeboom, and Max Welling. Learning likelihoods
with conditional normalizing flows, 2019.

[55] Liu Ziyin, Tilman Hartwig, and Masahito Ueda. Neural networks fail to learn periodic functions
and how to fix it. In Advances in Neural Information Processing Systems, volume 33, pages
1583–1594, 2020.

13

http://www.klima-luft.de/steinicke/index_e.htm
http://www.klima-luft.de/steinicke/index_e.htm

A Proofs

Identity 1. The integral (2) admits a representation of the form

z(V ,Θ) = Tr
(
V ⊤V KΘ

)
(6)

where kσ,t,µ is as defined in (5), andKΘ is the PSD matrix whose ijth entry is kσ,t,µ(θi,θj).

Proof. Let K̃Θ(x) be the PSD matrix whose ijth entry is σ(w⊤
i t(x) + bi)σ(w

⊤
j t(x) + bj)

⊤. The
squared norm of the neural network evaluation is given by Tr

(
V ⊤V K̃Θ(x)

)
, since

∥∥V σ(Wt(x) + b)
∥∥2
2
=

m∑
i=1

n∑
j1=1

n∑
j2=1

vij1vij2σ
(
w⊤

j1t(x) + bj1
)
σ
(
w⊤

j2t(x) + bj2
)

=

n∑
j1=1

n∑
j2=1

v⊤·,j1v·,j2σ
(
w⊤

j1t(x) + bj1
)
σ
(
w⊤

j2t(x) + bj2
)

= ⟨V ⊤V , K̃Θ(x)⟩F
= Tr

(
V ⊤V K̃Θ(x)

)
,

where v·,j1 denotes the j1th column of V and ⟨·, ·⟩F denotes the Frobenius inner product. Therefore
using the definition (2) directly and the linearity of the Frobenius inner product, the normalising
constant is

z(V ,Θ) =

∫
X

∥∥V σ(Wt(x) + b)
∥∥2
2
µ(dx)

=

∫
X
Tr
(
V ⊤V K̃Θ(x)

)
µ(dx)

= Tr
(
V ⊤V

∫
X
K̃Θ(x)µ(dx)

)
= Tr

(
V ⊤V KΘ

)
. (13)

Proposition 2. Let σ(u) = exp(u/2) and define the log-normalising constant as Ψ = log z(V ,Θ).

Then
n∑

i=1

∂Ψ

∂wi
= E [t (x)] and

n∑
i=1

n∑
j=1

∂2Ψ

∂wiw⊤
j

= E
[
t (x) t (x)⊤

]
− E [t (x)]E [t (x)]⊤ .

Proof. The result follows by noticing that the logarithmic derivative property holds,
∑n

i=1
∂Ψ
∂wi

=
1
z

∑n
i=1

∂ z
∂wi

, and that by writing

z =
∑
i,j

v⊤·,iv·,j

∫
exp

(
1

2
w⊤

i t(x)

)
exp

(
1

2
w⊤

j t(x)

)
µ (dx) ,

we obtain

∂ z

∂wi
= ∥v·,i∥2

∫
t(x) exp

(
w⊤

i t(x)
)
µ (dx)

+v⊤·,i
∑
j ̸=i

v·,j

∫
t(x) exp

(
1

2
w⊤

i t(x)

)
exp

(
1

2
w⊤

j t(x)

)
µ (dx)

= v⊤·,i
∑
j

v·,j

∫
t(x) exp

(
1

2
w⊤

i t(x)

)
exp

(
1

2
w⊤

j t(x)

)
µ (dx) .

Now summing across i gives
∑n

i=1
∂Ψ
∂wi

=
∫
t(x)P (dx) as required.

14

To obtain the second result, we apply the product rule to find

∑
i,j

∂2Ψ

∂wiw⊤
j

=
1

z

∑
i,j

∂2 z

∂wiw⊤
j

−

(
1

z

∑
i

∂ z

∂wi

)1

z

∑
j

∂ z

∂w⊤
j

and note that

∂2 z

∂wiw⊤
j

=

1
2v

⊤
·,iv·,j

∫
t(x)t(x)⊤ exp

(
1
2w

⊤
i t(x)

)
exp

(
1
2w

⊤
j t(x)

)
µ (dx) , if i ̸= j,

∥v·,i∥2
∫
t(x)t(x)⊤ exp

(
w⊤

i t(x)
)
µ (dx)

+ 1
2v

⊤
·,i
∑

r ̸=i v·,j
∫
t(x)t(x)⊤ exp

(
1
2w

⊤
i t(x)

)
exp

(
1
2w

⊤
r t(x)

)
µ (dx) , if i = j.

Thus,

1

z

∑
i,j

∂2 z

∂wiw⊤
j

=
1

z

n∑
i=1

 ∂2 z

∂wiw⊤
i

+
∑
j ̸=i

∂2 z

∂wiw⊤
j

=

1

z

∑
i,j

v⊤i vj

∫
t(x)t(x)⊤ exp

(
1

2
w⊤

i t(x)

)
exp

(
1

2
w⊤

j t(x)

)
µ (dx)

=

∫
t(x)t(x)⊤P (dx),

as required.

Remark 2. Given the above relationship between the log-normalising constant and the expectation
of the sufficient statistic, we can also ask whether the maximum likelihood estimation of the mean
parameters E [t (x)] proceeds in the same way as in the exponential family case. The answer is
positive but with two caveats. First, the log-likelihood need not be concave in W , and may have
many local optima or stationary points. Second, unlike the exponential family distribution, the SNEFY
distribution is not determined by its mean parameters, so the MLE estimation of the mean parameters
may not constitute a meaningful task in SNEFY modelling (unless we are in the case where precisely
the expectation of t(x) under the SNEFY model is of interest).

Corollary 1. Given a dataset {xℓ}Nℓ=1, and a SNEFY model with σ(u) = exp(12u), assume that all
rows of the maximum likelihood estimator ofW are in the interior of the natural parameter space
of the corresponding exponential family. Denote the mean parameter as m = E [t (x)]. Then the
maximum likelihood estimate ofm is m̂ = 1

N

∑N
ℓ=1 t(xℓ).

Proof. Since MLE is achieved at a stationary point of the log-likelihood, the proof follows by writing
the log likelihood as

N∑
ℓ=1

log p(xℓ;V ,Θ) = const +
N∑
ℓ=1

log ∥f(t(xℓ);V ,Θ)∥22 −NΨ

and concluding that at the MLE {w∗
i }ni=1 forW , we must have

N∑
ℓ=1

∂ log ∥f(t(xℓ);V ,Θ)∥22
∂w∗

i

= N
∂Ψ

∂w∗
i

, i = 1, . . . , n. (14)

But
n∑

i=1

∂ log ∥f(t(xℓ);V ,Θ)∥22
∂wi

= t(xℓ),

so the result follows by summing (14) over i and dividing by N . Note that maximum likelihood
estimates are invariant to transformations, even if the transformation is not bijective. So if {w∗

i }ni=1
is an MLE, we may construct a mapping from {w∗

i }ni=1 to a corresponding MLE m̂ for the mean
parameter.

15

Theorem 1. Let x = (x1, x2) be jointly SNEFYX1×X2,t,σ,µ with parameters V and Θ =
([W1,W2] , b). Assume that µ(dx) = µ1(dx1)µ2(dx2) and t(x) =

(
t1(x1), t2(x2)

)
. Then

the conditional distribution of x1 given x2 = x2 is SNEFYX1,t1,σ,µ1 with parameters V and
Θ1|2 ≜ (W1,W2t2(x2) + b).

Proof. The joint distribution of x satisfies

P (dx;V ,Θ) ∝
∥∥∥V σ

(
W1t1(x1) +W2t2(x2) + b

)∥∥∥2
2
µ(dx).

Therefore, the distribution of x1 conditionally on x2 = x2, which is obtained by dividing the joint
distribution by the marginal distribution of x2 (which is independent of x1), satisfies

P1

(
dx1 | x2;V ,

(
W1,W2t2(x2) + b

))
∝
(
V σ
(
W1t1(x1) +W2t2(x2) + b

))2
µ1(dx1).

That is, the termW2t2(x2) + b is viewed as a constant bias term when the expression on the right
hand side is an unnormalised measure with respect to the variable x1.

Theorem 2. Let x = (x1, x2) be jointly SNEFYX1×X2,t,σ,µ with parameters V and Θ =
([W1,W2] , b). Assume that µ(dx) = µ1(dx1)µ2(dx2) and t(x) =

(
t1(x1), t2(x2)

)
. Then

the marginal distribution of x1 is

P1(dx1) =
Tr
(
V ⊤V C̃Θ(x1)

)
z(V ,Θ)

µ1(dx1),

where C̃(x1)ij = kσ,t2,µ2

((
w2i,w

⊤
1it1(x1) + bi

)
,
(
w2j ,w

⊤
1jt1(x1) + bj

))
.

Proof. The marginal distribution of the random variable x1 is obtained by marginalising out the joint
distribution with respect to x2,

P1(dx1) =
1

z(V ,Θ)

(∫
X2

∥∥∥V σ
(
W1t1(x1) +W2t2(x2) + b

)∥∥∥2
2
µ2(dx2)

)
︸ ︷︷ ︸

≜z2

µ1(dx1).

The integral z2 takes a similar form to z(V ,Θ),

z2 = Tr
(
V ⊤V C̃Θ(x1)

)
, where

C̃ij(x1) =

∫
X2

σ
(
w⊤

1it1(x1) +w
⊤
2it2(x2) + bi

)
σ
(
w⊤

1jt1(x1) +w
⊤
2jt2(x2) + bj

)
µ2(dx2)

= kσ,t2,µ2

((
w2i,w

⊤
1it1(x1) + bi

)
,
(
w2j ,w

⊤
1jt1(x1) + bj

))
.

B Derivation of neural network kernels

Kernel 1. kσ,Id,ΦC,m
(θi,θj) = kσ,Id,Φ(T θi, T θj), where T Θ = (WA, b + Wm), T θi =

(w⊤
i A, bi +w

⊤
i m) andA is a matrix factor such that covariance C = AA⊤.

Proof. The NNK may be expressed as an expectation with respect to a Gaussian random variable
x with mean m and covariance matrix C. It holds that x d

= Az +m, where z is a zero-mean
independent standard Gaussian random vector, so the kernel may be expressed in terms of an
expectation over z instead. More concretely,

kσ,Id,ΦC,m
(θi,θj) = Ex

[
σ(w⊤

i x+ bi)σ(w
⊤
j x+ bj)

]
= Ez

[
σ(w⊤

i Az+w⊤
i m+ bi)σ(w

⊤
j Az+w⊤

j m+ bj)
]

= kσ,Id,Φ(T θi, T θj).

16

Kernel 2. kcos,Id,Φ(θi,θj) =
cos |bi−bj |

2 exp
(−∥wj−wj∥2

2

)
+

cos |bi+bj |
2 exp

(−∥wj+wj∥2

2

)
.

Proof. First observe that the expected value of the cosine of a Gaussian random variable can be
evaluated by equating the real and imaginary components of the characteristic function of a Gaussian
random variable and the expected value of Euler’s form. That is, if z is Gaussian with mean m and
variance v2,

Eeiz = E[cos(z)] + iE[sin(z)] = eim− 1
2v

2

= (cosµ+ i sinm)e−
1
2 v

2

=⇒ E[cos(z)] = cos(m)e−
1
2 v

2

.

With this identity at hand, we proceed by direct evaluation of (4).

kcos,Id,Φ(θi,θj) = Ex

[
cos(w⊤

i x+ bi) cos(w
⊤
j x+ bj)

]
, x ∼ N

(
0, I

)
=

1

2
Ex

[
cos
(
(wi −wj)

⊤x+ (bi − bj)
)
+ cos

(
(wi +wj)

⊤x+ (bi + bj)
)]

=
1

2
cos |bi − bj | exp

(
− 1

2
∥wi −wj∥2

)
+ cos |bi + bj | exp

(
− 1

2
∥wi +wj∥2

)
.

Kernel 4. kId,Id,Φ(θi,θj) = w
⊤
i wj + bibj .

Proof. This is immediate from the expected value of a product of two correlated Gaussians,w⊤
i x+bi

and w⊤
j x+ bj .

Kernel 5. The kernel kSnakea(·)− 1
2a ,Id,Φ(θi,θj) is equal to

1

4a2
kcos,Id,Φ(2aθi, 2aθj) +w

⊤
j wj

(
sin(2abj)e

−2a2∥wj∥2

+ sin(2abi)e
−2a2∥wi∥2

)
− bi

2a
cos(2abj)e

−2a2∥wj∥2

− bj
2a

cos(2abi)e
−2a2∥wi∥2

+ kId,Id,Φ(θ
(1)
i ,θ

(1)
j).

Proof. Choosing σ = Snakea(·)− 1
2a in (4), and expanding the resulting quadratic,

kSnakea(·)− 1
2a ,Id(θi,θj)

=
1

4a2
Ex

[
cos
(
2a(w⊤

i x+ bi)
)
cos
(
2a(w⊤

j x+ bj)
)]

︸ ︷︷ ︸
Kernel 2

− 1

2a
Ex

[
(w⊤

i x+ bi) cos
(
2a(w⊤

j x+ bj)
)]

︸ ︷︷ ︸
≜A

−

1

2a
Ex

[
cos
(
2a(w⊤

i x+ bi)
)
(w⊤

j x+ bj)
]

︸ ︷︷ ︸
≜B

+Ex

[
(w⊤

i x+ bi)(w
⊤
j x+ bj)

]︸ ︷︷ ︸
Kernel 4

. (15)

We now evaluate A and B. The terms A and B obey a symmetry, so it suffices to evaluate term A.
Term A can be evaluated using Stein’s lemma,

A =
1

2a
E
[
(z1 + bi) cos(z2 + 2abj)

]
, (z1, z2)

⊤ ∼ N

((
0
0

)
,

(
w⊤

i wi 2aw⊤
i wj

2aw⊤
j wi 4a2w⊤

j wj

))

=
1

2a
E
[
z1 cos(z2 + 2abj)

]
+

bi
2a

E
[
cos(z2 + 2abj)

]
= −w⊤

i wjE
[
sin(z2 + 2abj)

]
+

bi
2a

E
[
cos(z2 + 2abj)

]
= −w⊤

i wj sin(2abj) exp(−2a2∥wj∥2) +
bi
2a

cos(2abj) exp(−2a2∥wj∥2).

17

Assembling all the known individual terms in (15),

kSnakea(·)− 1
2a ,Id(θi,θj)

=
1

4a2
kcos,Id(2aθi, 2aθj) +w

⊤
i wj

(
sin(2abj) exp(−2a2∥wj∥2) + sin(2abi) exp(−2a2∥wi∥2)

)
− bi

2a
cos(2abj) exp(−2a2∥wj∥2)−

bj
2a

cos(2abi) exp(−2a2∥wi∥2) + kId,Id(θ
(1)
i ,θ

(1)
j).

Kernel 6. The kernel kSnakea,Id,Φ(θi,θj) is equal to

1

2a

(
bi −

1

2a
cos(2abi) exp(−2a2∥wi∥2) + bj −

1

2a
cos(2abj) exp(−2a2∥wj∥2)

)
+ kSnakea(·)− 1

2a ,Id,Φ(θi,θj) +
1

4a2
.

Proof. Choose σ = Snakea and note that Snakea(·) =
(
Snakea(·) − 1

2a

)
+ 1

2a . The Kernel 5

corresponds with the case
(
Snakea(·)− 1

2a

)
, so we are left with three additional terms. These terms

may be evaluated directly,

kSnakea,Id(θi,θj)

= kSnakea(·)− 1
2a ,Id(θi,θj) +

1

4a2
+

1

2a

(
bi −

1

2a
cos(2abi) exp(−2a2∥wi∥2) + bj −

1

2a
cos(2abj) exp(−2a2∥wj∥2)

)
.

C Examples which generalise standard exponential family models

In this section, we will study examples of the SNEFY model which use activation function σ(u) =
exp(u/2) (or equivalently, up to scaling, σ(u) = exp(u)) and as such correspond to a notion of
exponential family mixture models allowing negative weights, as discussed in Section 3.2. These
examples have tractable kernels whenever the corresponding exponential family has a tractable
normalising constant and we can write the kernels directly using Proposition 1.

SNEFY Von Mises-Fisher mixtures. The VMF distribution is a helpful way of defining the notion of
a Gaussian distribution to the sphere. The following kernel may be used to define a VMF distribution.
Alternatively, it may be viewed as a way of constructing a distribution supported on Rd with sufficient
statistics which are projected onto the sphere.

Kernel 3. Define projSd−1(x) ≜ x/∥x∥ to be the projection onto the unit sphere. Then

kexp,projSd−1 ,Φ(θi,θj) = exp(bi + bj)
Γ(d/2)2d/2−1Id/2−1

(
∥wi +wj∥

)
∥wi +wj∥d/2−1

,

where Ip is the modified Bessel function of the first kind of order p. In the special case d = 3, we

have the closed-form kexp,projS2 ,Φ(θi,θj) = exp(bi + bj)

(
e∥wi+wj∥−e−∥wi+wj∥

)
2∥wi+wj∥ .

18

Proof. If x ∼ N (0, I), then x/∥x∥ is uniformly distributed on the sphere. From the normalizing
constant of the von Mises-Fisher distribution, from Proposition 1, it then follows that

kexp,projSd−1 ,Φ(θi,θj) = Ex

[
exp

(
w⊤

i x/∥x∥+ bi +w
⊤
j x/∥x∥+ bj

)]
, x ∼ N

(
0, I

)
= exp(bi + bj)

∫
Sd−1

exp
(
(wi +wj)

⊤x
)
dx

Γ(d/2)

2πd/2

=
exp(bi + bj)Γ(d/2)

2πd/2

∫
Sd−1

exp
(
∥wi +wj∥a⊤x

)
dx, where a is a unit vector

=
exp(bi + bj)Γ(d/2)

2πd/2

(2π)d/2Id/2−1

(
∥wi +wj∥

)
∥wi +wj∥d/2−1

= exp(bi + bj)
Γ(d/2)2d/2−1Id/2−1

(
∥wi +wj∥

)
∥wi +wj∥d/2−1

,

where Ip is the modified Bessel function of the first kind of order p. In the special case of p = 1/2,

we have I1/2(z) =
√

2
πz sinh(z) =

(
exp(z) − exp(−z)

)√
1

2πz . This implies that when d = 3,

since Γ(3/2) =
√
π
2 ,

kexp,projS2 ,Φ(θi,θj) = exp(bi + bj)

(
e∥wi+wj∥ − e−∥wi+wj∥

)
2 ∥wi +wj∥

.

Note that kexp,projSd−1 ,Φ(θi,θj) = kexp,Id,ν(θi,θj), where ν is the uniform measure on the sphere
Sd−1, because if x is Gaussian then x/∥x∥ is uniform on the sphere. This allows one to construct
SNEFYexp,Id,ν distributions, which are certain “mixtures” of VMF distributions with weights V ⊤V .

SNEFY Gaussian mixtures, fixed variance. We may similarly construct kernels corresponding to
“mixtures” of Gaussian distributions. The case here corresponds to a case of known fixed variance
parameter.
Kernel 7. kexp,Id,Φ(θi,θj) = exp(bi + bj) exp

(
1
2∥wi +wj∥2

)
.

Proof. This is a consequence of the moment generating function of the multivariate Gaussian
distribution. More concretely, by Proposition 1,

kexp,Id,Φ(θi,θj) = Ex

[
exp

(
w⊤

i x+ bi +w
⊤
j x+ bj

)]
, x ∼ N

(
0, I

)
= exp(bi + bj)Ex

[
exp

(
(wi +wj)

⊤x
)]

= exp(bi + bj) exp
(1
2
∥wi +wj∥2

)
.

SNEFY Poisson mixtures. Most of our examples deal with continuous distributions but in fact SNEFY
can readily be used for discrete distribution modelling. This is particularly helpful when the support
is large or infinite, for which computing normalising constants can naively be challenging even in the
discrete setting. Let X = {0, 1, 2, . . .}, t(x) = x, and the base measure µ(dx) = 1/x! ν(dx), where
ν is the counting measure. A SNEFY model for a probability mass function which is a mixture of
Poisson distributions allowing negative weights is given by

p(x;V ,w) =
1

Tr (V ⊤V KΘ)

1

x!

n∑
i=1

n∑
j=1

v⊤.,iv.,j exp ((wi + wj)x)

=
1

Tr (V ⊤V KΘ)

1

x!

n∑
i=1

n∑
j=1

v⊤.,iv.,j(λiλj)
x, x = 0, 1, 2, . . .

following the usual mean parametrisation λi = ewi , so the individual mixture components have rates
which are geometric means of (λi, λj) pairs.

19

Kernel 8. Choose the base measure µ(dx) = (x!)−1 ν(dx), where ν is the counting measure. We
have

kexp,Id,(x!)−1ν(θi,θj) = exp
(
bi + bj

)
exp

(
exp(wi + wj)

)
.

Proof. This is again direct from Proposition 1. In detail,

kexp,Id,(x!)−1ν(θi,θj) =

∞∑
x=0

1

x!
exp

(
wix+ wjx+ bi + bj

)
= exp

(
bi + bj

) ∞∑
x=0

1

x!
exp

(
wix+ wjx

)
The second factor involving the sum is the partition function of the Poisson distribution in canonical
form, which is exp

(
exp(wi + wj)

)
.

The usual mean parameterisation of the Poisson distribution is through a rate parameter λi = exp(wi),
which would lead to the kernel representation

kexp,Id,(x!)−1ν(θi,θj) = exp
(
bi + bj

)
exp

(
λiλj

)
.

SNEFY Gaussian mixtures, unknown variance (Squared radial basis function network). We
now discuss an intriguing connection between the Gaussian distribution and squared RBF networks.
This connection is made possible through our machinery of SNEFY distributions. Let X = Rd,
t(x) = (x1, . . . , xd, x

2
1, . . . , x

2
d) (i.e. D = 2d) and suppose µ(dx) = dx is Lebesgue measure.

Choose σ(·) = exp(·/2) and consider the r-th output of our network f : RD → Rm

fr(t(x);V ,Θ) =

n∑
i=1

vri exp

(
1

2

(
d∑

ℓ=1

wiℓxℓ +

d∑
ℓ=1

w̃iℓx
2
ℓ

))
,

where we denoted w̃iℓ = wi,d+ℓ. In this case, we require that w̃eℓ < 0 for the model to be
(square) integrable. Reparametrising σ2

iℓ = − 1
2w̃iℓ

and µiℓ = − wiℓ

2w̃iℓ
and absorbing the factor

exp
(
−
∑d

ℓ=1
µ2
iℓ

4σ2
iℓ

)
into readout parameters V , gives

fr(t(x);V ,Θ) =

n∑
i=1

vri exp

(
−

d∑
ℓ=1

(xℓ − µiℓ)
2

4σ2
iℓ

)
.

Thus, we have recovered a classical radial basis function (RBF) network [52]. These models are well
known to have universal approximation properties [36]. For the most commonly used form of the
RBF network, we can restrict the parameters σ2

iℓ = σ2
i to be the same across the dimensions, giving

fr (t(x);V ,Θ) =

n∑
i=1

vri exp

(
−∥x− µi∥2

4σ2
i

)
, x ∈ Rd,

with location parameters µi ∈ Rd and the scale parameters σ2
i > 0. Note the unusual factor of 4 in

front of σ2
i – this ensures that our model in fact reduces to the usual parametrisation of multivariate

normal densities, since we will be modelling the density using the squared norm of f .

Since µ is the Lebesgue measure, SNEFY gives us a density model with respect to the Lebesgue
measure as

p(x;V ,Θ) =
1

Tr (V ⊤V KΘ)

n∑
i=1

n∑
j=1

v⊤.,iv.,j exp

(
−∥x− µi∥2

4σ2
i

)
exp

(
−∥x− µj∥2

4σ2
j

)
.

If n = 1, we recover simply a multivariate normal density N
(
µ1, σ

2
1I
)
. The above model is

essentially the same as the one in [42], despite being derived in a very different way.

20

Kernel 9. Let t(2)(x) = (x1, . . . , xd, x
2
1, . . . , x

2
d) so that D = 2d be the sufficient statistic. Partition

W = [W[:,1:d], W̃] and suppose W̃ < 0 element-wise. Choose µ(dx) = dx to be the Lebesgue
measure. Then

kexp,t(2),dx(θi,θj) = πd/2 exp(bi + bj)

d∏
l=1

exp
(
− (wil + wjl)

2

4(w̃il + w̃jl)

) 1√
−(w̃il + w̃jl)

Proof. As with the kernels above, this follows from Proposition 1, since

kexp,t(2),dx(θi,θj) =

∫
Rd

exp
(
w⊤

i,1:dx+ w̃⊤
i x

2 + b1 +w
⊤
j,1:dx+ w̃⊤

j x
2 + bj

)
dx

= (2π)d/2 exp(bi + bj)

d∏
l=1

exp
(
− (wil + wjl)

2

4(w̃il + w̃jl)

) 1√
−2(w̃il + w̃jl)

.

While Proposition 1 gives us an expression for the kernel matrixKΘ in terms of natural parameters,
we can also express it directly in terms of parameters µi, σ

2
i . In particular,

[KΘ]ij =exp(bi + bj)

∫
Rd

exp

(
−∥x− µi∥2

4σ2
i

)
exp

(
−∥x− µj∥2

4σ2
j

)
dx

=exp(bi + bj)

(
4πσ2

i σ
2
j

σ2
i + σ2

j

)d/2

exp

(
−∥µi − µj∥2

4
(
σ2
i + σ2

j

)) .

We briefly state two more cases without an extended discussion.

SNEFY Gamma mixtures.
Kernel 10. Let X = (0,∞), t(x) = (log x,−x) and σ = exp. Partition W = [W[:,1:d], W̃] and
supposeW[:,1:d] > −1 and W̃ > 0 element-wise. Choose µ(dx) = dx to be the Lebesgue measure.
Then

kexp,t,dx(θi,θj) = exp(bi + bj)
Γ (wi1 + wj1 + 1)

(wi2 + wj2)
wi1+wj1+1 .

SNEFY Dirichlet mixtures.
Kernel 11. Let X = ∆D−1, a (D − 1)-simplex of probability distributions, i.e. x ∈ [0, 1]D,∑D

i=1 xi = 1. Let σ = exp. Let t(x) = (log x1, . . . , log xD). Choose µ(dx) = dx to be the
Lebesgue measure. SupposeW > −1 elementwise. Then

kexp,t,dx(θi,θj) = exp(bi + bj)

∏D
d=1 Γ(wid + wjd + 1)

Γ
(
D +

∑D
d=1 wid + wjd

) .
D Marginalisation in the case σ = exp(·/2)

LetM be a positive semi-definite n× n matrix. We will make use of the following SNEFY parametri-
sation

P (dx;M ,Θ) =
1

z(M ,Θ)
σ (Wt(x) + b)

⊤
Mσ (Wt(x) + b)µ (dx) . (16)

Since we can always writeM = V ⊤V , for an m× n matrix V , m ≤ n, we have

σ (Wt(x) + b)
⊤
Mσ (W t(x) + b) = ∥V σ (Wt(x) + b)∥2 =

m∑
i=1

 n∑
j=1

vijσ
(
w⊤

j t(x) + bj
)2

,

21

which is, as in the parametrisation given in the main text, simply the squared Euclidean norm of a
multi-output neural network, with V corresponding to the weights of the second layer. If we denote
by v·j the j-th column of V , the normalizing constant is given by

n∑
j=1

n∑
l=1

v⊤·jv·lkσ,t,µ(θj ,θl) =

n∑
j=1

n∑
l=1

mjlkσ,t,µ(θj ,θl) = Tr(MKΘ)

where as before

kσ,t,µ(θi,θj) =

∫
σ
(
w⊤

i t(x) + bi
)
σ
(
w⊤

j t(x) + bj
)
µ(dx).

Now if we let σ = exp(·/2) we obtain a family which is also closed under marginalisation (in
addition to conditioning). The Proposition below generalises Proposition 1 of [42], which considers
the special case of the Gaussian PSD mixtures.

Proposition 3. Let x = (x1, x2) be jointly SNEFYX1×X2,t,exp(·/2),µ with parameters V and Θ =

([W1,W2] , b). Assume that µ(dx) = µ1(dx1)µ2(dx2) and t(x) =
(
t1(x1), t2(x2)

)
. Then the

marginal distribution of x1 is SNEFYX1,t1,exp(·/2),µ1
with parameters Ṽ and Θ = (W1, b), for some

matrix Ṽ ∈ Rm×n.

Proof. Proposition 1 gives us the normalising constant for the parametrisation where biases are
absorbed into V . If we explicitly keep the biases in the parametrisation, we have

kexp(·/2),t,µ(θi,θj) = exp

(
1

2
(bi + bj)

)
ze

(
1

2
(wi +wj)

)
, (17)

where ze is the normalizing constant of the exponential family with the sufficient statistic t and base
measure µ. By Theorem 2, we have that

P1(dx1;M ,Θ) =
Tr(MCΘ (x1))

Tr(MKΘ)
µ1(dx1),

where [CΘ(x1)]ij = kσ,t2,µ2

((
w2i,w

⊤
1it1(x1) + bi

)
,
(
w2j ,w

⊤
1jt1(x1) + bj

))
. But now since

σ = exp (·/2), applying (17) gives

[CΘ(x1)]ij = ze,2

(
1

2
(w2i +w2j)

)
exp

(
1

2

(
w⊤

1it1(x1) + bi
))

exp

(
1

2

(
w⊤

1jt1(x1) + bj
))

,

where ze,2 is the normalizing constant of the exponential family with the sufficient statistic t2 and
base measure µ2. Thus, we can write

Tr(MCΘ (x1)) =

n∑
i=1

n∑
j=1

{
mij ze,2

(
1

2
(w2i +w2j)

)

· exp
(
1

2

(
w⊤

1it1(x1) + bi
))

exp

(
1

2

(
w⊤

1jt1(x1) + bj
))}

=exp

(
1

2

(
W⊤

1 t1(x1) + b
))⊤

M̃ exp

(
1

2

(
W⊤

1 t1(x1) + b
))

and we conclude that the marginal is in the same family with M̃ =M ◦Ze,2, where

[Ze,2]i,j = ze,2

(
1

2
(w2i +w2j)

)
.

Note that M̃ is PSD as an Hadamard product of two PSD matrices. Thus, we can find Ṽ such that
M̃ = Ṽ ⊤Ṽ .

22

SNEFY 1 Resampled 1 Gauss 1 GMM 1
Moons −1.59± 0.03 −1.76± 0.02 −3.29± 0.01 −1.57± 0.03

1431 68007 1194 1240
1352.19± 134.30 615.57± 24.35 730.21± 23.60 753.16± 31.41

Circles −1.92± 0.02 −1.94± 0.03 −3.37± 0.01 −2.00± 0.06
1431 68007 1194 1240

798.13± 196.89 291.03± 29.46 162.64± 17.19 186.65± 21.10
Rings −2.35± 0.04 −2.31± 0.02 −3.16± 0.01 −2.43± 0.04

1431 68007 1194 1240
1134.90± 133.10 502.32± 24.51 528.50± 24.51 559.12± 30.90

Table 4: As in Table 2, but with 1 NVP layer.

SNEFY 2 Resampled 2 Gauss 2 GMM 2
Moons −1.58± 0.02 −1.59± 0.03 −1.62± 0.03 −1.58± 0.02

2621 69197 2384 2430
1453.05± 147.67 700.98± 32.94 831.40± 49.24 855.04± 53.01

Circles −1.91± 0.04 −2.07± 0.04 −2.66± 0.05 −1.96± 0.04
2621 69197 2384 2430

899.77± 196.54 363.91± 36.62 267.23± 32.05 289.96± 33.71
Rings −2.35± 0.04 −2.32± 0.03 −2.80± 0.02 −2.36± 0.03

2621 69197 2384 2430
1255.92± 168.80 579.02± 23.70 637.73± 34.04 658.98± 37.69

Table 5: As in Table 2, but with 2 NVP layers.

E Experiments

E.1 2D Unconditional density estimation

Our benchmarking protocol is slightly altered compared with [46]. Firstly, we measure performance
over 20 random seeds instead of 1 fixed seed. We find that sometimes the variance over random seeds
can be large (e.g. Resampled 0 on Circles). Secondly, rather than computing test performance at
the last epoch of training, we follow the more standard procedure of returning the test performance
evaluated at the epoch corresponding with the smallest validation performance. This validation/test
monitoring results in substantial performance gains in all of the models, with no extra computational
cost for SNEFY, Gauss and GMM. For Resampled, monitoring the validation performance to a high
precision requires estimating the normalising constant to a high precision, which is computationally
challenging. We therefore only check the validation performance every 100 epochs, and compute a
high precision normalising constant if the validation performance is the lowest encountered so far.
We train each models for a maximum of 20000 iterations (while monitoring validation performance).
We use Adam with default hyperparameters and weight decay 10−3. The batch size is 210.

We use a SNEFY with Gaussian mixture model base measure supported on X = R2, identity sufficient
statistic t and activation function cos. The base measure consists of 8 mixture components, each
with a diagonal covariance matrix. We use the same Resampled architecture as in the original
paper [46]. We use an MLP with layer widths [2, 256, 256, 1] and sigmoid activations for the
resampling distribution. We use a discount factor of 0.1 for the exponential moving average partition
function calculation. Note that for Resampled models we are only able to provide an estimate of the
test log likelihood, not the exact log likelihood as in other methods. We choose n = 50 and m = 1.
The Gaussian mixture model has 10 mixture components, each with a diagonal covariance matrix.
Each normalising flow block consists of an affine coupling block, a permutation layer, and an actnorm
layer.

E.2 Modelling distributions on the sphere

We compare the performance of a VMF distribution, a “regular” VMF mixture distribution and
our SNEFY construction of the VMF mixture, which allows for some negative weight coefficients
as discussed in § 3.2. We use the dataset [44] also used by [19] in a different context for point

23

SNEFY 4 Resampled 4 Gauss 4 GMM 4
Moons −1.58± 0.03 −1.60± 0.07 −1.60± 0.03 −1.57± 0.03

5001 71577 4764 4810
1616.21± 152.61 851.29± 33.63 1005.16± 30.59 1026.76± 28.21

Circles −1.92± 0.04 −1.99± 0.03 −2.14± 0.16 −1.94± 0.04
5001 71577 4764 4810

1035.64± 142.39 514.02± 47.98 455.58± 41.19 480.15± 44.61
Rings −2.33± 0.02 −2.31± 0.03 −2.59± 0.12 −2.32± 0.04

5001 71577 4764 4810
1410.36± 141.04 749.10± 52.05 813.92± 27.20 833.36± 30.77

Table 6: As in Table 2, but with 4 NVP layers.

SNEFY 8 Resampled 8 Gauss 8 GMM 8
Moons −1.60± 0.02 −1.58± 0.02 −1.61± 0.08 −1.58± 0.03

9761 76337 9524 9570
2036.15± 205.52 1198.04± 102.71 1399.74± 65.78 1423.17± 82.84

Circles −1.91± 0.03 −1.97± 0.05 −2.16± 0.29 −1.93± 0.03
9761 76337 9524 9570

1405.27± 144.72 839.23± 92.99 838.62± 82.98 862.25± 81.09
Rings −2.34± 0.06 −2.37± 0.17 −2.49± 0.16 −2.33± 0.07

9761 76337 9524 9570
1795.38± 186.62 1071.50± 109.12 1201.29± 71.76 1218.31± 70.36

Table 7: As in Table 2, but with 8 NVP layers.

processes. This dataset, retrieved in 2015, is called the “Revised New General Catalogue and Index
Catalogue” (RNGC/IC). The RNGC/IC consists of locations of some 10610 galaxies. We use the
spherical coordinates of these galaxies and map them to the surface of a sphere.

We compare two types of SNEFYS2,exp,Id,dx with m = n = 30: one is constrained so that V is diago-
nal (and therefore V ⊤V is diagonal with nonnegative entries), and the other uses a unconstrained
general V . We expect the unconstrained model to be more expressive, and therefore obtain a better
test NLL.

We use Adam with default hyperparameters and a full batch size. We randomly shuffle the data and
perform an 80/20 train/test split. Each of the 50 runs uses a randomly sampled initialisation and
train/test split. We train for 20000 epochs.

E.3 Conditional density estimation of photometric redshift

Our deep conditional feature extractor is an MLP that uses ReLU activations in each layer and batch
normalisation between each layer. Our SNEFY model uses Snakea activations with a = 10. The
CNF models utilise affine layers wtih tanh activations. For SNEFY and CNF, we preprocess the input
features so that they have sample mean zero and sample variance one. We train both deep learning
models for 100 epochs using Adam with default hyperparameters and a batch size of 256. The dataset
consists of 74309 training and 74557 examples, which are fixed between each run. Each run uses a
randomly sampled initialisation (except for CKDE, which is deterministic).

F Complex activation case

Here we consider an extension where we allow the neural network activation σ to be complex-valued,
and accordingly the readout parameters V to be complex, i.e. V ∈ Cm×n. Note that in this case

∥∥f (t(x);V ,Θ)
∥∥2
2

= ∥V σ (Wt(x) + b)∥2 =

m∑
r=1

∣∣∣∣∣∣
n∑

j=1

vrjσ
(
w⊤

j t(x) + bj
)∣∣∣∣∣∣

2

.

24

Take σ(u) = exp(iu) and t(x) = x.

Then the above takes the form

m∑
r=1

∣∣∣∣∣∣
n∑

j=1

vrj exp
(
i
(
w⊤

j x+ bj
))∣∣∣∣∣∣

2

=

m∑
r=1

n∑
j=1

n∑
l=1

vrj v̄rle
i(w⊤

j x+bj)e−i(w⊤
l x+bl)

=

m∑
r=1

n∑
j=1

n∑
l=1

vrj v̄rle
i(bj−bl)ei((wj−wl)

⊤x).

As in the σ = exp case, bias terms can be folded into the readout parameters V (which is the reason
why we also require readout parameters to be complex). We note that the case n = 1 is not interesting
as it simply reduces to the (normalised) base measure µ.

In order to obtain the normalizing constant Tr(V HV KΘ), we need the integral of the form

[KΘ]jl = kexp(i·),Id,µ(wj ,wl) =

∫
ei((wj−wl)

⊤x)µ(dx) =: κ(wj −wl), (18)

where κ is simply the Fourier transform of the base measure µ, i.e. its characteristic function in
the case where µ is a probability measure. Hence many standard choices of µ lead to tractable
normalizing constants. Note that while V and κ both may be complex-valued, the normalizing
constant as well as the density itself are real-valued.

Various examples of probability measures µ and its Fourier transforms that give rise to shift-invariant
positive definite kernels κ have been studied in the literature on Random Fourier Features (RFF)
[38]. Here too, while the functional form of the expressions is identical, the role between the data
and the parameters is reversed: in RFF, one is interested in approximating a given kernel on the data
instances, by considering a probability measure on the frequency space which is that kernel’s inverse
Fourier transform.

Remark 3. If we restrict our attention to real-valued V and thus explicitly maintain biases inside
the parameterisation, this model can also be realised with stacking cos and sin activation so that
they share the readout parameters since

m∑
r=1

∣∣∣∣∣∣
n∑

j=1

vrj exp
(
i
(
w⊤

j x+ bj
))∣∣∣∣∣∣

2

= ∥V cos (Wx+ b)∥2 + ∥V sin (Wx+ b)∥2 .

G Discrete and mixed continuous/discrete SNEFYs

G.1 Discrete SNEFYs via series

Closed-form expressions for normalising constants of discrete distributions are only advantageous if
their computation costs less than naively summing up unnormalised density over all possible states.
This is the case if the support has very large or infinite cardinality. An example that extends the
classical Poisson distribution in exponential family form is given in Table 1. Here we discuss some
other settings.

NNK as a convergent series Suppose the support X is discrete and let h(x) be a nonnegative
function corresponding with the discrete base measure µ. The NNK is given by

kσ,t,µ(θi,θj) =
∑
x∈X

σ
(
w⊤

1 t(x) + b1
)
σ
(
w⊤

2 t(x) + b2
)
h(x).

Such NNKs often resemble known convergent series.

25

Fourier series For example, if σ = cos and Cx = h(x) are some coefficients of a convergent
Fourier series, then

kσ,t,µ(θi,θj) =
1

2

∞∑
x=0

Cx

(
cos
(
t(x)(w1 − w2) + (b1 − b2)

)
+ cos

(
t(x)(w1 + w2) + (b1 + b2)

))
is just a series representation of a sum of two periodic functions. For example, if Cx = 2(−1)x+1

πx
for x ≥ 1 and Cx = 0 otherwise, and t(x) = 2πx, the NNK is a sum of two sawtooth waves with
frequencies w1 − w2 and w1 + w2 and phase offsets b1 − b2 and b1 + b2. Other examples include
rectified sine waves, square waves and triangular waves. This extends to periodic functions with
convergent multivariate Fourier series.

G.2 Mixed continuous/discrete SNEFYs

Mixed distributions can be obtained by choosing the base measure to be a mixed continuous distri-
bution. For example, choose X = Rd, µ(dx) = 1

2

(
Φ(x) + δ(x)

)
dx, and take σ and t to be any of

the combinations leading to a closed-form NNGPK (for example, t as the identity and σ as the error
function, Leaky ReLU, GELU, cosine, or snake). Then

kσ,t,µ(θi, θj) =
1

2

(∫
X
σ
(
W⊤

i t(x) + bi
)
σ
(
W⊤

j t(x) + bj
)
δ(x)dx+∫

X
σ
(
W⊤

i t(x) + bi
)
σ
(
W⊤

j t(x) + bj
)
Φ(x)dx

)
=

1

2

(
σ
(
W⊤

i t(0) + bi
)
σ
(
W⊤

j t(0) + bj
)
+ kσ,t,Φ(θi, θj)

)
,

which is a closed form.

26

	Introduction
	Background

	Closed form squared neural families
	Normalising constants
	Neural network kernels

	Properties of squared neural families
	Fisher-Neyman factorisation and sufficient statistics
	Connections with exponential families
	Conditional distributions under SNEFY
	Marginal distributions under SNEFY
	Connections with kernel-based methods for nonnegative functions

	Experiments
	Discussion and conclusion
	Proofs
	Derivation of neural network kernels
	Examples which generalise standard exponential family models
	Marginalisation in the case =(/2)
	Experiments
	2D Unconditional density estimation
	Modelling distributions on the sphere
	Conditional density estimation of photometric redshift

	Complex activation case
	Discrete and mixed continuous/discrete SNEFYs
	Discrete SNEFYs via series
	Mixed continuous/discrete SNEFYs

