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S.1 Theoretical analysis

We propose below the proofs of the results presented in the main text. Most of the arguments are
adapted from the development proposed in (Zhang, 2013) which goes beyond real or complex-valued
RKBS developed in (Zhang et al., 2009; Song et al., 2013) to develop the notion of vector-valued
RKBS. In addition, we note that assumptions regarding the properties of the RKBS of interests such
as uniform Fréchet differentiability and uniform convexity have been further relaxed in other works
(Xu and Ye, 2019; Lin et al., 2022) but are here sufficient for our discussion since they guarantee the
unicity of a semi-inner product x., .yB compatible with the norm ||.||B (Giles, 1967).

S.1.1 Theoretical results

Theorem 1 ˛ Theorem 1 gathers for the sake of compactness the definition of a vector-valued
reproducing kernel Banach space with the properties of existence and unicity of the kernel K.

Proof. For any v P V and u P U , the mapping O ÞÑ xOpvq,uyU is a bounded linear form in LpBq.
By Theorem 7 of Giles (1967), we have the bijectivity of the duality mapping in U , hence there exists
a unique element Kv,u P B such that:

xOpvq,uyU “ xO,Kv,uyB (1)
Hence, this defines a unique function K : V ˆ V ÞÑ LpUq such that:

@pv,v1q P V2, @u P U , Kpv,v1qpuq “ Kv,upv1q (2)
By construction K is unique, furthermore we have that (i) the functional v1 ÞÑ Kpv,v1q is an element
of B (ii) it verifies the reproducing relation @pv,uq, xOpvq,uyU “ xO,Kpv, .qpuqyB. Finally,
property (iii) follows from the following bound on the norm of v1 ÞÑ Kpv, .qpuq:

||Kpv, .qpuq||B ď sup
OPB,||O||Bď1

|xO,Kpv, .qpuqyB| “ sup
OPB,||O||Bď1

|xOpvq,uyU | (3)
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Further, we have by continuity of the point evaluation δv : O ÞÑ Opvq that:
|xOpvq,uyU | ď ||δv||LpB,Uq.||v||U (4)

Combining (3) and (4) allows to write:
||Kpv,v1qpuq||B ď ||δv1 ||LpB,Uq.||Kpv, .qpuq||B ď ||δv1 ||LpB,Uq.||δv||LpB,Uq.||u||U (5)

Observing that in particular for all u P U\0U :
||Kpv,v1qpuq||B

||u||U
ď ||δv1 ||LpB,Uq.||δv||LpB,Uq (6)

concludes the proof.

Theorem 2 ˛ We first show the existence of a solution for any problem of the form (??) and then
characterize the solution in terms of the data points.

Proof. We first show the existence of the map T : D ÞÑ B. Let us take D P D, by assumption the
function LD : Õ ÞÑ LpO,Dq is weakly-lower semi-continuous, coercive and bounded below. Let us
take a sequence pOkqkPN of elements in B such that LDpOkq Ñ L “ infOPB LDpOq. Since LD is
coercive, the sequence is bounded in B, so there is a weakly-convergent subsequence pOki

q such that
pOki

q Ñ O0. Finally, by property of weakly-lower semi-continuity, we have that L ď LDpO0q ď

lim inf LDpOkq which shows that for any D, there exists a minimizer of LD.

We now turn to the characterization of the solution O0 when we have that LD “ L̃ ˝ tδvi
uiďn

with L̃ : Un ÞÑ R. This assumption allows to exhibit a characterization of the solution in terms of
annihilator and pre-annihilitors in B as in previous work (Zhang, 2013; Xu and Ye, 2019). Let us
consider the set S “ tO P B,Opviq “ ui, i ď Iu. It is clearly a closed convex subset of B. Since B
is uniformly convex, the problem

inft||O||B,O P Su (7)
admits a best approximation in S (?). Furthermore, O0 is the minimizer of (7) if and only if for all
O P S0 “ tO P B,Opviq “ 0U , i ď Iu, we have:

||O ` O0||B ě ||O0||B (8)

which by Giles (1967) is equivalent to O0 P pS0qK. Finally, we note that O P S0 if and only if
xO,Kpvj , .qpuqyB “ xOpvjq,uyU “ 0, @j ď n, @u P U (9)

which allows us to say that

O P K
␣

pKpvj , .qpuqq˚, j ď n,u P U
(

(10)

Finally, we obtain the following characterization: O P
`K␣

pKpvj , .qpuqq˚, j ď n,u P U
(˘K

. Since
B is reflexive, we have further that @S Ă B, pKSqK “ spanS, which concludes the proof for the
characterization of T pDq.

Finally, if for all D, the function LD is strictly-convex, then it guarantees the unicity of a minimizer
over B for every problem, which in turn defines an unique map T .

Proposition 1 ˛ The result is direct by considering the feature map characterization of vector-valued
RKBS (Corollary 3.2 of Zhang (2013)) that we recall hereafter: We first define for any linear operator
T P LpS1,S2q between two Banach spaces S1,S2, the generalized adjoint T : P LpS2,S1q as the
application verifying xTs, s1yS1

“ xs, T :s1yS2
for all ps, s1q P S1 ˆ S2.

Let F be a uniform Banach space and Φ : V ÞÑ LpF ,Uq a feature map such that:

@pv,v1q P V2, Φpv1qpΦ:pvqq “ Kpv,v1q (11)

spantpΦ:pvqpuqq˚,v P V,u P Uu “ F˚ (12)

with Φ: : V ÞÑ LpU ,Fq is defined by: @v, Φ:pvq “ pΦpvqq:. then the vector space B̃ “

tΦp.qpwq|w P Fu endowed with the norm ||Φp.qpwq||B̃ compatible with the following semi-inner
product:

xΦp.qpwq,Φp.qpw1qyB “ xw,w1yF (13)
is a U-valued RKBS with reproducing kernel K given in (11).
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Proof. We show our result in the case J=1 and can be directly extended to any cardinality J. By
hypothesis, V and U are a uniform Banach space and so is LpV,Uq. We hence define the feature map
Φ as defined by equations (11) and (12) Φ and noting here that F “ LpV,Uq:

Φ : V ÞÑ LpLpV,Uq,Uq (14)

v ÞÑ Φpvq “

ˆ

l ÞÑ lpvq

˙

(15)

In particular, by considering the uniform space F̃ “ tl P LpV,Uq | D v1 P V,u P U l “

Wθ

`

A1
θ

`

.,v1
˘

.Vθpuq
˘

u Ă F , we have the following relation:

@pv, lq P V ˆ F̃ , D v1 P V,u P U s.t Φpvqplq “ Wθ

`

A1
θ

`

v,v1
˘

.Vθpuq
˘

, (16)

identifying the adjoint Φ:pvq : U ÞÑ LpV,Uq as Φ:pvq : u ÞÑ
`

v1 ÞÑ Wθ

`

A1
θ

`

v,v1
˘

.Vθpuq
˘˘

and
verifying the kernel relation:

@pv,v1q P V2, Φpv1qpΦ:pvqq “ Kpv,v1q “ Wθ

`

A1
θ

`

v,v1
˘

.Vθp.q
˘

(17)

Furthermore, by bijectivity of the duality map on F̃ Ă LpV,Uq that spantpΦ:pvqpuqq˚,v P V,u P

Uu “ F̃˚. The application of the feature map characterization of K on F̃ allows to conclude.
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S.2 Numerical implementation

S.2.1 Loss functions and evaluations

Definition of loss function ˛ In the case of operator regression, we meta-train models with respect to
the Mean-Squarred error (MSE) over I test pairs pvi,uiqiďI of the meta-train set and K evaluation
points pxkqkďK of the domain of the output functions in V:

LpÕ,DOq “
1

I

ÿ

iďI

L̃pÕpviq,uiq “
1

I.K

ÿ

iP

ÿ

kďK

||Õpviqpxkq ´ uipxkq||22 (18)

In the case of experiment 1 (ADR equation), pxkqkďK corresponds to equally spaced points
pxkqkPrr0,100ss on the domain r0, 1s. For experiment 2 (2D Burgers equation), pxkqkďK corre-
sponds to uniform 2D mesh pxk,pqkPrr0,64ss,pPrr0,64ss discretizing the domain r0, 1s ˆ r0, 1s. For
experiment 3 (Climate modeling), as stated in the main text, pxkqkďK corresponds to 2D mesh
pxk,pqkPrr0,720s,pPrr0,720sss spanning the domain r0, 180˝s ˆ r0, 360˝s. Finally for the final finite-
dimensional experiment (MNIST-like datasets), evaluation points pkqkPrr0,10ss corresponds to indices
of 10-dimensional vectors of one-hot class encodings such that L corresponds to:

LpÕ,DOq “
1

I.K

ÿ

iP

ÿ

kď10

|Õpviqpkq ´ uipkq|2 (19)

Definition of RMSE ˛ Similarly, in the case of operator regression, we report average Relative
Mean-Squarred Errors (RMSEs) defined as:

RMSEpÕ,DOq “
1

I.K

ÿ

iP

ÿ

kďK

||Õpviqpxkq ´ uipxkq||22

||uipxkq||22
(20)

Note that for meta-training and meta-evaluation, MSEs and RMSEs are further averaged over batches
of J 1 elements pOjqjPJ 1 .

S.2.2 Discussion on multi-head reproducing kernels

Kernel definition ˛ In coherence with Wright and Gonzalez (2021), we show that different expres-
sions of the kernel κθ can be proposed. Specifically, we tested three expressions:

• Exp. dot product: Aθpv,v1q “ expp
Kθpvqq

T
pQθpv1

qq

τ q

• RBF: Aθpv,v1q “ expp
||Kθpvq´Qθpv1

q||
2
2

τ q

• ℓ2-norm: Aθpv,v1q “ ||Kθpvq ´ Qθpv1q||22

Note that for each kernel expression, we still perform a normalization operation v ÞÑ
Aθpv,viq

ř

iďI Aθpv,viq

over the entire set pviqiďI without loss of generality. We report below regression RMSE for the ADR
experiment with the different expressions for the linear function Aθpv,v1q for different dataset sizes.
The two first expressions yield similar result in the ADR experiment at an equal compute cost. For
coherence, we present all other results with the "exponentiated dot product" kernel definition.

KERNEL EXPRESSION S=10 S=100 S=500
EXP. DOT PRODUCT 2.71e ´ 3 2.39e ´ 4 1.79e ´ 4

RBF 8.71e ´ 3 3.46e ´ 4 3.22e ´ 4
ℓ2-NORM 1.71e ´ 2 6.98e ´ 4 7.33e5

Table S.1: Results from variation of the Transducer kernel constructions in the ADR experiment. Note that
contrary to other definitions, the ℓ2-based kernel does not generalize to dataset cardinalities beyond those seen in
the meta-training set.
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S.2.3 Details on model hyperparameters and architecture

Discretization ˛ As mentionned in the main text, in order to manipulate functional data, our model
can accomodate previous forms of discretization. We particularly tested two different forms of
discretization discussed in (Li et al., 2020) and (Lu et al., 2019).

• In most of our experiments, we apply the Transducer model after performing a Fast Fourier
transforms (FFT) of the considered input and output functions, and transform the Trans-
ducer’s output back to form estimates at arbitrary resolution. More specifically, we apply our
model on the d-dimensional finite vector formed by the first modes of the Fourier transform,
and discard the rest of the function spectrum. For experiments with 2D fields, we describe
more precisely in section S.3.2 how we combine the 2D FFT with our model.

• We also tried a ’branch’ and ’trunk’ networks formulation of the model as in DeepONet (Lu
et al., 2019). Specifically, the branch network g : V ÞÑ KP correspond to the Transducer
network which outputs the weight parameters pkpqpďP for the functional basis learned by
the ’trunk’ networks f : D ÞÑ KP where D corresponds to the domain of U . Hence, the
transducer model reads:

@x P D T pDOqpvqpxq “
ÿ

pďP

gppDOqpvq.fppxq (21)

We tested this approach in the ADR experiment by directly feeding the functions values
pvipxkqqkď100 and puipxkqqkď100 of the uniformly discretized domain of V and U . We
noted that performance was slightly worse than the Fourier method as we did not perform
additional tuning such as feature augmentation for the branch network. For coherence, we
kept the Fourier transform for the other experiments.

Feedfoward networks definition ˛ For F ℓ
θ and Gℓ

θ, we use a simple feedfoward network architecture
defined as Layer normalization (Ba et al., 2016) followed by one layer perceptron with GeLU
activation and did not performed architectural search on this part of the network.

Architecture hyperparamters ˛ We present in the following table the particular architectural choices
for each experiment.

EXPERIMENT DEPTH MLP DIM DIM d #HEADS DIM HEADS
ADR 1-16 100 50 32 16

BURGERS 10 800 800 64 16
CLIMATE 6 512 512 40 16
MNIST 2 256 784 32 32

Table S.2: Summary of the architectural hyperparameters used to build the Transducer in the four experiments.
’Depth’ corresponds to network number of layers, ’MLP dim’ to the dimensionality of the hidden layer
representation in F ℓ

θ and Gℓ
θ , d to the dimension of the discrete function representations.

S.2.4 Details on meta-training

As stated, we used for all experiments, the same meta-training procedure. We optimized Transducer
models using the Adam optimizer (Kingma and Ba, 2014) for a fixed number of epochs with learning
rates halved multiple times across meta-training.

EXPERIMENT # OF EPOCHS LEARNING RATE DIM HEADS
ADR 200 1e ´ 4 50

BURGERS 200 1e ´ 4 800
CLIMATE 200 1e ´ 4 512
MNIST 500 1e ´ 4 784

Table S.3: Summary of the meta-learning hyperparameters used to meta-train the Transducer in our four
experiments.
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S.3 Experiments

In this section, we provide additional details with respect to data generation and model evaluation for
each experiments discussed in section (5) of the main text.

S.3.1 Advection-Diffusion-Reaction operators

Data generation – For our experiment, we collect a meta-dataset of N “ 500 datasets of the
advection-diffusion-reaction trajectories on the domain Ω “ r0, 1sˆr0, 1s by integrating the following
equations:

@n P rr1, 500ss, Btspx, tq “ ∇ ¨ pδnpxq∇xspx, tqq
loooooooooooomoooooooooooon

diffusion

`νnpxq∇xspx, tq
loooooooomoooooooon

advection

`kn ¨ pspx, tqq2
looooooomooooooon

reaction

(22)

We use an explicit forward Euler method with step-size 1e´2, storing all intermediate solutions on
a spatial mesh of 100 equally spaced points. Hence, our discretized reference trajectories are of
dimensions 100 ˆ 100. For each operator On we generate spatially varying diffusion and advection
coefficients as random function δnpxq : r0, 1s ÞÑ R and νnpxq : r0, 1s ÞÑ R as well as a random
scalar reaction coefficient kn. Defining Gp0, klpx1, x2qq the one-dimensional zero-mean Gaussian
random field with the covariance kernel:

klpx1, x2q “ e
´}x1´x2}2

2l2 (23)

and lenght-scale parameter l “ 0.2, as well as a boundary mask function m : r0, 1s ÞÑ r0, 1s,mpxq “

1 ´ p2x ´ 1q10 (to comply with Dirichlet boundary condition and preserve numerical computation
stability), we sample δnpxq and νnpxq according to the following equations:

• diffusion δnpxq “ 0.01 ˆ unpxq2 ˆ mpxq where un „ Gp0, k0.2px1, x2qq

• advection νnpxq “ 0.05 ˆ ynpxq ˆ mpxq where yn „ Gp0, k0.2px1, x2qq

• reaction kn „ Upr0, 0.3sq.

Figure S.1: Examples of sampled functions δpxq and νpxq used to build operators On.

Furthermore, we collect for each dataset i “ 100 trajectories with each different initial state spx, 0q “

vipxq, where functions vipxq are sampled according to the following:

• initial state vipxq = mpxq ˆ uipxq where ui „ Gp0, k0.2px1, x2qq.

For meta-testing, we sample N “ 500 new datasets of the same generic advection-diffusion-reaction
equation with new parameters δnpxq,νnpxq,knpxq, for up to 1000 different initial states vipxq. We
present below example of function profiles present in the meta-datasets.

Training ˛ We train Tranducers for 200K gradient steps. At each training step, we randomly
draw a single operator On from the meta-training set and isolate the pairs pvi,uiqiďI “

psipx, 0q, sipx, 1qqiďI to form the set EOn . We sample a "query" subset Q of J “ 10 pairs from
EOn to be regressed and form the input to our model by concatenating pairs of the query set Q (with
output elements puiqiPQ set to zero), with a non-overlaping set of I P rr20, 100ss example elements
drawn from pvi,uiqiRQ. We train our model to minimize the sum of L2 error between each output
function of the set Q and its corresponding ground truth upxq “ Onpvqpxq “ spx, 1q at the 100
discretized positions.
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Figure S.2: Examples of advection-diffusion-reaction datasets (different operators by row) present in the
meta-test set.

Baselines – In order to implement the baseline regression algorithms, we use the scikit-learn
library (Pedregosa et al., 2011) for decisions trees, K-nearest neighbours and Ridge regression. We
specifically tuned Ridge regression using cross-validation and selected the best-performing ’RBF’
kernel with regularisation lambda “ 1e´3. For FNO (Li et al., 2020), we use the official PyTorch
implementation provided by authors and defined for each regression, a 4-layer deep 1-dimensional
FNO network with 16 modes and 64-dimensional 1 ˆ 1 convolutions. For DeepOnet (Lu et al.,
2019), we implement our own PyTorch version with 4 hidden layers of 50 hidden units with ReLU
activation for the branch and trunk networks. For the FNO-MAML version, we kept the same model
definition while testing several adaptation budget is 10/50/100 gradient steps with learning rate
λ “ 1e ´ 2{7e ´ 3{5e ´ 3 respectively.

Extrapolation experiment – In this task, we modify the generative process of the considered
operators by changing the lenght-scale parameter l used to produce functions δpxq and νpxq, as well
as the target time t used to define the operator output.

S.3.2 Burger’s equation

Generation ˛ In order to produce the meta-datasets of our second experiment, we use the ΦFlow
library (Holl et al., 2020) that allows for batched and differentiable simulations of fluid dynamics
and available at https://github.com/tum-pbs/PhiFlow. Following the same methodology as
experiment 1, we generate batches of the state evolution of random functions pviq : R2 ÞÑ R2 defined

7
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Figure S.3: Examples of the spatial function sampled with carying lenght scale parameter l P r0.1, 0.2, 0.3s

Figure S.4: Examples of ADR state evolution forming a set of operators with the same generative parameters
but time t allowed to vary in r0, 3s

Figure S.5: Magnitude of the complex coefficients of the Fourier transform of an exemple pair of input and
output functions pvpx⃗q,upx⃗qq in the two coordinates dimension. For every pair, the majority of the signal lies in
the two the red quadrants.

on the domain Ω “ r0, 1s2 at a resolution of 64 ˆ 64 through different parametrization of equation
(??). We form a meta training set of 200 operator datasets for different parameters ν P r0.1, 0.5s

each of cardinality I “ 100, and meta testing set of 200 different operator datasets with the same
cardinality. Here, we consider vector fields input functions vpx⃗q whose coordinates pv1px⃗q,v2px⃗qq

are drawn each from a two-dimensional zero-mean Gaussian random fields with uniform exponential
covariance function and correlation length l “ 0.125.

Discrete Fourier representation – Since we are dealing with high-dimensional inputs, we perform
kernel regression on the 2D fast Fourier transforms of our model. To reduce further dimensionality,
since the FFT of a real signals is Hermitian-symmetric, we pass as input to our model only the
flattened 10 ˆ 10 upper and lower quadrants of the Fourier transform coefficients, since we verified
that those are sufficient to reconstruct the signal at relative error level of 1e´5. (We present examples
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of the 2D FFT of our signal.) After regression, we reconstruct our model estimate in the spatial
domain at the desired 64 ˆ 64 resolution and train for the L2 distance against ground truth.

Figure S.6: Illustrative examples of initial pt “ 0q, target pt “ 10q and Transducer estimation of the vector
field spx⃗, tq discretized at resolution 64 ˆ 64 over the domain r0, 1s

2 for the Burger’s equation experiment. The
last panel represents absolute error compared to ground truth.

Spectral clustering ˛ As a baseline for the outlier detection experiment, we used the spectral
clustering algorithm (Yu and Shi, 2003) implemented in the Scikit-learn on the same FFT
preprocessing transformation of the output elements puiqiďI that is discussed above and specifying
the number of clusters C “ 2. We tried to tune the clustering algorithm in the embedding space
either using K-means or a kernel formulation. The tested variations yielded no significant difference
in performance.

S.3.3 Climate modeling

ViT modification ˛ In order to tackle the high-resolution climate modeling experiment, we take
inspiration from Pathak et al. (2022), which combines neural operators with the patch splitting
method of Vision Transformer (ViT) (Dosovitskiy et al., 2021). Specifically, we split input and output
functions into patches of size 40 ˆ 40. Since both models operations preserves dimensionality, we
interleaves Transducer layers that apply kernel transformations κθ along the batch dimension with
ViT layers performing spatial attention on the set of patched output function representations puiq.
We drop positional encoding but reduce spatial attention to the neighboring patches for each patch
position through masking. We compare this bi-attentional model to a vanilla ViT model that learns
by induction a single map from temperature V to pressure U . We double the depth of this baseline to
L “ 12, in order to match number of trainable parameters.

Data ˛ We take our data from ERA5 reanalysis (Hersbach et al., 2020), that is freely
available on the Copernicus https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land?tab=overview. Surface and temperature pressure are re-gridded from a
Gaussian grid to a regular Euclidean grid using the standard interpolation scheme provided by the
Copernicus Climate Data Store (CDS) to form 2D fields that we further interpolate in the longitude
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dimension to obtain images of size 720 ˆ 720. Although the ERA5 possess hourly estimates, we
subsample the dataset by considering only measurement at 12:00am UTC every day.

Training ˛ As mentioned in the main text, we trained our model to predict variables for 5 days
randomly sampled from a 20-day window and condition the Transducer with remaining 15 days. We
do not explore larger settings due to GPU memory constraints.

S.3.4 MNIST-like dataset classification

Training ˛ We report results from Kirsch et al. (2022) for baselines and train and evaluate our model
on datasets versions provided by the torchvision library. For this version, we directly treat the
images inputs pviqi as 784-dimensional vectors and the outputs puiqi as 10-dimensional vectors.
We do not perform intermediary non-linear transformations Gℓ

θ for the outputs representations. We
haven’t performed extensive hyper-parameter search for this experiment in terms of learning rate,
head dimensions or kernel expression but simply noted that a deeper 4-layer version of the model
was giving similar performance results.
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