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Abstract

Despite its practical importance across a wide range of modalities, recent advances
in self-supervised learning (SSL) have been primarily focused on a few well-
curated domains, e.g., vision and language, often relying on their domain-specific
knowledge. For example, Masked Auto-Encoder (MAE) has become one of the
popular architectures in these domains, but less has explored its potential in other
modalities. In this paper, we develop MAE as a unified, modality-agnostic SSL
framework. In turn, we argue meta-learning as a key to interpreting MAE as a
modality-agnostic learner, and propose enhancements to MAE from the motivation
to jointly improve its SSL across diverse modalities, coined MetaMAE as a result.
Our key idea is to view the mask reconstruction of MAE as a meta-learning task:
masked tokens are predicted by adapting the Transformer meta-learner through the
amortization of unmasked tokens. Based on this novel interpretation, we propose
to integrate two advanced meta-learning techniques. First, we adapt the amortized
latent of the Transformer encoder using gradient-based meta-learning to enhance
the reconstruction. Then, we maximize the alignment between amortized and
adapted latents through task contrastive learning which guides the Transformer
encoder to better encode the task-specific knowledge. Our experiment demon-
strates the superiority of MetaMAE in the modality-agnostic SSL benchmark
(called DABS), significantly outperforming prior baselines. Code is available at
https://github.com/alinlab/MetaMAE.

1 Introduction

Self-supervised learning (SSL), i.e., learning without human supervision, recently has demonstrated
substantial success across fields including, computer vision [32, 11, 29, 47, 33, 5, 102], natural
language processing (NLP) [18, 49, 55, 70], and speech recognition [2, 38, 39]. The efficacy of SSL
is derived by extracting transferable knowledge from unlabeled datasets, a feature that manifests
significant utility for various downstream tasks such as classification and segmentation. As a result,
SSL has become an indispensable technique in real-world applications (for instance, industrial
contexts like medical imaging [26]), not only improving the performance on new datasets but also
reducing a significant amount of computations and costs, e.g., expert annotation poses significant
costs [68, 16]. However, despite the importance of SSL in such fields, recent advancements have been
predominantly focused on specific domains (e.g., images and NLP) where the majority of existing
SSL frameworks on such domains require modality-specific knowledge, thereby constraining the
applicability and scalability of previous works across new modalities.

To tackle this issue, we draw attention to the recent success of the Masked Auto-Encoder (MAE)
framework [33], which eliminates the need for modality-specific inductive biases. Initially presented
as a generative model [91, 67], the MAE models the network to reconstruct the original input
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Figure 1: An overview of the proposed Meta-learned Masked Auto-Encoder (MetaMAE): we adapt
the amortized latent Zx of the Transformer encoder fθ using gradient-based meta-learning on the
Transformer decoder gϕ to enhance the reconstruction, then maximize the alignment with optimized
latentZ∗

x to guide the Transformer encoder towards improved predictions via task contrastive learning.

signal based on the randomly masked part of the signal. Recently, the integration of MAE with the
Transformer architecture [33] has resulted in a powerful SSL framework for various domains, such as
vision [33, 5, 10], NLP [18, 70], and tabular [59] datasets. For instance, it has been demonstrated that
BERT [18], utilizing a Transformer encoder with a linear decoder, can effectively transfer to diverse
tasks for the NLP domain. On the other hand, it has been suggested that utilizing a decoder of a deep
Transformer architecture is essential for applying MAE within the vision domain [106], achieving
remarkable performance [33]. Building on these insights, we found that MAE is quite a promising
direction for modality-agnostic SSL: our experiment demonstrates that using a deep Transformer
decoder for MAE significantly outperforms previous modality-agnostic SSL frameworks (see Table
5). In this paper, we suggest to further exploit the benefits of MAE to build a unified SSL framework.

Contribution. We propose Meta-learned Masked Auto-Encoder (MetaMAE), a novel modality-
agnostic SSL framework that leverages the power of meta-learning; see the overview in Figure 1.
Our key idea is to interpret MAE as a meta-learning framework, thereby improving the general-
ization through the use of advanced meta-learning schemes. To be specific, we interpret the data
reconstruction itself as a task, where the Transformer meta-learner is adapted through amortization of
the support set (i.e., unmasked tokens) to predict the query set (i.e., masked tokens). Based on this
interpretation, we propose a novel integration of two advanced meta-learning techniques to enhance
MAE; namely the use of gradient-based meta-learning [22] and task contrastive learning [28, 60].

• Latent Adaptation via Gradient-based Meta-learning: We suggest adapting the amortized latent
to better reconstruct the given support set (and the nearby tokens) through gradient-based meta-
learning on the decoder [74]. Then, the optimized latent is used to condition the decoder for the
query prediction. This approach generally eases the task compared to the direct reconstruction,
thereby streamlining and improving the task adaptation process.

• Task Contrastive Learning: To further leverage this optimized latent, we suggest utilizing task
contrastive learning [28, 60]. Specifically, since both the optimized and predicted latents originate
from the same task, we aim to maximize their similarity while minimizing their similarity with
other tasks. This prompts the Transformer encoder to produce predictions closely aligned with
the optimized latent, effectively guiding the Transformer to better encode the task knowledge.

We verify the efficacy of MetaMAE through extensive evaluations on multiple data modalities from
modality-agnostic SSL benchmarks (i.e., DABS 1.0 [83] and 2.0 [85]), including time-series, tabular,
discrete token, multi-spectral images, speech, and multi-modal datasets. Overall, our experimental
results demonstrate strong results, consistently and significantly outperforming previous modality-
agnostic SSL methods in linear evaluation. For instance, measured with classification accuracy (%),
MetaMAE improves the prior state-of-the-art results by 85.3→ 89.3 on PAMAP2 [71], 53.6→ 69.4
on Genomics [72], and 60.2→ 79.8 on LibriSpeech [66] datasets. Moreover, we also demonstrate
that MetaMAE significantly improves the linear evaluation performance on cross-domain datasets,
indicating the improved transfer ability of MAE through meta-learning.
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2 Meta-Learning Modality-Agnostic Masked Auto-Encoder

In this section, we present Meta-learned Masked Auto-Encoder (MetaMAE), a novel and effective
modality-agnostic self-supervised learning (SSL) framework. Our key contribution is to tackle the
modality-agnostic SSL problem with in-depth utilization of MAE, which was quite under-explored
in the field. Based on our novel interpretation that views MAE as a meta-learning framework (in
Section 2.1), we improve the transfer ability of MAE by suggesting enhanced modality-agnostic
meta-learning techniques including latent optimization-based meta-learning and task contrastive
learning (in Section 2.2). Our framework is visually depicted in Figure 1, and the pseudo-code is
provided in Algorithm 1.

Problem setup. We first describe the problem setup of our interest, modality-agnostic SSL. This
problem aims to learn a transferable representation from the unlabeled dataset without utilizing
the modality-specific inductive biases. For a given unlabeled pretrain dataset Dpretrain = {xi}Ni=1,
where x ∈ Rd represents an input sampled from a certain data-generating distribution in an i.i.d
manner, our objective is to train an encoder fθ that can linearly separate the given labeled transfer
dataset drawn from a similar or the same data-generating distribution.

2.1 Rethinking Masked Auto-Encoder as a Meta-Learning Framework

Meta-learning [86] aims to extract and utilize the knowledge from the distribution of tasks to better
solve a relevant task. This problem is typically approached by training a meta-learner that can
transfer its knowledge to a task-specific model through adaptation, where the performance of the
meta-learner is evaluated on the basis of how well each adapted model performs on the corresponding
task. To learn such a meta-learner, a standard way is to use a set of support set samples to adapt the
task-specific model from the meta-learner and use another disjoint set of samples, called query set
samples to evaluate the adaptation performance [92, 82].

Mask prediction as a modality-agnostic task. MAE is an SSL technique that trains an autoencoder
to reconstruct the original input signal with a randomly masked part of the signal. To implement
such a technique, recent works utilize the Transformer architecture for the autoencoder design which
is necessary for successful training. To use Transformer for MAE, the input data is broken down
into non-overlapping units coined tokens (e.g., patches for images, and words for languages) where
such tokens are divided into two disjoint sets (unmasked and masked) for MAE modeling, i.e., the
Transformer autoencoder predicts the masked token using the unmasked tokens.

Our key insight is to interpret the signal reconstruction of MAE as a meta-learning task, where two
disjoint unmasked and masked token sets are viewed as support and query sets to adapt and evaluate
the Transformer meta-learner. To be specific, the Transformer encoder extracts the task knowledge
through amortization of the support set, where this amortized latent adapts the Transformer decoder
to predict the query set of the task. Formally, for a given data sample x, we first divide the signal
into two disjoint sets, namely the support set Sx and the query set Qx, by utilizing the tokenize
operation tokenize(x) := {(m, x̄(m))}Mm=1 = Sx ∪Qx. Then, for a given Transformer encoder fθ
and decoder gϕ, MAE minimizes the discrepancy between the predicted token and the corresponding
masked token (i.e., the query sample) as:

LMAE(θ, ϕ;Qx) :=
∑

(q,x̄(q))∈Qx

d
(
x̄(q), g

(q)
ϕ

(
Zx

))
where Zx = fθ(Sx), (1)

where d(·, ·) is a discrepancy function: ℓ2 norm for continuous (e.g., time-series, speech) and cross-
entropy for discrete (e.g., token) datasets, respectively. Based on this interpretation, we improve the
transfer ability of MAE (for modality-agnostic SSL) through a novel integration of two effective
modality-agnostic meta-learning techniques to MAE.

2.2 MetaMAE: Improving Masked Auto-Encoder through Meta-Learning

We now describe our method, MetaMAE, which further improves the representation of MAE through
a novel integration with advanced modality-agnostic meta-learning techniques. In a nutshell, Meta-
MAE operates by further optimizing the amortized latent of the Transformer encoder using gradient-
based meta-learning. Then we maximize the alignment between the optimized and the amortized
latents via contrastive learning, to guide the Transformer encoder to improve the generalization.
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Algorithm 1 MetaMAE: Meta-Learning Modality-Agnostic Masked Auto-Encoder

Require: Unlabeled pretrain dataset Dpretrain, weight hyperparameter λ, Nearby-S ratio r,
batch size B, learning rates α, β.

1: Initialize θ, ϕ, ψ using the standard initialization scheme.
2: while not done do
3: Sample mini-batch B = {xi}Bi=1 from Dpretrain

4: for i = 1 to B do ▷ Note: we use the batch computation.
5: Sample Support set Sxi

and Query set Qxi
from xi

6: Zxi
= fθ(Sxi

) ▷ Amortization through Transformer encoder.
7: Sample N (Sxi ; r) where |N (Sxi ; r)| = r × |Qxi | ▷ Sample the Nearby-S tokens.
8: Z∗

xi
← Zxi − α∇Zxi

LMAE(θ, ϕ; S̃xi).

where S̃xi = Sxi ∪N (Sxi ; r) ▷ Adapt the amortized latent.
9: Compute MAE reconstruction loss Ligrad with Z∗

xi ▷ Eq. (2)
10: Compute task contrastive loss Litask-con with {Zxi}Bi=1 and {Z∗

xi}Bi=1 ▷ Eq. (4)
11: Compute MetaMAE loss LiMetaMAE with Ligrad, Litask-con and λ ▷ Eq. (5)
12: end for
13: θ, ϕ, ψ ← θ, ϕ, ψ − β

B

∑B
i=1 LiMetaMAE ▷ Update the entire networks.

14: end while

Latent adaptation via gradient-based meta-learning. To further improve the generalization of
MAE, we suggest utilizing the gradient-based meta-learning (i.e., model-agnostic meta-learning;
MAML [22]) on the amortized latent space [74]. Specifically, we adapt the amortized latent of the
support set to better reconstruct the support and the nearby tokens (of support tokens) by using the
gradients of the decoder. Then, we utilize the optimized latent to condition the decoder to predict
the query tokens. Here, our key idea is the use of nearby tokens when optimizing the latent, which
turns out to be crucial for improved performance. Intuitively, optimizing such tokens induce an error
correction on the latent, which eases the mask reconstruction (or prediction) task compared to the
direct reconstruction, and thereby improves the task adaptation process [103].

Concretely, for a given support set Sx, we select the nearby tokens of support tokens from the query
set Qx, namely N (Sx; r) ⊂ Qx, such that the cardinality is |N (Sx; r)| = r × |Qx| with a ratio of
r > 0. Then, we optimize the amortized latent Zx to better reconstruct the support and the nearby
tokens S̃x := Sx ∪ N (Sx; r) using the decoder gradient, then condition the meta-learner, i.e., the
Transformer decoder gϕ, to predict the query set Qx as follows:

Lgrad(x, θ, ϕ) :=
∑

(q,x̄(q))∈Qx

d
(
x̄(q), g

(q)
ϕ

(
Z∗

x

))
where Z∗

x = Zx − α∇ZxLMAE(θ, ϕ; S̃x) (2)

where α > 0 is the step size for the adaptation. One can easily extend the latent optimization to
obtain Z∗

x with more than one gradient step where we found a single step adaptation is already quite
effective yet showing computation efficiency compared to multiple iterations. Furthermore, we found
that it is important to use the second-order gradients for the adaptation, i.e., backpropagation on
the decoder adaptation gradient when optimizing the loss function, which enables the Transformer
encoder to better amortize for the reconstruction task. Note that this gradient calculation on the
decoder does not increase the computation too much, as using a smaller decoder size (compared to
the encoder) is the key to the success of MAE [33].

Task contrastive learning. To further exploit the benefit of the gradient-based meta-learning, we
suggest nudging the amortized latent to be as close as possible to the further optimized latent in
Eq. (2). By doing so, the Transformer encoder is guided to better encode the reconstruction task
knowledge as the optimized latent is further adapted with support and the nearby tokens. To effectively
implement this concept, we utilize the idea of task contrastive learning [28, 60, 104]. Specifically,
as both the optimized and amortized latents originate from the same task, we maximize the latent
similarity within the same task while minimizing the similarity with other task latents.
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Formally, let Zx and Z∗
x be the amortized latent and optimized latent of the given input x from a mini-

batch x ∈ B, respectively. We then use a non-linear projection network hψ and the average set pooling
of latent tokens to obtain task-specific representation zx = hψ

(
pool(Zx)

)
and z∗x = hψ

(
pool(Z∗

x)
)

for the task contrastive learning. For a given set of task-specific representations T =
⋃

x∈B{zx, z∗x},
the task contrastive objective is defined as follows:

Ltask-con(x, θ, ψ) :=
1

2

[
lcon(zx; z

∗
x, T \{z∗x}) + lcon(z

∗
x; zx, T \{zx})

]
(3)

where lcon(z; z
+, {z−}) := − log

exp
(
sim(z, z+)/τ

)
exp

(
sim(z, z+)/τ

)
+

∑
z− exp

(
sim(z, z−)/τ

) (4)

where sim(z, z′) := z · z′/∥z∥∥z′∥ be the cosine similarity and τ > 0 is the temperature hyper-
parameter. From the perspective of contrastive representation learning, our task contrastive framework
can be viewed as augmenting the positive pair. However, instead of using domain-specific induc-
tive biases, we leverage gradient adaptation, thereby showing the possibilities of extending prior
contrastive learning methods to modality-agnostic SSL frameworks.

Overall meta-learning objective. In the end, we derive a final training objective, LMetaMAE: a meta-
learning objective combining the latent adaptation Eq. (2) and the task contrastive learning Eq. (4).
For a given hyper-parameter λ > 0, the meta-objective of MetaMAE becomes:

LMetaMAE(x, θ, ϕ, ψ) := Lgrad(x, θ, ϕ) + λLtask-con(x, θ, ψ) (5)

3 Experiments

In this section, we demonstrate the effectiveness of the proposed framework by measuring the linear-
evaluation performance under various datasets across modalities. We first describe our experimental
setup (Section 3.1), and then we present the main experimental results (Section 3.2). We provide
ablation studies regarding MetaMAE (Section 3.3).

3.1 Experimental Setup

We here briefly describe overall experimental setups. We provide further details of pretraining,
evaluation, and hyperparameters in Appendix A.

Datasets. We select 8 sub-benchmarks from the DABS 2.0 benchmark [85], with categorizing the
modalities for each sub-benchmark. We pretrain and transfer MetaMAE on the selected datasets:

• Time-series modality consists of datasets where the data is organized sequentially over time. In
this paper, we use the PAMAP [71] dataset, which contains sensor signals from physical activity.

• Tabular modality refers to datasets where the data is structured in a table format, with rows (for
instances) and columns (for attributes). We use the HIGGS [69] dataset from particle physics.

• Multi-spectral (MS) Image modality contains multi-channel 2D image datasets. We use the
EuroSAT [34, 35] dataset, which consists of 13-channel satellite images.

• Token modality features datasets consisting of sequences of discrete units, similar to natural lan-
guages. We pretrain MetaMAE on both (a) the Genomics [72] dataset, subsequently transferring
the learned model to the Genomics and Genomics-OOD datasets; and (b) the Pfam [20] dataset of
proteins, followed by transfer learning to several tasks from the TAPE benchmarks [20], including
Pfam, SCOP [23], Secondary Structure [43, 8], Stability [73], and Fluorescence [76].

• Speech modality includes 2D spectrograms of audio datasets. We pretrain MetaMAE on Lib-
riSpeech [66], a large English audiobook corpus, and then transfer the model to datasets including
LibriSpeech, Audio MNIST [6], Fluent Speech [57], Google Speech [96], and VoxCeleb1 [62].

• RGB Image modality comprises 3-channel 2D image datasets. We pretrain MetaMAE on (a)
the ImageNet32 [17] dataset, which is scaled to 32 × 32, and transfer the pretrained model to
datasets including CIFAR-10 [45], CUB [93], VGG Flowers [63], DTD [14], Traffic Sign [81],
and Aircraft [58]; and (b) the WaferMap [98] dataset.

• Vision-Language modality comprises a combination of 3-channel 2D image and sequences of
English text descriptions. We pretrain MetaMAE on MSCOCO [54], and then transfer the model
to mismatched-caption detection [54] and the Visual Question Answering (i.e., VQA) tasks [1].
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Table 1: In-domain linear evaluation performance across multiple modalities. We report F1-score (%)
for WaferMap and the classification accuracy (%) for the rest. MS Image indicates the Multi-spectral
image modality. ∗, and † denote the results from the DABS 1.0, and DABS 2.0 paper, respectively,
where - of Capri results indicates that the pretraining loss divergence as described in [85].

Modality Time-series Tabular MS Image Token Speech RGB Image

Dataset PAMAP2 HIGGS EuroSAT Genom Pfam Libri WaferMap

Random initialization

Baseline 69.8† 54.8† 62.3† 37.2† 30.1 17.1* 77.7†

Self-supervised learning Framework

e-Mix 80.1 65.7 87.4 40.5 31.3 60.2 92.6
ShED 85.2 68.0† 61.5† 33.6 54.7 34.8* 92.4†

Capri - - 67.4† 23.5† 27.4 25.4 92.5†

MAE 85.3† 70.0† 86.3† 53.6 44.7 46.0 93.9†

MetaMAE 89.3 71.5 88.5 69.4 62.3 79.8 95.5

Note that the transferred datasets can be in-domain (i.e., same dataset) or cross-domain (i.e., different
dataset). The details of the benchmarks are described in Appendix C.

Baselines. For the main experiments, we compare MetaMAE’s performance with existing modality-
agnostic self-supervised learning methods suggested by DABS 1.0 [83], and 2.0 [85]:

• e-Mix is a generalized version of i-Mix [48], designed to consistently apply methods across both
discrete and continuous domains by applying the mixup strategy in the embedding space.

• ShED is a generalized version of ELECTRA [15]. ShED constructs the pretext task, which
involves predicting shuffled embeddings.

• Capri applys contrastive learning to the token level representation by randomly masking the
token and treating different tokens as negative pairs.

• MAE aims to reconstruct the input. However, here, MAE employs a linear decoder for the
continuous domain and no decoder for the discrete domain.

Additionally, we regard the randomly initialized encoder, referred to as the Baseline, as one of the
baseline to check the effectiveness of self-supervised pretraining.

Architectures. Following [83, 85], we use 12 layers for the transformer encoder with the hidden
size 256, and 8 attention heads. For the decoder, we fix the hidden size 128, and 4 attention heads.
However, we choose an appropriate number of layers for the decoder to demonstrate the effect of the
decoder for MAE. We also utilize different hyperparameters for each modality as other baselines, but
we find that the hyperparameters can be shared across modalities (See Appendix B).

Pretraining and transfer learning. To evaluate our method, we pretrain each dataset 100K iterations
and 100 epochs transfer learning, overall experiments by following [85]. We pretrain entire networks,
i.e., encoder fθ, decoder gθ, and projection header hθ, but we utilize only the frozen encoder fθ on
transfer learning. When pretraining, the masking ratio can differ from the datasets. For the masking
ratio hyper-parameter, we choose the best value among candidates suggested by the prior work [85].

3.2 Main Experiments

In-domain linear evaluation. We evaluate the pretrained representation on each in-domain down-
stream classification task. We report the performance of a linear classifier trained on top of the
frozen features. The results in Table 1 demonstrate that our proposed method, MetaMAE, achieves
state-of-the-art performance across the entire dataset. For instance, we obtain 16% accuracy gain
(53.6%→ 69.4%) on Genomics. Moreover, we note that MAE has achieved moderate performance
compared to other self-supervised learning (SSL) methods on these benchmarks, but MetaMAE
demonstrates the ability to enhance MAE and outperform other SSL approaches. For example,
MetaMAE achieves the best performance on Pfam (44.7%→ 62.3%) and LibriSpeech (60.2%→
79.8%) with significant improvement, here is where MAE reported in [85] (i.e., MAE with linear
decoder) was not the best among baselines.
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Table 2: Cross-domain linear evaluation performance across multiple modalities. We report the
Spearman correlation for Stability and Fluorescence datasets, and the classification accuracy (%) for
the rest. ∗ denote the results from the DABS 1.0 paper.

SSL Framework

Pretrain data Transfer data Baseline e-Mix ShED Capri MAE MetaMAE

Genomics Genomics-OOD 8.6 9.7 7.3 5.5 22.2 37.2

Pfam

SCOP 8.0 5.7 10.7 2.0 7.9 11.8
Secondary 52.4 53.7 67.6 49.5 62.5 65.9
Stability 0.31 0.39 0.53 0.26 0.40 0.53
Fluorescence 0.04 0.20 0.27 0.06 0.06 0.31

LibriSpeech

Audio MNIST 33.1* 80.4* 67.3* 53.6 45.1 89.5
Fluent Loc 62.1* 60.9* 60.2* 59.8 61.7 66.7
Fluent Act 26.2* 29.9* 30.5* 28.3 26.8 38.4
Fluent Obj 30.1* 39.9* 39.4* 33.1 32.0 49.3
Google Speech 4.9* 19.2* 20.7* 13.7 9.5 46.8
VoxCeleb1 0.6* 2.4* 2.8* 1.6 1.6 7.4

ImageNet32

CIFAR-10 24.2* 39.4* 39.6* 48.7 46.0 59.2
CUB 1.6* 3.9* 3.0* 3.7 3.1 6.3
VGG Flowers 9.0* 26.0* 13.0* 18.6 22.2 36.3
DTD 7.4* 8.8* 18.4* 14.7 14.2 20.9
Traffic Sign 14.3* 65.1* 27.5* 28.0 32.0 67.1
Aircraft 2.7* 10.2* 5.6* 6.4 5.9 16.4

Table 3: Linear classification accuracy (%) pretrained on a vision-language dataset, MSCOCO.

SSL Framework

Pretrain data Transfer data Baseline e-Mix ShED Capri MAE MetaMAE

MSCOCO VQA 53.4 57.6 53.1 52.9 54.2 69.7
Mismatched-caption 49.8 50.1 50.6 49.6 49.3 70.5

Cross-domain linear evaluation. We evaluate our method on a diverse set of cross-domain down-
stream tasks including both classification and regression. We employ a linear classifier, or regressor
trained on the frozen features as the in-domain setup. Table 2 shows that MetaMAE outperforms all
the baselines across all the benchmarks consistently, except for one specific dataset. For example,
we obtain 9% accuracy gain (80.4%→ 89.5%) on the linear classification performance of transfer
setup from LibriSpeech to Audio MNIST. It is important to note that cross-domain downstream tasks,
due to their wider range of variations for each domain, are typically more challenging to consistently
excel in compared to in-domain tasks. This significant performance improvement demonstrates the
applicability of MetaMAE in various cross-domain transfer learning scenarios across the modalities.

Multi-modal dataset evaluation. One important future direction for the modality-agnostic SSL
research community is to bind all modalities under a singular model [99, 108]. Here, we believe
MetaMAE can be quite a promising method to tackle this problem, e.g., managing multiple modalities
on a single model supplemented by domain-specific embedding modules. To this end, we verify the
possibility of MetaMAE for tackling unified multi-modal self-supervised learning. As shown in Table
3, MetaMAE outperforms other modality-agnostic SSL methods on the vision-language tasks where
we believe this multi-modal learning ability can help when unifying the modalities for SSL.

3.3 Ablation study

We perform an ablation study on six modalities: time-series (PAMAP2), tabular (HIGGS), speech
(LibriSpeech), multi-spectral image (EuroSAT), and token (Pfam and Genomics). Throughout this
section, we report the in-domain linear classification accuracy (%), unless otherwise specified.

Component analysis. In Table 4, we demonstrate the necessity of each component in MetaMAE
by adding each component one by one: Deeper decoder gϕ with a Transformer architecture, latent
optimization via gradient-based meta-learning, and the task contrastive loss Ltask-con. We first found
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Table 4: Ablation study on each component of MetaMAE, namely the use of the decoder, latent
adaptation using gradient-based meta-learning (Gradient-based), and task contrastive learning (Task
contrast). We report the classification accuracy (%) across six different modalities.

Decoder Gradient-based Task contrast PAMAP2 Genomics EuroSAT LibriSpeech HIGGS Pfam

✗ ✗ ✗ 85.3 53.6 86.3 33.3 70.0 44.7
✓ ✗ ✗ 86.5 65.2 87.4 64.1 70.5 61.3
✓ ✓ ✗ 88.3 69.4 87.4 64.5 71.1 61.3

✓ ✓ ✓ 89.3 69.4 88.5 79.8 71.5 62.3

Table 5: Effect of the decoder size of MAE on the
classification accuracy (%). We use three different
datasets across modalities.

decoder size EuroSAT Pfam LibriSpeech

prev. best 87.4 54.7 60.2

0 86.3 44.7 33.3
2 86.7 61.4 68.1
4 87.4 61.3 64.1
6 86.7 61.4 74.1

Table 6: Effect of the nearby token (i.e.,
Nearby-S) selection ratio r on the classifi-
cation accuracy (%). We use three different
datasets across modalities.

r ratio PAMAP2 HIGGS Pfam

0 87.5 71.1 62.0
0.1 89.3 71.5 62.3
0.5 88.2 70.8 62.0
1.0 84.2 70.1 62.1

that incorporating a deep decoder is a critical component in our framework, enabling domain-agnostic
capabilities similar to the success of MAE on the image domain [33]. Thus, we here suggest that
improving MAE for the domain-agnostic is quite a promising direction to explore.

In addition, Table 4 verifies the contribution of meta-learning schemes to the performance of Meta-
MAE. We found that the gradient-based latent optimization rule, which includes the utilization of
Nearby-S, is more beneficial. We also confirm that task contrastive learning is a critical component
in our framework like recent meta-learning frameworks [28, 60, 104]. Note that this task contrastive
learning scheme is exclusively applicable in gradient-based approaches, emphasizing the significance
of the gradient-based latent optimization method for MetaMAE.

Importance of decoder size for MAE. To verify the effect of decoder size for MAE, we evaluate
the linear evaluation accuracy on datasets where the original MAE (i.e., no decoder) performed
worse than other baselines. As Table 5 shows, we found that MAE can achieve the best performance
compared to baselines by choosing the proper decoder size, yet there is room for enhancement as
shown in Table 4. This result demonstrates the superiority of MAE for tackling modality-agnostic
SSL problems, where we believe the development of MAE would be an important direction to
investigate. In this respect, we believe MetaMAE will serve as an important baseline in this field.

Nearby supports. We further analyze the effect of r, i.e., the Nearby-S ratio. We conduct the
experiment with r ∈ {0, 0.1, 0.5, 1.0}. We note that r = 0 indicates the gradient updates without any
help of queries (i.e., direct reconstruction of S), and r = 1 denotes the gradient updates with the
entire queries near the S. As shown in Table 6, this approach is found to be beneficial compared to
the direct reconstruction, and the small ratio is suggested to be proper r, e.g., r = 0.1 is the best. This
is because it effectively bridges the gap between the latent representation and the latents of masked
tokens, thereby enhancing the encoding of knowledge required for the reconstruction task.

(a) LibriSpeech (b) PAMAP2

Figure 2: Computation efficiency comparison of MAE
and MetaMAE. We report the pretraining wall clock time.

Computational efficiency. MetaMAE
might be perceived as compute-inefficient
when incorporating MAE due to the com-
putational demands of second-order gra-
dients; however, our findings suggest oth-
erwise. Although MetaMAE increases
the total training time of MAE by approx-
imately 1.4 times (with the one-step adap-
tation), we have observed that it is much
faster to achieve the best performance of
MAE: in Figure 2, we compare the accu-
racy under the same training wall-clock
time with MAE, e.g., 1.9 times faster on PAMAP2 dataset.
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4 Related work

Self-supervised learning (SSL). SSL, i.e., learning without human supervision, recently has demon-
strated substantial success across fields including, computer vision [32], natural language processing
(NLP) [18], and speech recognition [2], frequently show better transferability and generalization
ability compared to conventional pretraining methods, e.g., training on labeled datasets [11]. To
learn such representation, SSL optimizes the loss on a pretext task that does not require any human
labels. For instance, pioneer works for SSL proposed such tasks based on data reconstruction through
auto-encoding [7] such as context prediction [19], and in-painting [67]. Later on, multiple SSL works
found that utilizing the domain-specific inductive biases can effectively learn representations in a self-
supervised manner, including, colorization [107], solving jigsaw puzzles [64], counting the number
of objects [65], and rotation prediction [27], to name a few. More recently, contrastive representation
learning has garnered significant attention in SSL [100, 32, 11]. This technique maximizes the simi-
larities of similar (i.e., positive) pairs and minimizes the similarities of dissimilar (i.e., negative) pairs,
rather than focusing on training an instance classifier. To generate such positive pairs, multiple works
rely on domain-specific inductive biases such as data augmentations [47], i.e., different augmented
views as a positive pair. In addition, recent advances have been made with the development of
various architectural components: e.g., Siamese networks [44], self-distillation [32, 9], asymmetric
architectures [29, 12], and utilization of Transformer architectures [9]. Despite the success of these
strategies, most existing SSL frameworks rely heavily on domain-specific inductive biases, which
limits their applicability to new modalities.

Modality-agnostic SSL. Recently, several streams of work have emerged focusing on the develop-
ment of more generalized SSL methods, specifically modality-agnostic SSL. For example, DACL [90]
and i-Mix [48] utilize the idea of mixup [105] to propose domain-agnostic contrastive learning, and
e-Mix [83] generalizes the concept of i-Mix to be embedding-level instead of input-level. Capri [85],
as a variant of CPC [88], contrasts the predicted representations from randomly masked tokens. [84]
develops generative models to learn data-dependent distortions for contrast. Instead of contrastive
learning, ShED [83] (a generalized version of ELECTRA [15]) constructs the pretext task of replacing
token detection with a masking strategy. DABS 2.0 [85] proposes a method to generalize MAE [33]
to be modality-agnostic. In their approach, however, decoders are not utilized for discrete domains
like BERT [18], while only a linear decoder is employed for continuous domains. In this paper, we
suggest an effective modality-agnostic latent optimization for learning representations by interpreting
masked prediction for MAE [33] in a novel manner.

Masked Auto-Encoder (MAE). MAE [33], i.e., predicting the masked parts with a given unmasked
parts, has been extended to multiple applications [109, 37] across various domains [18, 39]. Among
them, the recent combination of MAE with Transformer architecture [18, 33, 5] has shown promise
in tackling SSL scenarios. For instance, BERT [18] utilized MAE for natural language processing
(NLP) tasks, incorporating a linear layer into its architecture. Furthermore, multiple variants of
MAE show impressive performance in various domains, by suggesting modality-agnostic SSL
[3, 4], architecture-agnostic SSL [97, 51], multi-modal pretraining [95], and generative pretraining
frameworks [21, 52]. In this paper, we focus on improving the most basic form of mask-modeling (i.e.,
MAE) for constructing a modality-agnostic SSL framework which remains under-explored, despite
its potential significance, through the lens of meta-learning. It is worth noting that our interpretation
of viewing MAE as a meta-learning framework can be applied to any other masked-modeling-based
SSL frameworks where we believe combining our meta-learning regularization to such SSL methods
would be an interesting direction to explore.

Meta-learning. Meta-learning [86], i.e., learning to learn by extracting common knowledge over a
task distribution, has emerged as a popular paradigm for enabling systems to adapt to new tasks in a
sample-efficient way. Under various applications across domains (e.g., computer vision [78], natural
language processing [30], and robotics [101]), there have been significant efforts to design a variety
of meta-learning schemes, including gradient-based [22, 53] and amortization-based approaches
[75, 61] such as metric-based [92, 79], and neural processes [25, 24, 41, 87]. Typically, recent works
have combined gradient-based meta-learning (or iterative functional update) with amortization-based
schemes to enhance adaptation performance [74, 103]. Furthermore, there have been varieties of
amortization-based schemes (such as neural processes) that utilize the recent success of contrastive
learning into meta-learning, i.e., task contrastive learning [28, 60]. In this paper, we interpret MAE as
an amortization-based meta-learning, which is further enhanced via the benefit of model-agnosticism
of gradient-based meta-learning and task contrastive learning.
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5 Discussion and conclusion

In this paper, we tackle modality-agnostic self-supervised learning (SSL), an important problem of
SSL that consists of multiple real-world applications. To this end, we explore the possibilities of
the Masked Auto-Encoder (MAE) in tackling modality-agnostic SSL which is quite under-explored,
despite its potential. We propose MetaMAE, a novel and effective SSL framework that enhances MAE
with meta-learning. Our key idea is to interpret mask reconstruction task of MAE as a meta-learning
task, which allows us to treat MAE as a meta-learning framework. Based on this novel interpretation,
we suggest a unique integration with advanced modality-agnostic meta-learning methods to improve
the generalization of MAE. Our experiments demonstrate that MetaMAE significantly improves the
performance of modality-agnostic SSL approaches across a diverse range of modalities.

Limitations and future work. While MetaMAE becomes a state-of-the-art approach for modality-
agnostic SSL problems, it still inherits a general limitation of the MAE, namely the modality-specific
masking ratio, i.e., the masking ratio may differ across modalities. This is due to our shared design
elements with MAE, which include masking, encoding, and decoding. Recent works propose design
choices for the masking scheme [50, 94], including automation, where incorporating these ideas into
MetaMAE would be an intriguing future research direction, potentially enhancing our approach to be
an even more effective modality-agnostic SSL framework.

Potential negative impacts. SSL often requires a large computation and a large network capacity,
therefore raising environmental concerns, e.g., carbon generation [77]. As MetaMAE is built upon
the SSL method (i.e., MAE), practitioners may need to consider some computation for successful
training. To address this issue, efficient training methods [80, 40], distilling knowledge to a smaller
network [36], or network sparsity schemes [31, 46] would be required to ameliorate such problems.
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A Implementation details

In this section, we provide the implementation details of MetaMAE, including architectures and
hyperparameters for MetaMAE when pretraining and evaluation.

Architectural details. We summarize our architectures in Table 7, with the hyperparameter notation
referred from [89]. We use token embedding for encoder inputs, and apply positional embedding
to both encoder and decoder inputs, as suggested by [89]. Specifically, token embedding separates
the input data into fixed-size tokens, while positional embedding uses a fixed, absolute position
represented by a combination of sine and cosine functions. We describe the token size for each
specific dataset in Appendix C.

Table 7: A Pytorch-like architecture description of MetaMAE. n ∈ {2, 4, 6}, p ∈ {0, 0.1} are the
hyperparameters.

Component Layer descriptions

Encoder fθ TransformerBlock(dmodel = 256, dff = 512, h = 8, Pdrop = p,GELU,LayerNorm=True)× 12
Decoder gϕ TransformerBlock(dmodel = 128, dff = 256, h = 4, Pdrop = 0,GELU,LayerNorm=True)× n
Projector hψ Linear(256, 1028), BatchNorm1d(1028), Linear(1028, 128)

Pretraining details. We summarize our selected hyperparameters for pretraining each dataset in Table
8. Following [85], we pretrain MetaMAE for 100k iterations utilizing the AdamW optimizer [56]
with both a learning rate and weight decay set at 1e-4. The batch size for pretraining and the strategy
for selecting the mask ratio are detailed in [83, 85]. For the MetaMAE-specific hyperparameters,
we observe that a certain set of hyperparameters can generally work across modalities, e.g., (α, λ,
decoder depth) = (0.5, 0.1, 4) (see Table 9 in Appendix B), or can be shared within each modality, e.g.,
Pdrop = 0 for Token modality (see Table 10 in Appendix B). Nevertheless, we recommend modality-
specific values for optimal performance (refer to Appendix B for hyperparameter sensitivity details).
We set the temperature term for the contrastive loss τ = 0.5 and the Nearby-S ratio r = 0.1. For
latent adaptation, the latent representation undergoes a single-step update with the update magnitude
denoted by α.

Table 8: Hyperparameters of MetaMAE for pretrain datasets.
Modality Time-series Tabular MS Image Token Speech RGB Image Vision-Language
Dataset PAMAP2 HIGGS EuroSAT Genom Pfam Libri WaferMap ImageNet32 MSCOCO

MetaMAE-specific hyperparameters

α 0.5 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.5
λ 1.0 1.0 1.0 0.01 1.0 1.0 0.1 0.1 0.1
decoder depth 4 6 4 2 4 4 6 4 2
Pdrop 0.1 0.1 0 0 0 0 0 0 0

Hyperparameters from DABS benchmarks

mask ratio 0.85 0.50 0.85 0.50 0.15 0.85 0.15 0.85 0.5
batch size 256 256 64 32 128 64 128 64 64

We note that to scale up experiments, it is essential to facilitate distributed parallelism by using
libraries such as BETTY [13] when utilizing PyTorch for meta-learning.

Evaluation details. In line with [85], we freeze the pretrained model and train either a linear classifier
or a regressor for 100 epochs during the linear evaluation phase. We use the Adam optimizer [42]
with both the learning rate and weight decay set as 1e-4. The batch size for this linear evaluation is
set as described in [83, 85].
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B Analysis on hyperparameter sensitivity

We here provide additional experiments on hyperparameters. This includes sharing various hyper-
parameters across modalities and conducting ablation studies with varying hyperparameters: α, λ,
decoder depth, Pdrop, and the latent adaptation step size.

Sharing hyperparameters across modalities. As demonstrated in Table 9, MetaMAE shows robust
performance regardless of the hyperparater selection. Notably, two or three major hyperparameters
can be shared across all modalities, still outperforming prior methods. Furthermore, Table 10 indicates
the resilience of MetaMAE’s pretraining hyperparameters, especially at the intra-modality level.

Table 9: Linear evaluation performance (%) across modalities. Sharing 2 and 3 HPs denotes
MetaMAE with additionally sharing more hyperparameters among the non-shared hyperparameters
in Table 8 in Appendix A, which are (α, λ) = (0.5, 0.1) and (α, λ, decoder depth) = (0.5, 0.1, 4),
respectively. HP denotes hyperparameter.

Modality Time-series Tabular MS Image Token Speech RGB Image

Dataset PAMAP2 HIGGS EuroSAT Genom Pfam Libri WaferMap

e-Mix 80.1 65.7 87.4 40.5 31.3 60.2 92.6
ShED 85.2 68.0 61.5 33.6 54.7 34.8 92.4
Capri - - 67.4 23.5 27.4 25.4 92.5
MAE 85.3 70.0 86.3 53.6 44.7 46.0 93.9

MetaMAE (sharing 3 HPs) 89.1 71.0 88.5 55.4 62.2 77.1 95.4
MetaMAE (sharing 2 HPs) 89.1 71.1 88.5 66.7 62.2 77.1 95.4
MetaMAE (reported) 89.3 71.5 88.5 69.4 62.3 79.8 95.5

Table 10: Linear evaluation performance (%) with sharing all hyperparameters, except mask ra-
tio, intra-modality level. For sharing HPs in intra-modal, we use (α, λ, decoder depth, Pdrop) =
(0.1, 0.01, 2, 0) and (0.1, 0.1, 4, 0) for Token and RGB Image modalities, respectively. HP denotes
hyperparameter.

Modality Token RGB Image

Dataset Genom Pfam WaferMap ImageNet32 → CIFAR10

MetaMAE (sharing HPs in intra-modality) 69.4 61.5 95.5 59.2
MetaMAE (reported) 69.4 62.3 95.5 59.2

Further ablation studies with varying hyperparameters. Table 11, 12, 13, and 14 show the
sensitivity of hyperparameters on the PAMAP2 and WaferMap datasets. We observe that MetaMAE
performs well even with non-optimal hyperparameters, except for the decoder depth and Pdrop, but
we suggest finding better hyperparameters specific to each domain (e.g., λ = 0.1 for WaferMap).
Regarding the decoder depth, we find that each modality requires an appropriate value, but generally,
MetaMAE performs well with a decoder depth of 4. In Table 15, we observe that single-step
adaptation effectively achieves good performance, and in some cases, even outperforms multiple-step
adaptation due to the risk of overly decoder-specific support representation.

Table 11: Sensitivity of α on
PAMAP2 and WaferMap.
α PAMAP2 WaferMap

0.1 86.2 95.5
0.5 89.3 95.4
1.0 89.1 95.2

Table 12: Sensitivity of λ on
PAMAP2 and WaferMap.

λ PAMAP2 WaferMap

0.01 88.6 95.2
0.1 89.1 95.5
1.0 89.3 93.6

Table 13: Sensitivity of decoder
depth on PAMAP2 and WaferMap.

depth PAMAP2 WaferMap

2 84.9 94.2
4 89.3 95.5
6 86.2 95.5

Table 14: Sensitivity of Pdrop on
PAMAP2 and WaferMap.

Pdrop PAMAP2 WaferMap

0 79.4 95.5
0.1 89.3 94.7

Table 15: Sensitivity of latent adaptation
step size on PAMAP2 and WaferMap.

step size PAMAP2 WaferMap

1 89.3 95.5
5 89.6 94.9

18



C Dataset details

We provide a summary of the considered datasets from the DABS benchmarks [83, 85] in Table 16.
Note that we use the dataset split described in [83, 85].

Table 16: Datasets considered for pretraining and linear evaluation in our experiments. “MS Image”
denotes the Multi-spectral image modality. For Phase, “P” denotes pretraining and “F” denotes
fine-tuning.

Modality Dataset # of classes Input shape Token shape Phase Batch size

Time-series PAMAP2 [71] 12 52× 320 5 P & F 256 & 256

Tabular HIGGS [69] 2 28 1 P & F 256 & 256

MS Image EuroSAT [35, 34] 10 13× 64× 64 8× 8 P & F 64 & 64

Token

Genomics [72] 10 4× 250 1 P & F 32 & 64
Genomics-OOD [72] 60 4× 250 1 F 32
Pfam [20] 623 26× 128 1 P & F 128 & 128
SCOP [23] 1195 26× 128 1 F 128
Secondary Structure [43, 8] 4 26× 128 1 F 128
Stability [73] - 26× 128 1 F 128
Fluorescence [76] - 26× 128 1 F 128

Speech

LibriSpeech [66] 40 1× 224× 224 16× 16 P & F 64 & 64
Audio MNIST [6] 10 1× 224× 224 16× 16 F 64
Fluent Locations [57] 4 1× 224× 224 16× 16 F 64
Fluent Actions [57] 6 1× 224× 224 16× 16 F 64
Fluent Objects [57] 14 1× 224× 224 16× 16 F 64
Google Speech [96] 36 1× 224× 224 16× 16 F 64
VoxCeleb1 [62] 1251 1× 224× 224 16× 16 F 64

RGB Image

waferMap [98] 9 3× 32× 32 4× 4 P & F 128 & 128
ImageNet-32 [17] 1000 3× 32× 32 4× 4 P 64
CIFAR-10 [45] 10 3× 32× 32 4× 4 F 64
CUB [93] 200 3× 32× 32 4× 4 F 64
VGG Flowers [63] 102 3× 32× 32 4× 4 F 64
DTD [14] 47 3× 32× 32 4× 4 F 64
Traffic Sign [81] 43 3× 32× 32 4× 4 F 64
AirCraft [58] 102 3× 32× 32 4× 4 F 64

Vision-Language
MSCOCO [54] 80 (3× 224× 224, 30552× 32) (16× 16, 1) P 64
VQA [1] 2 (3× 224× 224, 30552× 32) (16× 16, 1) F 64
Mismatched-caption [54] 2 (3× 224× 224, 30552× 32) (16× 16, 1) F 64
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