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Abstract

Diffusion-based purification defenses leverage diffusion models to remove crafted
perturbations of adversarial examples and achieve state-of-the-art robustness. Re-
cent studies show that even advanced attacks cannot break such defenses effectively,
since the purification process induces an extremely deep computational graph which
poses the potential problem of vanishing/exploding gradient, high memory cost, and
unbounded randomness. In this paper, we propose an attack technique DiffAttack to
perform effective and efficient attacks against diffusion-based purification defenses,
including both DDPM and score-based approaches. In particular, we propose a
deviated-reconstruction loss at intermediate diffusion steps to induce inaccurate
density gradient estimation to tackle the problem of vanishing/exploding gradients.
We also provide a segment-wise forwarding-backwarding algorithm, which leads
to memory-efficient gradient backpropagation. We validate the attack effectiveness
of DiffAttack compared with existing adaptive attacks on CIFAR-10 and ImageNet.
We show that DiffAttack decreases the robust accuracy of models compared with
SOTA attacks by over 20% on CIFAR-10 under ℓ∞ attack (ϵ = 8/255), and over
10% on ImageNet under ℓ∞ attack (ϵ = 4/255). We conduct a series of ablations
studies, and we find 1) DiffAttack with the deviated-reconstruction loss added
over uniformly sampled time steps is more effective than that added over only
initial/final steps, and 2) diffusion-based purification with a moderate diffusion
length is more robust under DiffAttack.

1 Introduction

Since deep neural networks (DNNs) are found vulnerable to adversarial perturbations [52, 20],
improving the robustness of neural networks against such crafted perturbations has become important,
especially in safety-critical applications [18, 5, 54]. In recent years, many defenses have been
proposed, but they are attacked again by more advanced adaptive attacks [7, 30, 11, 12]. One recent
line of defense (diffusion-based purification) leverages diffusion models to purify the input images
and achieves the state-of-the-art robustness. Based on the type of diffusion models the defense
utilizes, diffusion-based purification can be categorized into score-based purification [34] which uses
the score-based diffusion model [49] and DDPM-based purification [4, 62, 57, 51, 55, 56] which uses
the denoising diffusion probabilistic model (DDPM) [25]. Recent studies show that even the most
advanced attacks [12, 34] cannot break these defenses due to the challenges of vanishing/exploding
gradient, high memory cost, and large randomness. In this paper, we aim to explore the vulnerabilities
of such diffusion-based purification defenses, and design a more effective and efficient adaptive attack
against diffusion-based purification, which will help to better understand the properties of diffusion
process and motivate future defenses.

In particular, the diffusion-based purification defenses utilize diffusion models to first diffuse the
adversarial examples with Gaussian noises and then perform sampling to remove the noises. In this
way, the hope is that the crafted adversarial perturbations can also be removed since the training
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distribution of diffusion models is clean [49, 25]. The diffusion length (i.e., the total diffusion
time steps) is usually large, and at each time step, the deep neural network is used to estimate
the gradient of the data distribution. This results in an extremely deep computational graph that
poses great challenges of attacking it: vanishing/exploding gradients, unavailable memory cost,
and large randomness. To tackle these challenges, we propose a deviated-reconstruction loss and
a segment-wise forwarding-backwarding algorithm and integrate them as an effective and efficient
attack technique DiffAttack.

Essentially, our deviated-reconstruction loss pushes the reconstructed samples away from the
diffused samples at corresponding time steps. It is added at multiple intermediate time steps to relieve
the problem of vanishing/exploding gradients. We also theoretically analyze the connection between
it and the score-matching loss [26], and we prove that maximizing the deviated-reconstruction loss
induces inaccurate estimation of the density gradient of the data distribution, leading to a higher
chance of attacks. To overcome the problem of large memory cost, we propose a segment-wise
forwarding-backwarding algorithm to backpropagate the gradients through a long path. Concretely,
we first do a forward pass and store intermediate samples, and then iteratively simulate the forward
pass of a segment and backward the gradient following the chain rule. Ignoring the memory cost
induced by storing samples (small compared with the computational graph), our approach achieves
O(1) memory cost.

Finally, we integrate the deviated-reconstruction loss and segment-wise forwarding-backwarding
algorithm into DiffAttack, and empirically validate its effectiveness on CIFAR-10 and ImageNet.
We find that (1) DiffAttack outperforms existing attack methods [34, 60, 53, 1, 2] by a large margin
for both the score-based purification and DDPM-based purification defenses, especially under large
perturbation radii; (2) the memory cost of our efficient segment-wise forwarding-backwarding
algorithm does not scale up with the diffusion length and saves more than 10x memory cost compared
with the baseline [4]; (3) a moderate diffusion length benefits the robustness of the diffusion-based
purification since longer length will hurt the benign accuracy while shorter length makes it easier
to be attacked; (4) attacks with the deviated-reconstruction loss added over uniformly sampled time
steps outperform that added over only initial/final time steps. The effectiveness of DiffAttack and
interesting findings will motivate us to better understand and rethink the robustness of diffusion-based
purification defenses.

We summarize the main technical contributions as follows:

• We propose DiffAttack, a strong evasion attack against the diffusion-based adversarial
purification defenses, including score-based and DDPM-based purification.

• We propose a deviated-reconstruction loss to tackle the problem of vanishing/exploding
gradient, and theoretically analyze its connection with data density estimation.

• We propose a segment-wise forwarding-backwarding algorithm to tackle the high memory
cost challenge, and we are the first to adaptively attack the DDPM-based purification defense,
which is hard to attack due to the high memory cost.
• We empirically demonstrate that DiffAttack outperforms existing attacks by a large margin

on CIFAR-10 and ImageNet. Particularly, DiffAttack decreases the model robust accuracy
by over 20% for ℓ∞ attack (ϵ = 8/255) on CIFAR-10, and over 10% on ImageNet under
ℓ∞ attack (ϵ = 4/255).

• We conduct a series of ablation studies and show that (1) a moderate diffusion length
benefits the model robustness, and (2) attacks with the deviated-reconstruction loss added
over uniformly sampled time steps outperform that added over only initial/final time steps.

2 Preliminary

There are two types of diffusion-based purification defenses, DDPM-based purification, and score-
based purification, which leverage DDPM [46, 25] and score-based diffusion model [49] to purify
the adversarial examples, respectively. Next, we will introduce the basic concepts of DDPM and
score-based diffusion models.

Denote the diffusion process indexed by time step t with the diffusion length T by {xt}Tt=0.
DDPM constructs a discrete Markov chain {xt}Tt=0 with discrete time variables t following
p(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI) where βt is a sequence of positive noise scales (e.g.,

linear scheduling, cosine scheduling [33]). Considering αt := 1 − βt, ᾱt := Πt
s=1αs, and
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σt =
√
βt(1− ᾱt−1)/(1− ᾱt), the reverse process (i.e., sampling process) can be formulated

as:

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz (1)

where z is drawn fromN (0, I). ϵθ parameterized with θ is the model to approximate the perturbation
ϵ in the diffusion process and is trained via the density gradient loss Ld:

Ld = Et,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥22

]
(2)

where ϵ is drawn from N (0, I) and t is uniformly sampled from [T ] := {1, 2, ..., T}.
Score-based diffusion model formulates diffusion models with stochastic differential equations (SDE).
The diffusion process {xt}Tt=0 is indexed by a continuous time variable t ∈ [0, 1]. The diffusion
process can be formulated as:

dx = f(x, t)dt+ g(t)dw (3)
where f(x, t) : Rn 7→ Rn is the drift coefficient characterizing the shift of the distribution, g(t) is the
diffusion coefficient controlling the noise scales, and w is the standard Wiener process. The reverse
process is characterized via the reverse time SDE of Equation (3):

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw (4)

where ∇x log pt(x) is the time-dependent score function that can be approximated with neural
networks sθ parameterized with θ, which is trained via the score matching loss Ls [26, 47]:

Ls = Et

[
λ(t)Ext|x0

∥sθ(xt, t)−∇xt log(p(xt|x0))∥22
]

(5)

where λ : [0, 1]→ R is a weighting function and t is uniformly sampled over [0, 1].

3 DiffAttack

3.1 Evasion attacks against diffusion-based purification

A class of defenses leverages generative models for adversarial purification [43, 48, 45, 60]. The
adversarial images are transformed into latent representations, and then the purified images are
sampled starting from the latent space using the generative models. The process is expected to remove
the crafted perturbations since the training distribution of generative models is assumed to be clean.
With diffusion models showing the power of image generation recently [15, 39], diffusion-based
adversarial purification has achieved SOTA defense performance [34, 4].

We first formulate the problem of evasion attacks against diffusion-based purification defenses.
Suppose that the process of diffusion-based purification, including the diffusion and reverse process,
is denoted by P : Rn 7→ Rn where n is the dimension of the input x0, and the classifier is denoted
by F : Rn 7→ [K] where K is the number of classes. Given an input pair (x0, y), the adversarial
example x̃0 satisfies:

argmax
i∈[K]

Fi(P (x̃0)) ̸= y s.t. d(x0, x̃0) ≤ δmax (6)

where Fi(·) is the i-th element of the output, d : Rn × Rn 7→ R is the distance function in the input
space, and δmax is the perturbation budget.

Since directly searching for the adversarial instance x̃0 based on Equation (6) is challenging, we
often use a surrogate loss L to solve an optimization problem:

max
x̃0

L(F (P (x̃0)), y) s.t. d(x0, x̃0) ≤ δmax (7)

where P (·) is the purification process with DDPM (Equation (1)) or score-based diffusion (Equa-
tions (3) and (4)), and the surrogate loss L is often selected as the classification-guided loss, such as
CW loss [7], Cross-Entropy loss and difference of logits ratio (DLR) loss [12]. Existing adaptive
attack methods such as PGD [30] and APGD attack [12] approximately solve the optimization
problem in Equation (7) via computing the gradients of loss L with respect to the decision variable
x̃0 and iteratively updating x̃0 with the gradients.

3



Diffusion process Reverse process Segment-wise forwarding-backwarding (Sec.3.3)

t=0 t=T/3 t=2T/3

t=T

Deviated-reconstruction loss (Sec.3.2)

Classifier
''Dog’’(GT)

‘’Fish‘’
(Adv. Target)

Adv. Attacks

DiffAttack

Ldev

Ldev

Ldev Ldev

Figure 1: DiffAttack against diffusion-based adversarial purification defenses. DiffAttack features
the deviated-reconstruction loss that addresses vanishing/exploding gradients and the segment-wise
forwarding-backwarding algorithm that leads to memory-efficient gradient backpropagation.

However, we observe that the gradient computation for the diffusion-based purification process
is challenging for three reasons: 1) the long sampling process of the diffusion model induces an
extremely deep computational graph which poses the problem of vanishing/exploding gradient [2],
2) the deep computational graph impedes gradient backpropagation, which requires high memory
cost [60, 4], and 3) the diffusion and sampling process introduces large randomness which makes the
calculated gradients unstable and noisy.

To address these challenges, we propose a deviated-reconstruction loss (in Section 3.2) and a segment-
wise forwarding-backwarding algorithm (in Section 3.3) and design an effective algorithm DiffAttack
by integrating them into the attack technique (in Section 3.4).

3.2 Deviated-reconstruction loss

In general, the surrogate loss L in Equation (7) is selected as the classification-guided loss, such
as CW loss, Cross-Entropy loss, or DLR loss. However, these losses can only be imposed at the
classification layer, and induce the problem of vanishing/exploding gradients [2] due to the long
diffusion length. Specifically, the diffusion purification process induces an extremely deep graph. For
example, DiffPure applies hundreds of iterations of sampling and uses deep UNet with tens of layers
as score estimators. Thus, the computational graph consists of thousands of layers, which could cause
the problem of gradient vanishing/exploding. Similar gradient problems are also mentioned with
generic score-based generative purification (Section 4, 5.1 in [60]). Backward path differentiable
approximation (BPDA) attack [2] is usually adopted to overcome such problems, but the surrogate
model of the complicated sampling process is hard to find, and a simple identity mapping function is
demonstrated to be ineffective in the case [34, 4, 60].

To overcome the problem of exploding/vanishing gradients, we attempt to impose intermediate
guidance during the attack. It is possible to build a set of classifiers on the intermediate samples in
the reverse process and use the weighted average of the classification-guided loss at multiple layers
as the surrogate loss L. However, we observe that the intermediate samples are noisy, and thus using
classifier F that is trained on clean data cannot provide effective gradients. One solution is to train
a set of classifiers with different noise scales and apply them to intermediate samples to impose
classification-guided loss, but the training is too expensive considering the large diffusion length and
variant noise scales at different time steps. Thus, we propose a deviated-reconstruction loss to address
the challenge via imposing discrepancy for samples between the diffusion and reverse processes
adversarially to provide effective loss at intermediate time steps.

Concretely, since a sequence of samples is generated in the diffusion and reverse processes, effective
loss imposed on them would relieve the problem of vanishing/exploding gradient and benefit the
optimization. More formally, let xt, x′

t be the samples at time step t in the diffusion process and
the reverse process, respectively. Formally, we maximize the deviated-reconstruction loss Ldev
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formulated as follows:
maxLdev = Et[α(t)Ext,x′

t|x0
d(xt,x

′
t)] (8)

where α(·) is time-dependent weight coefficients and d(xt,x
′
t) is the distance between noisy image xt

in the diffusion process and corresponding sampled image x′
t in the reverse process. The expectation

over t is approximated by taking the average of results at uniformly sampled time steps in [0, T ], and
the loss at shallow layers in the computational graph (i.e., large time step t) helps relieve the problem
of vanishing/exploding gradient. The conditional expectation over xt,x

′
t given x0 is approximated

by purifying x0 multiple times and taking the average of the loss.

Intuitively, the deviated-reconstruction loss in Equation (8) pushes the reconstructed sample x′
t in

the reverse process away from the sample xt at the corresponding time step in the diffusion process,
and finally induces an inaccurate reconstruction of the clean image. Letting qt(x) and q′t(x) be the
distribution of xt and x′

t, we can theoretically prove that the distribution distance between qt(x)
and q′t(x) positively correlates with the score-matching loss of the score-based diffusion or the
density gradient loss of the DDPM. In other words, maximizing the deviated-reconstruction loss in
Equation (8) induces inaccurate data density estimation, which results in the discrepancy between the
sampled distribution and the clean training distribution.
Theorem 1. Consider adversarial sample x̃0 := x0 + δ, where x0 is the clean example and δ is
the perturbation. pt(x),p′t(x),qt(x),q

′
t(x) are the distribution of xt,x′

t,x̃t,x̃′
t where x′

t represents
the reconstruction of xt in the reverse process. DTV (·, ·) measures the total variation distance.
Given a VP-SDE parameterized by β(·) and the score-based model sθ with mild assumptions that
∥∇x log pt(x)−sθ(x, t)∥22 ≤ Lu, DTV (pt, p

′
t) ≤ ϵre, and a bounded score function by M (specified

in Appendix C.1), we have:

DTV (qt, q
′
t) ≤

1

2

√
Et,x|x0

∥sθ(x, t)−∇x log q′t(x)∥22 + C1 +
√

2− 2 exp{−C2∥δ∥22}+ ϵre (9)

C1 = (Lu + 8M2)
∫ T

t
β(t)dt, C2 = (8(1−Πt

s=1(1− βs)))
−1.

Proof sketch. We first use the triangular inequality to upper bound DTV (qt, q
′
t) with DTV (qt, pt) +

DTV (pt, p
′
t) + DTV (p

′
t, q

′
t). DTV (qt, pt) can be upper bounded by a function of the Hellinger

distance H(qt, pt), which can be calculated explicitly. DTV (pt, p
′
t) can be upper bounded by the

reconstruction error ϵre by assumption. To upper bound DTV (p
′
t, q

′
t), we can leverage Pinker’s

inequality to alternatively upper bound the KL-divergence between p′t and q′t which can be derived
by using the Fokker-Planck equation [44] in the reverse SDE.
Remark. A large deviated-reconstruction loss can indicate a large total variation distance DTV (qt, q

′
t),

which is the lower bound of a function with respect to the score-matching loss Et,x∥sθ(x, t) −
∇x log q

′
t(x)∥22 (in RHS of Equation (9)). Therefore, we show that maximizing the deviated-

reconstruction loss implicitly maximizes the score-matching loss, and thus induces inaccurate data
density estimation to perform an effective attack. The connection of deviated-reconstruction loss and
the density gradient loss for DDPM is provided in Thm. 3 in Appendix C.2.

3.3 Segment-wise forwarding-backwarding algorithm

Adaptive attacks against diffusion-based purification require gradient backpropagation through the
forwarding path. For diffusion-based purification, the memory cost scales linearly with the diffusion
length T and is not feasible in a realistic application. Therefore, existing defenses either use a
surrogate model for gradient approximation [55, 56, 60, 45] or consider adaptive attacks only for
a small diffusion length [4], but the approximation can induce error and downgrade the attack
performance a lot. Recently, DiffPure [34] leverages the adjoint method [28] to backpropagate the
gradient of SDE within reasonable memory cost and enables adaptive attacks against score-based
purification. However, it cannot be applied to a discrete process, and the memory-efficient gradient
backpropagation algorithm is unexplored for DDPM. Another line of research [9, 8, 19] proposes the
technique of gradient checkpointing to perform gradient backpropagation with memory efficiency.
Fewer activations are stored during forwarding passes, and the local computation graph is constructed
via recomputation. However, we are the first to apply the memory-efficient backpropagation technique
to attack diffusion purification defenses and resolve the problem of memory cost during attacks, which
is realized as a challenging problem by prior attacks against purification defenses [34, 60]. Concretely,
we propose a segment-wise forwarding-backwarding algorithm, which leads to memory-efficient
gradient computation of the attack loss with respect to the adversarial examples.
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We first feed the input x0 to the diffusion-based purification process and store the intermediate samples
x1,x2, ...,xT in the diffusion process and x′

T ,x
′
T−1, ...,x

′
0 in the reverse process sequentially. For

ease of notation, we have xt+1 = fd(xt) and x′
t = fr(x

′
t+1) for t ∈ [0, T − 1]. Then we can

backpropagate the gradient iteratively following:

∂L
∂x′

t+1

=
∂L
∂x′

t

∂x′
t

∂x′
t+1

=
∂L
∂x′

t

∂fr(x
′
t+1)

∂x′
t+1

(10)

At each time step t in the reverse process, we only need to store the gradient ∂L/∂x′
t, the intermediate

sample x′
t+1 and the model fr to construct the computational graph. When we backpropagate the

gradients at the next time step t+ 1, the computational graph at time step t will no longer be reused,
and thus, we can release the memory of the graph at time step t. Therefore, we only have one
segment of the computational graph used for gradient backpropagation in the memory at each time
step. We can similarly backpropagate the gradients in the diffusion process. Ignoring the memory
cost of storing intermediate samples (usually small compared to the memory cost of computational
graphs), the memory cost of our segment-wise forwarding-backwarding algorithm is O(1) (validated
in Figure 3).

We summarize the detailed procedures in Algorithm 1 in Appendix B. It can be applied to gradient
backpropagation through any discrete Markov process with a long path. Basically, we 1) perform
the forward pass and store the intermediate samples, 2) allocate the memory of one segment of
the computational graph in the memory and simulate the forwarding pass of the segment with
intermediate samples, 3) backpropagate the gradients through the segment and release the memory
of the segment, and 4) go to step 2 and consider the next segment until termination.

3.4 DiffAttack Technique

Currently, AutoAttack [12] holds the state-of-the-art attack algorithm, but it fails to attack the
diffusion-based purification defenses due to the challenge of vanishing/exploding gradient, mem-
ory cost and large randomness. To specifically tackle the challenges, we integrate the deviated-
reconstruction loss (in Section 3.2) and the segment-wise forwarding-backwarding algorithm (in
Section 3.3) as an attack technique DiffAttack against diffusion-based purification, including the score-
based and DDPM-based purification defenses. The pictorial illustration of DiffAttack is provided in
Figure 1.

Concretely, we maximize the surrogate loss L as the optimization objective in Equation (7):

maxL = Lcls + λLdev (11)

where Lcls is the CE loss or DLR loss, Ldev is the deviated-reconstruction loss formulated in
Equation (8), and λ is the weight coefficient. During the optimization, we use the segment-wise
forwarding-backwarding algorithm for memory-efficient gradient backpropagation. Note that Ldev

suffers less from the gradient problem compared with Lcls, and thus the objective of Ldev can be
optimized more precisely and stably, but it does not resolve the gradient problem of Lcls. On the
other hand, the optimization of Ldev benefits the optimization of Lcls in the sense that Ldev can
induce a deviated reconstruction of the image with a larger probability of misclassification. λ controls
the balance of the two objectives. A small λ can weaken the deviated-reconstruction object and make
the attack suffer more from the vanishing/exploded gradient problem, while a large λ can downplay
the guidance of the classification loss and confuse the direction towards the decision boundary of the
classifier.

Attack against randomized diffusion-based purification. DiffAttack tackles the randomness problem
from two perspectives: 1) sampling the diffused and reconstructed samples across different time
steps multiple times as in Equation (8) (similar to EOT [3]), and 2) optimizing perturbations for all
samples including misclassified ones in all steps. Perspective 1) provides a more accurate estimation
of gradients against sample variance of the diffusion process. Perspective 2) ensures a more effective
and stable attack optimization since the correctness of classification is of high variance over different
steps in the diffusion purification setting. Formally, the classification result of a sample can be
viewed as a Bernoulli distribution (i.e., correct or false). We should reduce the success rate of the
Bernoulli distribution of sample classification by optimizing them with a larger attack loss, which
would lead to lower robust accuracy. In other words, one observation of failure in classification
does not indicate that the sample has a low success rate statistically, and thus, perspective 2) helps
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Table 1: Attack performance (Rob-Acc (%)) of DiffAttack and AdjAttack [34] against score-based
purification on CIFAR-10.

Models T Cl-Acc ℓp Attack ϵ Method Rob-Acc Diff.

WideResNet-28-10
0.1 89.02 ℓ∞

8/255
AdjAttack 70.64 -23.76DiffAttack 46.88

4/255
AdjAttack 82.81 -10.93DiffAttack 71.88

0.075 91.03 ℓ2 0.5
AdjAttack 78.58 -14.52DiffAttack 64.06

WideResNet-70-16
0.1 90.07 ℓ∞

8/255
AdjAttack 71.29 -25.98DiffAttack 45.31

4/255
AdjAttack 81.25 -6.25DiffAttack 75.00

0.075 92.68 ℓ2 0.5
AdjAttack 80.60 -10.29DiffAttack 70.31

to continue optimizing the perturbations towards a lower success rate (i.e., away from the decision
boundary). We provide the pseudo-codes of DiffAttack in Algorithm 2 in Appendix D.1.

4 Experimental Results

In this section, we evaluate DiffAttack from various perspectives empirically. As a summary, we
find that 1) DiffAttack significantly outperforms other SOTA attack methods against diffusion-based
defenses on both the score-based purification and DDPM-based purification models, especially under
large perturbation radii (Section 4.2 and Section 4.3); 2) DiffAttack outperforms other strong attack
methods such as the black-box attack and adaptive attacks against other adversarial purification
defenses (Section 4.4); 3) a moderate diffusion length T benefits the model robustness, since too
long/short diffusion length would hurt the robustness (Section 4.5); 4) our proposed segment-wise
forwarding-backwarding algorithm achievesO(1)-memory cost and outperforms other baselines by a
large margin (Section 4.6); and 5) attacks with the deviated-reconstruction loss added over uniformly
sampled time steps outperform that added over only initial/final time steps (Section 4.7).

4.1 Experiment Setting

Dataset & model. We validate DiffAttack on CIFAR-10 [27] and ImageNet [13]. We consider
different network architectures for classification. Particularly, WideResNet-28-10 and WideResNet-
70-16 [61] are used on CIFAR-10, and ResNet-50 [23], WideResNet-50-2 (WRN-50-2), and ViT
(DeiT-S) [16] are used on ImageNet. We use a pretrained score-based diffusion model [49] and
DDPM [25] to purify images following [34, 4].

Evaluation metric. The performance of attacks is evaluated using the robust accuracy (Rob-Acc),
which measures the ratio of correctly classified instances over the total number of test data under
certain perturbation constraints. Following the literature [12], we consider both ℓ∞ and ℓ2 attacks
under multiple perturbation constraints ϵ. We also report the clean accuracy (Cl-Acc) for different
approaches.

Baselines. To demonstrate the effectiveness of DiffAttack, we compare it with 1) SOTA attacks
against score-based diffusion adjoint attack (AdjAttack) [34], 2) SOTA attack against DDPM-based
diffusion Diff-BPDA attack [4], 3) SOTA black-box attack SPSA [53] and square attack [1], and
4) specific attack against EBM-based purification joint attack [60]. We defer more explanations
of baselines and experiment details to Appendix D.2. The codes are publicly available at https:
//github.com/kangmintong/DiffAttack.
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Table 3: Attack performance (Rob-Acc (%)) of DiffAttack and Diff-BPDA [4] against DDPM-based
purification on CIFAR-10.

Architecture T Cl-Acc ℓp Attack ϵ Method Rob-Acc Diff.

WideResNet-28-10
100 87.50 ℓ∞

8/255
Diff-BPDA 75.00 -20.31DiffAttack 54.69

4/255
Diff-BPDA 76.56 -13.28DiffAttack 63.28

75 90.62 ℓ2 0.5
Diff-BPDA 76.56 -8.59DiffAttack 67.97

WideResNet-70-16
100 91.21 ℓ∞

8/255
Diff-BPDA 74.22 -14.84DiffAttack 59.38

4/255
Diff-BPDA 75.78 -8.59DiffAttack 67.19

75 92.19 ℓ2 0.5
Diff-BPDA 81.25 -9.37DiffAttack 71.88

4.2 Attack against score-based purification

Table 2: Attack performance of DiffAttack and AdjAttack
[34] against score-based adversarial purification with dif-
fusion length T = 0.015 on ImageNet under ℓ∞ attack
(ϵ = 4/255).

Models Cl-Acc Method Rob-Acc Diff.

ResNet-50 67.79 AdjAttack 40.93 -12.80DiffAttack 28.13

WRN-50-2 71.16 AdjAttack 44.39 -13.14DiffAttack 31.25

DeiT-S 73.63 AdjAttack 43.18 -10.37DiffAttack 32.81

DiffPure [34] presents the state-of-the-
art adversarial purification performance
using the score-based diffusion models
[49]. It proposes a strong adaptive at-
tack (AdjAttack) which uses the adjoint
method [28] to efficiently backpropa-
gate the gradients through reverse SDE.
Therefore, we select AdjAttack as the
strong baseline and compare DiffAttack
with it. The results on CIFAR-10 in
Table 1 show that DiffAttack achieves
much lower robust accuracy compared
with AdjAttack under different types of
attacks (ℓ∞ and ℓ2 attack) with multiple
perturbation constraints ϵ. Concretely,
DiffAttack decreases the robust accuracy
of models by over 20% under ℓ∞ attack with ϵ = 8/255 (70.64%→ 46.88% on WideResNet-28-10
and 71.29% → 45.31% on WideResNet-70-16). The effectiveness of DiffAttack also generalizes
well to large-scale datasets ImageNet as shown in Table 2. Note that the robust accuracy of the
state-of-the-art non-diffusion-based purification defenses [38, 21] achieve about 65% robust accuracy
on CIFAR-10 with WideResNet-28-10 under ℓ∞ = 8/255 attack (ϵ = 8/255), while the performance
of score-based purification under AdjAttack in the same setting is 70.64%. However, given the strong
DiffAttack, the robust accuracy of score-based purification drops to 46.88%. It motivates us to think
of more effective techniques to further improve the robustness of diffusion-based purification in
future work.

4.3 Attack against DDPM-based purification

Another line of diffusion-based purification defenses [4, 55, 56] leverages DDPM [46] to purify
the images with intentionally crafted perturbations. Since backpropagating the gradients along the
diffusion and sampling process with a relatively large diffusion length is unrealistic due to the large
memory cost, BPDA attack [2] is adopted as the strong attack against the DDPM-based purification.
However, with our proposed segment-wise forwarding-backwarding algorithm, we can compute the
gradients within a small budget of memory cost, and to our best knowledge, this is the first work to
achieve adaptive gradient-based adversarial attacks against DDPM-based purification. We compare
DiffAttack with Diff-BPDA attack [4] on CIFAR-10, and the results in Table 3 demonstrate that
DiffAttack outperforms the baseline by a large margin under both ℓ∞ and ℓ2 attacks.
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4.4 Comparison with other adaptive attack methods

Table 4: Robust accuracy (%) of DiffAttack compared
with other attack methods on CIFAR-10 with WideResNet-
28-10 under ℓ∞ attack (ϵ = 8/255).

Method Score-based DDPM-based

SPSA 83.37 81.29
Square Attack 82.81 81.68

Joint Attack (Score) 72.74 –
Joint Attack (Full) 77.83 76.26

Diff-BPDA 78.13 75.00
AdjAttack 70.64 –

DiffAttack 46.88 54.69

Besides the AdjAttack and Diff-BPDA
attacks against existing diffusion-based
purification defenses, we also compare
DiffAttack with other general types of
adaptive attacks: 1) black-box attack
SPSA [53] and 2) square attack [1],
as well as 3) adaptive attack against
score-based generative models joint at-
tack (Score / Full) [60]. SPSA at-
tack approximates the gradients by ran-
domly sampling from a pre-defined dis-
tribution and using the finite-difference
method. Square attack heuristically
searches for adversarial examples in a
low-dimensional space with the constraints of perturbation patterns. Joint attack (score) updates
the input by the average of the classifier gradient and the output of the score estimation network,
while joint attack (full) leverages the classifier gradients and the difference between the input and the
purified samples. The results in Table 4 show that DiffAttack outperforms SPSA, square attack, and
joint attack by a large margin on score-based and DDPM-based purification defenses. Note that joint
attack (score) cannot be applied to the DDPM-based pipeline due to the lack of a score estimator.
AdjAttack fails on the DDPM-based pipeline since it can only calculate gradients through SDE.

4.5 Robustness with different diffusion lengths
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Figure 2: The clean/robust accuracy (%) of diffusion-based pu-
rification with different diffusion length T under DiffAttack on
CIFAR-10 with WideResNet-28-10 under ℓ∞ attack (ϵ = 8/255).

We observe that the diffusion length
plays an extremely important role in
the effectiveness of adversarial purifi-
cation. Existing DDPM-based purifica-
tion works [56, 55] prefer a small dif-
fusion length, but we find it vulnerable
under our DiffAttack. The influence
of the diffusion length T on the perfor-
mance (clean/robust accuracy) of the
purification defense methods is illus-
trated in Figure 2. We observe that 1)
the clean accuracy of the purification
defenses negatively correlates with the diffusion lengths since the longer diffusion process adds more
noise to the input and induces inaccurate reconstruction of the input sample; and 2) a moderate
diffusion length benefits the robust accuracy since diffusion-based purification with a small length
makes it easier to compute the gradients for attacks, while models with a large diffusion length
have poor clean accuracy that deteriorates the robust accuracy. We also validate the conclusion on
ImageNet in Appendix D.3.

4.6 Comparison of memory cost

0
5,000

10,000
15,000
20,000
25,000
30,000
35,000
40,000
45,000 Blau et al.,2022

DiffAttack

M
em

or
y 

Co
st

 (M
B)

T=3 T=5 T=10 T=15 T=20 T=30 T=1000
Diffusion length T

Figure 3: Comparison of memory cost of gradient back-
propagation between [4] and DiffAttack with batch size 16
on CIFAR-10 with WideResNet-28-10 under ℓ∞ attack.

Recent work [4] computes the gradients of the
diffusion and sampling process to perform the
gradient-based attack, but it only considers a
small diffusion length (e.g., 14 on CIFAR-10).
They construct the computational graph once
and for all, which is extremely expensive for
memory cost with a large diffusion length. We
use a segment-wise forwarding-backwarding
algorithm in Section 3.3 to avoid allocating the
memory for the whole computational graph.
In this part, we validate the memory efficiency
of our approach compared to [4]. The results
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in Figure 3 demonstrate that 1) the gradient backpropagation of [4] has the memory cost linearly
correlated to the diffusion length and does not scale up to the diffusion length of 30, while 2)
DiffAttack has almost constant memory cost and is able to scale up to extremely large diffusion
length (T = 1000). The evaluation is done on an RTX A6000 GPU. In Appendix D.3, we provide
comparisons of runtime between DiffAttack and [4] and demonstrate that DiffAttack reduces the
memory cost with comparable runtime.

4.7 Influence of applying the deviated-reconstruction loss at different time steps
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Figure 4: The impact of applying Ldev

at different time steps on decreased robust
accuracy (%). T is the diffusion length and
Uni(0, T ) represents uniform sampling.

We also show that the time steps at which we apply the
deviated-reconstruction loss also influence the effectiveness
of DiffAttack. Intuitively, the loss added at small time
steps does not suffer from vanishing/exploding gradients
but lacks supervision at consequent time steps, while the
loss added at large time steps gains strong supervision but
suffers from the gradient problem. The results in Figure 4
show that adding deviated-reconstruction loss to uniformly
sampled time steps (Uni(0,T)) achieves the best attack per-
formance and tradeoff compared with that of adding loss
to the same number of partial time steps only at the initial
stage ((0, T/3)) or the final stage ((2T/3, T )). For fair com-
parisons, we uniformly sample T/3 time steps (identical to
partial stage guidance (0, T/3), (2T/3, T )) to impose Ldev.

5 Related Work

Adversarial purification methods purify the adversarial input before classification with generative
models. Defense-gan [43] trains a GAN to restore the clean samples. Pixeldefend [48] utilizes an
autoregressive model to purify adversarial examples. Another line of research [50, 22, 17, 24, 60]
leverages energy-based model (EBM) and Markov chain Monte Carlo (MCMC) to perform the
purification. More recently, diffusion models have seen wide success in image generation [15, 40, 41,
42, 31, 39]. They are also used to adversarial purification [34, 4, 62, 57, 51, 55, 56] and demonstrated
to achieve the state-of-the-art robustness. In this work, we propose DiffAttack specifically against
diffusion-based purification and show the effectiveness in different settings, which motivates future
work to improve the robustness of the pipeline.

Adversarial attacks search for visually imperceptible signals which can significantly perturb the
prediction of models [52, 20]. Different kinds of defense methods are progressively broken by
advanced attack techniques, including white-box attack [6, 2, 32] and black-box attack [1, 53, 35].
[11, 12, 37, 59, 29] propose a systematic and automatic framework to attack existing defense methods.
Despite attacking most defense methods, these approaches are shown to be ineffective against the
diffusion-based purification pipeline due to the problem of vanishing/exploding gradient, memory
cost, and randomness. Therefore, we propose DiffAttack to specifically tackle the challenges and
successfully attack the diffusion-based purification defenses.

6 Conclusion

In this paper, we propose DiffAttack, including the deviated-reconstruction loss added on intermediate
samples and a segment-wise forwarding-backwarding algorithm. We empirically demonstrate that
DiffAttack outperforms existing adaptive attacks against diffusion-based purification by a large
margin. We conduct a series of ablation studies and show that a moderate diffusion length benefits the
model robustness, and attacks with the deviated-reconstruction loss added over uniformly sampled
time steps outperform that added over only initial/final time steps, which will help to better understand
the properties of diffusion process and motivate future defenses.

Acknolwdgement. This work is partially supported by the National Science Foundation under grant
No. 1910100, No. 2046726, No. 2229876, DARPA GARD, the National Aeronautics and Space
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A Broader Impact and Limitations

Broader impact. As an effective and popular way to explore the vulnerabilities of ML models,
adversarial attacks have been widely studied. However, recent diffusion-based purification is shown
hard to attack based on different trials, which raises an interesting question of whether it can be
attacked. Our paper provides the first effective attack against such defenses to identify the vulnerability
of diffusion-based purification for the community and inspire more effective defense approaches. In
particular, we propose an effective evasion attack against diffusion-based purification defenses which
consists of a deviated-reconstruction loss at intermediate diffusion steps to induce inaccurate density
gradient estimation and a segment-wise forwarding-backwarding algorithm to achieve memory-
efficient gradient backpropagation. The effectiveness of the deviated-reconstruction loss helps us to
better understand the properties of diffusion purification. Concretely, there exist adversarial regions
in the intermediate sample space where the score approximation model outputs inaccurate density
gradients and finally misleads the prediction. The observation motivates us to design a more robust
sampling process in the future, and one potential way is to train a more robust score-based model.
Furthermore, the segment-wise forwarding-backwarding algorithm tackles the memory issue of
gradient propagation through a long path. It can be applied to the gradient calculation of any discrete
Markov process almost within a constant memory cost. To conclude, our attack motivates us to
rethink the robustness of a line of SOTA diffusion-based purification defenses and inspire more
effective defenses.

Limitations. In this paper, we propose an effective attack algorithm DiffAttack against diffusion-
based purification defenses. A possible negative societal impact may be the usage of DiffAttack in
safety-critical scenarios such as autonomous driving and medical imaging analysis to mislead the
prediction of machine learning models. However, the foundation of DiffAttack and important findings
about the diffusion process properties can benefit our understanding of the vulnerabilities of diffusion-
based purification defenses and therefore motivate more effective defenses in the future. Concretely,
the effectiveness of DiffAttack indicates that there exist adversarial regions in the intermediate sample
space where the score approximation model outputs inaccurate density gradients and finally misleads
the prediction. The observation motivates us to design a more robust sampling process in the future,
and one potential way is to train a more robust score-based model. Furthermore, to control a robust
sampling process, it is better to provide guidance across uniformly sampled time steps rather than
only at the final stage according to our findings.

Algorithm 1 Segment-wise forwarding-backwarding algorithm (PyTorch-like pseudo-codes)

1: Input: fr, fd, ∂L/∂x′
0, xi,x

′
i (i ∈ [T ])

2: Output: ∂L/∂x0

3: for t = 1 to T do
4: Creat_Graph(fr(x

′
t)→ x′

t−1)

5: L′ ←
(
∂L/∂x′

t−1

)
(fr(x

′
t))

6: ∂L/∂x′
t ← auto_grad(L′,x′

t)
7: Release_Graph(fr(x

′
t)→ x′

t−1)
8: end for
9: ∂L/∂xT ← ∂L/∂x′

T
10: for t = T − 1 to 0 do
11: Creat_Graph(fd(xt)→ xt+1)
12: L′ ← (∂L/∂xt+1) (fd(xt))
13: ∂L/∂xt ← auto_grad(L′,xt)
14: Release_Graph(fd(xt)→ xt+1)
15: end for

B Efficient Gradient Backpropagation

In this section, we provide the PyTorch-like pseudo-codes of the segment-wise forwarding-
backwarding algorithm. At each time step t in the reverse process, we only need to store the
gradient ∂L/∂x′

t, the intermediate sample x′
t+1 and the model fr to construct the computational

graph. When we backpropagate the gradients at the next time step t+ 1, the computational graph at
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time step t will no longer be reused, and thus, we can release the memory of the graph at time step t.
Therefore, we only have one segment of the computational graph used for gradient backpropagation
in the memory at each time step. We can similarly backpropagate the gradients in the diffusion
process.

C Proofs

C.1 Proof of Thm. 1

Assumption C.1. Consider adversarial sample x̃0 := x0+ δ, where x0 is the clean example and δ is
the perturbation. pt(x),p′t(x),qt(x),q

′
t(x) are the distribution of xt,x′

t,x̃t,x̃′
t where x′

t represents the
reconstruction of xt at time step t in the reverse process. We consider a score-based diffusion model
with a well-trained score-based model sθ parameterized by θ with the clean training distribution.
Therefore, we assume that sθ can achieve a low score-matching loss given a clean sample and
reconstruct it in the reverse process:

∥∇x log pt(x)− sθ(x, t)∥22 ≤ Lu (12)

DTV (pt, p
′
t) ≤ ϵre (13)

where DTV (·, ·) is the total variation distance. Lu and ϵre are two small constants that characterize
the score-matching loss and the reconstruction error.

Assumption C.2. We assume the score function of data distribution is bounded by M :

∥∇x log pt(x)∥2 ≤M, ∥∇x log qt(x)∥2 ≤M (14)

Lemma C.1. Consider adversarial sample x̃0 := x0 + δ, where x0 is the clean example and δ is
the perturbation. pt(x),p′t(x),qt(x),q

′
t(x) are the distribution of xt,x′

t,x̃t,x̃′
t where x′

t represents
the reconstruction of xt in the reverse process. Given a VP-SDE parameterized by β(·) and the
score-based model sθ with Assumption C.2, we have:

DKL(p
′
t, q

′
t) =

1

2

∫ T

t

β(s)Ex|x0
∥∇x log p

′
s(x)−∇x log q

′
s(x)∥22ds+ 4M2

∫ T

t

β(s)ds (15)

Proof. The reverse process of VP-SDE can be formulated as follows:

dx = frev(x, t, pt)dt+grev(t)dw, where frev(x, t, pt) = −1

2
β(t)x−β(t)∇x log pt(x), grev(t) =

√
β(t)

(16)
Using the Fokker-Planck equation [44] in Equation (16), we have:

∂p′t(x)

∂t
= −∇x

(
frev(x, t, pt)p

′
t(x)−

1

2
g2rev(t)∇xp

′
t(x)

)
(17)

= ∇x

((
1

2
g2rev(t)∇x log p

′
t(x)− frev(x, t, pt)

)
p′t(x)

)
(18)

Similarly, applying the Fokker-Planck equation on the reverse SDE for q′t(x), we can get:

∂q′t(x)

∂t
= ∇x

((
1

2
g2rev(t)∇x log q

′
t(x)− frev(x, t, qt)

)
q′t(x)

)
(19)

We use the notation hp(x) =
1

2
g2rev(t)∇x log p

′
t(x) − frev(x, t, pt) and hq(x) =

1

2
g2rev(t)∇x log q

′
t(x) − frev(x, t, qt). Then according to [34](Theorem A.1), under the assump-

tion that p′t(x) and q′t(x) are smooth and fast decaying (i.e., limxi→∞[p′t(x)∂ log p′(x)/∂xi] =
0, limxi→∞[q′t(x)∂ log q′(x)/∂xi] = 0), we have:

∂DKL(p
′
t, q

′
t)

∂t
= −

∫
p′t(x)[hp(x, t)− hq(x, t)]

T [∇x log p
′
t(x)−∇x log q

′
t(x)]dx (20)
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Plugging in Equations (18) and (19), we have:

∂DKL(p
′
t, q

′
t)

∂t
= −

∫
p′t(x)(

1

2
g2rev(t)∥∇x log p

′
t(x)−∇x log q

′
t(x)∥22

+ β(t)[∇x log pt(x)−∇x log qt(x)]
T [∇x log p

′
t(x)−∇x log q

′
t(x)])dx

(21)
Finally, we can derive as follows:

DKL(p
′
t, q

′
t) =

∫ T

t

∫
X
(p′s(x)(

1

2
g2rev(s)∥∇x log p

′
s(x)−∇x log q

′
s(x)∥22 (22)

+ β(s)[∇x log ps(x)−∇x log qs(x)]
T [∇x log p

′
s(x)−∇x log q

′
s(x)]))dxds

(23)

≤
∫ T

t

(
1

2
g2rev(s)Ex|x0

∥∇x log p
′
s(x)−∇x log q

′
s(x)∥22 + 4β(s)M2)ds (24)

=
1

2

∫ T

t

β(s)Ex|x0
∥∇x log p

′
s(x)−∇x log q

′
s(x)∥22ds+ 4M2

∫ T

t

β(s)ds (25)

Theorem 2 (Thm. 1 in the main text). Consider adversarial sample x̃0 := x0 + δ, where x0 is the
clean example and δ is the perturbation. pt(x),p′t(x),qt(x),q

′
t(x) are the distribution of xt,x′

t,x̃t,x̃′
t

where x′
t represents the reconstruction of xt in the reverse process. DTV (·, ·) measures the total

variation distance. Given a VP-SDE parameterized by β(·) and the score-based model sθ with
mild assumptions that ∥∇x log pt(x)− sθ(x, t)∥22 ≤ Lu, DTV (pt, p

′
t) ≤ ϵre, and a bounded score

function by M (specified with details in Appendix C.1), we have:

DTV (qt, q
′
t) ≤

1

2

√
Et,x|x0

∥sθ(x, t)−∇x log q′t(x)∥22 + C1

+
√

2− 2 exp{−C2∥δ∥22}+ ϵre

(26)

where C1 = (Lu + 8M2)
∫ T

t
β(t)dt, C2 =

1

8(1−Πt
s=1(1− βs))

.

Proof. Since we consider VP-SDE here, we have:

f(x, t) = −1

2
β(t)x, g(t) =

√
β(t) (27)

frev(x, t) = −
1

2
β(t)x− β(t)∇x log pt(x), grev(t) =

√
β(t) (28)

Using the triangular inequality, the total variation distance between qt and q′t can be decomposed as:

DTV (qt, q
′
t) ≤ DTV (qt, pt) +DTV (pt, p

′
t) +DTV (q

′
t, p

′
t) (29)

According to Assumption C.1, we have DTV (pt, p
′
t) ≤ ϵre and thus, we only need to upper bound

DTV (qt, pt) and DTV (q
′
t, p

′
t),respectively.

Using the notation αt := 1− β(t) and ᾱt := Πt
s=1αs, we have:

xt ∼ pt := N (xt;
√
ᾱtx0, (1− ᾱt)I), x̃t ∼ qt := N (x̃t;

√
ᾱtx̃0, (1− ᾱt)I) (30)

Therefore, we can upper bound the total variation distance between qt and pt as follows:

DTV (qt, pt)
(a)

≤
√
2H(xt, x̃t) (31)

(b)
=
√
2

√
1− exp{− 1

8(1− ᾱt)
δT δ} (32)

=

√
2− 2 exp{− 1

8(1− ᾱt)
∥δ∥22} (33)
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where we leverage the inequality between the Hellinger distance H(·, ·) and total variation distance
in Equation (31)(a) and we plug in the closed form of Hellinger distance between two Gaussian
distribution [14] parameterized by µ1,Σ1, µ2,Σ2 in Equation (32)(b):

H(N (µ1,Σ1),N (µ2,Σ2))
2 = 1− det(Σ1)

1/4det(Σ2)
1/4

det

(
Σ1 +Σ2

2

)1/2
exp{−1

8
(µ1−µ2)

T

(
Σ1 +Σ2

2

)−1

(µ1−µ2)}

(34)

Then, we will upper bound DTV (p
′
t, q

′
t). We first leverage Pinker’s inequality to upper bound the

total variation distance with the KL-divergence:

DTV (p
′
t, q

′
t) ≤

√
1

2
DKL(p′t, q

′
t) (35)

Then we plug in the results in Lemma C.1 to upper bound KL(p′t, q
′
t) and it follows that:

DTV (p
′
t, q

′
t) (36)

≤
√

1

2
DKL(p′t, q

′
t) (37)

≤
√

1

4

∫ T

t

β(s)Ex|x0
∥∇x log p′s(x)−∇x log q′s(x)∥22ds+ 2M2

∫ T

t

β(s)ds (38)

≤
√

1

4

∫ T

t

β(s)Ex|x0
[∥∇x log p′s(x)− sθ(x, s)∥22 + ∥sθ(x, s)−∇x log q′s(x)∥22]ds+ 2M2

∫ T

t

β(s)ds

(39)

(a)

≤
√

(
Lu

4
+ 2M2)

∫ T

t

β(s)ds+
1

4
Et,x|x0

∥sθ(x, t)−∇x log q′t(x)∥22 (40)

where in Equation (40)(a), we leverage the fact that β(·) is bounded in [0, 1].

Combining Equations (29), (33) and (40), we can finally get:

DTV (qt, q
′
t) ≤

√
1

4
Et,x|x0

∥sθ(x, t)−∇x log q′t(x)∥22 + C1 +
√
2− 2 exp{−C2∥δ∥22}+ ϵre

(41)

where C1 = (
Lu

4
+ 2M2)

∫ T

t
β(s)ds and C2 =

1

8(1−Πt
s=1(1− βs))

.

C.2 Connection between the deviated-reconstruction loss and the density gradient loss for
DDPM

Theorem 3. Consider adversarial sample x̃0 := x0 + δ, where x0 is the clean example and δ is
the perturbation. pt(x),p′t(x),qt(x),q

′
t(x) are the distribution of xt,x′

t,x̃t,x̃′
t where x′

t represents the
reconstruction of xt in the reverse process. Given a DDPM parameterized by β(·) and the function
approximator sθ with the mild assumptions that ∥sθ(x, t) − ϵ(xt, t)∥22 ≤ Lu, DTV (pt, p

′
t) ≤ ϵre,

and a bounded score function by M (i.e., ∥ϵ(x, t)∥2 ≤ M ) where ϵ(·, ·) represents the mapping
function of the true perturbation, we have:

DTV (qt, q
′
t) ≤

√√√√√2 − 2 exp{−C2

 T∑
k=t+1

λ(k, t)∥sθ(x̃′
k, k) − ϵ(x̃′

k, k)∥2 + C1∥δ∥2 + (
√

Lu + 2M)
T∑

k=t+1

λ(k, t)

2

}

+

√
2 − 2 exp{−

1

8
(1 − Πt

s=1(1 − βs))∥δ∥2
2} + ϵre

(42)

where C1 =
(
ΠT

s=t+1

√
Πs

k=1(1− βk)
)√

ΠT
s=1(1− βs), C2 =

1−Πt
s=1(1− βs)

8(1−Πt−1
s=1(1− βs))βt

, and

λ(k, t) =
βkΠ

k−1
i=t+1

√
Πi

s=1(1− βs)√
1−Πk

s=1(1− βs)
.
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Proof. For ease of notation, we use the notation: αt := 1− βt and ᾱt := Πt
s=1αs. From the DDPM

sampling process [25], we know that:

x′
t−1 ∼ p′t :=

1√
ᾱt

(
x′
t −

1− αt√
1− ᾱt

sθ(x
′
t, t)

)
+ σtz (43)

x̃′
t−1 ∼ q′t :=

1√
ᾱt

(
x̃′
t −

1− αt√
1− ᾱt

sθ(x̃
′
t, t)

)
+ σtz (44)

where σ2
t =

1− ᾱt−1

1− ᾱt
βt.

µt,q and µt,p represent the mean of the distribution q′t and p′t, respectively. Then from Equations (43)
and (44), we have:

µt,q − µt,p =
1√
ᾱt

(µt−1,q − µt−1,p)−
1− αt√
ᾱt

√
1− ᾱt

(sθ(x̃
′
t, t)− sθ(x

′
t, t)) (45)

Applying Equation (45) iteratively, we get:

µT,q − µT,p =
1

ΠT
s=t

√
ᾱs

(µt−1,q − µt−1,p)−
T∑

k=t

1− αk√
1− ᾱkΠT

i=k

√
ᾱi

(sθ(x̃
′
k, k)− sθ(x

′
k, k))

(46)

On the other hand, µT,q − µT,p can be formulated explicitly considering the Gaussian distribution at
time step T in the diffusion process:

µT,q − µT,p =
√
ᾱT (x̃0 − x0) =

√
ᾱT δ (47)

Combining Equations (46) and (47), we can derive that:
∥µT,q − µT,p∥2 (48)

=
(
Π

T
s=t+1

√
ᾱs

)√
ᾱT ∥δ∥2 +

T∑
k=t+1

(1 − αk)Π
k−1
i=t+1

√
ᾱi

√
1 − ᾱk

∥sθ(x̃
′
k, k) − sθ(x

′
k, k))∥2 (49)

≤
(
Π

T
s=t+1

√
ᾱs

)√
ᾱT ∥δ∥2 +

T∑
k=t+1

(1 − αk)Π
k−1
i=t+1

√
ᾱi

√
1 − ᾱk

(
∥sθ(x̃

′
k, k) − ϵ(x

′
k, k)∥2 + ∥ϵ(x′

k, k) − sθ(x
′
k, k))∥2

)
(50)

≤
(
Π

T
s=t+1

√
ᾱs

)√
ᾱT ∥δ∥2 +

√
Lu

T∑
k=t+1

λ(k, t) +

T∑
k=t+1

λ(k, t)
(
∥sθ(x̃

′
k, k) − ϵ(x̃

′
k, k)∥2 + ∥ϵ(x̃′

k, k) − ϵ(x
′
k, k)∥2

)
(51)

≤
(
Π

T
s=t+1

√
ᾱs

)√
ᾱT ∥δ∥2 + (

√
Lu + 2M)

T∑
k=t+1

λ(k, t) +

T∑
k=t+1

λ(k, t)∥sθ(x̃
′
k, k) − ϵ(x̃

′
k, k)∥2 (52)

where λ(k, t) =
(1− αk)Π

k−1
i=t+1

√
ᾱi√

1− ᾱk
.

We then leverage the closed form formulation of the Hellinger distance between two Gaussian
distributions [14] parameterized by µ1,Σ1, µ2,Σ2:

H2(N (µ1,Σ1),N (µ2,Σ2)) = 1− det(Σ1)
1/4det(Σ2)

1/4

det

(
Σ1 +Σ2

2

)1/2
exp{−1

8
(µ1−µ2)

T

(
Σ1 +Σ2

2

)−1

(µ1−µ2)}

(53)
Applying it to distribution p′t and q′t, we have:

H2(p′t, q
′
t) = 1− exp{− 1− ᾱt

8(1− ᾱt−1)βt
∥µt,q − µt,p∥22}

(54)

≤ 1− exp{−C2

(
C1∥δ∥2 + (

√
Lu + 2M)

T∑
k=t+1

λ(k, t) +

T∑
k=t+1

λ(k, t)∥sθ(x̃
′
k, k)− ϵ(x̃′

k, k)∥2

)2

}

(55)
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where C1 =
(
ΠT

s=t+1

√
ᾱs

)√
ᾱT and C2 =

1− ᾱt

8(1− ᾱt−1)βt
. Finally, it follows that:

DTV (qt, q
′
t) ≤DTV (qt, pt) + DTV (pt, p

′
t) + DTV (q

′
t, p

′
t) (56)

≤
√

2 − 2 exp{−
1

8
(1 − ᾱt)∥δ∥2

2} + ϵre +
√
2H(q

′
t, p

′
t) (57)

≤

√√√√√2 − 2 exp{−C2

C1∥δ∥2 + (
√

Lu + 2M)

T∑
k=t+1

λ(k, t) +

T∑
k=t+1

λ(k, t)∥sθ(x̃′
k, k) − ϵ(x̃′

k, k)∥2

2

}

(58)

+

√
2 − 2 exp{−

1

8
(1 − ᾱt)∥δ∥2

2} + ϵre (59)

=

√√√√√2 − 2 exp{−C2

 T∑
k=t+1

λ(k, t)∥sθ(x̃′
k, k) − ϵ(x̃′

k, k)∥2 + C1∥δ∥2 + (
√

Lu + 2M)
T∑

k=t+1

λ(k, t)

2

}

(60)

+

√
2 − 2 exp{−

1

8
(1 − Πt

s=1(1 − βs))∥δ∥2
2} + ϵre (61)

where C1 =
(
ΠT

s=t+1

√
Πs

k=1(1− βk)
)√

ΠT
s=1(1− βs), C2 =

1−Πt
s=1(1− βs)

8(1−Πt−1
s=1(1− βs))βt

, and

λ(k, t) =
βkΠ

k−1
i=t+1

√
Πi

s=1(1− βs)√
1−Πk

s=1(1− βs)
.

D Experiment

D.1 Pseudo-code of DiffAttack

Given an input pair (x, y) and the perturbation budget, we notate L := Lcls + λLdev (Equation (8))
the surrogate loss, Π the projection operator given the perturbation budget and distance metric, η the
step size, α the momentum coefficient, Niter the number of iterations, and W the set of checkpoint
iterations. Concretely, we select Lcls as the cross-entropy loss in the first round and DLR loss in
the second round following [34]. The gradient of the surrogate loss with respect to the samples is
computed by forwarding the samples and backwarding the gradients for multiple times and taking
the average to tackle the problem of randomness. We also optimize all the samples, including the
misclassified ones, to push them away from the decision boundary. The gradient can be computed
with our segment-wise forwarding-backwarding algorithm in Section 3.3, which enables DiffAttack
to be the first fully adaptive attack against the DDPM-based purification defense. The complete
procedure is provided in Algorithm 2.

D.2 Experiment details

We use pretrained score-based diffusion models [49] on CIFAR-10, guided diffusion models [15] on
ImageNet, and DDPM [25] on CIFAR-10 to purify the images following the literature [34, 4, 55, 56].
Due to the high computational cost, we follow [34] to randomly select a fixed subset of 512 images
sampled from the test set to evaluate the robust accuracy for fair comparisons. We implement
DiffAttack in the framework of AutoAttack [12], and we use the same hyperparameters. Specifically,
the number of iterations of attacks (Niter) is 100, and the number of iterations to approximate the
gradients (EOT) is 20. The momentum coefficient α is 0.75, and the step size η is initialized with 2ϵ
where ϵ is the maximum ℓp-norm of the perturbations. The balance factor λ between the classification-
guided loss and the deviated-reconstruction loss in Equation (8) is fixed as 1.0 and α(·) is set the
reciprocal of the size of sampled time steps in the evaluation. We consider ϵ = 8/255 and ϵ = 4/255
for ℓ∞ attack and ϵ = 0.5 for ℓ2 attack following the literature [11, 12].

We use randomly selected 3 seeds and report the averaged results for evaluations. CIFAR-10 is under
the MIT license and ImageNet is under the BSD 3-clause license.

More details of baselines. In this part, we illustrate more details of the baselines 1) SOTA attacks
against score-based diffusion adjoint attack (AdjAttack) [34], 2) SOTA attack against DDPM-based
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Algorithm 2 DiffAttack

1: Input: L := Lcls + λLdev , Π, (x, y), η, α, Niter, W = {w0, . . . , wn}
2: Output: x̃
3: x̃(0) ← x̃
4: x̃(1) ← Π

(
x̃(0) + η∇x̃(0)L(x̃(0), y)

)
5: Lmax ← max{L(x̃(0), y),L(x̃(1), y)}
6: x̃← x̃(0) if Lmax ≡ L(x̃(0), y) else x̃← x̃(1)

7: for k = 1 to Niter−1 do
8: z(k+1) ← Π

(
x̃(k) + η∇x̃(k)L(x̃(k), y)

)
9: x̃(k+1) ← Π

(
x̃(k) + α(z(k+1) − x̃(k)) + (1− α)(x̃(k) − x̃(k−1))

)
10: if L(x̃(k+1), y) > Lmax then
11: x̃← x̃(k+1) and Lmax ← L(x̃(k+1), y)
12: end if
13: if k ∈W then
14: η ← η/2
15: end if
16: end for

diffusion Diff-BPDA attack [4], 3) SOTA black-box attack SPSA [53] and square attack [1], and 4)
specific attack against EBM-based purification joint attack (score/full) [60]. AdjAttack selects the
surrogate loss L as the cross-entropy loss and DLR loss and leverages the adjoint method [28] to
efficiently backpropagate the gradients through SDE. The basic idea is to obtain the gradients via
solving an augmented SDE. For the SDE in Equation (4), the augmented SDE that computes the
gradients ∂L/∂x′

T of back=propagating through it is given by: x′
T

∂L
∂x′

T

=sdeint

 x′
0

∂L
∂x′

0

, f̃ , g̃, w̃, 0, T

 (62)

where ∂L
∂x′

0
is the gradient of the objective L w.r.t. the x′

0, and

f̃([x; z], t) =

(
frev(x, t)
∂frev(x,t)

∂x z

)

g̃(t) =

(
−grev(t)1d

0d

)
w̃(t) =

(
−w(1− t)
−w(1− t)

) (63)

with 1d and 0d representing the d-dimensional vectors of all ones and all zeros, respectively and
frev(x, t) := − 1

2β(t)x− β(t)∇x log pt(x),grev(t) :=
√

β(t).

SPSA attack approximates the gradients by randomly sampling from a pre-defined distribution and
using the finite-difference method. Square attack heuristically searches for adversarial examples in a
low-dimensional space with the constraints of the perturbation pattern (i.e., constraining the square
shape of the perturbation). Joint attack (score) updates the input by the weighted average of the
classifier gradient and the output of the score estimation network (i.e., the gradient of log-likelihood
with respect to the input), while joint attack (full) leverages the classifier gradients and the difference
between the input and the purified samples. The update of the joint attack (score) is formulated as
follows:

x̃← x̃+ η (λ′sign(sθ(x̃)) + (1− λ′)sign(∇x̃L(F (P (x̃)), y)) (64)

The update of the joint attack (full) is formulated as follows:

x̃← x̃+ η (λ′sign(F (P (x̃))− x̃) + (1− λ′)sign(∇x̃L(F (P (x̃)), y)) (65)

where η is the step size and λ′ the balance factor fixed as 0.5 in the evaluation.
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Table 5: Comparisons of gradient backpropagation time per batch(second)/Memory cost (MB)
between [4] and DiffAttack. We evaluate on CIFAR-10 with WideResNet-28-10 with batch size 16.

Method T = 5 T = 10 T = 15 T = 20 T = 30 T = 1000

[4] 0.45/14,491 0.83/23,735 1.25/32,905 1.80/38,771 — —
DiffAttack 0.44/2,773 0.85/2,731 1.26/2,805 1.82/2,819 2.67/2,884 85.81/3,941

Table 6: The clean / robust accuracy (%) of diffusion-based purification with different diffusion
lengths T under DiffAttack. The evaluation is done on ImageNet with ResNet-50 under ℓ∞ attack
(ϵ = 4/255).

T = 50 T = 100 T = 150 T = 200

71.88 / 12.46 68.75 / 24.62 67.79 / 28.13 65.62 / 26.83

D.3 Additional Experiment Results

Efficiency evaluation. We evaluate the wall clock time per gradient backpropagation of the segment-
wise forwarding-backwarding algorithm for different diffusion lengths and compare the time efficiency
as well as the memory costs with the standard gradient backpropagation in previous attacks [4]. The
results in Table 5 indicate that the segment-wise forwarding-backwarding algorithm consumes
comparable wall clock time per gradient backpropagation compared with [4] and achieves a much
better tradeoff between time efficiency and memory efficiency. The evaluation is done on an RTX
A6000 GPU with 49,140 MB memory. In the segment-wise forwarding-backwarding algorithm,
we require one forward pass and one backpropagation pass in total for the gradient computation,
while the standard gradient backpropagation in [4] requires one backpropagation pass. However,
since the backpropagation pass is much more expensive than the forward pass [36], our segment-
wise forwarding-backwarding algorithm can achieve comparable time efficiency while significantly
reducing memory costs.

More ablation studies on ImageNet. We conduct more evaluations on ImageNet to consolidate the
findings in CIFAR-10. We evaluate the clean/robust accuracy (%) of diffusion-based purification
with different diffusion lengths T under DiffAttack. The results in Table 6 indicate that 1) the
clean accuracy of the purification defenses negatively correlates with the diffusion lengths, and 2) a
moderate diffusion length benefits the robust accuracy under DiffAttack.

Tansferability of DiffAttack. ACA [10] and Diff-PGD attack [58] explore the transferability of
unrestricted adversarial attack, which generates realistic adversarial examples to fool the classifier
and maintain the photorealism. They demonstrate that this kind of semantic attack transfers well to
other models. To explore the transferability of adversarial examples by ℓp-norm-based DiffAttack, we
evaluate the adversarial examples generated on score-based purification withResNet-50 on defenses
with pretrained WRN-50-2 and DeiT-S. The results in Table 7 indicate that DiffAttack also transfers
better than AdjAttack and achieves much lower robust accuracy on other models.

Ablation study of balance factor λ. As shown in Equation (11), λ controls the balance of the two
objectives. A small λ can weaken the deviated-reconstruction object and make the attack suffer more
from the vanishing/exploded gradient problem, while a large λ can downplay the guidance of the
classification loss and confuse the direction towards the decision boundary of the classifier. The
results in Table 8 show that selecting λ as 1.0 achieves better tradeoffs empirically, so we fix it as 1.0
for experiments.

D.4 Visualization

In this section, we provide the visualization of adversarial examples generated by DiffAttack. Based
on the visualization on CIFAR-10 and ImageNet with different network architectures, we conclude
that the perturbation generated by DiffAttack is stealthy and imperceptible to human eyes and hard to
be utilized by defenses.
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Table 7: Robust accuracy (%) with ℓ∞ attack (ϵ = 8/255) against score-based diffusion purification
on CIFAR-10. The adversarial examples are optimized on the diffusion purification defense with
pretrained ResNet-50 and evaluated on defenses with other types of models including WRN-50-2
and DeiT-S.

ResNet-50 WRN-50-2 DeiT-S

AdjAttack 40.93 52.37 54.53
DiffAttack 28.13 37.28 39.62

Table 8: The impact of different loss weights λ on the robust accuracy (%). We perform ℓ∞
(ϵ = 8/255) against score-based diffusion purification on CIFAR-10 with WideResNet-28-10 and
diffusion length T = 0.1.

λ = 0.1 λ = 1.0 λ = 10.0

54.69 46.88 53.12
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Figure 5: Visualization of the clean images and adversarial samples generated by DiffAttack on
CIFAR-10 with ℓ∞ attack (ϵ = 8/255) against score-based purification with WideResNet-28-10.
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Figure 6: Visualization of the clean images and adversarial samples generated by DiffAttack on
CIFAR-10 with ℓ∞ attack (ϵ = 8/255) against score-based purification with WideResNet-70-16.
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Figure 7: Visualization of the clean images and adversarial samples generated by DiffAttack on
ImageNet with ℓ∞ attack (ϵ = 4/255) against score-based purification with WideResNet-50-2.
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Figure 8: Visualization of the clean images and adversarial samples generated by DiffAttack on
ImageNet with ℓ∞ attack (ϵ = 4/255) against score-based purification with DeiT-S.
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Figure 9: Visualization of the clean images and adversarial samples generated by DiffAttack on
ImageNet with a larger perturbation radius: ℓ∞ attack (ϵ = 8/255) against score-based purification
with ResNet-50.
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