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Abstract

Attention mechanisms have made significant strides in graph learning, yet they still
exhibit notable limitations: local attention faces challenges in capturing long-range
information due to the inherent problems of the message-passing scheme, while
global attention cannot reflect the hierarchical neighborhood structure and fails to
capture fine-grained local information. In this paper, we propose a novel multi-
hop graph attention mechanism, named Subtree Attention (STA), to address the
aforementioned issues. STA seamlessly bridges the fully-attentional structure and
the rooted subtree, with theoretical proof that STA approximates the global atten-
tion under extreme settings. By allowing direct computation of attention weights
among multi-hop neighbors, STA mitigates the inherent problems in existing graph
attention mechanisms. Further we devise an efficient form for STA by employing
kernelized softmax, which yields a linear time complexity. Our resulting GNN
architecture, the STAGNN, presents a simple yet performant STA-based graph neu-
ral network leveraging a hop-aware attention strategy. Comprehensive evaluations
on ten node classification datasets demonstrate that STA-based models outper-
form existing graph transformers and mainstream GNNs. The code is available at
https://github.com/LUMIA-Group/SubTree-Attention.

1 Introduction

Graph Neural Networks (GNNs) have achieved remarkable performance in various tasks, such as
drug discovery [35, 15], social networks [29, 31], traffic flow [11], and recommendation systems [44].
Most GNNs are based on the message-passing scheme [16], hierarchically aggregating information
from multi-hop neighbors by stacking multiple layers. During this procedure, a rooted subtree can
be generated for each node, representing the node’s neighborhood structure. Nodes with similar
neighborhood structures possess similar subtrees, which leads to similar node representations [13].

Local attention in graph learning can be seen as a natural combination of the message-passing scheme
and the self-attention mechanism. By adaptively assigning weights among one-hop neighbors in a
single layer, the local attention mechanism allows each node to focus on the most task-relevant neigh-
bors [39, 36, 40, 3]. However, local attention limits the receptive field to one-hop neighbors. While
stacking multiple local-attention layers to build a deep model can increase the receptive field, such
message-passing-based deep architectures face challenges in capturing long-range dependencies [10]
due to issues such as over-smoothing [5] and over-squashing [2].

On the other hand, the global attention mechanism originated from vanilla Transformer [38] has
been widely adopted in graph learning domain [23, 12, 48, 28, 30], leveraging the fully-attentional
architecture to address the aforementioned issues. However, the global attention employed by graph
transformers cannot reflect the hierarchical neighborhood structure and fails to capture fine-grained
local information, which is crucial in many real-world scenarios [25, 17, 46, 49]. To mitigate
this deficiency, recent studies try to directly assemble global attention and message-passing-based
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models by combining GNNs and Transformers, including simultaneously applying GNNs and
Transformers [50] or building Transformers on top of GNNs [33, 27, 45].

Considering the limitations of both local and global attention, we propose a multi-hop graph attention
mechanism, termed SubTree Attention (STA). It allows the root node to directly attend to further
neighbors in the subtree, enabling the root node to gather information from the entire rooted subtree
within one layer. It provides two main advantages: (i) Compared to deep architectures with multiple
local attention layers, STA avoids issues associated with the message-passing scheme such as over-
smoothing and over-squashing. (ii) Compared to global attention, STA can hierarchically capture the
neighborhood structure by enabling each node to focus on its own rooted subtree.

Due to the exponential growth in neighborhood size with increased hops, directly calculating attention
among multi-hop neighbors becomes impractical. Meanwhile, powers of the adjacency matrix have
to be stored for the calculation among multi-hop neighbors. To address these issues, we employ
kernelized softmax [19] to develop an algorithm that reduces the quadratic time complexity to linear
while avoiding the need to store the powers of the adjacency matrix. This efficient algorithm can be
viewed as keys and values performing a random walk on the graph and eventually landing on queries.

Furthermore, we provide a theoretical analysis of STA, demonstrating that under extreme settings,
STA converges to the global self-attention. As a result, STA can be regarded as a bridge between
local and global attention, effectively combining the benefits of both approaches. In addition, we
present the STA module with multiple attention heads. We introduce a hop-wise gating mechanism,
enabling attention heads to be specialized in capturing information from specific hops.

We then propose a simple yet performant multi-hop graph attention network, named STAGNN, which
can leverage multi-hop information and in the meantime acts as a fully-attentional model. As for the
evaluation, we test the performance of STAGNN on ten common node classification datasets. Despite
its relatively simple architecture, STAGNN consistently outperforms existing GNNs and graph
transformers. Furthermore, we demonstrate that STAGNN maintains a competitive performance with
an extremely deep architecture. Additional ablation studies are conducted to show the effectiveness
of subtree attention even in the presence of global attention.

2 Background

Let G = (N , E) be an undirected graph, with the associated nodes set N and edges set E . We
use N = |N | to represent the number of nodes. X ∈ RN×f denotes the node feature, where f
denotes the number of features. Let A be the adjacency matrix of G and let D be the diagonal degree
matrix of A. Asym = D−1/2AD−1/2 denotes the symmetric normalized adjacency matrix, while
Arw = AD−1 denotes the random walk matrix. Let Â be an arbitrary transition matrix, including
Arw, Asym or other matrices representing message propagation. We use Mi: and M:j to indicate the
ith row and the jth column of the matrix M, respectively. And let [[0,K]] denote the set {0, 1, . . . ,K}.

2.1 Multi-Hop Representations

Many existing GNNs and diffusion-based models perform multi-hop message-passing in a single
layer, taking advantage of multi-hop representations [8, 1, 47, 22, 51]. Among them, decoupled
GCN [42] is a typical representative. One important reason for the over-smoothing problem in GCN
is that neighborhood aggregation and feature transformation are coupled [4]. To address this issue,
decoupled GCNs perform feature transformation and neighborhood aggregation, respectively. A
general form of decoupled GCN can be described as follows [8]:

O =

K∑
k=0

αkPROPAGk(H), PROPAGk(H) = ÂkH, H = MLP(X) (1)

where {αk}k∈[[0,K]] are the aggregation weights for different hops. K represents the number of
propagation steps, which also corresponds to the height of the resulting rooted subtree. Although
there exist various strategies to assign weights to different hops, these methods all apply a K-step
propagation with transition matrix Â, which inevitably results in over-smoothing when K is large.

There are relatively few attention-based methods that leverage multi-hop information. As a represen-
tative, Wang et al. (2021) [41] generalized GAT by Personalized PageRank [22]. Yet, this strategy
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only employs attention scores from one-hop neighbors and necessarily acts as a low-frequency
filter. In a recent work, Chen et al. (2022) [6] began with aggregating K-hop representations and
subsequently processed them as a sequence of length K using a Transformer model. Despite the
decent performance, this approach still adopts a K-step propagation to capture multi-hop information
before taking the attention mechanism into account, which leads to the aforementioned issues. This
observation inspires us to incorporate the attention mechanism into the propagation phase, rather than
adhering to the K-step propagation with transition matrix Â.

2.2 Global Self-Attention and Kernelized Softmax

In graph learning domain, the Global Self-Attention function SA(·, ·, ·) computes a weighted sum of
all positions for each node. It first projects the node feature matrix into three subspaces:

Q = XWQ, K = XWK , V = XWV (2)

where WQ ∈ Rd×dK ,WK ∈ Rd×dK and WV ∈ Rd×dV are learnable projection matrices. Then
the new representation of the ith node is computed as follows:

SA(Q,K,V)i: =

∑N
j=1 sim(Qi:,Kj:)Vj:∑N

j=1 sim(Qi:,Kj:)
(3)

where sim(·, ·) : Rd ×Rd → R is a function used to evaluate the similarity between queries and keys.
A common form of self-attention is called softmax attention, which applies the exponential of the dot

product to compute similarity: sim(Qi:,Kj:) = exp

(
Qi:K

T
j:√

dK

)
.

In fact, we can use an arbitrary positive-definite kernel κ to serve as sim(·, ·). Given a selected kernel
κ and its corresponding feature map ϕ, we can rewrite sim(·, ·) as: sim(Qi:,Kj:) = ϕ(Qi:)ϕ(Kj:)

T .
Thus, Equation 3 becomes:

SA(Q,K,V)i: =

∑N
j=1 ϕ(Qi:)ϕ(Kj:)

TVj:∑N
j=1 ϕ(Qi:)ϕ(Kj:)T

=
ϕ(Qi:)

∑N
j=1 ϕ(Kj:)

TVj:

ϕ(Qi:)
∑N

j=1 ϕ(Kj:)T
(4)

There are many potential choices for the feature map ϕ. e.g., Tsai et al. (2019) [37] verified that
RBF kernels perform on par with exponential kernels on neural machine translation and sequence
prediction, and Choromanski et al. (2021) [9] opted for Positive Random Features (PRF).

The key advantage of Equation 4 is that all nodes share two identical summations
∑N

j=1 ϕ(Kj:)
TVj:

and
∑N

j=1 ϕ(Kj:)
T , which only need to be computed once. By doing so, we can avoid computing

the full attention matrix {sim(Qi:,Kj:)}i∈N,j∈N and reduce the complexity from O(N2) to O(N).

3 The Proposed Attention Mechanism: SubTree Attention

In this section, we present a detailed introduction to an efficient multi-hop attention mechanism called
SubTree Attention (STA). First, we give the definition of STA, followed by an efficient algorithm for
computing STA based on kernelized softmax and the message-passing scheme. We then explain how
multi-head STA makes attention heads hop-aware by incorporating a gate into each hop. Finally, we
prove that STA approximates the global self-attention when the height of the subtree is O (logN).

3.1 SubTree Attention

In this subsection, we give the definition of our proposed multi-hop graph attention mechanism
named subtree attention. Similar to the global self-attention function SA(·, ·, ·), subtree attention
takes queries, keys, and values as inputs and outputs new values.

We first define the method for computing attention weights among the kth hop neighbors, which we
refer to as STAk. For the ith node, this process can be described as follows:

STA0(Q,K,V)i: = Vi:,

STAk(Q,K,V)i: =

∑N
j=1 Â

k
ij sim(Qi:,Kj:)Vj:∑N

j=1 Â
k
ij sim(Qi:,Kj:)

∀k ∈ [[1,K]]
(5)
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(a) SubTree Attention (b) Efficient algorithm of SubTree Attention

Figure 1: (Left): Definition of SubTree Attention (STA). STAk represents that each node attends
to the kth level of the rooted subtree, and then STA aggregates information from the entire subtree.
(Right): An efficient algorithm for computing subtree attention. We first compute ϕ(Ki:) and
ϕ(Ki:)

TVi: for each node, and then let ϕ(Ki:) and ϕ(Ki:)
TVi: perform K-step random walk,

respectively. After each step of random walk, we compute attention weights using ϕ(Qi:) and the
aggregated keys and values. The computation of {STAk}k∈[[1,K]] can be seen as a nested process.

STAk(Q,K,V)i: represents the ith node attending to its kth hop neighbors, which are also the kth

level of its rooted subtree. SubTree Attention STA :
(
Rn×dk ,Rn×dk ,Rn×dv

)
→ Rn×do can then be

calculated by aggregating the results from all levels of the rooted subtree:

STA(Q,K,V)i: = AGGR ({STAk(Q,K,V)i: | k ∈ [[0,K]]}) (6)

AGGR can be any aggregation function, such as sum, concat [18], attention-based readout [6], or the
GPR-like aggregation [8] which we present in section 4.

In simple terms, STAk allows each node to attend to the kth level of its own subtree. Meanwhile, STA
aggregates the results from all levels to gather information from the entire subtree. Figure 1 shows
the process of STA.

In contrast to global attention, subtree attention enables each node to compute attention weights on its
own subtree, thus taking advantage of the key insight of Message-Passing GNNs (MP-GNNs). e.g.,
even if the majority of nodes within the receptive fields are the same for two different nodes, they will
still gather different information through subtree attention if they have different subtree structures.

3.2 An Efficient Algorithm for SubTree Attention

Equation 5 gives a straightforward method to calculate STAk: we first compute the complete
similarity matrix {sim(Qi:,Kj:)}i∈N,j∈N and then calculate its Hadamard product with Âk to
obtain {Âk

ijsim(Qi:,Kj:)}i∈N,j∈N . In short, we treat Âk as a mask for the similarity matrix. This
algorithm exhibits two primary disadvantages: (i) The computational cost associated with calculating
the entire similarity matrix is O(N2). (ii) Âk quickly converges to a dense matrix. Storing Âk

in the GPU memory for computing the Hadamard product leads to considerable space complexity.
Considering these two limitations, utilizing Âk as a mask for the similarity matrix is suboptimal.

We now present an efficient algorithm for subtree attention. Considering the close relationship
between rooted subtrees and MP-GNNs, we leverage the message-passing scheme to implement the
computation of subtree attention. By permitting keys and values to propagate along the edges, we
can achieve an algorithm that has linear time complexity and avoids the need to store Âk.

Learning from Equation 4, we use a feature map ϕ to replace sim(·, ·). The choice of feature map
is not the main focus of our work. Our model adopts a simple yet effective approach proposed by
Katharopoulos et al. (2020) [19] that chooses ϕ(x) = elu(x)+1 as the feature map and demonstrates
empirically that it performs on par with softmax attention. We can rewrite Equation 5 as follows:

STAk(Q,K,V)i: =

∑N
j=1 Â

k
ij ϕ(Qi:)ϕ(Kj:)

TVj:∑N
j=1 Â

k
ij ϕ(Qi:)ϕ(Kj:)T

=
ϕ(Qi:)

∑N
j=1 Â

k
ij ϕ(Kj:)

TVj:

ϕ(Qi:)
∑N

j=1 Â
k
ij ϕ(Kj:)T

(7)
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Note that there are two summations
∑N

j=1 Â
k
ij ϕ(Kj:)

TVj: and
∑N

j=1 Â
k
ij ϕ(Kj:)

T in Equation 7.
We can think of these two summations as a kind of message propagation. That is to say, we first
compute ϕ(Ki:) and ϕ(Ki:)

TVi: for each node. Then we let ϕ(Ki:) and ϕ(Ki:)
TVi: undergo k

steps message passing. Finally, we use the aggregated keys and values
∑N

j=1 Â
k
ij ϕ(Kj:)

TVj: and∑N
j=1 Â

k
ij ϕ(Kj:)

T in conjunction with the node’s own query ϕ(Qi:) to complete the computation
of subtree attention. Figure 1 illustrates the whole process of this efficient algorithm. When we
choose Arw as the transition matrix, this process can be regarded as keys and values performing a
random walk on the graph, eventually landing on different queries. Note that message passing occurs
on each edge, thus reducing the computational cost from O(N2) to O(|E|). Additionally, message
passing only requires the sparse adjacency matrix A, thereby circumventing the need to store Âk.
Furthermore, {STAi}i∈[[1,K]] can be viewed as a nested process, calculated one after another.

Based on this algorithm, we can say that STA is an attempt to incorporate the message-passing
scheme into the fully-attentional architecture. In fact, STA serves as a message-passing module for
keys and values. In section 4, we design a novel multi-hop graph attention network employing STA
for message propagation. We also provide a detailed complexity analysis in Appendix A.

3.3 SubTree Attention with Multiple Heads

In this subsection, we present STA with multiple attention heads. Kim et al. (2022) [20] discovered
empirically that different attention heads tend to concentrate on neighbors at different hops. Certain
attention heads can attend to remote nodes, while others consistently focus on nearby nodes, sug-
gesting that attention heads can be specialized in capturing information from specific hops. To make
better use of multiple attention heads in this context, we propose a hop-aware method of mixing them.

Suppose there are a total of H attention heads. STA with multiple attention heads, noted as MSTA,
can be described as follows:

MSTA(Q,K,V) = AGGR ({MSTAk(Q,K,V) | k ∈ [[0,K]]})

MSTAk(Q,K,V) =
[
head1k, . . . ,head

H
k

]
WO ∀k ∈ [[1,K]], MSTA0(Q,K,V) = V

headhk = ĝhk STAk(Q
h,Kh,Vh) ∀h ∈ [[1, H]], ĝk = softmax(gk)

(8)

where [ ] denotes row-wise concatenation. Qh,Kh, and Vh represent the query, key, and value
matrices for the hth head, respectively. WO denotes a linear projection matrix. gk ∈ RH is an
H-dimensional vector and ghk is its hth element, representing the weight of the hth attention head at
the kth hop. Compared to STA with a single attention head, we introduce in total H ×K additional
learnable parameters: {gi}i∈[[1,K]]. We can regard gk as a hop-wise gate that determines the weight
of each attention head at the kth hop.

In other words, we can reconsider the multi-hop attention mechanism in terms of multi-task learning.
Different attention heads are seen as different experts, while aggregating information from different
hops is seen as different task. gk signifies the process of selecting appropriate experts for each task.

3.4 Theoretical Analysis of SubTree Attention

MP-GNNs suffer from issues like over-smoothing or over-squashing when the height of the subtree
increases. In this subsection, we theoretically demonstrate that STA avoids the issues associated with
the message-passing scheme despite employing the same rooted subtree as MP-GNNs. Notice that
we employ the random walk matrix Arw as the transition matrix in the STA module,i.e., we have
Â = Arw in this subsection.

We first employ a slightly modified approach to rewrite the global self-attention module SA, which
can be described as:

SA(Q,K,V)i: =

∑N
j=1 πi sim(Qi:,Kj:)Vj:∑N

j=1 πi sim(Qi:,Kj:)
(9)

where πi =
d(i)∑N

j=1 d(j)
and d(j) denotes the degree of the jth node. Note that Equation 9 is consistent

with Equation 3.
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Figure 2: Overall architecture of STAGNN. STAGNN can be decomposed into two parts: Transforma-
tion and STA-based Propagation, the latter of which can be seen as an STA module using GPR-like
aggregation as HopAggregation function. According to the algorithm introduced in subsection 3.2,
employing STA here is equivalent to letting keys and values propagate on the graph.

Comparing Equation 5 and Equation 9, we find that the only difference between SA and STAk lies in
the mask for the similarity matrix. STAk employs Âk

ij as the mask, whereas SA employs πi. We
now demonstrate that when the height K of the rooted subtree takes the same order of magnitude as
log(N), STAk can be approximately considered as SA.

Theorem 1 Let Â ∈ RN×N denote the random walk matrix of a connected and non-bipartite graph,
i.e., Â = AD−1. Let 1 = λ1 ≥ · · · ≥ λN be the eigenvalues of Â. Then we have the following
results:

∀i, j ∈ [[1, N ]]2, ∀ϵ > 0, ∃K0 ∈ N, ∀k > K0, |Âk
ij − πi| ≤ ϵ (10)

And for a given ϵ, the smallest K0 that satisfies the condition shown in Equation 10 is at most
O
(

log N
ϵ

1−max{λ2,|λn|}

)
. If we had more information about V, we could specify the convergence rate of

STAk. e.g., if V is computed by V = σ (XWV ) where σ is a non-negative activation function, then:

∀i, j ∈ [[1, N ]]2, ∀η ∈]0, 1[, ∃K1 ∈ N, ∀k > K1,
1− η

1 + η
≤ STAk(Q,K,V)ij

SA(Q,K,V)ij
≤ 1 + η

1− η
(11)

holds true when none of the denominators is equal to zero. And for a given η, the smallest K1 that

satisfies the condition shown in Equation 11 is at most O
(

log N
η

1−max{λ2,|λn|}

)
.

Equation 10 demonstrates that Âk
ij converges to πi with logarithmic complexity, indicating that

under general conditions, STAk quickly tends to SA. Notice that although STAk is a multi-hop graph
attention module implemented using the message-passing mechanism, it displays the characteristics
of global attention when the height of the subtree is O (logN). This property prevents STA from
the issues associated with the message-passing scheme such as over-smoothing and over-squashing.
From this perspective, subtree attention serves as a bridge connecting local and global attention. STA1

plays the role of local attention, while STAO(logN) acts as the global self-attention. Subtree attention
achieves a hierarchical attention computation by a hop-wise aggregation of {STAk}k∈[[1,O(logN)]]. A
detailed proof of Theorem 1 is provided in Appendix B.

4 The Proposed Multi-Hop Graph Attention Network: STAGNN

In this section, we present a simple yet effective multi-hop graph attention network, named STAGNN.
This model is built upon decoupled GCN, but employs STA as the message-passing module instead.
STAGNN can be divided into two steps: first, we apply MLP to compute queries, keys, and values
for each node; then, we use STA to propagate information. Formally, it can be described as:

O =

K∑
k=0

αkSTAk(Q,K,V), Q = HWQ, K = HWK , V = HWV , H = MLP(X) (12)
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Figure 3: Comparison of four GNN baselines, three graph structure learning baselines and STAGNN
on four common node classification datasets. The missing result of Deezer is due to out-of-memory.

Table 1: Comparison of four GNN baselines, five Graph Transformer baselines and STAGNN on six
common node classification datasets. The best results appear in bold.

Method Pubmed CoraFull Computer Photo CS Physics

GCN 86.54±0.12 61.76±0.14 89.65±0.52 92.70±0.20 92.92±0.12 96.18±0.07

GAT 86.32±0.16 64.47±0.18 90.78±0.13 93.87±0.11 93.61±0.14 96.17±0.08

APPNP 88.43±0.15 65.16±0.28 90.18±0.17 94.32±0.14 94.49±0.07 96.54±0.07

GPRGNN 89.34±0.25 67.12±0.31 89.32±0.29 94.49±0.14 95.13±0.09 96.85±0.08

GT 88.79±0.12 61.05±0.38 91.18±0.17 94.74±0.13 94.64±0.13 97.05±0.05

Graphormer OOM OOM OOM 92.74±0.14 OOM OOM
SAN 88.22±0.15 59.01±0.34 89.83±0.16 94.86±0.10 94.51±0.15 OOM
GraphGPS 88.94±0.16 55.76±0.23 OOM 95.06±0.13 93.93±0.12 OOM
NAGphormer 89.70±0.19 71.51±0.13 91.22±0.14 95.49±0.11 95.75±0.09 97.34±0.03

STAGNN 90.46±0.22 72.65±0.36 91.72±0.30 95.64±0.27 95.77±0.16 97.09±0.18

where X is the input node feature and O is the learned representation for each node. We adopt the
GPR-like aggregation [8] for HopAggregation in STA. To be precise, we assign learnable parameters
{αk}k∈[[0,K]] to each hop (initialized simply to 1), and then the nodes aggregate information from
each hop based on these learned weights. Figure 2 shows the overall architecture of STAGNN.

Comparing Equation 1 and Equation 12, the only difference between decoupled GCN and STAGNN
lies in the propagation method. Decoupled GCN relies on high powers of the normalized adjacency
matrix to capture long-range information, which inevitably results in over-smoothing. In contrast,
STAGNN utilizes subtree attention for message propagation, effectively learning more informative
representations from multi-hop neighbors without suffering from the inherent problems associated
with the message-passing scheme.

Wu et al. (2022) [43] have drawn attention to an issue named over-normalization: In the context of
graphs with a large volume of nodes, the use of the global attention module may lead to a situation
where the attention scores for the majority of nodes are nearly zero and thus resulting in gradient
vanishing. Subtree attention can alleviate this problem by providing a hierarchical calculation
focusing on each level of the rooted subtree instead of the whole graph.

5 Evaluation

We evaluate the performance of STAGNN on ten common node classification datasets, with detailed
dataset information provided in Appendix C. We then verify the performance of STAGNN under
extreme settings, empirically showing its capacity to tackle over-smoothing. Furthermore, We conduct
an experiment that confirms the necessity of subtree attention even in the presence of global attention.
Additional ablation studies are conducted for further discussions. For implementation, we fix the
number of hidden channels at 64. More implementation details are presented in Appendix D. All
experiments are conducted on an NVIDIA RTX4090 with 24 GB memory.
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.

5.1 Experiments on Node Classification

To compare STAGNN with a wide variety of baselines, we select two recent works [43, 6] and follow
their experiment settings and their choice of baselines. The metrics of the baselines are adopted from
these works [43, 6]. The code for reproduction can be found in supplementary materials.

Comparison with Multi-Hop GNNs and Structure Learning Methods For a fair comparison,
we strictly follow the experiment settings from Wu et al. (2022) [43]. We test the performance of
STAGNN on four common datasets: Cora, Citeseer, Deezer, and Actor. The first two are homogeneous
graphs, while the latter two are heterophilic [24, 52, 34]. We compare STAGNN with two mainstream
GNNs: GCN [21], GAT [39], two multi-hop GNNs: JKNet [47], MixHop [1], and three graph
structure learning methods: LDS [14], IDGL [7], NodeFormer [43]. We apply the same random splits
with train/valid/test ratios of 50%/25%/25% as [43]. Further details can be found in Appendix D.1.
Figure 3 displays the experimental results, showing that STAGNN, which features a relatively simple
model architecture, outperforms all the baselines on all four datasets. This result highlights the
effectiveness of STAGNN in managing both homogeneous and heterophilic graphs.

Comparison with Decoupled GCNs and Graph Transformers For a fair comparison, we strictly
follow the experiment settings from Chen et al. (2022) [6]. We test the performance of STAGNN on
six common datasets: Pubmed, Corafull, Computer, Photo, CS and Physics. More information about
these datasets can be found in Appendix C. We compare STAGNN with two mainstream GNNs:
GCN [21], GAT [39], two decoupled GCNs: APPNP [22], GPRGNN [8], and five graph transformers:
GT [12], Graphormer [48], SAN [23], GraphGPS [32], NAGphormer [6]. We apply the same random
splits with train/valid/test ratios of 60%/20%/20% as [6]. The experimental results are shown in
Table 1. STAGNN shows comparable or superior performance compared to all the baselines, which
highlights the competitiveness of STAGNN when compared to existing GNNs and graph transformers.

5.2 Experiments on Deep STAGNN

We evaluate the performance of deep STAGNN on Cora and Actor, with the height of the subtree
ranging from 3 to 100. The experimental results are presented in Figure 4. In contrast to MP-GNNs,
STAGNN maintains robust performance even when the height of the subtree reaches 100. For Cora,
the accuracy of STAGNN peaks at K = 10, demonstrating its ability to effectively collect information
from a large receptive field. We further visualize the GPR weights of STAGNN when the height of
the subtree is set to K = 100, and we observe distinct characteristics for Cora and Actor. In the case
of Cora, the GPR weights exhibit a monotonic decrease, which aligns with the witnessed performance
drop on Cora as the height of the subtree increases. Therefore, for Cora, we may consider keeping
the height of the subtree within a reasonable range. In the case of Actor, the GPR weights eventually
stabilize at a value close to 1. This finding suggests that the limiting state of STAk, i.e., SAπ, is
suitable for Actor, which is confirmed by the robust performance of deep STAGNN on Actor. More
visualizations of GPR weights can be found in Appendix E. In summary, STAGNN can achieve
impressive results even with an extremely deep architecture.
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Table 2: Necessity of subtree attention in the presence of global attention. We compare two scenarios:
(i) Only Global attention and (ii) Global attention supplemented by subtree attention.

Method Pubmed CoraFull Computer Photo CS Physics

GAT 86.32±0.16 64.47±0.18 90.78±0.13 93.87±0.11 93.61±0.14 96.17±0.08

Global Attn (GA) 88.87±0.61 62.34±0.95 85.7±0.52 92.92±0.32 94.74±0.37 96.47±0.24

1-hop STA + GA 90.16±0.51 70.65±0.71 91.52±0.23 95.42±0.47 95.49±0.26 97.09±0.22

2-hops STA + GA 90.56±0.49 72.24±0.38 91.93±0.35 95.75±0.36 95.70±0.29 97.17±0.20

3-hops STA + GA 90.66±0.24 72.36±0.37 91.89±0.28 95.88±0.31 95.81±0.15 97.15±0.23
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Figure 5: Comparison of different HopAggregation methods

5.3 Ablation Study

Study on the Necessity of SubTree Attention in the Presence of Global Attention We demon-
strate that STAk converges to the global self-attention, which naturally leads to a critical question:

• Is it still necessary to employ subtree attention when global attention is already present?

In this experiment, we seek to answer the question above by exploring two scenarios: (i) applying
global attention independently and (ii) combining global attention with subtree attention. Formally,
we extend STAGNN by replacing the STA module with global attention enhanced by 0, 1, 2, or 3
hop/hops of subtree attention. More details on the experiment settings can be found in Appendix D.2.

The experimental results are presented in Table 2. We find that incorporating subtree attention as
an auxiliary to global attention significantly improves overall performance, implying that it is still
necessary to employ subtree attention to capture the neighborhood structure even in the presence of
global attention. This observation also inspires us that leveraging subtree attention to augment global
attention could be an interesting approach for enhancing Graph Transformers.

Study on HopAggregation methods In this experiment, we investigate the influence of differ-
ent HopAggregation functions within STAGNN. We compare GPR-like aggregation with sum,
concat [18], and attention-based readout [6]. Details of the experiment settings can be found in
Appendix D.3. The experimental results are shown in Figure 5. GPR-like aggregation outperforms
the alternatives on all four datasets. This observation highlights the importance of enabling nodes to
adaptively learn the weight of each hop, which is the main advantage of GPR-like aggregation.

6 Conclusion

We propose a novel multi-hop graph attention mechanism called Subtree Attention (STA), which
effectively addresses the limitations of local and global attention in graph learning. The proposed STA
mechanism bridges the gap between local and global attention, hierarchically capturing neighborhood
structures while addressing issues associated with the message-passing scheme. The key algorithm for
computing subtree attention, utilizing kernelized softmax and the message-passing scheme, reduces
the computational cost from O(N2) to O(|E|) while avoiding the need to store high powers of the
adjacency matrix. This process can be approximately viewed as keys and values performing a random
walk on the graph. We further prove theoretically that under extreme settings, STA approximates
the global self-attention. Based on the STA module, we propose a simple yet performant multi-hop
graph attention network, coined STAGNN. Comprehensive evaluations on various node classification
datasets demonstrate that STAGNN outperforms mainstream GNNs and graph transformers. Ablation
studies further verify the effectiveness of subtree attention, even in the presence of global attention.

9



Current Limitations, Potential Impacts and Further Discussions In the present work, we
mainly evaluate STAGNN, a novel multi-hop graph attention network incorporating STA. However,
there are many other potential applications of STA, including combining STA with other graph
learning methods that utilize self-attention mechanisms or supplementing global attention with
subtree attention to enhance graph transformers. Furthermore, evaluating the robustness of STA and
digging into its interpretability can also be part of future works. We provide a detailed discussion of
potential impacts in Appendix G. And further analysis of the gate mechanism within the mixture of
attention heads can be found in Appendix F.
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A Complexity Analysis of STA

In this subsection, we analyze the time complexity of SubTree Attention (STA). STA has two key
components: the feature map and the HopAggregation function. Both of these components offer a
wide range of potential options for consideration. Different options will affect the time complexity of
STA. In the following analysis, we will adopt the configuration used by STAGNN, i.e., we choose
ϕ(x) = elu(x)+1 as the feature map and use GPR-like aggregation as the HopAggregation function.

The computation of STA can be seen as an aggregation of {STAi}i∈[[1,K]], which refer to the attention-
based aggregation of each level of the rooted subtree. Therefore, we can start by analyzing the time
complexity of STAk.

Figure 6: Efficient algorithm of SubTree Attention

The calculation of STAk can be divided into three steps. In the first step, we compute ϕ(Ki:) and
ϕ(Ki:)

TVi: for each node. The time complexity of this step depends on the feature map. In our
model, we chose ϕ(x) = elu(x) + 1 as the feature map. Thus, the time complexity of computing
ϕ(Ki:) is O(Ndk). We also need to compute ϕ(Ki:)

TVi: for each node, the time complexity of this
part is O(Ndkdv). Therefore, the overall time complexity of the first step is O(Ndk +Ndkdv).

In the second step, we let ϕ(Ki:) and ϕ(Ki:)
TVi: propagate on the graph. For STAk, we need

to propagate k times. The time complexity of propagating ϕ(Ki:) once is O(dk), and the time
complexity of ϕ(Ki:)

TVi: propagating once is O(dkdv). The message propagation occurs on each
edge. Considering that there are in total |E| edges and k times propagation, the overall time complexity
of this step is O(k|E|dk + k|E|dkdv).

In the third step, we use the information
∑N

j=1 Â
k
ij ϕ(Kj:)

TVj: and
∑N

j=1 Â
k
ij ϕ(Kj:)

T aggregated
by each node, along with the node’s own query ϕ(Qi:), to complete the computation of STA. For
each node, we need to calculate ϕ(Qi:)

∑N
j=1 Â

k
ij ϕ(Kj:)

TVj:, the time complexity of this part is

O(Ndkdv). At the same time, for each node, we need to calculate ϕ(Qi:)
∑N

j=1 Â
k
ij ϕ(Kj:)

T , the
time complexity of this part is O(Ndk). So the total time complexity of this step is O(Ndk+Ndkdv).

In summary, the total time complexity of STAk is O(2Ndk + 2Ndkdv + k|E|dk + k|E|dkdv).
Next, we analyze the time complexity of STA when the height of the rooted subtree is K. It should be
noted that {STAi}i∈[[1,K]] can be viewed as a nested process, calculated one after another. Therefore,
the first two steps of the above-mentioned calculation of STAk do not need to be repeated. We only
need to complete the full calculation of STAK and perform the third step mentioned above K times.
Therefore, the time complexity of calculating STA is O((K +1)Ndk + (K +1)Ndkdv +K|E|dk +
K|E|dkdv). In general, we can think of the time complexity of STA as O(K|E|dkdv).
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B Proof for Theorem 1

B.1 Proof for Equation 10

Let Â denote the random walk matrix of a connected and non-bipartite graph, and let Asym denote the
symmetric normalized adjacency matrix. Let 1 = λ1 ≥ · · · ≥ λN be the eigenvalues of Â, which are
also the eigenvalues of Asym [26]. Let v1,v2, . . . ,vn be the corresponding orthonormal eigenvectors
(v1,v2, . . . ,vn here are column vectors). Let πj =

d(j)∑N
i=1 d(i)

and d(i) denotes the degree of the ith

node. λ̂ = 1 − max{λ2, |λn|} denotes the corresponding spectral gap, and let D be the diagonal
degree matrix.

−→
1 denotes an all-ones column vector.

In this subsection, we prove the following results:

∀i, j ∈ [[1, N ]]2, ∀ϵ > 0, ∃K0 ∈ N, ∀k > K0, |Âk
ij − πi| ≤ ϵ

And for a given ϵ, the smallest K0 that satisfies the condition above is at most O
(

log N
ϵ

1−max{λ2,|λn|}

)
.

We begin by considering an arbitrary distribution pi ∈ RN , which is a column vector and ∥pi∥2 = 1.

Notice that v1,v2, . . . ,vn form an orthonormal basis, we can rewrite D− 1
2pi as:

D− 1
2pi =

N∑
i=1

civi (13)

We next consider the new distribution obtained when pi undergoes k-step random walk. Notice that
Â = AD−1 = D

1
2

(
D− 1

2AD− 1
2

)
D− 1

2 = D
1
2AsymD

− 1
2 . Thus we have:

Âkpi =
(
D

1
2AsymD

− 1
2

)k

pi

= D
1
2Ak

symD
− 1

2pi

= D
1
2Ak

sym

N∑
i=1

civi

=

N∑
i=1

ciD
1
2Ak

symvi

= c1D
1
2Ak

symv1 +

N∑
i=2

ciD
1
2Ak

symvi

(14)

We now consider c1D
1
2Ak

symv1. As we know that D
1
2
−→
1 is an eigenvector of Asym with eigenvalue

1. We then have:

v1 =
D

1
2
−→
1

∥D 1
2
−→
1 ∥2

(15)
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Notice that ∥D 1
2
−→
1 ∥2 =

√∑N
i=1 d(i). Using the fact that v1,v2, . . . ,vn form an orthonormal basis

and D− 1
2pi =

∑N
i=1 civi, we then have:

c1 =
(
D− 1

2pi

)T

v1

= pi
TD− 1

2
D

1
2
−→
1

∥D 1
2
−→
1 ∥2

=
pi

T−→1
∥D 1

2
−→
1 ∥2

=
1

∥D 1
2
−→
1 ∥2

=
1√∑N
i=1 d(i)

(16)

Notice that Ak
symv1 = λk

1v1 and λ1 = 1. Thus we have:

c1D
1
2Ak

symv1 = c1D
1
2λk

1v1

= c1D
1
2v1

=
1√∑N
i=1 d(i)

D
1
2

D
1
2
−→
1

∥D 1
2
−→
1 ∥2

=
D
−→
1∑N

i=1 d(i)

= π

(17)

Considering Equation 14 and Equation 17, we have:

Âkpi = π +

N∑
i=2

ciD
1
2Ak

symvi (18)

and immediately:

∥Âkpi − π∥22 = ∥
N∑
i=2

ciD
1
2Ak

symvi∥22

= ∥D 1
2

N∑
i=2

ciA
k
symvi∥22

≤ |||D 1
2 |||2p ∥

N∑
i=2

ciA
k
symvi∥22

(19)

where |||D 1
2 |||p = sup

x∈RN

∥D
1
2 x∥2

∥x∥2
=

√
dmax. Thus we have:

∥Âkpi − π∥22 ≤ dmax ∥
N∑
i=2

ciA
k
symvi∥22 (20)
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And using the fact that v1,v2, . . . ,vn are orthonormal and 1 − λ̂ = max{λ2, |λN |} =
max{|λ2|, |λ3|, . . . , |λN |}, we then have:

∥Âkpi − π∥22 ≤ dmax∥
N∑
i=2

ciλ
k
i vi∥22

= dmax

N∑
i=2

c2iλ
2k
i

≤ dmax(1− λ̂)2k
N∑
i=2

c2i

= dmax(1− λ̂)2k∥D− 1
2pi∥22

(21)

Notice that ∥D− 1
2pi∥22 ≤ |||D− 1

2 |||2p ∥pi∥22 = 1
dmin

. Therefore:

∥Âkpi − π∥22 ≤ dmax

dmin
(1− λ̂)2k (22)

and immediately:

∥Âkpi − π∥2 ≤ dmax

dmin
(1− λ̂)k

≤
√
N(1− λ̂)k

≤
√
Ne−kλ̂

(23)

Using Cauchy–Schwarz, we then have:

∥Âkpi − π∥1 ≤
√
N∥Âkpi − π∥2 ≤ Ne−kλ̂ (24)

In conclusion, given an arbitrarily small positive number ϵ, for all k0 greater than or equal to 1
λ̂
log N

ϵ ,

the L1 norm of the difference between Âkpi and the vector π is less than or equal to ϵ. This result
establishes that 1

λ̂
log N

ϵ indeed serves as an upper bound.

Notice that the vector pi is an arbitrary distribution. Thus, we may consider pi to be one of
the ith unit basis vector in the N -dimensional space: {p1,p2, . . . ,pN}, where each vector has
only one element equal to 1 (the ith element) and all other elements equal to 0. Thus we have
∥Âkpj − π∥1 =

∑N
i=1 |Âk

ij − πi|. Then given ϵ > 0, we have that:

∀j ∈ [[1, N ]], ∀k ≥ 1

λ̂
log

N

ϵ
,

N∑
i=1

|Âk
ij − πi| ≤ ϵ (25)

which demonstrates immediately the first part of Theorem 1:

∀i, j ∈ [[1, N ]]2, ∀k ≥ 1

λ̂
log

N

ϵ
, |Âk

ij − πi| ≤ ϵ (26)

B.2 Proof for Equation 11

In this subsection, we prove the following results: if V is computed by V = σ (XWV ) where σ is a
non-negative activation function, then:

∀i, j ∈ [[1, N ]]2, ∀η ∈]0, 1[, ∃K1 ∈ N, ∀k > K1,
1− η

1 + η
≤ STAk(Q,K,V)ij

SA(Q,K,V)ij
≤ 1 + η

1− η

holds true when none of the denominators is equal to zero. And for a given η, the smallest K1 that

satisfies the condition shown in Equation 11 is at most O
(

log N
η

1−max{λ2,|λn|}

)
.

This result can, indeed, be viewed as a straightforward corollary of Equation (10). The crucial
prerequisite is that all elements of the vector V must be positive. Importantly, there are no specific
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requirements imposed on the non-negative activation function σ, meaning it can be any function that
ensures non-negativity.

STAk and SA are defined as follows:

STAk(Q,K,V)i: =

∑N
j=1 Â

k
ij sim(Qi:,Kj:)Vj:∑N

j=1 Â
k
ij sim(Qi:,Kj:)

SA(Q,K,V)i: =

∑N
j=1 πi sim(Qi:,Kj:)Vj:∑N

j=1 πi sim(Qi:,Kj:)

(27)

Equation 27 shows their form as row vectors. Their jth elements are:

STAk(Q,K,V)ij =

∑N
t=1 Â

k
it sim(Qi:,Kt:)Vtj∑N

t=1 Â
k
it sim(Qi:,Kt:)

SA(Q,K,V)ij =

∑N
t=1 πi sim(Qi:,Kt:)Vtj∑N

t=1 πi sim(Qi:,Kt:)

(28)

Hence, we have:

STAk(Q,K,V)ij
SA(Q,K,V)ij

=

∑N
t=1 Â

k
it sim(Qi:,Kt:)Vtj∑N

t=1 πi sim(Qi:,Kt:)Vtj

×
∑N

t=1 πi sim(Qi:,Kt:)∑N
t=1 Â

k
it sim(Qi:,Kt:)

(29)

For clarity, we proceed under the assumption that none of the denominators equal zero, which is
reasonable considering the context. Let δit represent the difference between Âk

it and πi: Âk
it =

πi + δit. Given η ∈]0, 1[, we aim to determine an upper bound of the convergence rate between
STAk and SA.

Using Equation 10, we take ϵ = η
N2 and we have immediately:

∀i, t ∈ [[1, N ]]2, ∀k ≥
2 log N

η

1− λ̂
, |Âk

it − πi| = |δit| ≤ ϵ =
η

N2
(30)

We can rewrite Equation 29 as:

STAk(Q,K,V)ij
SA(Q,K,V)ij

=

∑N
t=1(πi + δit) sim(Qi:,Kt:)Vtj∑N

t=1 πi sim(Qi:,Kt:)Vtj

×
∑N

t=1 πi sim(Qi:,Kt:)∑N
t=1(πi + δit) sim(Qi:,Kt:)

(31)

Assuming that k ≥ 2 log N
η

1−λ̂
. Considering the fraction

∑N
t=1 δit sim(Qi:,Kt:)Vtj∑N
t=1 πi sim(Qi:,Kt:)Vtj

in the first part of
Equation 31. Using Equation 30 and the fact that sim(Qi:,Kt:) and Vtj are all positive, we have:

|
N∑
t=1

δit sim(Qi:,Kt:)Vtj | =
N∑
t=1

|δit| sim(Qi:,Kt:)Vtj

≤
N∑
t=1

η

N2
sim(Qi:,Kt:)Vtj

(32)

Notice that ∀t ∈ [[1, N ]], πi ≥ 1
N2 . Hence, we have:

|
N∑
t=1

πi sim(Qi:,Kt:)Vtj | ≥
N∑
t=1

1

N2
sim(Qi:,Kt:)Vtj (33)

Therefore: ∣∣∣∣∣
∑N

t=1 δit sim(Qi:,Kt:)Vtj∑N
t=1 πi sim(Qi:,Kt:)Vtj

∣∣∣∣∣ = |
∑N

t=1 δit sim(Qi:,Kt:)Vtj |
|
∑N

t=1 πi sim(Qi:,Kt:)Vtj |
≤ η < 1 (34)

Thus we have

1− η ≤
∑N

t=1(πi + δit) sim(Qi:,Kt:)Vtj∑N
t=1 πi sim(Qi:,Kt:)Vtj

≤ 1 + η (35)
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Table 3: Statistics on datasets
Dataset Context # Nodes # Edges # Features # Classes

Cora Citation 2,708 5,429 1,433 7
Citeseer Citation 3,327 4,732 3,703 6
Deezer Social Connection 28,281 92,752 31,241 2
Actor Co-occurrence 7,600 29,926 931 5

Pubmed Citation 19,717 44,324 500 3
CoraFull Citation 19,793 126,842 8,710 70
Computer Co-purchasing 13,752 491,722 767 10
Photo Co-purchasing 7,650 238,163 745 8
CS Co-authorship 18,333 163,788 6,805 15
Physics Co-authorship 34,493 495,924 8,415 5

Considering the second part
∑N

t=1 πi sim(Qi:,Kt:)∑N
t=1(πi+δit) sim(Qi:,Kt:)

of Equation 31. Utilizing the same line of
reasoning, we can obtain: ∣∣∣∣∣

∑N
t=1 δit sim(Qi:,Kt:)∑N
t=1 πi sim(Qi:,Kt:)

∣∣∣∣∣ ≤ η < 1 (36)

and
1

1 + η
≤

∑N
t=1 πi sim(Qi:,Kt:)∑N

t=1(πi + δit) sim(Qi:,Kt:)
≤ 1

1− η
(37)

Considering Equation 35, Equation 37 and Equation 31, we finally prove that:

1− η

1 + η
≤ STAk(Q,K,V)ij

SA(Q,K,V)ij
≤ 1 + η

1− η
(38)

which proves the second part of Theorem 1.

C Dataset Information

In this section, we present the datasets used in our experiments. These different types of data provide
a robust platform to evaluate the performance of our methods.

The detailed information for each dataset is presented in Table 3. These datasets are drawn from the
areas of citation networks, co-purchasing networks, co-authorship networks, and social networks: •
Citation Networks: The citation networks datasets include Cora, Citeseer, Pubmed, and CoraFull.
Nodes in these networks correspond to scientific publications, while the edges represent citations
between these documents. In addition to the topological structure, each node carries a binary attribute
vector, encoding the presence or absence of specific words from a pre-determined dictionary. The
dimensionality of these attribute vectors varies from 1,433 in Cora to 8,710 in CoraFull. Moreover,
each document node is associated with a unique class label, signifying the document’s overarching
scientific discipline. • Co-authorship Networks: We utilize the CoauthorCSDataset and Coauthor-
PhysicsDataset that capture co-authorship relationships in Computer Science and Physics domains,
respectively. Nodes represent individual authors and edges encode co-authorship relations, thus
creating an undirected graph. • Co-purchasing Networks: We utilize the AmazonCoBuyComputer-
Dataset and AmazonCoBuyPhotoDataset, derived from Amazon’s co-purchasing network. Nodes
denote products and edges symbolize frequent co-purchase incidents. Moreover, the nodes can carry
diverse product-specific information. • Social Networks: The Deezer-Europe dataset is a dataset
representing a social network of Deezer users collected via the public API in March 2020. The nodes
in this network symbolize Deezer users hailing from various European countries, while the edges
represent reciprocal follower relationships between these users. The features of each node are derived
from the preferences of the users, specifically, the artists they have expressed an interest in. The task
associated with this graph involves binary node classification, wherein the objective is to predict
the user’s gender. • Co-occurrence Networks: We utilize the Actor dataset, a type of co-occurrence
network based on the Microsoft Academic Graph. Nodes represent actors, and an edge signifies their
co-appearance on the same Wikipedia page.
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D Implementation Details

Positional Encoding We use Laplacian positional encoding to capture the structural information.
As positional encoding is not the focus of our work, we use a simple approach to combine positional
encoding with the original features of the nodes, which is also applied by [6]. Formally, we first
calculate the eigenvectors corresponding to the smallest m eigenvalues of the Laplace matrix to
construct the matrix P ∈ Rn×m. Then we take X′ = [X,P] as the new input, where [ ] denotes
row-wise concatenation. For all the datasets, we set m = 3.

D.1 Node Classification

Training Details We choose two recent studies [43, 6] and we adhere to their experimental config-
urations. The metrics for the baselines are also derived from these works [43, 6]. For Cora, Citeseer,
Deezer and Actor, we apply the same random splits with train/valid/test ratios of 50%/25%/25%
as [43]. We conduct 5 runs with different splits and take the mean accuracy and standard deviation
for comparison. For Pubmed, Corafull, Computer, Photo, CS and Physics, we apply the same random
splits with train/valid/test ratios of 60%/20%/20% as [6]. We conduct 10 runs with different splits and
take the mean accuracy and standard deviation for comparison. Specifically, we utilize the ROC-AUC
measure for binary classification on the Deezer dataset. For other datasets containing more than
two classes, we opt for Accuracy as the metric. We employ the Adam optimizer for gradient-based
optimization. The training procedure can at most repeat until a given budget of 3000 epochs and we
set the patience of early stop to 200 epochs. We report the test accuracy of the epoch which has the
highest accuracy on the validation set.

Hyperparameters For the model configuration of STAGNN, we fix the number of hidden channels
at 64. We use grid search for hyper-parameter settings. The learning rate is searched within
{0.001,0.01}, dropout probability searched within {0.0,0.2,0.4,0.6}, weight decay searched within
{0.0001,0.0005,0.001,0.005}, height of the rooted subtree K searched within {3,5,10}, number of
attention heads searched within {1,2,4,6,8}. The best hyper-parameters are provided in supplementary
materials.

D.2 Study on the Necessity of SubTree Attention in the Presence of Global Attention

In this experiment, we extend STAGNN by replacing the STA module with global attention enhanced
by 0, 1, 2, or 3 hop/hops subtree attention. We now present a detailed mathematical description of the
experimental configurations. Formally, we compare the performance of the STAGNN-based model
equipped with four different attention strategies: Global Attn Only, 1-hop STA + GA, 2-hops STA
+ GA and 3-hops STA + GA on six datasets: Pubmed, Corafull, Computer, Photo, CS and Physics,
with the same experiment setting described in subsection D.1.

First, we calculate keys, queries and values.

Q = HWQ, K = HWK , V = HWV , H = MLP(X) (39)

Next, the output of the four different models (equipped with global attention enhanced by subtree
attention of different heights) can be described as:

• Global Attn Only:
O = SA(Q,K,V) (40)

• 1-hop STA + GA:

O = αT SA(Q,K,V) +

1∑
k=0

αkSTAk(Q,K,V) (41)

• 2-hops STA + GA:

O = αT SA(Q,K,V) +

2∑
k=0

αkSTAk(Q,K,V) (42)
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• 3-hops STA + GA:

O = αT SA(Q,K,V) +

3∑
k=0

αkSTAk(Q,K,V) (43)

αT here represents the coefficient of teleportation, because we can regard the global attention
enhanced by subtree attention here as the random walk with teleportation. The only difference
between these models is that they use subtree attention of different heights as an auxiliary to global
attention. As shown in Table 2, we can observe that 2-hops STA + GA and 3-hops STA + GA
outperform Global Attn Only by a large margin.

D.3 Study on HopAggregation Methods

In this experiment, we investigate different choices of the HopAggregation functions within the STA
module. We compare GPR-like aggregation with sum, concat [18], and attention-based readout [6].
We now present a detailed mathematical description of the experimental configurations. Formally, we
compare the performance of the following four models: STAGNN-GPR (origin STAGNN), STAGNN-
SUM, STAGNN-CONCAT and STAGNN-ATTN on four datasets: Cora, Citeseer, Deezer-Europe
and Actor, with the same experiment setting described in subsection D.1.

First, we calculate keys, queries and values.

Q = HWQ, K = HWK , V = HWV , H = MLP(X) (44)

Next, the output of the four different models (STAGNN with different HopAggregation methods) can
be described as:

• STAGNN-GPR (origin STAGNN):

O =

K∑
k=0

αkSTAk(Q,K,V) (45)

• STAGNN-SUM:

O =

K∑
k=0

STAk(Q,K,V) (46)

• STAGNN-CONCAT:

O = [STA0(Q,K,V),STA1(Q,K,V) . . . ,STAK(Q,K,V)]WO (47)

where WO is a linear projection matrix.

• STAGNN-ATTN:

O = STA0(Q,K,V) +

K∑
k=1

βkSTAk(Q,K,V),

βk =
exp

(
[STA0(Q,K,V),STAk(Q,K,V)]W⊤

a

)∑K
i=1 exp ([STA0(Q,K,V),STAi(Q,K,V)]W⊤

a )

(48)

where Wa is a linear projection matrix and [ ] denotes row-wise concatenation.

E More Visualizations of GPR Weights

We conduct more visualizations of the GPR weights on Cora and Actor, with heights K of the rooted
subtrees ranging from 3 to 75. The results are shown in Figure 7.

In the case of Cora, we observe that as the depth K of the rooted subtree increases, STA keeps
increasing the GPR weights of the local neighborhood in order to preserve the local information from
being covered up by the global information.
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Figure 7: GPR weights of STAGNN when the heights K of the subtree ranging from 3 to 75.

F Further discussion of the Gate Mechanism within the Mixture of Attention
Heads

In this subsection, we conduct an ablation study of the gate mechanism within the mixture of attention
heads. The sub-tree attention module with multiple attention heads is defined as follows:

• MSTA w/ gate vector gk, w/ softmax (origin STAGNN):

MSTA(Q,K,V) = AGGR ({MSTAk(Q,K,V) | k ∈ [[0,K]]})

MSTAk(Q,K,V) =
[
head1k, . . . ,head

H
k

]
WO ∀k ∈ [[1,K]], MSTA0(Q,K,V) = V

headhk = ĝhk STAk(Q
h,Kh,Vh) ∀h ∈ [[1, H]], ĝk = softmax(gk)

(49)

The hop-wise gate vector here gk ∈ RH is an H-dimensional vector and ghk is its hth element.
Compared to STA with a single attention head, we introduce in total H ×K additional learnable
parameters: {gi}i∈[[1,K]].

For comparison, we consider two variants.

• MSTA w/ gate vector gk, w/o softmax:

MSTA(Q,K,V) = AGGR ({MSTAk(Q,K,V) | k ∈ [[0,K]]})

MSTAk(Q,K,V) =
[
head1k, . . . ,head

H
k

]
WO ∀k ∈ [[1,K]], MSTA0(Q,K,V) = V

headhk = ghk STAk(Q
h,Kh,Vh) ∀h ∈ [[1, H]]

(50)

• MSTA w/o gate vector gk:

MSTA(Q,K,V) = AGGR ({MSTAk(Q,K,V) | k ∈ [[0,K]]})

MSTAk(Q,K,V) =
[
head1k, . . . ,head

H
k

]
WO ∀k ∈ [[1,K]], MSTA0(Q,K,V) = V

headhk = STAk(Q
h,Kh,Vh) ∀h ∈ [[1, H]]

(51)

The experimental results are shown in Table 4. We find that the performance of MSTA w/ gate vector
gk, w/o softmax and MSTA w/o gate vector gk are almost the same, which means that using the gate
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Table 4: Ablation study of the gate mechanism within the mixture of attention heads
Method Pubmed CoraFull Computer Photo CS Physics

STAGNN (origin) 90.46±0.22 72.65±0.36 91.72±0.30 95.64±0.27 95.77±0.16 97.09±0.18

w/ gate, w/o softmax 90.37±0.23 71.62±0.39 91.89±0.27 95.37±0.30 94.72±0.19 96.96±0.20

w/o gate 90.31±0.25 71.67±0.36 91.80±0.28 95.32±0.28 94.70±0.18 96.97±0.18

vector without softmax is approximately equivalent to not using the gate vector. In fact, on closer
examination, we find that without softmax, the learned gate vector would be a vector with all equal
elements, which means that it is difficult for the model to learn different weights of attention heads
at each hop without the help of softmax. Additionally, we observe that for most datasets, using the
gating mechanism leads to improvement of the overall performance.

G Potential Impacts

Besides learning better node representations, our proposed Subtree Attention (STA) has potential
impacts on various aspects of graph learning. Compared to global attention, STA can help the model
to better learn the hierarchical structure of the graph. Therefore, STA can be utilized as a plug-in
module for designing local-aware Transformers on graph, acting as a competitor of all the GNN-
assisted Transformers. STA opens new avenues for model design by combining the message-passing
scheme with fully-attentional architectures, which can significantly enhance both the computational
efficiency and expressive power of fully-attentional models on graph data. Furthermore, STA bridges
the gap between local and global graph attention methods. This opens up possibilities for the design
and application of hierarchical attention models that can leverage both local neighborhood and global
structural information from graph data.
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