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1 Data preparation1

1.1 Combination of data sources2

TCR-peptide interaction data are obtained from VDJDB [1] and MCPAS [2]. Only peptides with3

> 10 observed pairs are used for downstream filtering. Because VDJDB and MCPAS only report4

interacting pairs, we first combine the dataset with the training set from NETTCR [3] which contains5

experimentally-validated non-interacting pairs. Conflicting records are removed.6

1.2 Filtering by ERGO performance7

Since ERGO [4] trains two separate models for VDJDB and MCPAS, the following filtering process8

is also performed separately on the two datasets. For this and all subsequent ERGO-based predictions,9

we use the pre-trained weights from https://github.com/louzounlab/ERGO.10

Additional negative samples are generated as follows: a random TCR sequence is first selected from11

the dataset and is paired with all existing peptides in the dataset. Any unobserved pair is treated12

as negative. We repeat this process until the size of the negative set is 5x that of the positive set.13

The expanded dataset is then provided to the respective ERGO model. Predictive performance is14

evaluated for each peptide. We keep the peptides with AUROC and AUPR > 0.9 and select those15

among top 10 positive sample counts (Table 1).16

To ensure the specificity of TCR recognition in the following study, we did a second round of filtering17

of both the TCRs and the peptides. We pair all TCRs with at least one positive binding event and18

all peptides in the filtered dataset. Any unobserved pair is treated as negative. This dataset is then19

provided to ERGO. Performance is shown in Table S2. We discard peptides with AUPR < 0.7 and20

TCRs that have more than one positive prediction or have at least one wrong prediction.21

After that, we downsample all peptides to at most 400 positive TCRs. This number is chosen so that22

the resulting dataset is more balanced across peptides. The final number of samples for each peptide23

can be found in S3. To make sure the model captures peptide-specific information, for every TCR in24

the positive set, we add its unobserved pairings with other peptides to the negative set. We then split25

the TCRs into train/test/validation sets with a ratio of 8:1:1, and put all pairings of each TCR to the26

respective subset, to ensure all TCRs in the test and validation sets are not seen in the training. For the27

training set, the positive samples are up-sampled by the negative/positive ratio of the original dataset.28

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

https://github.com/louzounlab/ERGO


Notation Meaning

Θf functional encoder
Θs structural encoder
Γ decoder
Ψ auxiliary functional classifier

{x,u, y} a data point with TCR x, peptide u and binding label y
zf functional embedding
zs structural embedding
z concatenation of {zf , zs}
x′ reconstructed/generated sequence from the decoder
x(i) the probability distribution over amino acids at the i-th position in x

concat(x1, ...,xn) concatenation of vectors {x1, ...,xn}
Table. S1: Notations used for this paper. Sequences are represented as l × |V | matrices where l is
the length |V | is the number of amino acids.

2 Model details29

2.1 Proof of Theorem 130

We use density functions for simplicity. Let qθ(z | x) be the encoder and pγ(x | z) be the decoder.31

We have the joint generative distribution:32

p(x, z) = pγ(x | z)p(z),
where p(z) is the prior. Also, we have the joint inference distribution:33

q(x, z) = qθ(z | x)pD(x),

where pD(x) is the data distribution.34

I(X;Z) = Eq(x,z) log
q(x, z)

pD(x)q(z)

= EpD

∑
z

pD(x)qθ(z | x) log qθ(z | x)pD(x)

pD(x)q(z)

= EpD

∑
z

qθ(z | x) log qθ(z | x)
q(z)

= EpD

∑
z

qθ(z | x) log qθ(z | x)
p(z)

− EpD

∑
z

qθ(z | x) log q(z)

p(z)

= EpD

∑
z

qθ(z | x) log qθ(z | x)
p(z)

−
∑
z

q(z) log
q(z)

p(z)

= EpD
[DKL(Qθ(Z | X) ∥ P (Z))]− DKL(Q(Z) ∥ P (Z)).

Thus,35

DKL(Q(Z) ∥ P (Z)) = EpD
[DKL(Qθ(Z | X) ∥ P (Z))]− I(X;Z).

2.2 Implementation and training details36

All input sequences are padded to the same length (25). The peptide u is represented as the average37

BLOSUM50 score [5] for all its amino acids. The model is trained from end to end using the Adam38

optimizer [6]. The first layer of the model is an embedding layer that transforms the one-hot encoded39

sequence x into continuous-valued vectors of 128 dimensions:40

e = W embx.

Both zf and zs encoders are 1-layer transformer encoders with 8 attention heads and an intermediate41

size of 128. The transformer layer utilizes the multi-head self-attention mechanism. For each attention42

head i:43

Qi = WQ
i e,Ki = WK

i e, Vi = WV
i e
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44

Attni(e) = softmax(
QiK

T
i√

dk
)Vi,

where dk is the dimension of Qi and Ki. The outputs of the attention heads are then aggregated as45

follows:46

Multihead(e) = concat(Attn1(e),Attn2(e), ...)WO.

A 2-layer MLP with a 128-dimension hidden layer is then built on top of the transformer (which has47

the same dimension as the input embeddings) to transform the output to the dimensions of zf and48

zs, respectively. The functional classifier is a 2-layer MLP with a 32-dimension hidden layer. The49

decoder is a 2-layer LSTM with 256 hidden dimensions.50

The hyperparameters are selected with grid search and models with the best generation results are51

reported. Specifically, weights of all losses are selected from [1.0, 10.0] and learning rate (lr) are52

selected from [1e− 4, 1e− 5]. The dimension of zf is fixed to 8 and zs to 32. We train each model53

with 200 epochs and evaluate the checkpoint of every 50 epochs. We find the variance of the RBF54

kernel (for the calculation of the Wasserstein loss) does not have a strong impact on the results55

significantly, so the value is fixed to 1.0.56

The model is trained with four different random seeds (42, 456, 789, 987). We report the hyperparam-57

eter setting with the best average performance (i.e. one that generates the highest average number of58

qualified positive sequences for the well-classified peptides).59

The hyperparameter setting of the models for comparison and visualization are:

[β1 = 1.0, β2 = 0.1, lr = 1e− 4, epoch = 200]

where β’s are weights of the losses:60

L = Lrecon + β1Lf_cls + β2LWass.

For the visualization and analysis of the model trained on VDJDB, we use random seed = 789.61

We use the scheduled sampling technique [7] for the LSTM decoder during training, where for each62

position in the input sequence, there is a 0.5 probability of using the previous predicted token, instead63

of the original token, to calculate the hidden state for the next position. This is employed to avoid64

the discrepancy between the training and the generation, as the former uses the original sequence to65

calculate the hidden states and the latter uses predicted tokens.66

The model is trained on 2 rtx3090 GPUs with a batch size of 256 (128 per GPU). Training with 20067

epochs typically takes ∼ 4 hours.68

3 Baseline methods69

We compare our model with two types of methods for the generation of the optimized TCR x′:70

(1) mutation-based, which iteratively adds random mutations to the template sequence; and (2)71

generation-based, which generates novel sequences of the pre-determined length range. For both72

types of methods, the modified/generated sequences are selected by peptide binding scores from73

the respective pre-trained ERGO. The experiments are performed on each peptide in the dataset74

independently.75

3.1 Mutation-based baselines76

Random mutation (naive rm) The TCR is randomly mutated by one amino acid for 8 times77

progressively. This process is repeated for 10 runs for each TCR and the resulting one with the78

highest ERGO prediction score is reported.79

Greedy mutation (greedy) For each TCR, 10 randomly mutated sequences are generated, each80

with one amino acid difference from the original sequence. Among the 10 mutated sequences, we81

select the one that gives the highest binding prediction with the given peptide as the template for the82

next run. This process is repeated 8 times.83
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Genetic algorithm (genetic) Let M be the sample size. For each TCR, 10 randomly mutated84

sequences are generated, each with one amino acid difference from the original sequence. All mutated85

sequences along with the original TCRs are then pooled together, and the top M sequences that give86

the highest binding prediction are used as the input for the next run. This process is repeated 8 times.87

3.2 Generation-based baselines88

Monte Carlo tree search (MCTS) TCRs are generated by adding amino acids iteratively, resulting89

in a search tree. When TCR length reaches 10, the binding score is estimated by ERGO. For each90

iteration, a random node is selected for the expansion and evaluated by ERGO, and the scores of all91

its parent nodes are updated accordingly. The tree expansion ends when the length reaches 20. For92

every generation process, the highest leaf node is added into the output TCR set.93

3.3 IDEL94

IDEL [8] is a VAE with a mutual information constraint on the latent space. For training, the loss95

comprises of the following components:96

• The reconstruction loss: Lrecon(x,x
′)97

• The KL divergence term for VAE: LKL = DKL(qθ(zs, zf |x) ∥ p(zs, zf )).98

• The reconstruction loss given zs: Ls(x,Φ(zs)) where Φ is an auxiliary decoder.99

• The classification loss given zf : Lf_cls(ŷ, y)100

• The sample-based MI upper bound between the embeddings: LMI(zf , zs). This requires101

an approximation of the conditional distribution p(zf |zs), which is achieved by a separate102

neural network.103

Here we use our own notations, not the ones used in the original paper, for better comparison.104

We performed a grid search from [1.0, 10.0] for the weight of the loss terms and [1e− 4, 1e− 5] for105

the learning rate. The model giving the best performance has 10.0 weight for Lrecon, Ls and Lf_cls,106

1.0 for the other terms, and a learning rate of 1e − 4. In practice, we performed annealing [9] on107

LKL and LMI where their weights gradually increase through training, to make sure the embeddings108

are as informative as possible.109

4 Evaluation of the optimized sequences110

4.1 Training of the autoencoder111

We train an LSTM-based autoencoder, which we denote as TCR-AE0, on the 277 million TCR112

sequences from TCRdb [10]. TCR-AE0 has a latent space of dimension 16 and is trained for 50,000113

steps with a batch size of 256.114

4.2 Validity score115

The validity score combines two scores calculated from TCR-AE0:116

• The reconstruction-based score is calculated as117

rr(x
′) = 1− lev(x′,TCR-AE0(x′))/l(x′),

where lev(x′,TCR-AE0(x′)) is the Levenstein distance between the original sequence and118

the reconstructed sequence, and l(x′) is the length of the reconstructed sequence. Higher rr119

means x′ is better reconstructed from TCR-AE0 and is thus more likely to be a valid TCR120

sequence.121

• The density-based score calculates whether the embedding of x′ follows the same distribution122

as known TCRs. We learn a Gaussian mixture model from the latent embeddings of known123

TCRs from TCR-AE0. The likelihood of the embedding e′ of x′ from TCR-AE0 falling124
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in the same Gaussian mixture distribution is denoted as P (e′). The density-based score is125

calculated as126

rd(x
′) = exp(1 +

logP (e′)

τ
),

where τ = 10. Higher rd means the latent embedding of x′ from TCR-AE0 is more likely127

to follow the same distribution as other valid TCR sequences.128

We then define the validity score as rv = rr + rd.129

4.3 Validation of the metrics130

We compare the TCR-AE-derived evaluation metric scores of three different sources:131

(1) all unique CDR3β sequences from VDJDB.132

(2) random segments of length 8 − 18 (which is the most frequent lengths of CDR3β sequences)133

from random uniport [11] protein sequences of the same size as (1). The conservative ’C’ at the134

beginning and ’F’ at the end are added to the segments.135

(3) random shuffling of the sequences from (1), where the first ’C’ and the last ’F’ are kept136

We show in Fig. S1 that for both two scores rd and rr, as well as their sum, CDR3β sequences137

score much higher than random proteins or shuffled sequences. This shows these scores could be138

effectively used for the estimation of TCR sequence validity. We choose rv > 1.25 as the criteria for139

valid sequences as it rejects most negatives.140

5 Extended Results141

5.1 Comparison of TCR Engineering Performance142

We find consistently improved performance of our method over the baselines in both VDJDB (Table143

1) and McPAS-TCR (Table S4). Also, the majority of generated sequences are unique (Table S5) and144

all are not observed in the original dataset (not shown).145

5.2 Analysis of the Model146

We show extended zf and zs T-SNE patterns in Fig. S2, colored by the ground truth label as well147

as the predicted label. For the well-classified peptides, there is a clear separation of positives and148

negatives in the zf space but not zs. There are cases where the true positives are not separable from149

the true negatives using zf , but the predicted positives and the predicted negatives (by the function150

classifier Ψ) are still separated. We consider the latter as a problem with data quality and classification151

accuracy, not embedding. Meanwhile, the classifier shows consistent performance over the peptides152

across random seeds with (Fig. S3, left) and without (Fig. S3, right) the Wasserstein loss.153

As a result of the Wasserstein loss, the distribution of the embedding space is closer to a multivariate154

Gaussian (Fig. S4A. It becomes less regularized without the Wasserstein loss (Fig. S4B). Contrary155

to zf (Fig. 3B in the main text), the T-SNE of zs and first-layer embedding of the encoder for the156

positive samples cannot distinguish the binding targets from each other (Fig. S5A).157

5.3 Analysis of the Generated Sequences158

In addition to the results presented in the main text, we also selected 500 random positive and negative159

sequences from the training set and replaced their zf with the most positive/negative one in the160

subset. The generated sequences using their original zs and the new zf have binding scores mostly161

related to the zf , regardless of whether the zs source is positive or negative. This shows zf can be162

used to encode and transfer binding information, which lays the foundation for the following TCR163

engineering experiments (Fig. S5B).164

The generated sequences have a similar length distribution as their templates (Fig. S5C), meaning no165

drastic changes are made. We further find that the zs of the modified TCRs show high cosine similarity166

with those of their templates, while the zf are more similar to the zf used for their generation (Fig.167
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S5D), but not with that of the template. These show that the modified TCRs preserve the “structural”168

information from zs and incorporate the new “functional” information from the modified zf .169
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source #pos auroc aupr

AVFDRKSDAK vdjdb 1641 0.94 0.71
CTPYDINQM vdjdb 500 0.99 0.81
ELAGIGILTV vdjdb 1410 0.95 0.79
FRDYVDRFYKTLRAEQASQE vdjdb 367 0.98 0.85
GILGFVFTL vdjdb 3408 0.95 0.89
GLCTLVAML vdjdb 962 0.92 0.73
IVTDFSVIK vdjdb 548 0.94 0.62
KRWIILGLNK vdjdb 319 0.95 0.54
NLVPMVATV vdjdb 4421 0.94 0.85
RAKFKQLL vdjdb 830 0.94 0.75
SSLENFRAYV vdjdb 322 0.99 0.57
SSYRRPVGI vdjdb 337 0.99 0.81
STPESANL vdjdb 234 0.99 0.35
TTPESANL vdjdb 511 0.99 0.75
ASNENMETM mcpas 265 0.98 0.63
CRVLCCYVL mcpas 435 0.95 0.7
EAAGIGILTV mcpas 272 0.97 0.55
FRCPRRFCF mcpas 266 0.96 0.58
GILGFVFTL mcpas 1142 0.96 0.9
GLCTLVAML mcpas 828 0.95 0.85
LPRRSGAAGA mcpas 2142 0.96 0.88
NLVPMVATV mcpas 543 0.93 0.78
RFYKTLRAEQASQ mcpas 304 0.99 0.91
SSLENFRAYV mcpas 416 0.99 0.78
SSYRRPVGI mcpas 337 0.99 0.83
TPRVTGGGAM mcpas 274 0.95 0.52
VTEHDTLLY mcpas 273 0.95 0.45
WEDLFCDESLSSPEPPSSSE mcpas 364 0.98 0.93

Table. S2: Statistics and ERGO prediction performance for the selected peptides from the first round.

VDJDB

#pos #all

NLVPMVATV 2880 5478
GLCTLVAML 2880 5478
RAKFKQLL 2880 5478
AVFDRKSDAK 2880 5478
SSYRRPVGI 2268 4934
GILGFVFTL 2880 5478
TTPESANL 2286 4950
FRDYVDRFYKTLRAEQASQE 2034 4726
ELAGIGILTV 2880 5478
CTPYDINQM 2394 5046

MCPAS

#pos #all

NLVPMVATV 1792 3810
RFYKTLRAEQASQ 1528 3579
WEDLFCDESLSSPEPPSSSE 1928 3929
GILGFVFTL 2560 4482
SSYRRPVGI 1504 3558
SSLENFRAYV 1824 3838
CRVLCCYVL 1680 3712
LPRRSGAAGA 2560 4482
GLCTLVAML 2560 4482

Table. S3: Statistics of the training data by peptide.
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MCPAS

r̄v r̄b %valid # mutations %positive valid

TCR-dWAE (best) 1.32±0.05 0.38±0.07 0.48±0.02 0.51±0.03 0.15±0.04
TCR-dWAE (avg) 1.4±0.07 0.31±0.03 0.59±0.03 0.44±0.03 0.15±0.02
TCR-dWAE (random) 1.38±0.07 0.29±0.03 0.68±0.07 0.47±0.03 0.16±0.01
IDEL (best) 1.42±0.01 0.34±0.07 0.42±0.11 0.43±0.03 0.11±0.02
IDEL (avg) 1.47±0.01 0.31±0.05 0.49±0.11 0.4±0.02 0.11±0.01
IDEL (random) 1.46±0.01 0.29±0.04 0.64±0.04 0.42±0.02 0.15±0.01
greedy 0.33±0.0 0.92±0.0 0.02±0.0 0.34±0.0 0.02±0.0
genetic 0.34±0.03 1.0±0.0 0.02±0.0 0.96±0.08 0.02±0.0
naive rm 0.31±0.0 0.43±0.0 0.02±0.0 0.35±0.01 0.01±0.0
mcts -0.11±0.0 0.94±0.0 0.0±0.0 0.04±0.08 0.0±0.0
TCR-dWAE (null) 1.45±0.06 0.08±0.0 0.79±0.05 0.41±0.03 0.06±0.01

Table. S4: ; Performance comparison for MCPAS, averaged across selected peptides (SSYRRPVGI,
WEDLFCDESLSSPEPPSSSE, SSLENFRAYV, RFYKTLRAEQASQ, GLCTLVAML, CRVLC-
CYVL)

VDJDB

valid:all unique:valid

TCR-dWAE-best 0.59±0.02 0.69±0.1
TCR-dWAE-avg 0.63±0.03 0.74±0.09
TCR-dWAE-random 0.66±0.02 0.9±0.02
TCR-dWAE-null 0.86±0.01 0.99±0.0
IDEL-best 0.73±0.02 0.73±0.15
IDEL-avg 0.78±0.02 0.76±0.14
IDEL-random 0.78±0.02 0.83±0.07
greedy 0.02±0.0 1.0±0.0
genetic 0.03±0.02 0.74±0.04
naive rm 0.03±0.0 1.0±0.0
mcts 0.0±0.0 0.0±0.0

MCPAS

valid:all unique:valid

0.67±0.06 0.72±0.05
0.74±0.07 0.8±0.06
0.72±0.07 0.95±0.01
0.8±0.05 0.99±0.0
0.76±0.0 0.56±0.14
0.81±0.01 0.61±0.14
0.8±0.01 0.81±0.06
0.02±0.0 1.0±0.0
0.03±0.0 0.71±0.08
0.02±0.0 1.0±0.0
0.0±0.0 0.04±0.08

Table. S5: Additional performance comparison. This table shows the ratio of valid sequences and
unique valid sequences, as well as the running time.

Fig. S1: Distribution of TCR-AE-based evaluation metrics on known CDR3β’s, randomly selected
protein segments and randomly shuffled CDR3β’s.
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Fig. S2: T-SNE of zf and zs embeddings for all peptides in VDJDB (left) and MCPAS (right). Points
are colored by the label. “True" means the ground truth label. “Pred" refers to label predcited by the
function classifier Ψ.
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Fig. S3: ROC of function classifier Ψ by peptide, with different hyperparameter settings and random
seeds.
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(A)

(B)

Fig. S4: Distribution of the latent embeddings with (A) and without (B) Wasserstein loss. Orange
lines correspond to dimensions of zf and green lines zf . The distribution is estimated using
gaussian_kde from the scipy package.
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(A)

(B)

(D)

(C)

Fig. S5: (A) T-SNE of zs (left) and first layer embedding of the encoder (right) of positive TCRs,
colored by their binding peptides. (B) The average binding score of generated positive and negative
TCRs. (C) The length distribution of template and optimized TCRs (CDR3β region) from VDJDB.
(D) Cosine similarity between zs of the optimized sequences vs their templates (left), zf of the
optimized sequences vs their templates (middle), zf of the optimized sequences vs the modified zf
(right).
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