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Abstract

Off-policy learning, referring to the procedure of policy optimization with access
only to logged feedback data, has shown importance in various real-world applica-
tions, such as search engines and recommender systems. While the ground-truth
logging policy is usually unknown, previous work simply employs its estimated
value for the off-policy learning, ignoring the negative impact from both high
bias and high variance resulted from such an estimator. And such impact is often
magnified on samples with small and inaccurately estimated logging probabilities.
The contribution of this work is to explicitly model the uncertainty in the estimated
logging policy, and propose an Uncertainty-aware Inverse Propensity Score es-
timator (UIPS) for improved off-policy learning, with a theoretical convergence
guarantee. Experiment results on the synthetic and real-world recommendation
datasets demonstrate that UIPS significantly improves the quality of the discovered
policy, when compared against an extensive list of state-of-the-art baselines.

1 Introduction

In many real-world applications, including search engines [2], online advertisements [35], recom-
mender systems [8, 22], only logged data is available for subsequent policy learning. For example, in
recommender systems, various complex recommendation policies are optimized over logged user
interactions (e.g., clicks or stay time) with items recommended by previous recommendation policies
(referred to as the logging policy) [51, 14]. However, such logged data is often known to be biased,
since the feedback on items where the logging policy did not take is unknown. This inevitably distorts
the evaluation and optimization of a new policy when it differs from the logging policy.

Off-policy learning [41, 27] thus emerges as a preferred way to learn an improved policy only from
the logged data, by addressing the mismatch between the learning and logging policies. One of the
most commonly used off-policy learning methods is the Inverse Propensity Scoring (IPS) [8, 25],
which assigns per-sample importance weight (i.e., propensity score) to the training objective on the
logged data, so as to get an unbiased optimization objective in expectation. The importance weight in
IPS is the probability ratio of taking an action between the learning and logging policies.

Unfortunately, the ground-truth logging policy is oftentimes unavailable to the learner in practice, due
to reasons like legacy issues, i.e., it was not recorded in the data. Additionally, in specific situations
like the healthcare domain [28] or two-stage recommender systems [8], access to the ground-truth
logging policy is not feasible. One common treatment by many previous studies [35, 22, 8, 24]
is to first estimate the logging policy using a supervised learning method (e.g., logistic regression,
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(a) Estimated Logging Probability
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Figure 1: Estimated logging policy and its uncertainty under different item frequency on KuaiRec.

neural networks, etc.), and then employ the estimated logging policy for off-policy learning. In this
work, we first show that such an approximation results in a biased estimator which is sensitive to
data with small estimated logging probabilities. Worse still, small estimated logging probabilities
usually suggest there are limited related samples in the logged data, whose estimations can have
high uncertainties, i.e., being wrong with a high probability. Figure 1 shows a piece of empirical
evidence from a large-scale recommendation benchmark KuaiRec dataset [12], where items with
lower frequencies in the logged dataset have lower estimated logging probabilities (via a neural
network estimator) and higher uncertainties at the same time. The high bias and variance caused
by these samples can greatly hinder the performance of subsequent off-policy learning. We defer
detailed discussions of this result in Section 2.

In this work, we explicitly take the uncertainty of the estimated logging policy into consideration and
design an Uncertainty-aware Inverse Propensity Score estimator (UIPS) for off-policy learning. UIPS
reweighs the propensity score of each logged sample to control its impact on policy optimization,
and learns an improved policy by alternating between: (1) Find the optimal weight that makes the
estimator as accurate as possible, based on the uncertainty of the estimated logging policy; (2) Improve
the policy by optimizing the resulting objective function. The optimal weight for each sample is
obtained by minimizing the upper bound of the mean squared error (MSE) to the ground-truth policy
evaluation, with a closed-form solution. Furthermore, UIPS ensures that off-policy learning converges
to a stationary point where the true policy gradient is zero; while convergence may not be guaranteed
when directly using the estimated logging policy. Extensive experiments on a synthetic and three real-
world recommendation datasets against a rich set of state-of-the-art baselines demonstrate the power
of UIPS. All data and code can be found in https://github.com/Xiaoyinggit/UIPS.git.

2 Preliminary: off-policy learning

We focus on the standard contextual bandit setup to explain the key concepts in UIPS. Following
the convention [16, 29, 36], let x ∈ X ⊆ Rd be a d-dimensional context vector drawn from an
unknown distribution p(x). Each context is associated with a finite set of actions denoted by A, where
|A| < ∞. Let π : A×X → [0, 1] denote a stochastic policy, such that π(a|x) is the probability of
selecting action a under context x and

∑
a∈A π(a|x) = 1. Under a given context x, the reward rx,a

is only observed when action a is chosen, i.e., bandit feedback. Without loss of generality, we assume
rx,a ∈ [0, 1]. Let V (π) denote the expected reward of the policy π:

V (π) = Ex∼p(x),a∼π(a|x)[rx,a]. (1)

We look for a policy π(a|x) to maximize V (π). In the rest, we denote Ex∼p(x),a∼π(a|x)[·] as Eπ[·].
In off-policy learning, one can only access a set of logged feedback data D := {(xn, an, rxn,an)|n ∈
[N ]}. Given xn, the action an was generated by a stochastic logging policy β∗, i.e., an ∼ β∗(a|xn),
which is usually different from the learning policy π(a|x) [24, 40, 8]. The actions {a1, . . . , aN}
and their corresponding rewards {rx1,a1

, . . . , rxN ,aN
} are generated independently given β∗. The

main challenge is then to address the distributional discrepancy between β∗(a|x) and π(a|x), when
optimizing π(a|x) to maximize V (π) with access only to the logged dataset D.
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One of the most widely used methods to address the distribution shift between π(a|x) and β∗(a|x)
is the Inverse Propensity Scoring (IPS) [8, 25]. One can easily get that:

V (π) = Eβ∗

[
π(a|x)
β∗(a|x)rx,a

]
,

yielding the following empirical estimator of V (π):

V̂IPS(π) =
1

N

N∑
n=1

π(an|xn)

β∗(an|xn)
rxn,an

, (2)

where π(an|xn)/β
∗(an|xn) is referred to as the propensity score. Various algorithms can be readily

used for policy optimization under V̂IPS(π), including value-based methods [33] and policy-based
methods [19, 31, 42]. In this work, we adopt a well-known policy gradient algorithm, REINFORCE
[42]. Assume the policy π(a|x) is parameterized by ϑ, via the “log-trick”, the gradient of V̂IPS(πϑ)
with respect to ϑ can be readily derived as,

∇ϑV̂IPS(πϑ) =
1

N

N∑
n=1

πϑ(an|xn)

β∗(an|xn)
rxn,an∇ϑ log(πϑ(an|xn)).

Approximation with an unknown logging policy. In many real-world applications, the ground-truth
logging probabilities, i.e., β∗(a|x) of each observation (x, a) in D, are unknown. As a typical
walk-around, previous work employs supervised learning methods such as logistic regression [30]
and nerural networks [8] to estimate the logging policy, and replaces β∗(a|x) with its estimated value
β̂(a|x) to get the following BIPS estimator for policy learning:

V̂BIPS(πϑ) =
1

N

N∑
n=1

πϑ(an|xn)

β̂(an|xn)
rxn,an . (3)

However, as shown in the following proposition, inaccurate β̂(a|x) leads to high bias and variance in
BIPS. Worse still, smaller and inaccurate β̂(a|x) further enlarges this bias and variance.
Proposition 2.1. The bias and variance of V̂BIPS(πϑ) can be derived as follows:

Bias
(
V̂BIPS(πϑ)

)
= ED

[
V̂BIPS(πϑ)− V (πϑ)

]
= Eπϑ

[
rx,a

(
β∗(a|x)
β̂(a|x)

− 1

)]

N ·VarD
(
V̂BIPS(πϑ)

)
= Varπϑ

(
β∗(a|x)
β̂(a|x)

rx,a

)
+ Eπϑ

[(
πϑ(a|x)
β∗(a|x) − 1

)
β∗(a|x)2
β̂(a|x)2

r2x,a

]
However, smaller β̂(a|x) usually implies less number of related training samples in the logged data,
and thus β̂(a|x) can be inaccurate with a higher probability. To make it more explicit, let us revisit the
empirical results shown in Figure 1. We followed the method introduced in [8] to estimate the logging
policy on KuaiRec dataset [12] and plotted the estimated β̂(a|x) and its corresponding uncertainties
on items of different observation frequencies in the logged dataset. We adopted the method in [45] to
measure the confidence interval of β̂(a|x) on each instance. A wider confidence interval, i.e., higher
uncertainty in estimation, implies that with a high probability the true value may be further away
from the empirical mean estimate. We can observe in Figure 1 that as item frequency decreases, the
estimated logging probability also decreases, but the estimation uncertainty increases. This implies
that a smaller β̂(a|x) is usually 1) more inaccurate and 2) associated with a higher uncertainty.

As a result, with high bias and variance caused by inaccurate β̂(a|x), it is erroneous to learn πϑ(a|x)
by simply optimizing V̂BIPS(πϑ). Furthermore, this approach may also hinder the convergence of
off-policy learning, as discussed later in Section 3.2.

3 Uncertainty-aware off-policy learning

Our idea is to consider the uncertainty of the estimated logging policy by incorporating per-sample
weight ϕx,a, and perform policy learning by optimizing the following empirical estimator:

V̂UIPS(πϑ) =
1

N

N∑
n=1

πϑ(an|xn)

β̂(an|xn)
· ϕxn,an · rxn,an . (4)
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Intuitively, one should assign lower weights to samples whose β̂(a|x) is small and far away from the
ground-truth β∗(a|x). We then divide off-policy optimization into two iterative steps:

• Deriving the optimal instance weight: Find the optimal ϕx,a to make V̂UIPS(πϑ) approach its
ground-truth V (π) as closely as possible, so as to facilitate policy learning. The derived optimal
weight is denoted as ϕ∗

x,a (see Theorem 3.2).
• Policy improvement: Update the policy πϑ(a|x) using the following gradient:

∇ϑV̂UIPS(πϑ) =
1

N

N∑
n=1

πϑ(an|xn)

β̂(an|xn)
· ϕ∗

xn,an
· rxn,an

∇ϑ log(πϑ(an|xn)) (5)

The whole algorithm framework and its computational cost, as well as important notations are
summarized in Appendix 7.1.

3.1 Derive the optimal uncertainty-aware instance weight

We expect to find the optimal weight ϕx,a to make the empirical estimator V̂UIPS(πϑ) as accurate
as possible, taking into account the uncertainty in estimated logging probabilities. Intuitively, a
high accuracy of the estimator is crucial for determining the correct direction of policy learning.
We follow previous work [36, 29] and measure the mean squared error (MSE) of V̂UIPS(πϑ) to the
ground-truth policy value V (πϑ), which captures both the bias and variance of an estimator. A lower
MSE indicates a more accurate estimator.

In UIPS, instead of directly minimizing the MSE, which is intractable, we find ϕx,a to minimize the
upper bound of MSE. As we show later, the optimal ϕx,a has a closed-form solution which relates to
both the value of πϑ(a|x)/β̂(a|x) and the estimation uncertainty of β̂(a|x).
Theorem 3.1. The mean squared error (MSE) between V̂UIPS(πϑ) and ground-truth estimator
V (πϑ) is upper bounded as follows:

MSE
(
V̂UIPS(πϑ)

)
= ED

[(
V̂UIPS(πϑ)− V (πϑ)

)2]
= Bias

(
V̂UIPS(πϑ)

)2
+Var

(
V̂UIPS(πϑ)

)
≤ Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
· Eβ∗

(β∗(a|x)
β̂(a|x)

ϕx,a − 1

)2
+ Eβ∗

[
πϑ(a|x)2
β̂(a|x)2

ϕ2
x,a

]
.

As the first expectation term Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
is a non-negative constant, we denote it as λ ∈ [0,∞)

when searching for ϕx,a. To minimize this upper bound of MSE, the optimal ϕx,a for each sample
(x, a) should minimize the following,

λ

(
β∗(a|x)
β̂(a|x)

ϕx,a − 1

)2

+
πϑ(a|x)2
β̂(a|x)2

ϕ2
x,a. (6)

An interesting observation is that setting ϕx,a = β̂(a|x)
β∗(a|x) , i.e., turning π(a|x)

β̂(a|x)ϕx,a into π(a|x)
β∗(a|x) does

not result in the optimal solution of Eq.(6). This is because such a setting only reduces bias (i.e., the
first term of Eq.(6)), but fails to control the second term, which is related to the variance. Moreover,
we cannot directly minimize Eq.(6) due to the unknown β∗(a|x). But it is possible to obtain a
confidence interval which contains β∗(a|x) with a high probability, when β̂(a|x) is obtained via a
specific estimator, e.g., (generalized) linear model or kernel methods.

Following previous work [23, 16, 22], we adopt the realizable assumption that β∗(a|x) can be
represented by a softmax function applied over a parametric function fθ∗(x, a). Moreover, the
universal approximation theorem [18] states that a parametric function with sufficient capacity, when
combined with a softmax function, can approximate any distribution. Then we have:

β∗(a|x) ∝ exp(fθ∗(x, a)), β̂(a|x) ∝ exp(fθ(x, a)), (7)

where fθ(x, a) is an estimate of fθ∗(x, a). Following the conventional definition of confidence
interval [20], we define γ and Ux,a such that |fθ∗(x, a)− fθ(x, a)| ≤ γUx,a holds with probability
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at least 1-δ, where γ is a function of δ (typically the smaller δ is, the larger γ is). Then γUx,a

measures the width of confidence interval of fθ(x, a) against its ground-truth fθ∗(x, a). As derived
in Appendix 7.2, with probability at least 1-δ, we have β∗(a|x) ∈ Bx,a and

Bx,a =

[
Ẑ exp (−γUx,a)

Z∗ β̂(a|x), Ẑ exp (γUx,a)

Z∗ β̂(a|x)
]
,

where Z∗ =
∑

a′ exp(fθ∗(a′|x)) and Ẑ =
∑

a′ exp(fθ(a
′|x)).

As β∗(a|x) can be any value in Bx,a with high probability, we aim to find the optimal ϕx,a that
minimizes the worst case of Eq.(6), thereby ensuring that V̂UIPS(πϑ) approaches its ground-truth
V (πϑ) under the sense of MSE, even in the worst possible scenarios. This ensures the subsequent
policy improvement direction will not be much worse with high probability. Thus, we formulate the
following optimization problem:

min
ϕx,a

max
βx,a∈Bx,a

λ

(
βx,a

β̂(a|x)
ϕx,a − 1

)2

+
πϑ(a|x)2
β̂(a|x)2

ϕ2
x,a. (8)

The following theorem derives a closed-form formula for the optimal solution of Eq.(8).
Theorem 3.2. Let η ∈ [exp(−γUmax

x ), exp(γUmax
x )], where Umax

x = maxa Ux,a. The optimization
problem in Eq.(8) has a closed-form solution:

ϕ∗
x,a = min

(
λ/

[
λ

η
exp
(
−γUx,a

)
+

ηπϑ(a|x)2
β̂(a|x)2 exp (−γUx,a)

]
, 2η/

[
exp
(
γUx,a

)
+ exp

(
−γUx,a

)])
.

The following corollary demonstrates the advantage of UIPS. The detailed proof of Theorem 3.2 and
Corollary 3.3 can be found in Appendix 7.8.

Corollary 3.3. With ϕ∗
x,a derived in Theorem 3.2, V̂UIPS(πϑ) in Eq.(4) achieves a smaller upper

bound of MSE than V̂BIPS(πϑ) in Eq. (3).

Insights about ϕ∗
x,a. The detailed analysis of the effect of ϕ∗

x,a can be found in Lemma 7.1 in
Appendix 7.8. In summary, we have the following key findings,

• For samples whose largest possible propensity score is under control: i.e., πϑ(a|x)
minBx,a

<
√
λ, higher

uncertainty implies smaller values of π/β̂. This suggests samples of this type with positive rewards
are underestimated, and the extend of underestimation increases with the estimation uncertainty.
UIPS thus chooses to increase ϕ∗

x,a with uncertainty, to emphasize these long-tail positive samples.
• Conversely, for samples with large propensity scores, UIPS decreases ϕ∗

x,a as the uncertainty
increases, so as to prevent their distortion in policy learning.

Uncertainty estimation. Now we describe how to calculate Ux,a, i.e., the uncertainty of the
estimated β̂(a|x). In this work, we choose to estimate β∗(a|x) using a neural network, because 1) its
representation learning capacity has been proved in numerous studies, and 2) various ways [11, 45]
can be leveraged to perform the uncertainty estimation in a neural network. We adopt [45] due to
its computational efficiency and theoretical soundness. Following the proof of Theorem 4.4 in [45],
given the logged dataset D, we can get with a high probability that there exists γ such that:

|fθ(xn, an)− fθ∗(xn, an))| ≤ γ
√
g(xn, an)⊤M

−1
D g(xn, an)

where g(xn, an) is the gradient of fθ(xn, an) with respect to the neural network’s last layer’s
parameter θw ⊂ θ, i.e., g(xn, an) = ∇θw

fθ(xn, an). And MD =
∑N

n=1 g(xn, an)g(xn, an)
⊤,

implying Uxn,an
=
√
g(xn, an)⊤M

−1
D g(xn, an).

3.2 Convergence of policy learning under UIPS

The following theorem provides the convergence result for UIPS, which converges to a stationary
point of the expected reward function. The proof is provided in Appendix 7.9.
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Theorem 3.4. Denote Gmax and Φ as the maximum value of ∥∂πϑ(a|x)
∂ϑ ∥ and Eβ∗

[
π2
ϑ(a|x)

β̂2(a|x) (ϕ
∗
x,a)

2
]

respectively, i.e., ∥∂πϑ(a|x)
∂ϑ ∥ ≤ Gmax and Eβ∗

[
π2
ϑ(a|x)

β̂2(a|x) (ϕ
∗
x,a)

2
]
≤ Φ. And denote Vmax as the finite

maximum expected reward that can be achieved, and φmax = maxx,a

{∣∣∣β∗(a|x)
β̂(a|x) ϕ

∗
x,a − 1

∣∣∣}. Assume

that the expected reward of πϑ, i.e., V (πϑ), is a differentiable and L-smooth function w.r.t ϑ. Denote
the policy parameters obtained by Eq.(5) at iteration k ∈ [K] as ϑk, then φmax ∈ (0, 1) and

1

K

K∑
k=1

E[∥∇V (πϑk
)∥]2 ≤ 2LVmax

K(1− φmax)
+

(
L+

2Vmax

(1− φmax)

)
Gmax

√
Φ√

K
,

where ∇V (πϑ) is the true policy gradient under ground-truth logging probability, i.e., ∇V (πϑ) =

Eβ∗ [πϑ(a|x)
β∗(a|x) rx,a∇ϑ log(πϑ(a|x))].

Theorem 3.4 shows that, as K → ∞ and with 1/(1 − φmax) and Φ being controlled, UIPS
leads policy update to converge to a stationary point where the true policy gradient ∇V (πϑk

) is
zero. And fortunately, UIPS is effective in controlling both 1/(1− φmax) and Φ. Specifically, we
denote φx,a =

∣∣∣β∗(a|x)
β̂(a|x) ϕ

∗
x,a − 1

∣∣∣ and Φx,a =
π2
ϑ(a|x)

β̂2(a|x) (ϕ
∗
x,a)

2. It is clear to note that λφ2
x,a + Φx,a

corresponds to the objective in Eq.(6) for deriving ϕ∗
x,a for each sample (x, a). In other words, UIPS

selects {ϕ∗
x,a} to minimize φmax = max{φx,a} and Φ = Eβ∗ [Φx,a], which directly accelerate the

policy converge to a stationary point with the true policy gradient being zero.

In the case of BIPS in Eq.(3), we have ϕx,a ≡ 1. Although Φ may be large due to small logging prob-
abilities, the more concerning issue is that the requirement φmax ∈ (0, 1) is no longer satisfied when
β∗(a|x) ≥ 2β̂(a|x), which may happen with a non-negligible probability. Hence, the convergence
of policy learning under V̂BIPS is no better than that under UIPS.

4 Empirical evaluations

We evaluate UIPS on both synthetic data and three real-world datasets with unbiased collection. We
compare UIPS with the following baselines, which can be grouped into five categories:

• Cross-Entropy (CE): A supervised learning method with the cross-entropy loss over its softmax
output. No off-policy correction is performed in this method.

• BIPS-Cap [8]: The off-policy learning solution under the BIPS estimator in Eq.(3). The estimated
propensity scores are further suppressed to control variance, i.e., taking min

(
c, πϑ(a|x)

β̂(a|x)

)
as the

propensity score. Setting c to a small value can reduce variance, but introduces bias.
• MinVar & stableVar [46], Shrinkage [36]: This line of work improves off-policy evaluation by

reweighing each sample. For example, MinVar and stableVar reweigh each sample by hx,a∑
a′ hx,a′

with hx,a = β̂(a|x)
πϑ(a|x)2 and hx,a =

√
β̂(a|x)

πϑ(a|x) respectively, since they find that πϑ(a|x)2/β̂(a|x) is
directly related to policy evaluation variance. Su et al. [36] propose to shrink the propensity score
by λ/(λ + πϑ(a|x)2

β̂(a|x)2 ), which is a special case of our UIPS with Ux,a = 0 and η = 1. All these

methods simply treat β̂(a|x) as β∗(a|x), and none of them consider the uncertainty of β̂(a|x).
• SNIPS [39], BanditNet [16], POEM [38], POXM [23], Adaptive [22]: This line of work aims

for more stable and accurate policy learning. For example, SNIPS normalizes the estimator by
the sum of propensity scores in each batch. BanditNet extends SNIPS and leverages an additional
Lagrangian term to normalize the estimator by an approximated sum of propensity scores of all
samples. POEM jointly optimizes the estimator and its variance. POXM controls estimation
variance by pruning samples with small logging probabilities. Adaptive proposes a new formulation
to utilize negative samples.

• ApproxKNN [5] and IPS-C-TS: The line of work improves off-policy learning by applying
calibration to estimated logging probabilities. ApproxKNN utilizes the K-Nearest Neighbor
algorithm for calibration, which exhibits the lowest calibration error in [5]. IPS-C-TS, on the
other hand, employs temperature scaling, a widely recognized and effective calibration method for
probability distribution [13].
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Table 1: Experiment results on synthetic datasets. The best and second best results are highlighted
with bold and underline respectively. The p-value under the t-test between UIPS and the best baseline
on each dataset is also provided.

τ = 0.5 τ = 1 τ = 2

Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@5 R@5 NDCG@5
IPS-GT 0.5589±1e−3 0.1582±6e−4 0.6093±1e−3 0.5526±2e−3 0.1565±6e−4 0.6007±1e−3 0.5531±2e−3 0.1557±7e−4 0.6037±1e−3

CE 0.5553±6e−4 0.1573±2e−4 0.6037±5e−4 0.5510±6e−4 0.1561±2e−4 0.5995±4e−4 0.5386±2e−3 0.1524 ±7e−4 0.5874±2e−3

BIPS-Cap 0.5515±2e−3 0.1553 ±8e−4 0.6031±2e−3 0.5526±2e−3 0.1561±6e−4 0.6016±1e−3 0.5409±3e−3 0.1529±9e−4 0.5901±2e−3

MinVar 0.5340±2e−3 0.1509 ±6e−4 0.5857±2e−3 0.5282±2e−3 0.1491±7e−4 0.5791±2e−3 0.5036±4e−3 0.1415±1e−3 0.5543±3e−3

stableVar 0.4577±5e−3 0.1310 ±1e−3 0.5111±2e−3 0.5373±3e−3 0.1523±9e−4 0.5866±3e−3 0.5279±3e−3 0.1492±8e−4 0.5781±3e−3

Shrinkage 0.5526±2e−3 0.1562 ±7e−4 0.6024±1e−3 0.5499±4e−3 0.1545±1e−3 0.6040±3e−3 0.5347±2e−3 0.1513 ±6e−4 0.5824 ±2e−3

SNIPS 0.2616±6e−2 0.0749±2e−2 0.3150±7e−2 0.3538±5e−2 0.0987±1e−2 0.4144±6e−2 0.4379±3e−2 0.1226±9e−3 0.5177±3e−2

BanditNet 0.4011±3e−2 0.1131±8e−3 0.4830±2e−2 0.3894±4e−2 0.1095±1e−2 0.4741±3e−2 0.4122±3e−2 0.1153±8e−3 0.4934±3e−2

POEM 0.5480±2e−3 0.1539±8e−4 0.6008±2e−3 0.5502±2e−3 0.1551±6e−4 0.6000±2e−3 0.5399±2e−3 0.1526±8e−4 0.5893±2e−3

POXM 0.4006±3e−2 0.1130±8e−3 0.4828±2e−2 0.3616±4e−2 0.1019±1e−2 0.4522±4e−2 0.3816±4e−2 0.1069±1e−2 0.4680±4e−2

Adaptive 0.3831±2e−2 0.1050±4e−3 0.4382±2e−2 0.4734±4e−3 0.1325±1e−3 0.5326±3e−3 0.3936±1e−2 0.1097±4e−3 0.4368±2e−2

ApproxKNN 0.5576±1e−3 0.1580 ±4e−4 0.6059±2e−3 0.5527±9e−4 0.1567±1e−4 0.6010±1e−3 0.5409±2e−3 0.1532±6e−4 0.5890±1e−3

IPS-C-TS 0.5565±1e−3 0.1577 ±3e−4 0.6048±7e−4 0.5517±6e−4 0.1563±2e−4 0.6002±6e−4 0.5393±1e−3 0.1526±5e−4 0.5879±1e−3

UIPS-P 0.4019±3e−2 0.1131±1e−2 0.4831±3e−2 0.3904±4e−2 0.1096±1e−2 0.4749±3e−2 0.4109±3e−2 0.1149±1e−2 0.4922±3e−2

UIPS-O 0.4135±4e−2 0.1167±1e−2 0.4954±4e−2 0.3896±4e−2 0.1096±1e−2 0.4739±3e−2 0.4519±3e−2 0.1268±8e−3 0.5296±2e−2

UIPS 0.5608±2e−3 0.1589±8e−4 0.6113±3e−3 0.5572±2e−3 0.1571±8e−4 0.6074±2e−3 0.5432±3e−3 0.1534±8e−4 0.5946±2e−3

p-value 3e−3 1e−2 4e−5 2e−5 2e−1 4e−10 1e−1 5e−1 4e−2

Table 2: Performance under different uncertainties.
Actions on Samples with High Uncertainty Actions on Samples with Low Uncertainty

Algorithm P@5(RI) R@5(RI) NDCG@5(RI) P@5(RI) R@5(RI) NDCG@5(RI)
CE 0.5190 0.1231 0.5526 0.5913 0.1915 0.6549

BIPS-Cap 0.5117 (-1.41%) 0.1202 (-2.33%) 0.5488 (-0.68%) 0.5913 (+0.00%) 0.1903 (-0.64%) 0.6574 (+0.39%)
Shrinkage 0.5158 (-0.62%) 0.1217 (-1.11%) 0.5505 (-0.37%) 0.5892 (-0.35%) 0.1905 (-0.55%) 0.6546 (-0.05%)

UIPS 0.5222 (+0.61%) 0.1237 (+0.50%) 0.5568 (+0.77%) 0.5994 (+1.38%) 0.1940 (+1.28%) 0.6658 (+1.66%)

• UIPS-P and UIPS-O: These are two variants of our UIPS with different ways of leveraging
uncertainties. UIPS-P directly penalizes samples whose estimated logging probabilities are of
high uncertainty, i.e., taking ϕx,a = 1.0/ exp(γUx,a), which follows previous work on offline
reinforcement learning [43, 4]. UIPS-O adversarially uses the worst propensity score for policy
learning, i.e., ϕx,a = 1.0/ exp(−γUx,a).

4.1 Synthetic data

Data generation. Following previous work [24, 23], we generate a synthetic dataset by a supervise-
to-bandit conversion on Wiki10-31K dataset [7], which is an extreme multi-label classification dataset.
The Wiki10-31K dataset contains approximately 20K samples. Each sample is associated with a
feature vector x̃ of 101,938 dimensions and a label vector yx̃ of 31K classes with more than one
positive class. Let yx̃,a denote the label of class a under x̃, and we take each class as an action.
The huge action space creates great challenges in off-policy learning, e.g., sparse observations, and
therefore better evaluates different methods.

We split the dataset into train, validation and test sets with size 11K:3K:6K. The test set is from the
official split. Since the original feature vector x̃ is too sparse, for ease of learning, we first embedded
it to dimension d by x = Wx̃, and synthesized the ground-truth logging policy β∗(a|x) by:

β∗(a|x) ∝ exp
(
x⊤θ∗

a/τ
)
, (9)

where W and {θ∗
a} are pre-trained parameters by applying a logistic regression model on the train set,

τ is a positive hyper-parameter that controls the skewness of logging distribution. A small value of τ
leads to a near-deterministic logging policy, while a larger τ makes it flatter. More implementation
details can be found in Appendix 7.3.

Evaluation metrics. To evaluate the learned policy πϑ(a|x), we calculate Precision@K (P@K),
Recall@K (R@K) and NDCG@K following previous work [23, 24]. Higher P@K, R@K and
NDCG@K imply a better policy.

Effectiveness of policy learning. Table 1 shows the average performance and standard deviations of
all algorithms under 10 random seeds on three synthetic datasets generated under different τ . As the
ground-truth logging policy is accessible on the synthetic datasets, we included a new baseline IPS-
GT, which uses the IPS estimator with the ground-truth logging probabilities. We calculated p-value
under t-test between UIPS and the best baseline to investigate the significance of improvement.

First, we can observe that UIPS achieved similar and even better performance than IPS-GT when
τ = 0.5 and τ = 1, but performed worse than IPS-GT when τ = 2. Despite using ground-truth
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logging probabilities, IPS-GT still suffered from high variance caused by samples with small logging
probabilities, which is the main cause of its worse performance when τ = 0.5 and τ = 1. In contrast,
UIPS effectively controlled the negative impact of these high-variance samples, resulting in a better
bias-variance trade-off.

With an increasing τ , suggesting a decrease in the probability of selecting positive actions, most
algorithms experienced a drop in performance. However, UIPS consistently outperformed all other
algorithms across all three datasets and metrics. Interestingly, as τ decreases, the performance
improvement of UIPS became even more pronounced, despite SNIPS, BanditNet, and POXM being
designed to handle small logging probabilities of positive actions.

ApproxKNN and IPS-C-TS generally achieved better performance than BIPS-Cap, implying the
effectiveness of calibration of estimated logging probabilities. However, UIPS still consistently
outperformed both ApproxKNN and IPS-C-TS. The main reason is that calibration primarily focuses
on adjusting the estimated probabilities to ensure on average the model’s predictions are reliable and
accurate. In contrast, UIPS specifically handles the impact from each individual sample in policy
learning.

UIPS also consistently outperformed Shrinkage (a special case of UIPS with uncertainties always
being zero) on all three datasets, demonstrating the benefits of considering the estimation uncertainty.
Finally, blindly reweighing through uncertainties, regardless of their impact on the accuracy of the
resulting estimator and the learned policy, ultimately resulted in poor performance, as demonstrated
by UIPS-P and UIPS-O.

Performance under different uncertainty levels. As shown in Figure 1, low-frequency samples in
the logged dataset suffer higher uncertainties in their propensity estimation. Thus, we divided the test
set into two subsets according to the average frequency of associated actions, where the uncertainty in
the subset associated with low-frequency actions is on average 8% higher than that in high-frequency
actions. Table 2 shows the results on these two subsets when τ = 0.5. In addition, we include the
results of the top three baselines that directly utilize the estimated logging policy. Table 2 clearly
demonstrates that only UIPS performed better than CE on the test set with low-frequency actions,
implying the distortion of inaccurately estimated logging probabilities and the effectiveness of UIPS
in efficiently handling them.

Off-policy Evaluation. We further inspected whether V̂UIPS in Eq.(4) leads to more accurate off-
policy evaluation. Following previous work [29, 46, 36], we evaluated the following ϵ-greedy policy:
π(a|x) = 1−ϵ

|Mx| · I{a ∈ Mx}+ ϵ/|A|, where Mx contains all positive actions associated with instance
x. For each x in the test set, we randomly sample 100 actions following the logging policy in Eq.(9)
to generate the logged dataset. Table 3 shows the MSE of the estimators to the ground-truth policy
value under 20 different random seeds. From Table 3, one can observe that: 1) IPS-GT with a skewer
logging policy (i.e., smaller τ ) leads to higher MSE, consistent with previous findings [29, 46, 36]; 2)
inaccurate logging probabilities result in high bias and variance, leading to much larger MSE of BIPS
compared to IPS-GT. Furthermore, this distortion is particularly pronounced when the ground-truth
logging policy is skewed (τ = 0.5); and 3) although all using the estimated logging policy, V̂UIPS

yields the smallest MSE, comparing to other baselines that are designed to improve over BIPS.

Hyper-parameter Tuning. Discussions about hyper-parameter tuning and performance of UIPS
under different hyper-parameters can also be found in Appendix 7.3.1.

4.2 Real-world data

To demonstrate the effectiveness of UIPS in real-world scenarios, we evaluate it on three recommen-
dation datasets: (1) Yahoo! R31; (2) Coat2; (3) KuaiRec [12], for music, fashion and short-video
recommendations respectively. All these datasets contain an unbiased test set collected from a
randomized controlled trial where items are randomly selected. The statistics of the three datasets and
implementation details, e.g., model architectures and dataset splits, can be found in Appendix 7.3.2.

Following [10], we take K = 5 on Yahoo! R3 and Coat datasets, and K = 50 on KuaiRec dataset.
The p-value under the t-test between UIPS and the best baseline on each dataset is also reported to
investigate the significance of improvement.

1https://webscope.sandbox.yahoo.com/
2https://www.cs.cornell.edu/~schnabts/mnar/
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Table 3: MSE of different off-policy estimators. A lower MSE indicates a more accurate estimator.
Algorithm IPS-GT BIPS minVar stableVar Shrinage UIPS
τ = 0.5 0.0875±4e−4 15.786±1.51 0.9021±7e−13 0.8612±5e−8 0.0718±5e−6 0.0210±2e−6

τ = 1.0 0.0209±8e−5 0.5510±0.388 0.9019±8e−12 0.8578±2e−7 0.1978±2e−5 0.0093±1e−6

τ = 2.0 0.0020±6e−6 0.5669±0.013 0.9015±5e−15 0.8342±5e−7 0.2952±3e−5 0.0043±4e−7

Table 4: Experimental results on real-world datasets. The best and second best results are highlighted
with bold and underline respectively. The p-value under the t-test between UIPS and the best baseline
on each dataset is also provided.

Yahoo Coat KuaiRec
Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@50 R@50 NDCG@50

CE 0.2819±2e−3 0.7594±6e−3 0.6073±7e−3 0.2799±5e−3 0.4618±1e−2 0.4529±7e−3 0.8802±2e−3 0.0240±8e−5 0.8810±6e−3

BIPS-Cap 0.2808±2e−3 0.7576±5e−3 0.6099±8e−3 0.2758±6e−3 0.4582±7e−3 0.4399±9e−3 0.8750±3e−3 0.0238±7e−5 0.8788±5e−3

MinVar 0.2843±4e−3 0.7685±1e−2 0.6168±1e−2 0.2813±3e−3 0.4668±9e−3 0.4414±8e−3 0.8827±1e−3 0.0240±5e−5 0.8886±2e−3

stableVar 0.2787±2e−3 0.7499±7e−3 0.5919±7e−3 0.2840±3e−3 0.4662±5e−3 0.4393±7e−3 0.8524±7e−3 0.0231±2e−4 0.8570±4e−3

Shrinkage 0.2843±3e−3 0.7654±8e−3 0.6204±7e−3 0.2790±5e−3 0.4636±4e−3 0.4464±1e−2 0.8744±3e−3 0.0238±9e−5 0.8771±6e−3

SNIPS 0.2222±4e−3 0.5828±1e−2 0.4357±1e−2 0.2643±7e−3 0.4287±1e−2 0.4009±9e−3 0.8411±6e−3 0.0228±2e−4 0.8431±6e−3

BanditNet 0.2413±8e−3 0.6442±2e−2 0.4988±2e−2 0.2781±8e−3 0.4527±1e−2 0.4251±1e−2 0.8758±5e−3 0.0239±2e−4 0.8810±4e−3

POEM 0.2732±3e−3 0.7357±1e−2 0.5880±1e−2 0.2791±4e−3 0.4566±6e−3 0.4375±6e−3 0.7785±1e−2 0.0210±2e−4 0.7779±6e−3

POXM 0.2250±5e−3 0.5940±1e−2 0.4542±2e−2 0.2663±6e−3 0.4308±9e−3 0.4006±1e−2 0.8962±1e−2 0.0245±4e−4 0.9041±1e−2

Adaptive 0.2762±3e−3 0.7451±9e−3 0.5919±8e−3 0.2830±3e−3 0.4634±5e−3 0.4217±5e−3 0.8375±1e−2 0.0227±4e−4 0.8460±1e−2

ApproxKNN 0.2697±2e−3 0.7225±5e−3 0.5760±6e−3 0.2755±2e−3 0.4594±5e−3 0.4490±4e−3 0.8839±2e−6 0.0240±5e−5 0.8895±2e−3

IPS-C-TS 0.2816±2e−3 0.7582 ±5e−3 0.6114±5e−3 0.2799±3e−3 0.4625±7e−3 0.4462±6e−3 0.8781±3e−3 0.0239±1e−4 0.8749±3e−3

UIPS-P 0.1829±8e−3 0.4560±3e−2 0.3300±1e−2 0.2685±7e−3 0.4364±9e−3 0.4087±7e−3 0.8638±8e−3 0.0235±3e−4 0.8685±7e−3

UIPS-O 0.1947±3e−3 0.4959±1e−2 0.3600±8e−3 0.2657±5e−3 0.4306±9e−3 0.4146±9e−3 0.8651±8e−3 0.0235±2e−4 0.8697±7e−3

UIPS 0.2868±2e−3 0.7742±5e−3 0.6274±5e−3 0.2877±3e−3 0.4757±5e−3 0.4576±8e−3 0.9120±1e−3 0.0250±5e−5 0.9174±7e−4

p-value 4e−2 1e−2 3e−2 2e−2 6e−4 5e−5 6e−4 6e−4 1e−3

We can first observe from Table 4 that on all three datasets, the proposed UIPS achieved the highest
precision, recall and NDCG. Apparently, accurate estimation of logging probabilities in real-world
scenarios with large action spaces and sparse interactions is challenging to achieve, causing BIPS-
Cap to underperform CE. Additionally, calibration poses difficulties in such scenarios, leading to
poor performance of ApproxKNN and IPS-C-TS across all three real-world datasets. BanditNet,
POEM and POXM performed better in problems with a larger action space, while MinVar, stableVar
and Shrinkage as well as Adaptive suited better for scenarios with a smaller action size. Again,
UIPS outperformed Shrinkage, highlighting the importance of handling uncertainty in the estimated
logging policy. But simply reweighing based on uncertainties, without considering their impact on
the accuracy of the resulting estimator and the learned policy, led to poor performance, as shown by
UIPS-P and UIPS-O.

4.3 Comparisons against other lines of off-policy learning

We discuss about the difference between UIPS and recent work with direct propensity estimation
[34, 21], the DICE line of work [26, 47, 9] as well as the work on the distributionally robust off-policy
learning [32, 17, 44] in Appendix 7.6, Appendix 7.5 and Appendix 7.7 respectively. Our empirical
evaluations on recent work [26, 44, 34] from all three lines suggest that these lines of work cannot
properly handle inaccuracies in the estimated logging probabilities that hinder policy improvement.
Moreover, we also integrated the proposed UIPS with the doubly-robust (DR) estimator and our
results suggest the accuracy of the imputation model greatly affected policy learning under DR, but
UIPS still provides benefits. More details can be found in Appendix 7.4.

5 Related work

Our work is the first of its kind to account for the uncertainty of logging policy estimation in off-policy
learning. The following two lines of work are most related to this work.

Off-policy learning. In many real-world applications, such as search engines and recommender
systems, interactive online model update is expensive and risky [15]. Off-policy learning has therefore
attracted great interest, since it can leverage the already logged feedback data [2, 8, 22]. The main
challenge in off-policy learning is to address the mismatch between the logging policy and the
learning policy. One common and widely-applied approach is to leverage the Inverse Propensity
Scoring (IPS) method to correct the discrepancy between the two policies. And various methods are
proposed to enhance IPS for more stabilizing learning [39, 37, 38] and improved variance control
[23, 22], as well as extensions to more complex problems [40, 24].
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However, all these solutions directly use the estimated logging policy for off-policy correction, leading
to sub-optimal performance as shown in our experiments. A recent study on causal recommendation
[10] also argues that propensity scores may not be correct due to unobserved confounders. They
assume the effect of unobserved confounder for any sample can be bounded by a pre-defined hyper-
parameter, and adversarially search for the worst-case propensity for learning. Mapping to off-policy
learning, their solution is a special case of our UIPS-O variant with uncertainty as a pre-defined
constant.

There were existing studies [34, 21, 26, 47, 9] also explore direct estimation of the propensity ratio
to bypass estimating the logging policy. However, as discussed in Appendix 7.6 and Appendix 7.5,
they demonstrate inferior performance compared to UIPS. This is primarily due to either the lack of
consideration for the accuracy of the estimated propensity ratio, similar to the limitations of existing
IPS-type algorithms in handling inaccurately estimated logging probabilities, or the degeneration to a
specific IPS estimator that suffers high variance.

Recent work on distributionally robust off-policy evaluation and learning [32, 17, 44] also addresses
uncertainty in off-policy learning. However, their approach to handling uncertainty and the underlying
motivation differ significantly from ours, resulting in distinct techniques employed. Further details
can be found in Appendix 7.7. Additionally, experiments conducted in Appendix 7.7 demonstrate
that directly adapting methods from distributionally robust off-policy learning to handle inaccurately
estimated logging probabilities leads to poor performance.

Off-policy learning can also be directly built on off-policy evaluation. Several work [36, 46] also
propose to control the variance of the estimator caused by small logging probabilities through instance
reweighing. Again, they directly use the estimated logging policy for correction, and thus performed
worse than UIPS as observed in our experiments. A recent study [29] assumed additional structure in
the action space and proposed the marginalized IPS. Instead, our work considers the uncertainty in
the estimated logging policy and thus does not add any new assumptions about the problem space.

Uncertainty-aware learning. Estimation uncertainty has been extensively studied [45, 50, 1]. In the
context of on-policy reinforcement leanring and bandits [1, 48, 49], the use of uncertainty aims to
strike a balance between exploration and exploitation by adopting an optimistic approach (i.e., UCB
in bandits). One the other hand, most reseach on offline reinforcement learning/bandits [43, 4, 6]
tends to be more conservative, employing techniques such as Lower Confidence Bounds (LCB)
or penalizing out-of-distribution states and actions based on uncertainty to address extrapolation
errors. However, these principles differ fundamentally from UIPS, which directly minimizes the mean
square error of off-policy evaluation. The closed-form solution of the resulting per-instance weight in
UIPS reflects how uncertainty contributes to the policy evaluation error. Moreover, Our UIPS-O and
UIPS-P baselines leverage uncertainties using the two aforementioned general principles respectively.
However, empirical findings indicate that blindly penalizing or boosting samples based on uncertainty
is problematic. Proper correction depends on both uncertainty in logging policy estimation and the
actual value of estimated logging probabilities.

6 Conclusion

In this paper, we propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) to explicitly
model the uncertainty of the estimated logging policy for improved off-policy learning. UIPS weighs
each logged instance to reduce its policy evaluation error, where the optimal weights have a closed-
form solution derived by minimizing the upper bound of the resulting estimator’s mean squared error
(MSE) to its ground-truth value. An improved policy is then obtained by optimizing the resulting
estimation. Extensive experiments on synthetic and three real-world datasets as well as the theoretical
convergence guarantee demonstrate the efficiency of UIPS.

As demonstrated in this work, explicitly modeling the uncertainty of the estimated logging policy is
crucial for effective off-policy learning; but the best use of this uncertainty is not to simply down-
weigh or drop instances with uncertain estimations, but to balance it with the actually estimated
logging probabilities in a per-instance basis. As our future work, it is promising to investigate how
UIPS can be extended to value-based learning methods, e.g., actor-critics. And on the other hand, it
is also important to analyze how tight our upper bound analysis of policy evaluation error is; and if
possible, find new ways to tighten it for improvements.
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Algorithm 1 UIPS
1: Input: The logged dataset D := {(xn, an, rxn,an

)|n ∈ [N ]}, the estimated logging policy
model β̂(a|x) = exp(fθ(x,a))∑

a′ exp(fθ(x,a′)) , dimension d.
2: Initialize MD = Id×d.
3: for n = 1 to N do
4: MD = MD +∇θfθ(xn, an)∇θfθ(xn, an)

⊤ ▷ MD for uncertainty calculation.
5: end for
6: for n = 1 to N do
7: Uxn,an =

√
∇θfθ(xn, an)⊤M

−1
D ∇θfθ(xn, an)

8: end for
9: while not converge do

10: for n = 1 to N do
11: Calculate ϕ∗

xn,an
as in Theorem 3.2

12: Calculate gradients as in Eq.(5) and updating πϑ(a|x).
13: end for
14: end while
15: Output:The learnt policy πϑ(a|x).

7 Appendix

7.1 Notations and Algorithm Framework.

For ease of reading, we list important notations in Table 5 and summarize the main framework of the
proposed UIPS in Algorithm 1.

Notation Description
X context space
A action set

x ∈ Rd context vector
a action

rx,a reward
π(a|x) targeted policy to evaluate
β∗(a|x) the unknown ground-truth logging policy
β̂(a|x) the estimated logging policy
V (π) value function

D := {(xn, an, rxn,an
)|n ∈ [N ]} logged dataset containing N samples

ϕ∗
x,a the optimal uncertainty-aware weight

fθ∗(x, a)
the unknown ground-truth function
that generates β∗(a|x) = exp(fθ∗ (x,a))∑

a′ exp(fθ∗ (x,a′))

fθ(x, a) the estimate of fθ∗(x, a) that generates β̂(a|x)
Bx,a confidence interval of β̂(a|x)
Ux,a uncertainty defined as |fθ∗(x, a)− fθ(x, a)| ≤ γUx,a

g(xn, an) gradient of fθ(x, a) regarding to the last layer.
Table 5: Notations

Computation Cost. The additional computation cost of UIPS over IPS comes from two parts:

• Pre-calculate uncertainties (line 1-5 in Algorithm 1) : This part calculates uncertainty
of the logging probability for each (s, a) pair, and it only needs to be executed once.
The computational cost of this step is O(Nd2 + d3), where O(Nd2) is for calculating
uncertainties in each (s, a) pair and O(d3) is for matrix inverse.

• Calculate ϕ∗
x,a during training (line 8 in Algorithm 1): It only takes O(1) time, the same

computational cost as calculating IPS score.
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Note that calculating the logging probability for each sample, which is essential for both UIPS and
IPS, takes O(Nd|A|) time. Since the dimension d is usually much less than action size |A| and
sample size N , UIPS does not introduce significant computational overhead compared to the original
IPS solution.

7.2 Derivation of confidence interval of logging probability.

Given that |fθ∗(x, a)− fθ(x, a)| ≤ γUx,a holds with probability at least 1− σ and

β∗(a|x) = exp(fθ∗(x, a))

Z∗ , β̂(a|x) = exp(fθ(x, a))

Ẑ
,

where Z∗ =
∑

a′ exp(fθ∗(a′|x)) and Ẑ =
∑

a′ exp(fθ(a
′|x)), we can get that with probability at

least 1− σ:

|fθ∗(x, a)− fθ(x, a)| ≤ γUx,a

⇔fθ(x, a)− γUx,a ≤ fθ∗(x, a) ≤ fθ(x, a) + γUx,a

⇔ exp(fθ(x, a)) exp(−γUx,a) ≤ exp(fθ∗(x, a)) ≤ exp(fθ(x, a)) exp(γUx,a)

(1)⇔Ẑβ̂(a|x) exp(−γUx,a) ≤ exp(fθ∗(x, a)) ≤ Ẑβ̂(a|x) exp(γUx,a)

(2)⇔ Ẑ exp (−γUx,a)

Z∗ β̂(a|x) ≤ β∗(a|x) ≤ Ẑ exp (γUx,a)

Z∗ β̂(a|x)

The step labeled as (1) is due to the modelling of β̂(a|x). And the step labeled as (2) is because Z∗ is a
positive constant independent of β̂(a|x). Thus with probability at least 1-δ, we have β∗(a|x) ∈ Bx,a

and

Bx,a =

[
Ẑ exp (−γUx,a)

Z∗ β̂(a|x), Ẑ exp (γUx,a)

Z∗ β̂(a|x)
]
.

7.3 Experiment details

7.3.1 Synthetic Data

Data generation. Given the ground-truth logging policy β∗(a|x), we generate the logged dataset
as follows. For each sample in train set, we first get the embedded context vector x from its
original feature vector x̃. We then sample an action a according to β∗(a|x), and obtain the reward
rx,a = yx̃,a, resulting bandit feedback (x, a, rx,a), where yx̃,a is the label of class a under the
original feature vector x̃. We repeat above process N times to collect the logged dataset. In our
experiments, we take d = 64, N = 100.

We model the logging policy as in Eq.(9), where {θa} are the parameters to be estimated. To train
the logging policy, we take all samples in the logged dataset D as positive instances, and randomly
sample non-selected actions as negative instances as in [8].

7.3.2 Real-world Data

Statistics of datasets. The statistics of three real-world recommendation datasets with unbiased data
can be found in Table 6.

Table 6: The statistics of three real-world datasets.
Dataset #User #Item #Biased Data #Unbiased Data

Yahoo R3 15,400 1,000 311,704 54,000
Coat 290 300 6,960 4,640

KuaiRec 7,176 10,729 12,530,806 4,676,570

All these datasets contain a set of biased data collected from users’ interactions on the platform,
and a set of unbiased data collected from a randomized controlled trial where items are randomly
selected. As in [10], on each dataset, the biased data is used for training, and the unbiased data is for
testing, with a small part of unbiased data split for validation purpose (5% on Yahoo R3 and Coat,
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and 15% on KuaiRec). We take the reward as 1 if : (1) the rating is larger than 3 in Yahoo! R3 and
Coat datasets; (2) the user watched more than 70% of the video in KuaiRec. Otherwise, the reward is
labeled as 0.

We adopted a two-tower neural network architecture to implement both the logging and learning
policy, as shown in Figure 2. For the learning policy, the user representation and item representation
are first modelled through two separate neural networks (i.e., the user tower and the item tower), and
then their element-by-element product vector is projected to predict the user’s preference for the item.
We then re-use the user state generated from the user tower of the learning policy, and model the
logging policy with another separate item tower, following [8]. We also block gradients to prevent
the logging policy learning interfering the user state of the learning policy. In each learning epoch,
we will first estimate the logging policy, and then take the estimated logging probabilities as well as
their uncertainties to optimize the learning policy.

Figure 2: Model architecture of the logging and the learning policy in real-world datasets

7.3.3 Implementation details.

To facilitate hyper-parameter tuning, we disentangled two ηs in two the terms of ϕ∗
x,a in Theorem 3.2,

and introduce η1 and η2 to represent η in the first and second term respectively in our implementation.
This is due to the scale of η in the first term is closely related to the scale of λ, with λ/

√
η as the truly

effective hyper-parameter. But the scale of η in the second term is independent from λ.

Moreover, while λ = Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
depends on πθ as discussed in Eq.(6), we cannot adaptively

set the value of λ since the ground-truth logging policy β∗(a|x) is unknown. However, we have:

λ := Eπ

[
r2x,a

πθ(a|x)
β∗(a|x)

]
≤
(∑

a

πθ(a|x)4
)(∑

a

r4x,a
β∗(a|x)2

)
≤
(∑

a

r4x,a
β∗(a|x)2

)
,

where the first inequality is due to the Cauchy–Schwarz inequality and the second inequality is

because
∑

a πθ(a|x)4 ≤ ∑a πθ(a|x) = 1 with πθ(a|x) ∈ [0, 1]. We denote λ̃ =
(∑

a

r4x,a

β∗(a|x)2
)

,

which is dataset-specific constant and independent from πθ. By replacing λ in Eq.(6) with λ̃, we can
still minimize an upper bound of MSE(V̂UIPS(πϑ)), which ensures that the result of our analysis still
holds. Thus, considering ease of computation and efficiency, we take a fixed λ during our policy
learning.

We then use grid search to select hyperparameters based on the model’s performance on the validation
dataset: the learning rate was searched in {1e−5, 1e−4, 1e−3, 1e−2}; λ, γ, η1 were searched in {0.5,
0.1, 1, 2,5, 10, 15, 20, 25, 30, 40, 50}. And η2 was searched in {1, 10, 100, 1000}. For baseline
algorithms, we also performed a similar grid search as mentioned above, and the search range follows
the original papers.

Ablation study: hyper-parameter tuning. Although UIPS has four hyperparameters (λ, γ, η1, and
η2), one only needs to carefully finetune two of them, i.e., γ and η21/λ, to obtain good performance
of UIPS. This is because:
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(a) Precision@5 (b) Recall@5 (c) NDCG@5

Figure 3: Effect of λ and γ on synthetic dataset with τ = 0.5

• η2 acts as a capping threshold to ensure ϕ∗
x,a ≤ 2η2 holds even when the corresponding

propensity scores are very low. Hence, it should be set to a reasonably large value (e.g.,
100).

• The key component (i.e., the first term) of ϕ∗
x,a can be rewritten in the following way.

While all (x, a) pairs will be multiplied by ϕ∗
x,a, η1 in the numerator will not affect final

performance too much, and the key is to find a good value of η21/λ to balance the two terms
in the denominator:

η1/

[
exp (−γUx,a) +

η21/λ · πϑ(a|x)2
β̂(a|x)2 exp (−γUx,a)

]
.

Thus with η1 and η2 fixed, the effect of hyper-parameter γ and λ on precision, recall as well as
NDCG can be found in Figure 3. We can observe that to make UIPS excel, Bx,a needs to be of high
confidence, e.g., γ = 25 performed the best on the dataset with τ = 0.5. Moreover, the threshold√
λ/η1 cannot be too small or too large.

7.4 Experiments on the doubly robust estimators.

The doubly robust (DR) estimator [15], which is a hybrid of direct method (DM) estimator and inverse
propensity score (IPS) estimator, is also widely used for off-policy evaluation. More specifically,
let η̂ : X × A → R be the imputation model in DM that estimates the reward of action a under
context vector x, and β̂(a|x) be the estimated logging policy in the IPS estimator. The DR estimator
evaluates policy π based on the logged dataset D := {(xn, an, rxn,an)|n ∈ [N ]}, by:

V̂DR(π) = V̂DM(π) +
1

N

N∑
n=1

π(an|xn)

β̂(an|xn)

(
rxn,an

− η̂(xn, an)
)

(10)

where V̂DM(π) is the DM estimator:

V̂DM(π) =
1

N

N∑
n=1

∑
a∈A

π(a|xn)η̂(xn, a). (11)

Again assume the policy π(a|x) is parameterized by ϑ, the REINFORCE gradient of V̂DR(πϑ) with
respect to ϑ can be readily derived as follows:

∇ϑV̂DR(πϑ) =
1

N

N∑
n=1

(∑
a∈A

πϑ(a|xn)η̂(xn, a)∇ϑ log(πϑ(a|xn))

)

+
1

N

N∑
n=1

(
π(an|xn)

β̂(an|xn)

(
rxn,an − η̂(xn, an)

)
∇ϑ log(πϑ(an|xn)

)
. (12)

The imputation model η̂(x, a) is pre-trained following previous work [22] with the same neural
network architecture as the logging policy model. Besides the standard DR estimator, we also adapt
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Table 7: Experiment results on synthetic datasets. The best and second best results are highlighted
with bold and underline respectively. Two p-values are calculated: (1) p-value (UIPSDR): The
p-value under the t-test between UIPSDR and the best DR baseline on each dataset; (2) p-value
(UIPS): The p-value under the t-test between UIPS and the best DR baseline on each dataset.

τ = 0.5 τ = 1 τ = 2

Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@5 R@5 NDCG@5
BIPS-Cap 0.5515±2e−3 0.1553 ±8e−4 0.6031±2e−3 0.5526±2e−3 0.1561±6e−4 0.6016±1e−3 0.5409±3e−3 0.1529±9e−4 0.5901±2e−3

UIPS 0.5589±3e−3 0.1583±9e−4 0.6095±3e−3 0.5572±2e−3 0.1571±8e−4 0.6074±2e−3 0.5432±3e−3 0.1534±8e−4 0.5946±2e−3

DR 0.3846±3e−2 0.1082±8e−3 0.4684±3e−2 0.3631±3e−2 0.1017±9e−3 0.4494±3e−2 0.3560±3e−2 0.0995±7e−3 0.4470±2e−3

MinVarDR 0.3212±3e−2 0.0908±8e−3 0.4062±3e−2 0.3240±5e−2 0.0903±1e−2 0.3905±5e−2 0.3234±5e−2 0.0910±1e−2 0.4059±4e−2

ShrinkageDR 0.4139±2e−2 0.1161±7e−3 0.4969±3e−2 0.3944±3e−2 0.1101±8e−3 0.4797±2e−2 0.4080±3e−2 0.1135±7e−3 0.4901±2e−2

UIPSDR 0.4278±2e−2 0.1200±6e−3 0.5069±2e−2 0.4008±2e−2 0.1126±7e−3 0.4847±2e−2 0.4144±2e−2 0.1162±8e−3 0.4972±2e−2

p-value (UIPSDR) 2e−1 2e−1 3e−1 6e−1 4e−1 6e−1 6e−1 4e−1 5e−1

p-value (UIPS) 6e−13 4e−13 4e−12 2e−12 1e−12 5e−12 8e−12 8e−12 2e−11

Table 8: Experiment results on real-world unbiased datasets. The best and second best results are
highlighted with bold and underline respectively. Two p-values are calculated: (1) p-value (UIPSDR):
The p-value under the t-test between UIPSDR and the best DR baseline on each dataset; (2) p-value
(UIPS): The p-value under the t-test between UIPS and the best DR baseline on each dataset.

Yahoo Coat KuaiRec
Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@50 R@50 NDCG@50
BIPS-Cap 0.2808±2e−3 0.7576±5e−3 0.6099±8e−3 0.2758±6e−3 0.4582±7e−3 0.4399±9e−3 0.8750±3e−3 0.0238±7e−5 0.8788±5e−3

UIPS 0.2868±2e−3 0.7742±5e−3 0.6274±5e−3 0.2877±3e−3 0.4757±5e−3 0.4576±8e−3 0.9120±1e−3 0.0250±5e−5 0.9174±7e−4

DR 0.2670±2e−3 0.7174±6e−3 0.5636±6e−3 0.2884±3e−3 0.4760±5e−3 0.4541±5e−3 0.8794±1e−2 0.0240±5e−4 0.8824±2e−2

MinVarDR 0.2272±5e−3 0.5989±1e−2 0.4525±1e−2 0.2704±4e−3 0.4434±9e−3 0.4137±6e−3 0.8640±7e−3 0.0235±2e−4 0.8657±7e−3

ShrinkageDR 0.2697±2e−3 0.7226±6e−3 0.5713±5e−3 0.2895±4e−3 0.4749±6e−3 0.4526±6e−3 0.8778±2e−2 0.0239±5e−4 0.8800±2e−2

UIPSDR 0.2721±1e−3 0.7294±6e−3 0.5750±5e−3 0.2946±4e−3 0.4854±8e−3 0.4647±8e−3 0.8849±1e−2 0.0242±4e−4 0.8896±1e−2

p-value (UIPSDR) 1e−2 2e−2 1e−1 7e−3 5e−3 2e−3 4e−1 4e−1 3e−1

p-value (UIPS) 1e−12 6e−14 6e−15 3e−1 8e−1 1e−1 2e−6 2e−6 1e−3

UIPS and the best two baselines on off-policy evaluation estimator (i.e., MinVar and Shrinkage based
on the results in Table 1 and Table 4) to doubly robust setting using the same imputation model.

Table 7 and Table 8 report the empirical performance of the learned policy on the synthetic datasets
and three real-world datasets respectively. For ease of comparison, we also include the experiment
results of BIPS-Cap and UIPS on each dataset in these two tables. Two p-values are also provided: (1)
p-value (UIPSDR): The p-value under the t-test between UIPSDR and the best DR baseline on each
dataset; (2) p-value (UIPS): The p-value under the t-test between UIPS and the best DR baseline on
each dataset. From Table 7 and Table 8, we can first observe that DR cannot consistently outperform
BIPS-Cap: It outperformed BIPS-Cap on the Coat and KuaiRec dataset, while achieving much worse
performance on the synthetic datasets and Yahoo dataset. This is because the imputation model also
plays a very important role in gradient calculation as shown in Eq.(12). Its accuracy greatly affects
policy learning. When the imputation model is sufficiently accurate, for example, on the Coat dataset
with only 300 actions, incorporating the DM estimator not only led to better performance of DR
over IPS, but also improved performance of UIPSDR over UIPS. And in particular, in this situation
UIPSDR performed better than DR with the gain being statistically significant. When the imputation
model is not accurate enough, for example, on the KuaiRec dataset with a large action space but
sparse reward feedback, DR is still worse than UIPS, and UIPSDR also performs worse than UIPS
due to the distortion of the imputation model.

7.5 Difference against DICE-type algorithms.

The DICE line of work [26, 47, 9] is proposed for off-policy correction in the multi-step RL setting
with the environment following the Markov Decision Process (MDP) assumption. Although the
DICE line of work does not require the knowledge of the logging policy, it is fundamentally different
from our work. Given a logged dataset D := {(st, at, rst,at

, st+1)} collected from an unknown
logging policy β∗(at|st), DICE-type algorithms propose to directly estimate the discounted stationary
distribution correction wπ/D(st, at) =

dπ(st,at)
dD(st,at)

to replace the product-based off-policy correction

weight
∏

t
π(at|st)
β∗(at|st) , which suffers high variance due to the series of products. While the estimation of

wπ/D(st, at) is agnostic to the logging policy, it highly depends on two assumptions: (1) Environment
follows an MDP, i.e., st+1 ∼ T (st, at) with T (·, ·) denoting the state transition function; (2) Each
logged sample should be of a state-action-next-state tuple (st, at, rst,at

, st+1) that contains state
transition information.
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Table 9: Empirical performance of DICE-S on synthetic datasets.

τ = 0.5 τ = 1 τ = 2

Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@5 R@5 NDCG@5
BIPS-Cap 0.5515±2e−3 0.1553 ±8e−4 0.6031±2e−3 0.5526±2e−3 0.1561±6e−4 0.6016±1e−3 0.5409±3e−3 0.1529±9e−4 0.5901±2e−3

DICE-S 0.5416±4e−3 0.1520 ±1e−3 0.5968±4e−3 0.5508±2e−3 0.1553±7e−4 0.6010±2e−3 0.5403±2e−3 0.1526±7e−4 0.5903±1e−3

UIPS 0.5589±3e−3 0.1583±9e−4 0.6095±3e−3 0.5572±2e−3 0.1571±8e−4 0.6074±2e−3 0.5432±3e−3 0.1534±8e−4 0.5946±2e−3

Table 10: Empirical performance of DICE-S on real-world datasets.

Yahoo Coat KuaiRec
Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@50 R@50 NDCG@50
BIPS-Cap 0.2808±2e−3 0.7576±5e−3 0.6099±8e−3 0.2758±6e−3 0.4582±7e−3 0.4399±9e−3 0.8750±3e−3 0.0238±7e−5 0.8788±5e−3

DICE-S 0.2618±4e−3 0.7010 ±1e−2 0.5627±9e−3 0.2686±5e−3 0.4422±6e−3 0.4265±5e−3 0.8842±2e−3 0.0241±6e−5 0.8908±2e−3

UIPS 0.2868±2e−3 0.7742±5e−3 0.6274±5e−3 0.2877±3e−3 0.4757±5e−3 0.4576±8e−3 0.9120±1e−3 0.0250±5e−5 0.9174±7e−4

We further inspected how DICE-type algorithms would work in the contextual bandit setting, which
can be taken as a one-state MDP. We take DualDICE [1] as an example for illustration, and sim-
ilar conclusions can be drawn for other DICE-type algorithms. We can easily derive that in the
contextual bandit setting, DualDICE degenerates to the IPS estimator that approximates the un-
known ground-truth logging policy β∗(a|s) with its empirical estimate from the given logged dataset
D := {(si, ai, rsi,ai)|i ∈ [N ]}, which inherits all limitations of IPS estimator, such as high variance
on instances with low support in D.

More specifically, recall that DualDICE estimates the discounted stationary distribution correction by
optimizing the following objective function (Eq.(8) in [26]):

min
x:S×A→C

1

2
E(s,a)∼dD [x(s, a)2]− E(s,a)∼dπ [x(s, a)],

with the optimizer x∗(s, a) = wπ/D(s, a). In a multi-step RL setting, one cannot directly calculate
the second expectation as dπ(s, a) is inaccessible, thus DualDICE takes the change-of-variable trick
to address the above optimization problem. However, in the contextual bandit setting, let p(s) denote
the state distribution, dπ(s, a) = p(s)π(a|s) and dD(s, a) = p(s)β∗(a|s). The optimization problem
can be rewritten as :

min
x:S×A→C

Es∼p(s)

[
1

2
Ea∼β∗(a|s)[x(s, a)

2]− Ea∼π(a|s)[x(s, a)]

]
.

With the logged dataset D, the empirical estimate of above optimization problem is :

min
x:S×A→C

∑
s

Ns

N

(∑
a

Ns,a

2Ns
x(s, a)2 −

∑
a

π(a|s)x(s, a)
)
,

yielding x∗(s, a) = π(a|s)Ns/Ns,a, where Ns and Ns,a denote the number of logged samples with
si = s and (si = s, ai = a) respectively. This is actually equivalent to the IPS estimator with
Ns,a/Ns as the estimate of β∗(a|s). We refer to the above estimator as DICE-S, and Table 9 and
Table 10 show the empirical performance of the policy learned through DICE-S on the synthetic and
real-world datasets respectively. Similar as BIPS-Cap described in Section 4, we also clip propensity
scores to control variance. One can observe from Table 9 and Table 10 that DICE-S performs worse
than BIPS-Cap in all datasets except the KuaiRec dataset. Additionally, DICE-S underperforms
compared to UIPS in all datasets. This is due to the fact that although DICE-S is unbiased, it only
becomes accurate with numerous logged samples, and suffers high variance when logged samples are
limited, resulting in its poor performance in our experiments.

7.6 Comparison against work on direct propensity estimation.

In addition to DICE, several other works [34, 21] propose methods to directly estimate the propensity
ratio without requiring a behavior policy. These methods then use the propensity estimates to prioritize
instances in the replay buffer for better TD learning. To compare its effectiveness, we also included a
new baseline called IPS-LFIW, which implements the approach proposed in [1] to directly estimate
the propensity ratio for off-policy learning.

The average performance and standard deviations of IPS-LFIW and UIPS on three synthetic datasets
with different τ are reported in Table 11. Recall that smaller τ indicates a more skewed ground-
truth logging policy. The p-value under the t-test between UIPS and IPS-LFIW is also provided to
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Table 11: Empirical performance of IPS-LFIW and UIPS on synthetic datasets

τ = 0.5 τ = 1 τ = 2

Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@5 R@5 NDCG@5
IPS-LFIW 0.5542±1e−3 0.1568 ±4e−4 0.6033±1e−3 0.5472±1e−3 0.1549±5e−4 0.5975±1e−3 0.5255±6e−3 0.1485±1e−3 0.5769±5e−3

UIPS 0.5608±2e−3 0.1589±8e−4 0.6113±3e−3 0.5572±2e−3 0.1571±8e−4 0.6074±2e−3 0.5432±3e−3 0.1534±8e−4 0.5946±2e−3

p-value 2e−6 5e−6 6e−9 2e−8 2e−6 4e−10 4e−7 8e−7 1e−7

investigate the significance of improvements. Notably, UIPS consistently outperformed IPS-LFIW
with statistically significant improvements. One major reason for the worse performance of IPS-LFIW
is that it does not consider the accuracy of the estimated propensity ratio, in a direct analogy to failing
to handle uncertainty in the estimated logging probabilities in existing IPS-type algorithms.

7.7 Comparison against distributionally robust off-policy evaluation and learning.

Our work is fundamentally different from the line of work on distributionally robust off-policy
evaluation and learning [32, 17, 44]. This results in different objectives that guide the use of min-max
optimization.

Specifically, the work in [32, 17, 44] assumes unknown changes exist between their training and
deployment environments, such as user preference drift or unforeseen events during policy execution.
Thus they choose to maximize the policy value (e.g., V̂IPS(π)) in the worst environment within an
uncertainty set around the training environment,

max
π

min
U

V̂IPS(π).

As a result, their uncertainty set is created by introducing a small perturbation to the training
environment. For example, the work in [32, 17] searches the worst environment P∞ in the σ-close
perturbed environments around the training environment P0 (Eq.(1) in [17]):

U(σ) = {P1 : P1 << P0 and DKL(P1||P0) ≤ σ}.
And the work in [44] adversarially perturbs the known ground-truth logging policy π0(·|·) in searching
for the worst case (Eq.(4) in [44]):

U(α) = {πu : max
a,x

max{πu(a|x)
π0(a|x)

,
π0(a|x)
πu(a|x)

} ≤ eα}.

In contrast, UIPS assumes the training and deployment environments stay the same, but the ground-
truth logging policy is unknown. To control the high bias and high variance caused by inaccurately
and small estimated logging probabilities, UIPS explicitly models the uncertainty in the estimated
logging policy by incorporating a per-sample weight ϕx,a as discussed in Eq.(4). In order to make
V̂UIPS(πϑ) as accurate as possible despite the unknown ground-truth logging policy β∗(·|·), UIPS
solves a min-max optimization problem in Eq.(8). This optimization problem seeks to find the optimal
ϕx,a that minimizes the upper bound of the mean squared error (MSE) of V̂UIPS to its ground-truth
value, within an uncertainty set of the unknown ground-truth logging policy β∗(·|·). The closed-form
solution for the min-max optimization is also derived as in Theorem 3.2.

Furthermore, observing that work in [44] also performs optimization over an uncertainty set of the
logging policy, we further adapted their method to handle the inaccuracy of the estimated logging
policy, by taking π0(·|·) as the estimated logging policy, i.e., π0(·|·) = β̂(·|·). We name the adapted
methods as IPS-UN. Table 12 demonstrates the performance of the learned policy under IPS-UN on
three synthetic datasets. The results suggest that directly applying IPS-UN to handle inaccurately
estimated logging probabilities is not be a feasible solution to our problem. One important reason for
the worse performance of IPS-UN is that it strives to optimize for the worst potential environment,
which might not be the case in our experiment datatsets. On the other hand, UIPS assumes the
training and deployment environments stay same and strives to identify the optimal policy with an
unknown ground-truth logging policy.

7.8 Theoretical Proofs.

Proof of Proposition 2.1:
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Table 12: Empirical performance of IPS-UN on synthetic datasets.

τ = 0.5 τ = 1 τ = 2

Algorithm P@5 R@5 NDCG@5 P@5 R@5 NDCG@5 P@5 R@5 NDCG@5
BIPS-Cap 0.5515±2e−3 0.1553 ±8e−4 0.6031±2e−3 0.5526±2e−3 0.1561±6e−4 0.6016±1e−3 0.5409±3e−3 0.1529±9e−4 0.5901±2e−3

IPS-UN 0.4089±3e−2 0.1152 ±8e−3 0.4916±2e−2 0.3911±3e−3 0.1100±9e−3 0.4754±3e−2 0.3599 ±4e−2 0.1009±1e−2 0.4353±4e−2

UIPS 0.5589±3e−3 0.1583±9e−4 0.6095±3e−3 0.5572±2e−3 0.1571±8e−4 0.6074±2e−3 0.5432±3e−3 0.1534±8e−4 0.5946±2e−3

Proof. Because of the linearity of expectation, we have ED

[
V̂BIPS(πϑ)

]
= Eβ∗

[
πϑ(a|x)
β̂(a|x) rx,a

]
, and

thus:

Bias
(
V̂BIPS(πϑ)

)
= ED

[
V̂BIPS(πϑ)− V (πϑ)

]
= Eβ∗

[
πϑ(a|x)
β̂(a|x)

rx,a

]
− Eβ∗

[
πϑ(a|x)
β∗(a|x) rx,a

]

= Eβ∗

[
πϑ(a|x)
β∗(a|x) rx,a

(
β∗(a|x)
β̂(a|x)

− 1

)]

= Eπϑ

[
rx,a

(
β∗(a|x)
β̂(a|x)

− 1

)]
. (13)

Since samples are independently sampled from logging policy, the variance can be computed as:

VarD

(
V̂BIPS(πϑ)

)
=

1

N
Varβ∗

(
πϑ(a|x)
β̂(a|x)

rx,a

)
.

By re-scaling, we get:

N ·VarD
(
V̂BIPS(πϑ)

)
= Varβ∗

(
πϑ(a|x)
β̂(a|x)

rx,a

)
(14)

= Eβ∗

[
πϑ(a|x)2
β̂(a|x)2

r2x,a

]
−
(
Eβ∗

[
πϑ(a|x)
β̂(a|x)

rx,a

])2

= Eπϑ

[
πϑ(a|x)
β∗(a|x) · β

∗(a|x)2
β̂(a|x)2

r2x,a

]
−
(
Eπϑ

[
β∗(a|x)
β̂(a|x)

rx,a

])2

This completes the proof.

Proof of Theorem 3.1:

Proof. We can get:

MSE
(
V̂UIPS(πϑ)

)
= ED

[(
V̂UIPS(πϑ)− V (πϑ)

)2]
=
(
ED

[
V̂UIPS(πϑ)− V (πϑ)

])2
+VarD

(
V̂UIPS(πϑ)− V (πϑ)

)
=
(
ED

[
V̂UIPS(πϑ)− V (πϑ)

])2
+VarD

(
V̂UIPS(πϑ)

)
= Bias(V̂UIPS(πϑ))

2 +Var(V̂UIPS(πϑ)).
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We first bound the bias term:

Bias(V̂UIPS(πϑ)) = ED

[
V̂UIPS(πϑ)− V (πϑ)

]
(1)
= Eβ∗

[
πϑ(a|x)
β̂(a|x)

ϕx,arx,a

]
− V (πϑ)

= Eβ∗

[
πϑ(a|x)
β̂(a|x)

ϕx,arx,a −
πϑ(a|x)
β∗(a|x) rx,a

]

= Eβ∗

[
rx,a

πϑ(a|x)
β∗(a|x) ·

(
β∗(a|x)
β̂(a|x)

ϕx,a − 1

)]

(2)

≤
√
Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
·

√√√√√Eβ∗

(β∗(a|x)
β̂(a|x)

ϕx,a − 1

)2


Step (1) follows the linearity of expectation and step (2) is due to the Cauchy-Schwarz inequality. We
then bound the variance term:

Var(V̂UIPS(πϑ)) =
1

N
Varβ∗

(
πϑ(a|x)
β̂(a|x)

ϕx,arx,a

)

=
1

N

Eβ∗

[
πϑ(a|x)2
β̂(a|x)2

ϕ2
x,ar

2
x,a

]
−
(
Eβ∗

[
πϑ(a|x)
β̂(a|x)

ϕx,arx,a

])2


≤ 1

N
Eβ∗

[
πϑ(a|x)2
β̂(a|x)2

ϕ2
x,ar

2
x,a

]
≤ Eβ∗

[
πϑ(a|x)2
β̂(a|x)2

ϕ2
x,a

]
Combining the bound of bias and variance completes the proof.

Proof of Theorem 3.2:

Proof. We first define several notations:

• T (ϕx,a, βx,a) = λEβ∗

[(
βx,a

β̂(a|x)ϕx,a − 1
)2]

+ Eβ∗

[
πϑ(a|x)2
β̂(a|x)2 ϕ2

x,a

]
.

• T̃ (ϕx,a) = maxβx,a∈Bx,a T (ϕx,a, βx,a) denotes the maximum value of inner optimization
problem.

• T ∗ = minϕx,a
T̃ (ϕx,a) = minϕx,a

maxβx,a∈Bx,a
T (ϕx,a, βx,a) denote the optimal min-

max value. And ϕ∗
x,a = argminϕx,a

T̃ (ϕx,a) .

• B−
x,a :=

Ẑ exp(−γUx,a)
Z∗ β̂(a|x), and B+

x,a :=
Ẑ exp(γUx,a)

Z∗ β̂(a|x).

We first find the maximum value of the inner optimization problem, i.e., T̃ (ϕx,a) for any fixed ϕx,a.
And there are three cases shown in Figure 4:

Case I: When β̂(a|x)
ϕx,a

≥ B+
x,a, , T̃ (ϕx,a) achieves the maximum value at βx,a = B−

x,a. In other

words, T̃ (ϕx,a) = T (ϕx,a,B
−
x,a) when ϕx,a ≤ β̂(a|x)

B+
x,a

.

Case II: When B−
x,a ≤ β̂(a|x)

ϕx,a
≤ B+

x,a, i.e., Z∗ exp(−γUx,a)

Ẑ
≤ ϕx,a ≤ Z∗ exp(γUx,a)

Ẑ
, then T̃ (ϕx,a)

will be the maximum between T (ϕx,a,B
−
x,a) and T (ϕx,a,B

+
x,a).

More specifically, when β̂(a|x)
ϕx,a

≤ B+
x,a+B−

x,a

2 , i.e., ϕx,a ≥ 2β̂(a|x)
B+

x,a+B−
x,a

, T̃ (ϕx,a) = T (ϕx,a,B
+
x,a).

Otherwise when ϕx,a < 2β̂(a|x)
B+

x,a+B−
x,a

, T̃ (ϕx,a) = T (ϕx,a,B
−
x,a).
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Figure 4: Three cases for maximizing the inner optimization problem.

Case III: When ϕx,a ≥ β̂(a|x)
B−

x,a
. implying β̂(a|x)

ϕx,a
≤ B−

x,a, T̃ (ϕx,a) = T (ϕx,a,B
+
x,a).

Overall, we get that:

T̃ (ϕx,a) =

 T (ϕx,a,B
−
x,a), ϕx,a ∈ (−∞, 2β̂(a|x)

B+
x,a+B−

x,a
]

T (ϕx,a,B
+
x,a) ϕx,a ∈ [ 2β̂(a|x)

B+
x,a+B−

x,a
,∞)

(15)

Next we try to find the minimum value of T̃ (ϕx,a). We first observe that without considering
constraint on ϕx,a, when

ϕ+
x,a =

λ

λ
B+

x,a

β̂(a|x) +
πϑ(a|x)2

β̂(a|x)B+
x,a

T (ϕx,a,B
+
x,a) achieves the global minimum value. However, ϕ+

x,a ≤ β̂(a|x)
B+

x,a
≤ 2β̂(a|x)

B+
x,a+B−

x,a
,

which implies when ϕx,a ∈
[

2β̂(a|x)
B+

x,a+B−
x,a

,∞
)

, the minimum value of T (ϕx,a,B
+
x,a) is achieved at

2β̂(a|x)
B+

x,a+B−
x,a

.

On the other hand, without considering any constraint on ϕx,a , the global minimum value of
T (ϕx,a,B

−
x,a) is achieved at:

ϕ−
x,a =

λ

λ
B−

x,a

β̂(a|x) +
πϑ(a|x)2

β̂(a|x)B−
x,a

. (16)

Thus if ϕ−
x,a ≤ 2β̂(a|x)

B+
x,a+B−

x,a
, ϕ∗

x,a = ϕ−
x,a, since T (ϕ−

x,a,B
−
x,a) ≤ T ( 2β̂(a|x)

B+
x,a+B−

x,a
,B−

x,a) =

T ( 2β̂(a|x)
B+

x,a+B−
x,a

,B+
x,a). Otherwise, when ϕ−

x,a > 2β̂(a|x)
B+

x,a+B−
x,a

, the minimum value of T (ϕx,a,B
−
x,a) is

also achieved at 2β̂(a|x)
B+

x,a+B−
x,a

, implying ϕ∗
x,a = 2β̂(a|x)

B+
x,a+B−

x,a
.

Overall,

ϕ∗
x,a = min

 λ

λ
B−

x,a

β̂(a|x) +
πϑ(a|x)2

β̂(a|x)B−
x,a

,
2β̂(a|x)

B+
x,a +B−

x,a

 (17)

Let η = Z∗

Ẑ
, we can get

ϕ∗
x,a = min

 λ
λ
η exp (−γUx,a) +

ηπϑ(a|x)2
β̂(a|x)2 exp(−γUx,a)

,
2η

exp (γUx,a) + exp (−γUx,a)

 . (18)
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Note that η ∈ [exp(−γUmax
s ), exp(γUmax

s )], since Ẑ exp(−γUmax
s ) ≤ Z∗ =∑

a′ exp(fθ∗(a′|x)) ≤ Ẑ exp(Umax
s ).

This completes the proof .

Proof of Corollary 3.3:

Proof. Following the similar procedure as in Theorem 3.1, we can derive the mean squared error
(MSE) between V̂BIPS(πϑ) and ground-truth estimator V (πϑ) is upper bounded as follows:

MSE
(
V̂BIPS(πϑ)

)
= ED

[(
V̂BIPS(πϑ)− V (πϑ)

)2]

≤ Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
· Eβ∗

(β∗(a|x)
β̂(a|x)

− 1

)2
+ Eβ∗

[
πϑ(a|x)2
β̂(a|x)2

]
.

When β∗(a|x) ∈ [B−
x,a,B

+
x,a], with B−

x,a :=
Ẑ exp(−γUx,a)

Z∗ β̂(a|x) and B+
x,a :=

Ẑ exp(γUx,a)
Z∗ β̂(a|x), MSE

(
V̂BIPS(πϑ)

)
can be further upper bounded as follows.

For ease of illustration, we set λ = Eπϑ

[
r2x,a

πϑ(a|x)
β∗(a|x)

]
and

T (ϕx,a, βx,a) = λEβ∗

( βx,a

β̂(a|x)
ϕx,a − 1

)2
+ Eβ∗

[
πϑ(a|x)2
β̂(a|x)2

ϕ2
x,a

]
.

Let T ∗
BIPS denote the upper bound of MSE

(
V̂BIPS(πϑ)

)
, then we can derive that

T ∗
BIPS =

{
T (1,B+

x,a), β̂(a|x) ≤ B+
x,a+B−

x,a

2

T (1,B−
x,a), β̂(a|x) > B+

x,a+B−
x,a

2 .
(19)

Recall that in Theorem 3.2, we show that the upper bound of MSE
(
V̂UIPS(πϑ)

)
is as follows:

T ∗
UIPS =

 T (ϕ−
x,a,B

−
x,a), ϕ−

x,a < 2β̂(a|x)
B+

x,a+B−
x,a

T ( 2β̂(a|x)
B+

x,a+B−
x,a

,B+
x,a), ϕ−

x,a ≥ 2β̂(a|x)
B+

x,a+B−
x,a

.
(20)

where ϕ−
x,a is defined in Eq.(16). Next we show that T ∗

UIPS ≥ T ∗
BIPS.

• When β̂(a|x) ≤ B+
x,a+B−

x,a

2 , we can get T ∗
BIPS = T (1,B+

x,a) and 2β̂(a|x)
B+

x,a+B−
x,a

≤ 1.

If ϕ−
x,a < 2β̂(a|x)

B+
x,a+B−

x,a
, then T ∗

UIPS = T (ϕ−
x,a,B

−
x,a) < T ( 2β̂(a|x)

B+
x,a+B−

x,a
,B−

x,a) =

T ( 2β̂(a|x)
B+

x,a+B−
x,a

,B+
x,a) ≤ T (1,B+

x,a). And if ϕ−
x,a ≥ 2β̂(a|x)

B+
x,a+B−

x,a
, T ∗

UIPS =

T ( 2β̂(a|x)
B+

x,a+B−
x,a

,B+
x,a) ≤ T (1,B+

x,a);

• When β̂(a|x) >
B+

x,a+B−
x,a

2 , we can get T ∗
BIPS = T (1,B−

x,a) and 2β̂(a|x)
B+

x,a+B−
x,a

> 1. If

ϕ−
x,a < 2β̂(a|x)

B+
x,a+B−

x,a
, then T ∗

UIPS = T (ϕ−
x,a,B

−
x,a) ≤ T (1,B−

x,a), since ϕ−
x,a is a global

minimum. Otherwise when ϕ−
x,a ≥ 2β̂(a|x)

B+
x,a+B−

x,a
> 1, T ∗

UIPS = T ( 2β̂(a|x)
B+

x,a+B−
x,a

,B+
x,a) =

T ( 2β̂(a|x)
B+

x,a+B−
x,a

,B−
x,a) < T (1,B−

x,a).

In both cases, we have T ∗
UIPS ≤ T ∗

BIPS, thus completing the proof.
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Lemma 7.1. Under fixed πϑ(a|x) and β̂(a|x), and αx,a =
√

λ
2η2 − λ(1−η)

η2 exp(−2γUx,a), we
have the following observations:

• If πϑ(a|x)
β̂(a|x) ≤ αx,a, ϕ∗

x,a = 2η/ [exp(γUx,a) + exp(−γUx,a)]. Otherwise ϕ∗
x,a =

λ/
[
λ
η exp (−γUx,a) +

ηπϑ(a|x)2
β̂2(a|x) exp(−γUx,a)

]
]
. In other words, ϕ∗

x,a ≤ 2η always holds.

• If αx,a ≤ πϑ(a|x)
β̂(a|x) and πϑ(a|x)

B−
x,a

<
√
λ, larger Ux,a brings larger ϕ∗

x,a.
• Otherwise ϕ∗

x,a decreases as Ux,a increases.

Proof. The following inequality validates the first observation:

λ
λ
η exp (−γUx,a) +

ηπϑ(a|x)2
β̂2(a|x) exp(−γUx,a)

≤ 2η

exp (γUx,a) + exp (−γUx,a)

For the second and third observations, αx,a ≤
√
λ√
2η

≤
√
λ
η . Let L(u) = λ

η exp(−γu) +

ηπϑ(a|x)2
β̂(a|x)2 exp(−γu)

, we can have:

∇uL(u) = −γ
λ

η
exp(−γu) + γ

ηπϑ(a|x)2
β̂(a|x)2

exp(γu)

To make ∇uL(u) ≥ 0, we need u ≥ 1
γ log

(√
λβ̂(a|x)

ηπϑ(a|x)

)
. This implies when Ux,a ≥

1
γ log

(√
λβ̂(a|x)

ηπϑ(a|x)

)
, ϕ∗

x,a will decrease as Ux,a increases; otherwise as Ux,a increases, ϕ∗
x,a also

increases.

More specifically, when αx,a ≤ πϑ(a|x)
β̂(a|x) , we have:

Ux,a ≤ 1

γ
log

(√
λβ̂(a|x)

ηπϑ(a|x)

)
⇔ πϑ(a|x)

B−
x,a

<
√
λ ⇔ πϑ(a|x)

β̂(a|x)
<

√
λ

η
exp(−γUx,a).

In other words, for these samples, higher uncertainty implies smaller value of π/β̂, and UIPS tends
to boost such safe sample with higher ϕ∗

x,a.

In other cases, ϕ∗
x,a decreases as Ux,a increases. This completes the proof.

7.9 Convergence Analysis

Next we provide the convergence analysis of policy improvement under UIPS.
Definition 7.2. A function f : Rd → R is L-smooth when ∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2, for
all x, y ∈ Rd.

We first state and prove a general result, which serves as the basis to complete our convergence
analysis of policy improvement under UIPS. The proof is a special case of convergence proof of
stochastic gradient descent with biased gradients in [3]. Suppose we have a differentiable function
f : Rd → R, which is L-smooth, and attains a finite minimum value f∗ := minx∈Rd f(x).

Suppose we cannot directly assess the gradient ∇f(x). Instead we can only assess a noisy but
unbiased gradient ζ(x) ∈ Rd at the given x of the function f̃(x).

Let b(x) = ∇f̃(x)−∇f(x) denote the difference between ∇f̃(x) and ∇f(x), and δ(x) = ζ(x)−
∇f̃(x) denote the noise in gradients. We assume that:

∥b(x)∥ ≤ φ∥∇f(x)∥ and E[δ(x)] = 0 and E[∥δ(x)∥2|x] ≤ ME[∥∇f̃(x)∥2] + σ2 (21)

where the constants φ and M satisfy 0 < φ < 1 and M ≥ 0 respectively. When running stochastic
gradient descent algorithms, i.e. xk+1 = xk − ηkζ(xk), we have the following guarantee on the
convergence of xk to an approximate stationary point of f .
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Theorem 7.3. Suppose f(·) is differentiable and L-smooth, and the assessed approximate gradient
meets the conditions in Eq. (21) with parameters (σk, φk) at iteration k. Denote σmax = maxk σk

and φmax = maxk φk. Set the stepsizes {ηk} to ηk = min{ 1
(M+1)L , 1/(σmax

√
K)}, after K

iterations, the stochastic gradient descent satisfies :

1

K

K∑
k=1

E
[
∥∇f(xk)∥2

]
≤ 2L(f(x1)− f∗)

K(1− φmax)
+

(
L+

2(f(x1)− f∗)
(1− φmax)

)
σmax√

K

Proof. With ηk ≤ 1
(M+1)L , we have:

f(xk+1) ≤ f(xk) + ⟨∇f(xk), xk+1 − xk⟩+
L

2
∥xk+1 − xk∥2 (22)

= f(xk)− ηk⟨∇f(xk), ζ(xk)⟩+
Lη2k
2

∥ζ(xk)∥2

= f(xk)− ηk⟨∇f(xk), δ(xk) + b(xk) +∇f(xk)⟩+
Lη2k
2

∥δ(xk) + b(xk) +∇f(xk)∥2

By taking expectations on both side, we have:

E[f(xk+1)] ≤ E[f(xk)]− ηkE[⟨∇f(xk), δ(xk)⟩]− ηkE[⟨∇f(xk), b(x) +∇f(xk)⟩] +
Lη2k
2

E[∥δ(xk) + b(xk) +∇f(xk)∥2]
(1)

≤ E[f(xk)]− ηkE[⟨∇f(xk), b(x) +∇f(xk)⟩] +
Lη2k
2

(
E[∥δ(xk)∥2] + E[∥b(x) +∇f(xk)∥2]

)
≤ E[f(xk)]− ηkE[⟨∇f(xk), b(x) +∇f(xk)⟩] +

Lη2k
2

(
(M + 1)E[∥b(x) +∇f(xk)∥2] + σ2

k

)
(2)

≤ E[f(xk)] +
ηk
2
E
[(
−2⟨∇f(xk), b(x) +∇f(xk)⟩+ ∥b(x) +∇f(xk)∥2

)]
+

Lη2k
2

σ2
k

≤ E[f(xk)] +
ηk
2
E[
(
−∥∇f(xk)∥2 + ∥b(x)∥2

)
] +

Lη2k
2

σ2
k

(3)

≤ E[f(xk)] +
ηk
2
(φk − 1)E[∥∇f(xk)∥2] +

Lη2k
2

σ2
k

where the inequality labeled as (1) is due to E[δ(x)] = 0, inequality labeled as (2) is due to
ηk ≤ 1

(M+1)L , and inequality labeled as (3) is due to ∥b(xk)∥ ≤ φk∥∇f(xk)∥.

By summing over iterations k = 1, 2, . . . ,K and re-arranging the terms, we obtain:

1

2

K∑
k=1

(1− φk)ηkE[∥∇f(xk)∥2] ≤ f(x1)− E[f(xK+1)] +
L

2

K∑
k=1

η2kσ
2
k

≤ f(x1)− f∗ +
L

2

K∑
k=1

η2kσ
2
k

where the last inequality follows from f(xK+1) ≥ f∗. Since ηk = min{ 1
(M+1)L ,

1
σmax

√
K
},∀k =

1, . . . ,K, we can obtain:

(1− φmax)η1

K∑
k=1

E[∥∇f(xk)∥2] ≤ 2(f(x1)− f∗) + LKη21σ
2
max

Dividing both sides of the above inequality by Kη1(1− φmax), we obtain the following,

1

K

K∑
k=1

E[∥∇f(xk)∥2] ≤
2(f(x1)− f∗) + LKη21σ

2
max

Kη1(1− φmax)

≤ 2(f(x1)− f∗)
K(1− φmax)

max{L, σmax

√
K}+ Lσ2

max

1

σmax

√
K

≤ 2L(f(x1)− f∗)
K(1− φmax)

+

(
L+

2(f(x1)− f∗)
(1− φmax)

)
σmax√

K
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Given this general result, we can now prove Theorem 3.4 by showing that the gradient in UIPS meets
the requirements in Theorem 7.3.

Proof of Theorem 3.4:

Proof. UIPS aims to maximize the expected return V (πϑ). Therefore, we can utilize Theorem 7.3 by
setting f = −V (πϑ). Since f∗ = −Vmax and the expected reward is always non-negative, it follows
that f(x1)− f∗ ≤ Vmax.

We first introduce some additional notations. Let ρ∗ϑ(x, a) =
πϑ(a|x)
β∗(a|x) denote the propensity score

under ground-truth logging policy, and ρ̂ϑ(x, a) = πϑ(a|x)
β̂(a|x) ϕ

∗
x,a represet the propensity score of

UIPS. Recall that ϕ∗
x,a is derived through solving the optimization problem in Eq (8). Let gϑ(x, a) =

∂πϑ(a|x)
∂ϑ . The true off-policy policy gradient is computed as follows:

∇V (πϑ) = Eβ∗ [ρ∗rgϑ],

For UIPS, the approximate policy gradient in each batch with batch size as B is:

∇V̂UIPS(πϑ) =
1

B

B∑
i=1

ρ̂irig
i
ϑ,

which is an unbiased estimate of :

∇VUIPS(πϑ) = Eβ∗ [ρ̂rgϑ].

To utilize Theorem 7.3, we set ∇f = −∇V (πϑ), ∇f̃ = −∇VUIPS(πϑ), and ζ = ∇V̂UIPS(πϑ). We
will now demonstrate that the assumptions in Eq. (21) can be satisfied.

Let φϑ = max
{∣∣∣ ρ̂ϑ(x,a)

ρ∗
ϑ(x,a)

− 1
∣∣∣}, We first have:

∥b(ϑ)∥ = ∥∇VUIPS(πϑ)−∇V (πϑ)∥

= ∥Eβ∗ [(ρ̂− ρ∗)rgϑ]∥ = ∥Eβ∗ [ρ∗(
ρ̂

ρ∗
− 1)rgϑ]∥

≤ φϑ∥Eβ∗ [ρ∗rgϑ]∥ (23)

And next we show that 0 < φϑ < 1.

φϑ = max

{∣∣∣∣ ρ̂ϑ(x, a)ρ∗ϑ(x, a)
− 1

∣∣∣∣} = max

{∣∣∣∣∣β∗(a|x)
β̂(a|x)

· ϕ∗
x,a − 1

∣∣∣∣∣
}

(24)

Recall from Eq.(17) in proof of Theorem 3.2, we have :

ϕ∗
x,a = min

 λ

λ
B−

x,a

β̂(a|x) +
πϑ(a|x)2

β̂(a|x)B−
x,a

,
2β̂(a|x)

B+
x,a +B−

x,a


where B−

x,a :=
Ẑ exp(−γUx,a)

Z∗ β̂(a|x), and B+
x,a :=

Ẑ exp(γUx,a)
Z∗ β̂(a|x). Thus we have:

β∗(a|x)
β̂(a|x)

· ϕ∗
x,a = min

 λ

λ
B−

x,a

β∗(a|x) +
πϑ(a|x)2

β∗(a|x)B−
x,a

,
2

B+
x,a

β∗(a|x) +
B−

x,a

β∗(a|x)

 (25)

Since B+
x,a ≥ β∗(a|x), thus 0 ≤ β∗(a|x)

β̂(a|x) · ϕ∗
x,a ≤ 2, implying 0 < φϑ < 1.

Also, since ∇V̂UIPS(πϑ) is an unbiased estimate of ∇VUIPS(πϑ), we have:

E[δ(ϑ)] = E[∇V̂UIPS(πϑ)−∇VUIPS(πϑ)] = 0 (26)
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Finally, we have the following,

E[∥δ(ϑ)∥2] = E
[
∥∇V̂UIPS(πϑ)−∇VUIPS(πϑ)∥2

]
= E

∥∥∥∥∥ 1

B

B∑
i=1

(
ρ̂irig

i
ϑ − Eβ∗ [ρ̂rgϑ]

)∥∥∥∥∥
2


≤ 1

B2
E

( B∑
i=1

∥ρ̂irigiϑ − Eβ∗ [ρ̂rgϑ]∥
)2
 ≤ 1

B
E

[
B∑
i=1

∥ρ̂irigiϑ − Eβ∗ [ρ̂rgϑ]∥2
]

≤ Eβ∗ [∥ρ̂rgϑ − Eβ∗ [ρ̂rgϑ]∥2]
(1)
= Eβ∗ [∥ρ̂rgϑ∥2]− ∥Eβ∗ [ρ̂rgϑ]∥2

≤ Eβ∗ [∥ρ̂rgϑ∥2] ≤ G2
maxΦ (27)

where the equality labeled as (1) is due to E[∥Y − E[Y ]∥2] = E[∥Y ∥2]− ∥E[Y ]∥2.

Hence, by applying Theorem 7.3, we have:

1

K

K∑
k=1

E[∥∇V (πϑk
)∥2 ≤ 2LVmax

K(1− φmax)
+

(
L+

2Vmax

(1− φmax)

)
Gmax

√
Φ√

K
(28)
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