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Abstract

We study the problem of estimating precision matrices in Gaussian distributions
that are multivariate totally positive of order two (MTP2). The precision matrix
in such a distribution is an M-matrix. This problem can be formulated as a sign-
constrained log-determinant program. Current algorithms are designed using the
block coordinate descent method or the proximal point algorithm, which becomes
computationally challenging in high-dimensional cases due to the requirement
to solve numerous nonnegative quadratic programs or large-scale linear systems.
To address this issue, we propose a novel algorithm based on the two-metric
projection method, incorporating a carefully designed search direction and variable
partitioning scheme. Our algorithm substantially reduces computational complexity,
and its theoretical convergence is established. Experimental results on synthetic and
real-world datasets demonstrate that our proposed algorithm provides a significant
improvement in computational efficiency compared to the state-of-the-art methods.

1 Introduction

We consider the problem of estimating the precision matrix (i.e., inverse covariance matrix) in a
multivariate Gaussian distribution, where all the off-diagonal elements of the precision matrix are
nonpositive. The resulting precision matrix is a symmetric M-matrix. Such property is also known
as multivariate totally positive of order two (MTP2) [1]. For ease of presentation, we call the
nonpositivity constraints on the off-diagonal elements of the precision matrix as MTP2 constraints.
This model arises in a variety of applications such as taxonomic reasoning [2], graph signal processing
[3], factor analysis in psychometrics [4], and financial markets [5].

Estimating precision matrices under MTP2 constraints is an active research topic. Recent results
in [2, 4, 6] show that MTP2 constraints lead to a drastic reduction on the number of observations
required for the maximum likelihood estimator (MLE) to exist in Gaussian distributions and Ising
models. This advantage is crucial in high-dimensional regimes with limited observations. Growing
interest in estimating precision matrices under MTP2 constraints is seen in graph signal processing
[7–9]. A precision matrix fulfilling MTP2 constraints can be regarded as a generalized graph
Laplacian, where eigenvalues and eigenvectors are interpreted as spectral frequencies and Fourier
bases, facilitating the computation of graph Fourier transform [10]. The MTP2 property has also
been studied in portfolio allocation [5] and structure recovery [11, 12].

Estimating precision matrices under MTP2 constraints can be formulated as a sign-constrained
log-determinant program. Existing algorithms for solving this problem, such as the block coordinate
descent (BCD) [2, 3, 8] and proximal point algorithm (PPA) [9], are efficient for low-dimensional
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problems. However, they become time-consuming in high-dimensional scenarios due to the necessity
of solving numerous nonnegative quadratic programs or large-scale linear systems. An alternative is
the gradient projection method [13], which offers computational efficiency per iteration. Nevertheless,
it often grapples with slow convergence rates in high-dimensional cases. Thus, there is a demand for
efficient and scalable algorithms for precision matrix estimation under MTP2 constraints.

1.1 Contributions

In this paper, we propose a fast projected Newton-like algorithm for estimating precision matrices
under MTP2 constraints. While second-order algorithms generally require fewer iterations than
first-order methods, they often encounter computational challenges due to the necessity of computing
a large (approximate) Hessian matrix inverse or equivalently solving the linear system. Our main
contributions in this paper are threefold:

1. Our proposed algorithm, rooted in the two-metric projection method, stands apart from current
BCD and PPA approaches [2, 3, 8, 9] for solving the target problem. Utilizing a well-designed
search direction and variable partitioning scheme, our algorithm avoids the need to solve
nonnegative quadratic programs or linear systems, yielding a significant computational reduction
compared to BCD and PPA algorithms. As a second-order method, our algorithm maintains the
same per-iteration computational complexity as the gradient projection method.

2. We establish that our algorithm converges to the minimizer of the target problem. Furthermore,
under a mild assumption, we prove the convergence of the set of free variables to the support of
the minimizer within finite iterations and provide the convergence rate of our algorithm.

3. Numerical experiments on both synthetic and real-world datasets provide compelling evidence
that our algorithm converges to the minimizer considerably faster than the compared methods.
We apply the proposed method to financial time-series data and observe significant performance
in terms of modularity value on the learned financial networks.

Notation: Lower case bold letters denote vectors and upper case bold letters denote matrices.
Both Xij and [X]ij denote the (i, j)-th entry of X . [p] denotes the set {1, . . . , p}, and [p]2 denotes
the set {1, . . . , p} × {1, . . . , p}. Let ⊗ be the Kronecker product and ⊙ be the entry-wise product.
supp(X) = {(i, j) ∈ [p]2 |Xij ̸= 0}. ∥X∥max = maxi,j |Xij | and ∥X∥min = mini,j |Xij |. Sp+
and Sp++ denote the sets of symmetric positive semi-definite and positive definite matrices with
dimension p× p. vec(X) and X⊤ denote the vectorized version and transpose of X .

2 Problem Formulation and Related Work
In this section, we first introduce the problem formulation, then present related works.

2.1 Problem formulation

Let y = (y1, . . . , yp) be a p-dimensional random vector following y ∼ N (0,Σ), where Σ is the
covariance matrix. We focus on the problem of estimating the precision matrix Θ := Σ−1 given n

i.i.d. observations y(1), . . . ,y(n). Let S = 1
n

∑n
i=1 y

(i)
(
y(i)

)⊤
be the sample covariance matrix.

Throughout the paper, the sample covariance matrix is assumed to have strictly positive diagonal
elements, which holds with probability one. This is because some diagonal element Sjj is zero if and
only if the j-th element of y(i) must be zero for every i ∈ [p], which holds with probability zero.

We consider solving the following sign-constrained log-determinant program:

X⋆ := arg min
X∈Mp

− log det(X) + tr (XS) +
∑

i̸=j λij |Xij | ,

subject to Xij = 0, ∀ (i, j) ∈ E ,
(1)

where λij is the regularization parameter, E is the disconnectivity set with each node pair forced to
disconnect, andMp is the set of all p-dimensional, symmetric, non-singular M-matrices defined by

Mp :=
{
X ∈ Sp++|Xij ≤ 0, ∀ i ̸= j

}
. (2)

The disconnectivity set in (1) can be obtained in several ways: (i) it is often the case that some edges
between nodes must not exist due to prior knowledge; (ii) it can be estimated from initial estimators;
(iii) it can be obtained in some tasks of learning structured graphs such as bipartite graph [14–16].
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2.2 Related work

Estimating precision matrices under Gaussian graphical models has been extensively studied in the
literature. One well-known method is graphical lasso [17–20], which minimizes the ℓ1-regularized
Gaussian negative log-likelihood. Various algorithms were proposed to solve this problem including
first-order methods [17, 18, 21–29] and second-order methods [30–33]. The graphical lasso
optimization problem is unconstrained and nonsmooth, while Problem (1) is smooth and constrained.
The difficulties in solving the two problems are inherently different, and the algorithms mentioned
above cannot be directly extended to solve Problem (1).

Recent studies [2, 3, 8, 9] employed BCD and PPA-type algorithms to estimate precision matrices
under MTP2 constraints. In [2], the primal variable is updated one column/row at a time by solving
a nonnegative quadratic program, cycling until convergence. The work [8] follows a similar approach
but addresses the dual problem, improving memory efficiency. Both works target Problem (1)
without the disconnectivity constraint. A BCD-type algorithm was proposed in [3] to accommodate
disconnectivity constraints. However, the computational complexity of these algorithms, at O(p4)
operations per cycle, becomes prohibitive for high-dimensional problems. Alternatively, recent
work [9] introduced an inexact PPA algorithm to solve a transformed problem, derived using the
soft-thresholding technique. However, this algorithm demands the computation of an inexact Newton
direction from a p2×p2 linear system at every iteration within the inner loop, presenting computational
difficulties in high-dimensional scenarios.

The proposed algorithm adopts the two-metric projection framework [34], incorporating distinct
metrics for search direction and projection. A representative method in this framework is the projected
Newton algorithm [35], originally designed for nonnegativity constrained problems. However, it
is unsuitable for Problem (1) due to its O(p6) operations needed to compute the inverse of the
Hessian at each iteration. To mitigate computation and memory costs, the projected quasi-Newton
algorithm with limited-memory Boyden-Fletcher-Goldfarb-Shanno (L-BFGS) was introduced in [36],
requiring O((m+ p)p2) operations per iteration, with m the number of iterations stored for Hessian
approximation. By leveraging the structure of Problem (1), this paper carefully designs the search
direction and variable partitioning scheme to substantially reduce computation and memory costs,
achieving the same orders per iteration as the gradient projection method [13].

3 Proposed Algorithm
In this section, we propose a fast projected Newton-like algorithm to solve Problem (1). The
constraints in Problem (1) can be rewritten as X ∈ Ω ∩ Sp++, where Ω is defined as

Ω :=
{
X ∈ Rp×p |Xij = 0, ∀ (i, j) ∈ E ; Xij ≤ 0, ∀ i ̸= j

}
.

The set Ω is convex and closed, thus this constraint can be handled by a projection PΩ defined by

[
PΩ(A)

]
ij
=


0 if (i, j) ∈ E ,
Aij if i = j,

min(Aij , 0) if (i, j) /∈ E and i ̸= j.

(3)

The positive definite set Sp++ is not closed and cannot be managed by a projection, which will be
handled using the line search method in Section 3.3. Let f denote the objective function of Problem
(1). To address Problem (1), we start with the gradient projection method, expressed as:

Xk+1 = PΩ

(
Xk − γk∇f (Xk)

)
, (4)

where γk is the step size. To accelerate convergence, one may consider
Xk+1 = PΩ

(
Xk − γkPk

)
, (5)

in which Pk ∈ Rp×p is a search direction defined by
vec (Pk) = M−1

k vec (∇f(Xk)) , (6)

where Mk ∈ Rp2×p2

is a positive definite symmetric matrix, incorporating second-order derivative
information. If we adopt Mk as the Hessian matrix, then Pk becomes the Newton direction as shown
in Proposition 3.1, with the proof provided in Appendix B.1, and iterate (5) can be viewed as a natural
adaptation of the unconstrained Newton’s method. Regrettably, the convergence of such an iterate to
the minimizer cannot be guaranteed, as Pk may not be a descent direction here, which is supported
by numerical results in Section 5.1.1. Similar observations have also been reported in [35, 37].
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Proposition 3.1. If Mk is constructed as the Hessian matrix Hk of Problem (1), then the search
direction Pk defined in (6) can be written as Pk = Xk∇f(Xk)Xk.
Remark 3.2. We refer to iterate (5) as the two-metric projection method [34], as it adopts two
distinct metrics: the search direction Pk induced by the quadratic norm ∥·∥Mk

defined by ∥A∥Mk
=

⟨vec (A) , Mkvec (A)⟩ 12 , and the projection PΩ with respect to the Frobenius norm ∥·∥F.

3.1 Identifying the sets of restricted and free variables
In order to guarantee iterate (5) to converge to the minimizer, we partition the variables into two
groups, i.e., restricted and free variables, and update the two groups separately. We first define a set
T (X, ϵ) with respect to X ∈ Sp++ and ϵ ∈ R+,

T (X, ϵ) :=
{
(i, j) ∈ [p]2 | − ϵ ≤ Xij ≤ 0, [∇f(X)]ij < 0

}
. (7)

Then at the k-th iteration, we identify the set of restricted variables based on Xk as follows,
Ik := T (Xk, ϵk) ∪ E , (8)

where E is the disconnectivity set from Problem (1), and ϵk is a small positive scalar. For any
(i, j) ∈ T (Xk, ϵk), Xij in the next iterate is likely to be outside the feasible set (i.e., Xij > 0) if we
remove the projection PΩ, as it is near zero and moves towards the positive direction if using the
negative of the gradient as the search direction. Therefore, we set all restricted variables to zero.

To establish the theoretical convergence of the algorithm, the positive scalar ϵk in (8) is specified as

ϵk := min
(
2(1− α)m2

∥∥[∇f(Xk)]Tδ\E
∥∥
min

, δ
)
, (9)

where m is a positive scalar (See Lemma B.1 in Appendix), α ∈ (0, 1) is a parameter in the line
search condition, and Tδ represents the set T (Xk, δ). In the rare event that Tδ is empty, particularly
in sparse settings, we define ϵk = δ, implying an empty T (Xk, ϵk) in (8). The parameter δ satisfies
0 < δ < min(i,j)∈supp(X⋆) |[X⋆]ij |, where X⋆ is the minimizer of Problem (1). Such a condition
can be ensured by setting a sufficiently small positive δ. Then ϵk in (9) is nearly equal to δ. From an
implementation view, we can directly set a small positive ϵk, resulting in the algorithm performing
well in practice. The set of free variables, denoted by Ick, is the complement of Ik.

3.2 Computing approximate Newton direction
While the (approximate) Newton direction usually demands a considerably higher computational cost
than the gradient, our designed direction maintains the same computational order as the gradient.

At the k-th iteration, we first partition Xk into two groups, [Xk]Ik
and [Xk]Ic

k
, where [Xk]Ik

∈ R|Ik|

and [Xk]Ic
k
∈ R|Ic

k| denote two vectors containing all elements of Xk in the sets Ik and Ick,
respectively. Then we can rewrite the search direction Pk in (6) as follows,

pveck(Pk) = Qk pveck(∇f(Xk)), (10)
where pveck(Pk) stacks Pk into a vector, similar to vec(Pk), but places elements from Ick first,
followed by those from Ik. Qk is obtained by permuting the rows and columns of M−1

k in (6). To
enhance computational efficiency, we propose constructing Qk and M−1

k as follows:

Qk =

[M−1
k

]
Ic
kI

c
k

[
M−1

k

]
Ic
kIk[

M−1
k

]
IkIc

k

[
M−1

k

]
IkIk

 =

[H−1
k

]
Ic
kI

c
k

0

0 Dk

 , (11)

where Dk ∈ R|Ik|×|Ik| is a positive definite diagonal matrix, and
[
H−1

k

]
Ic
kI

c
k

∈ R|Ic
k|×|Ic

k| is a

principal submatrix of H−1
k , preserving rows and columns indexed by Ick. Here, Hk is the Hessian

matrix at Xk. The construction of M−1
k in (11) is crucial for defining the search direction, enabling

computation and memory costs comparable to the gradient projection method while effectively
incorporating second-order derivative information.

Next, we compute the approximate Newton direction Pk over the set Ick and present the iterate
[Xk+1]Ic

k
. We define a projection PIc

k
(A) as follows,

[
PIc

k
(A)

]
ij
=

{
Aij if (i, j) ∈ Ick,
0 otherwise.

(12)
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Leveraging the well-designed gradient scaling matrix Qk in (11), we can efficiently compute the
approximate Newton direction, as demonstrated in Proposition 3.3, with proof in Appendix B.2.

Proposition 3.3. If Mk is constructed by (11), then the search direction Pk defined in (6) over Ick
can be written as [Pk]Ic

k
= [XkPIc

k
(∇f(Xk))Xk]Ic

k

.

Using the search direction from Proposition 3.3, we update Xk+1 over Ick as follows,

[Xk+1]Ic
k
= PΩ

(
[Xk]Ic

k
− γk[XkPIc

k
(∇f(Xk))Xk]Ic

k

)
. (13)

For the restricted variables in the set Ik, we directly set them to zero, i.e., [Xk+1]Ik
= 0.

3.3 Computing step size

We adopt an Armijo-like rule for step size selection, ensuring the global convergence of our algorithm.
Based on the iterate proposed in Section 3.2, we define Xk(γk) with [Xk(γk)]Ik

= 0 and

[Xk(γk)]Ic
k
= PΩ

(
[Xk]Ic

k
− γk

[
XkPIc

k
(∇f(Xk))Xk

]
Ic
k

)
. (14)

We test step sizes γk ∈
{
β0, β1, β2, . . .

}
with β ∈ (0, 1), until we find the smallest t ∈ N such that

Xk(γk), with γk = βt, satisfies Xk(γk) ∈ Sp++ and the line search condition:

f(Xk(γk)) ≤ f(Xk)− αγk
〈
[∇f(Xk)]Ic

k
, [Pk]Ic

k

〉
− α

〈
[∇f(Xk)]Ik

, [Xk]Ik

〉
, (15)

where α ∈ (0, 1) is a scalar. We then set Xk+1 = Xk(γk). Positive definiteness of Xk+1 can
be verified during Cholesky factorization for objective function evaluation. It is worth mentioning
that working with the positive semi-definiteness constraint on X instead of positive definiteness
would not change anything in the algorithm if we keep the line search, as the positive definiteness is
automatically enforced due to the form of the objective function.

The line search condition (15) is a variant of the Armijo rule. Condition (15) can be always satisfied
for a small enough step size as shown in Proposition 3.4. Define the feasible set of Problem (1) as

Up :=
{
X ∈ Rp×p |X ∈Mp, Xij = 0, ∀ (i, j) ∈ E

}
. (16)

For any given Xo ∈ Up, define the lower level set of the objective function f for Problem (1) as:

Lf := {X ∈ Up | f(X) ≤ f(Xo)} . (17)

Proposition 3.4. For any Xk ∈ Lf , there exists a γ̄k > 0 such that Xk(γk) ∈ Sp++ and the line
search condition (15) holds for any γk ∈ (0, γ̄k).

The proof of Proposition 3.4 is available in Appendix B.3. We demonstrate that Xk(γk) ensures a
decrease of the objective function value in Proposition 3.5, proved in Appendix B.4.

Proposition 3.5. For any Xk ∈ Lf , if Xk(γk) satisfies the line search condition (15), then we have

f (Xk(γk)) ≤ f (Xk)− αγkm
2
∥∥[∇f(Xk)

]
Ic
k

∥∥2,
where m is a positive scalar (See Lemma B.1 in Appendix).

3.4 Computation and memory costs

In each iteration, our algorithm calculates the gradient, performs two matrix multiplications, and
conducts two projections, with respective computational costs of O(p3), O(p3), and O(p2). In
our current implementation of the line search method, we first conduct the Cholesky factorization
X = LL⊤ using MATLAB’s “chol” function. This function can simultaneously verify the positive
definiteness of X . Next, we calculate the log-determinant function as log det(X) = 2

∑
i log(Lii).

The Cholesky factorization is the most computationally demanding step, generally requiring O(p3)
costs for a p× p matrix.
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Algorithm 1 Fast Projected Newton-like (FPN) algorithm

1: Input: Regularization parameter λij , α, β, S, and X0;
2: for k = 0, 1, 2, . . . do
3: Identify the restricted set Ik and free set Ick according to (8);
4: Compute the search direction over Ick: [Pk]Ic

k
= [XkPIc

k

(
∇f (Xk)

)
Xk]Ic

k

;
5: t← 0;
6: repeat
7: Update Xk+1: [Xk+1]Ik

= 0, and [Xk+1]Ic
k
= PΩ

(
[Xk]Ic

k
− βt[Pk]Ic

k

)
;

8: t← t+ 1;
9: until Xk+1 ≻ 0, and

f (Xk+1) ≤ f (Xk)− αβt
〈
[∇f(Xk)]Ic

k
, [Pk]Ic

k

〉
− α

〈
[∇f(Xk)]Ik

, [Xk]Ik

〉
.

10: end for

To mitigate the computational burden associated with Cholesky factorization, we suggest a more
efficient method for evaluating the log-determinant function and verifying positive definiteness,
as presented in [38]. This method, which leverages Schur complements and sparse linear system
solving, can tackle problems of up to 106 dimensions. Furthermore, it is worthwhile to investigate
more efficient strategies for computing an approximate log-determinant function. In this context,
the approach proposed in [39] offers a nearly linear scaling of execution time with the number of
non-zero entries, while maintaining a high level of accuracy.

In summary, our algorithm has an overall complexity of O(p3) per iteration. BCD-type algorithms
[2, 3, 8] need O(p4) operations per cycle, while projected quasi-Newton with L-BFGS [36] requires
O((m+p)p2) operations per iteration, with m as the stored iteration count for Hessian approximation.
The PPA algorithm [9] requires computing an inexact Newton direction from a p2 × p2 linear system
during each inner loop iteration, with the exact complexity not established. In addition, our algorithm,
gradient projection and BCD-type methods [2, 3, 8] need O(p2) memory costs, while projected
quasi-Newton with L-BFGS [36] requires O(mp2) and PPA [9] demands O(p4).

4 Convergence Analysis

Prior to delving into the convergence analysis, we first establish the uniqueness of the minimizer for
Problem (1) and determine the sufficient and necessary conditions for a point to be the minimizer.
Theorem 4.1. The minimizer of Problem (1) is unique, and a point X⋆ ∈ Mp is the minimizer if
and only if it satisfies

[X⋆]ij = 0 ∀ (i, j) ∈ E , [∇f(X⋆)]V\E ≤ 0, and [∇f(X⋆)]Vc = 0, (18)

where V = {(i, j) ∈ [p]2 | [X⋆]ij = 0}.

The proof of Theorem 4.1 is available in Appendix B.5. The following theorem shows that our
algorithm converges to the minimizer of Problem (1).
Theorem 4.2. The sequence {Xk} generated by Algorithm 1 with X0 ∈ Lf converges to the
minimizer X⋆ of Problem (1), with {f(Xk)} monotonically decreasing.

The proof of Theorem 4.2 is available in Appendix B.6. It is worth noting that constructing an initial
point X0 ∈ Lf , as defined in (17), is straightforward. Please refer to the proof of Theorem 4.2 for
more details on this. The theoretical analysis on support set convergence and sequence convergence
rate relies on the following assumption.
Assumption 4.3. For the minimizer X⋆ of Problem (1), we assume that the gradient of the objective
function f at X⋆ satisfies [

∇f(X⋆)
]
ij
< 0, ∀ (i, j) ∈ V \ E ,

where V =
{
(i, j) ∈ [p]2

∣∣ [X⋆
]
ij
= 0

}
, and E is the disconnectivity set.
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Theorem 4.4. Under Assumption 4.3, the set of free variables Ick generated by Algorithm 1 converges
to the support of the minimizer X⋆ of Problem (1) in finite iterations. In other words, there exists
some ko ∈ N+ such that Ick = supp(X⋆) for any k ≥ ko.

The proof of Theorem 4.4 is provided in Appendix B.7. Theorem 4.4 demonstrates that the set of free
variables constructed by our variable partitioning scheme can exactly identify the support of X⋆ in
finite iterations. Now we establish the convergence rate of our algorithm. Define

Rk =
[
Hk

]
Ic
kI

c
k

−
[
Hk

]
Ic
kIk

[
Hk

]−1

IkIk

[
Hk

]⊤
Ic
kIk

. (19)

Theorem 4.5. Under Assumption 4.3, the sequence {Xk} generated by Algorithm 1 satisfies

lim sup
k→∞

∥∥Xk+1 −X⋆
∥∥2
Mk∥∥Xk −X⋆

∥∥2
Mk

≤ lim sup
k→∞

(
1−min

(
mk,

2(1− α)βmk

Mk

))2

,

where mk and Mk as the smallest and largest eigenvalues of R− 1
2

k

[
Hk

]
Ic
kI

c
k

R
− 1

2

k , respectively.

The proof of Theorem 4.5 is provided in Appendix B.8. Theorem 4.5 reveals that the convergence
rate of our algorithm depends on the condition number mk/Mk of R− 1

2

k [Hk]Ic
kI

c
k
R

− 1
2

k . Replacing
Rk with an identify matrix, (i.e., using the projected gradient method) results in a rate dependent on
the condition number of [Hk]Ic

kI
c
k
. The condition number of R− 1

2

k [Hk]Ic
kI

c
k
R

− 1
2

k could be larger, as
Rk could approximate [Hk]Ic

kI
c
k

well. Thus, the gradient scaling matrix R−1
k , i.e., [H−1

k ]Ic
kI

c
k

in
(11), leads our algorithm to converge faster than the projected gradient method.

It is important to note that our algorithm generally does not achieve superlinear convergence, despite
the incorporation of second-order information. Superlinear convergence necessitates that the inverse
gradient scaling matrix progressively approximate the Hessian at the minimizer [40]. However,
this is a condition that our constructed scaling matrix does not meet. Despite this, we should note
that constructing a search direction to achieve superlinear convergence proves significantly more
computationally demanding than our approach, as it cannot leverage the special structure of the
Hessian to decrease the computational load.

5 Experimental Results

We conduct experiments on synthetic and real-world data to verify the performance of our algorithm.
All experiments were conducted on 2.10GHZ Xeon Gold 6152 machines and Linux OS, and all
methods were implemented in MATLAB. State-of-the-art methods for comparisons include:

• BCD [2]: Updates each column/row of primal variable using a nonnegative quadratic program.
• optGL [8]: Similar to BCD but solves nonnegative quadratic programs on the dual variable.
• GGL [3]: Similar to BCD but handles disconnectivity constraints, while BCD and optGL cannot.
• PGD [13]: Projected gradient descent method with backtracking line search.
• APGD [41]: Accelerated projected gradient algorithm with extrapolation step.
• PPA [9]: Inexact proximal point algorithm with Newton-CG method.
• PQN-LBFGS[36]: Projected quasi-Newton method using limited-memory BFGS.

Note that all state-of-the-art methods listed above can converge to the minimizer of Problem (1), and
we focus on the comparison of computational time for those methods. To that end, we report the
relative error of the objective function value as a function of the run time, which is calculated by

|f(Xk)− f(X⋆)|/|f(X⋆)|, (20)
where f is the objective function of Problem (1), and X⋆ is its minimizer. The X⋆ is computed by
running the state-of-the-art method GGL [3] until it converges to a point Xk ∈Mp satisfying

[Xk]ij = 0 ∀ (i, j) ∈ E , [∇f(Xk)]A\E ≤ 0, ∥[∇f(X⋆)]Ac∥max ≤ 10−8, (21)

where A := {(i, j) ∈ [p]2
∣∣ |[Xk]ij | ≤ 10−8}. Through the comparison with the sufficient and

necessary conditions of the unique minimizer of Problem (1) presented in Theorem 4.1, we can see
that any point Xk satisfying the conditions in (21) is sufficiently close to the minimizer.
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Figure 1: Illustration of BA graphs of degree one (a) and degree two (b) with 500 nodes. (c)
Convergence comparison between our algorithm and the Newton direction from Proposition 3.1.

5.1 Synthetic data

We generate independent samples y(1), . . . ,y(n) ∈ Rp from a multivariate Gaussian distribution with
zero mean and precision matrix Θ, where Θ ∈ Mp is the underlying precision matrix associated
with a graph consisting of p nodes. We use the Barabási–Albert (BA) model [42] to generate the
support of the underlying precision matrix. To help readers to know well the BA graphs, we present
two examples in Figure 1. More details about experimental setting are provided in Appendix A.

5.1.1 Comparisons of search directions

We evaluate the convergence of algorithms with different search directions. Figure 1 (c) demonstrates
that our algorithm, using the direction from Proposition 3.3, converges to the minimizer, aligning
with our theoretical convergence results in Theorem 4.2. In contrast, the algorithm using iterate (5)
and the Newton direction from Proposition 3.1 stops decreasing the objective function value after a
few iterations, indicating that this direction cannot be consistently regarded as a descent direction.
The algorithm selects the step size through the Armijo rule, i.e., it is continually reduced until a
decrease in the objective function is achieved.

5.1.2 Comparisons of computational time

We evaluate the computational time of our algorithm and state-of-the-art methods on synthetic
datasets, averaging results over 10 realizations. We plot markers every 10 iterations for PGD, APGD,
PQN-LBFGS, and FPN, while marking each cycle of updating all columns/rows for BCD-type
algorithms (BCD, GGL, and optGL) and each outer iteration for PPA.

Figure 2 compares the computational time of various methods for solving Problem (1) on BA
graphs of degree one. Our proposed FPN significantly outperforms all state-of-the-art methods in
convergence time for node counts ranging from 1000 to 5000. BCD and GGL are efficient at 1000
nodes, being faster than PGD and APGD, and competitive with PQN-LBFGS and PPA. However, at
5000 nodes, BCD and GGL become slower due to the O(p4) operations per cycle required to solve p
nonnegative quadratic programs, leading to rapidly increasing computational costs.
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Figure 2: Relative errors of the objective function values versus time on BA graphs of degree one.
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Figure 3: Relative errors of the objective function value versus time on BA graphs of degree two.
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Figure 4: Relative errors of objective function values versus time on data sets: (a) BA graph of degree
one and (b) BA graph of degree two, imposing disconnectivity constraints. (c) Run time versus
numbers of nonzero elements in precision matrices across varying regularization parameter values,
with the underlying precision matrix having 2998 nonzero elements (indicated by vertical red line).

Figure 3 presents the computational time of different methods on BA graphs of degree two. As with
degree one graphs, FPN outperforms state-of-the-art methods in computational time for varying
node counts. PQN-LBFGS and FPN require fewer iterations to converge to the minimizer than PGD
and APGD, particularly in high dimensions (e.g., p = 5000), indicating faster convergence. This
is because both PQN-LBFGS and FPN utilize second-order information and approximate Newton
direction, overcoming low convergence rates of first-order methods in high-dimensional cases.

Figure 4 (a) and (b) compare the computational time of various algorithms solving Problem (1) with
disconnectivity constraints, where FPN consistently converges fastest. (c) evaluates the impact of the
estimated precision matrix’s sparsity level on run time. BCD, GGL, PPA, and FPN exhibit stable run
time across varying sparsity levels, highlighting their robustness regarding regularization parameter
settings, while other methods display increased run time as sparsity decreases.

5.2 Real-world data

We perform experiments on two real-world datasets: the concepts dataset and a financial time-series
dataset. For the concepts dataset, we compare the computational time of different algorithms solving
Problem (1). The experimental results on the financial time-series dataset are provided in Appendix A,
where we examine the performance of our method in graph edge recovery.

The concepts dataset [43], from Intel Labs, comprises 1000 nodes and 218 semantic features, with
p = 1000 and n = 218. Nodes represent concepts like "house," "coat," and "whale," while semantic
features are questions like "Can it fly?", "Is it alive?", and "Can you use it?". Responses, collected
via Amazon Mechanical Turk, range from "definitely no" to "definitely yes" on a five-point scale.

Figure 5 (a) compares the run time of various algorithms solving Problem (1) on the concepts
dataset. Our proposed algorithm converges to the minimizer considerably faster than state-of-the-art
algorithms, which is consistent with the observations in synthetic experiments. Note that all compared
algorithms can reach the minimizer of Problem (1), and thus learn the same graph.
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Figure 5: (a) Relative errors of the objective function values versus time for different algorithms in
solving Problem (1) on the concepts data set, consisting of 1000 nodes. (b) The connected subgraph
illustrated by the minimizer on the concepts data set, which consists of 132 nodes.

Figure 5 (b) displays a connected subgraph illustrated by the minimizer of Problem (1). Interestingly,
it is observed that the learned graph forms a semantic network, where related concepts are closely
connected. For instance, insect concepts such as “bee”, “butterfly”, “flea”, “mosquito”, and “spider”
are grouped together, while human-related concepts like “baby”, “husband”, “child”, “girls”, and
“man” form another group. Moreover, the network connects “penguin” closely to birds like “owl’ and
“crow” and sea animals like “goldfish” and “seal”, highlighting its aquatic bird nature. Overall, the
learned network effectively captures concept relationships.

6 Conclusions and Discussions

In this paper, we have introduced a fast projected Newton-like method for estimating precision
matrices under MTP2 constraints. Our algorithm, leveraging the two-metric projection method,
stands out from existing BCD and PPA-type approaches for addressing the target problem. The
proposed algorithm is not only straightforward to implement but also efficient in terms of computation
and memory usage. We have provided theoretical convergence analysis and conducted extensive
experiments, which clearly demonstrate the superior efficiency of our algorithm in computational
time, outperforming state-of-the-art methods. Moreover, we have observed significant performance
of our method in terms of modularity value on the learned financial time-series graphs.

Finally, we discuss the limitations of our paper. Our algorithm is proven to converge to the minimizer
without any assumptions; however, we require Assumption 4.3 to establish support set convergence
in finite iterations and to determine the convergence rate. This assumption is relatively mild, as
Theorem 4.1 shows that the minimizer X⋆ must satisfy [∇f(X⋆)]ij ≤ 0 for each (i, j) ∈ V\E .
The only additional requirement in Assumption 4.3 is the strictness of this inequality. However,
the conditions for ensuring this strictness remain unclear. As this assumption is equivalent to the
strict complementary slackness condition in optimization theory, exploring verifiable conditions to
guarantee Assumption 4.3 could enrich our algorithm’s insights.
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In the following sections, we provide more details on experimental settings and additional
experimental results for financial time-series data in Appendix A and the proofs for Propositions 3.1,
3.3, 3.4, and 3.5, as well as Theorems 4.1, 4.2, 4.4, and 4.5 in Appendix B.

A Additional Experiments

We first provide an in-depth description of the experimental settings, then present numerical
experiments carried out on the financial time-series data.

A.1 Experimental settings

We examine Barabasi-Albert (BA) graphs [42] as a model for the support structure of the underlying
precision matrix. BA models hold a significant position in network science due to their ability to
generate random scale-free networks via a preferential attachment mechanism. This mechanism
ensures that newly introduced nodes are more likely to connect with nodes that possess a higher
degree during the network’s evolution. Scale-free networks serve as suitable models for various
systems, including the Internet, protein interaction networks, citation networks, as well as the majority
of social and online networks [42].

In a BA graph with degree r, each new node connects to r pre-existing nodes, with the probability of
connection being proportional to the number of edges the existing nodes currently have. In this paper,
we consider r values of 1 and 2.

Following the procedures detailed in [44], we assign a positive weight to each edge of a graph and set
a zero weight for disconnected nodes. Positive weights are uniformly sampled from U(2, 5). This
process results in a weighted adjacency matrix A containing all the graph weights. Then we adopt
the procedures outlined in [2] for generating the underlying precision matrix Θ. We first set

Θ̃ = δI −A, with δ = 1.05λmax

(
A
)
, (22)

where λmax

(
A
)

represents the largest eigenvalue of A. In this context, the weight is zero if two
nodes are disconnected, and follows a uniform distribution U(2, 5) when nodes are connected. Lastly,
we define Θ = DΘ̃D, where D is a diagonal matrix selected such that the covariance matrix Θ−1

has unit diagonal elements.

We set the regularization parameter λij in Problem (1) as follows

λij =
σ∣∣[X̂]ij
∣∣+ ϵ

, ∀ i ̸= j, (23)

where X̂ represents an estimator, ϵ is set to 10−3, and σ > 0 is a parameter that adjusts the sparsity.
The function in (23) is closely related to the re-weighted ℓ1-norm regularization [14, 45, 46], which
effectively enhances the sparsity of the solution and reduces the estimation bias resulting from the
ℓ1-norm [47]. We employ the maximum likelihood estimator as X̂ , i.e., the minimizer of Problem (1)
without the sparsity regularization. Note that one can solve the maximum likelihood estimator with
a relatively large tolerance to obtain a coarse estimator, and alternative monotonically decreasing
functions may be explored in (23). For PQN-LBFGS, we utilize the previous 50 updates to compute
the search direction. For FPN, we set ϵk = 10−15 in (8) for identifying the set of restricted variables.

For calculating the relative error as defined in (20), there is no additional computational cost for PGD,
APGD, PQN-LBFGS and FPN, since the objective function value is already evaluated within the
backtracking line search during each iteration. In contrast, BCD, optGL, and GGL do not require
evaluating the objective function, leading to an extra computational cost when computing the relative
error in (20) for comparison purposes. However, this additional cost can be considered negligible,
as these methods only compute the objective function value after completing a cycle. Moreover,
the number of cycles needed for BCD, optGL, and GGL is substantially fewer than the number of
iterations required by other methods.
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A.2 Financial time-series data

We carry out numerical experiments on a financial time-series dataset to evaluate the performance of
our method in recovering graph edges. The applicability of MTP2 models on financial time-series
data is well-established, as market factors lead to positive dependencies among stocks [5].

The dataset consists of 201 stocks composing the S&P 500 index, spanning the period from January
1, 2017, to January 1, 2020, yielding 753 observations per stock, i.e., p = 201 and n = 753. We
construct the log-returns data matrix as Xi, j = logPi,j − logPi−1,j , where Pi,j represents the
closing price of the j-th stock on the i-th day. The stocks are categorized into five sectors based on
the Global Industry Classification Standard (GICS) system: Consumer Staples, Utilities, Industrials,
Information Technology, and Energy.

Directly assessing the correctness of the learned graph edges is not feasible in financial time-series
data, as the underlying graph structure remains unknown. However, we expect stocks from the same
sector to have interconnected edges. To measure the performance of edge recovery, we employ the
modularity metric [48]. Given a graph G = (V,E), where V represents the vertex set and E denotes
the edge set, the modularity is defined as:

Q :=
1

2|E|
∑
i,j∈V

(
Aij −

didj
2|E|

)
δ(ci, cj), (24)

where Aij = 1 if (i, j) ∈ E, and 0 otherwise. di represents the number of edges connected to node
i, ci indicates the type of node i, and δ(·, ·) refers to the Kronecker delta function, with δ(a, b) = 1
if a = b and 0 otherwise. A stock graph with high modularity exhibits dense connections among
stocks within the same sector and sparse connections between stocks in distinct sectors. A higher
modularity value implies a more faithful representation of the underlying stock network.

(a) Glasso, Q = 0.47 (b) FPN, Q = 0.65 (c) FPN(E), Q = 0.67

Figure 6: Financial time-series graphs learned via (a) Glasso, (b) FPN, and (c) FPN(E).

Figure 6 demonstrates that the performances of our proposed FPN and FPN(E) are better than that
of Glasso [22], since the majority of connections in graphs learned through FPN and FPN(E) occur
between nodes within the same sector. In contrast, only a few connections (depicted as gray-colored
edges) exist between nodes from different sectors. Both FPN and FPN(E) achieve higher modularity
values compared to Glasso, indicating that the former have a higher degree of interpretability than the
latter. Furthermore, we observe that FPN(E) moderately enhances the performance of FPN.

We fine-tune the sparsity regularization parameter for each method based on the modularity value,
allowing only a limited number of isolated nodes. Note that increasing the regularization parameter
for Glasso would result in numerous isolated nodes that cannot be grouped. FPN(E) refers to the
application of FPN for solving Problem (1) with a disconnectivity set E . This set is obtained through
hard thresholding on the MLE, which is also used in computing regularization weights in (23).
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B Proofs

In this section, we provide the proofs for Propositions 3.1, 3.3, 3.4, and 3.5, as well as Theorems 4.1,
4.2, 4.4, and 4.5.

B.1 Proof of Proposition 3.1

Proof. The Hessian matrix at Xk has the form:

Hk = X−1
k ⊗X−1

k .

Then we obtain
H−1

k = Xk ⊗Xk.

Following from the property of the Kronecker product that vec (ABC) =
(
C⊤ ⊗A

)
vec(B), we

can obtain
vec (Pk) = H−1

k vec (∇f(Xk)) = vec (Xk∇f(Xk)Xk) .

As a result, we have
Pk = Xk∇f(Xk)Xk,

completing the proof.

B.2 Proof of Proposition 3.3

Proof. Following from (10) and (11), we obtain[
Pk

]
Ic
k

=
[
H−1

k

]
Ic
kI

c
k

[
∇f(Xk)

]
Ic
k

=
[
H−1

k vec
(
PIc

k
(∇f(Xk))

) ]
Ic
k

,

where projection PIc
k

is defined in (12). For ease of presentation, by a slight abuse of notation, both
[A]Ic

k
∈ R|Ic

k| and [vec (A)]Ic
k
∈ R|Ic

k| represent a vector containing all elements of A in the set Ick.
Following from the fact that vec (ABC) =

(
C⊤ ⊗A

)
vec(B) and H−1

k = Xk ⊗Xk, we have

H−1
k vec

(
PIc

k
(∇f(Xk))

)
= vec

(
XkPIc

k
(∇f (Xk))Xk

)
.

By collecting the elements in the set Ick, we obtain[
Pk

]
Ic
k

=
[
XkPIc

k
(∇f (Xk))Xk

]
Ic
k

,

completing the proof.

B.3 Proof of Propositio 3.4

To prove Propositio 3.4, we first establish Lemma B.1 below to show that the lower level set of the
objective function is compact. We note that Lemma B.1 depends on the condition that the sample
covariance matrix has strictly positive diagonal elements, which is assumed throughout the paper and
holds with probability one.

Lemma B.1. The lower level set Lf defined in (17) is nonempty and compact, and for any X ∈ Lf ,
we have

mI ⪯X ⪯MI,

where m and M are two positive scalars.

Proof. We first show that the largest eigenvalue of any X ∈ Lf can be upper bounded by M . The
objective function of (1) can be written as

f(X) = − log det(X) + tr (XG) ,

where G = S − λ with λ defined by

[λ]ij =

 λij if i ̸= j,

0 otherwise.
(25)
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Define two constants
µ := min

i
Gii, and υ := max

i ̸=j, (i,j)/∈E
|Gij |.

Note that µ > 0 because Sii > 0 for each i ∈ [p]. Then one has

tr (XG) =
∑
i

GiiXii +
∑
i ̸=j

GijXij ≥ µtr (X) + υ
∑
i ̸=j

Xij , (26)

where the inequality follows from the fact that Xij ≤ 0 for i ̸= j, and Xij = 0 for (i, j) ∈ E . We
denote the largest eigenvalue of X by λmax(X). Then we have

λmax(X) ≤ tr (X) ≤ 1

µ

(
tr (XG) + υ

∑
i ̸=j

|Xij |
)
, (27)

where the second inequality follows from (26). In what follows, we bound the terms tr (XG) and∑
i ̸=j Xij . For any X ∈ Lf , one has f(Xo) ≥ − log det(X) + tr (XG). Therefore, the term

tr (XG) can be bounded by

tr (XG) ≤ f(Xo) + log det(X) ≤ f(Xo) + p log (λmax(X)) . (28)

Let λ′ := mini̸=j, (i,j)/∈E λij . Then one has∑
i̸=j

|Xij | ≤
1

λ′

∑
i ̸=j

λij |Xij | ≤
1

λ′

(
f(Xo) + p log (λmax(X))

)
, (29)

where the last inequality follows from
∑

i ̸=j λij |Xij | ≤ tr (XG), because tr (XS) ≥ 0 since
X ∈ Sp++ and S ∈ Sp+. Together with (27), (28) and (29), we obtain

λmax(X) ≤ 1

µ

(
1 +

υ

λ′

)(
f(Xo) + p log (λmax(X))

)
.

Since log (λmax(X)) grows much slower than λmax(X), λmax(X) can be upper bounded by a
constant M , which depends on f(Xo), S, and λ.

We denote the smallest eigenvalue of X by λmin(X). For any X ∈ Lf , one has

f(Xo) ≥ f(X) ≥ − log det(X) ≥ − log λmin(X)− (p− 1) logM.

As a result, we have λmin(X) ≥ e−f(Xo)M−(p−1), which shows that λmin(X) can be lower
bounded by a positive constant m = e−f(Xo)M−(p−1). Finally, we show that the lower level set
Lf is compact. First, Lf is closed because f is a continuous function. Second, Lf is also bounded
because it is a subset of {X ∈ Rp×p|mI ⪯X ⪯MI}.

Proof of Propositio 3.4. We first show that Xk(γk) ∈ S++ holds for a small enough step size. The
Xk(γk) can be equivalently written in the form Xk(γk) = Zk − γkGk, where Zk ∈ Rp×p defined
by [Zk]ij = [Xk]ij if (i, j) ∈ Ick, and 0 otherwise. Gk is some search direction only over Ick, which
is a symmetric matrix. It is known that a matrix A is a nonsingular M-matrix if and only if A is a
Z-matrix and there exists a vector x > 0 with Ax > 0 [49]. Following from the fact that Xk is a
nonsingular M-matrix, there exists x > 0 such that

Zkx ≥Xkx > 0.

Therefore, Zk is also a nonsingular M-matrix, implying that Zk ∈ S++. As a result, if γk <
λmin(Zk)/ρ(Gk), where ρ(Gk) is the spectral radius of Gk, then Xk(γk) ∈ S++. The definition
of Xk(γk) further guarantees that Xk(γk) ∈ Up. We can verify that f(X) = +∞ for any X ∈
cl(Up) \ Up, where X is positive semidefinite and singular. Thus, we consider an Xo ∈ Up with
f(Xo) is sufficiently large such that f(Xk(γk)) ≤ f(Xo). Therefore, Xk(γk) ∈ Lf .

Next we prove that the line search condition (15) holds for a small enough step size. Recall that Ick is
the complement of the set Ik defined in (8). For any Xk ∈ Lf , the set Ick can be represented as

Ick = T c(Xk, ϵk) ∩ Ec =
5⋃

l=1

B(l)k ,
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where B(l)k , l = 1, . . . , 5, are defined as

B(1)k =
{
(i, j) ∈ Ec | − ϵk ≤

[
Xk

]
ij
≤ 0,

[
∇f(Xk)

]
ij
≥ 0,

[
Pk

]
ij
< 0

}
,

B(2)k =
{
(i, j) ∈ Ec | − ϵk ≤

[
Xk

]
ij
≤ 0,

[
∇f(Xk)

]
ij
≥ 0,

[
Pk

]
ij
≥ 0

}
,

B(3)k =
{
(i, j) ∈ Ec |

[
Xk

]
ij
< −ϵk,

[
Pk

]
ij
< 0

}
,

B(4)k =
{
(i, j) ∈ Ec |

[
Xk

]
ij
< −ϵk,

[
Pk

]
ij
≥ 0

}
,

B(5)k =
{
(i, j) ∈ Ec |

[
Xk

]
ij
> 0

}
.

Each subset B(l)k is disjoint with each other. B(5)k only contains the indexes of the diagonal elements
of Xk, whiles the other subsets include the indexes of the off-diagonal elements. Then one has, for
any (i, j) ∈ B(1)k and γk > 0,

0 ≤
[
Xk(γk)

]
ij
−
[
Xk

]
ij
=

[
PΩ

(
Xk − γkPk

)]
ij
−

[
Xk

]
ij
≤ −γk [Pk]ij . (30)

For any (i, j) ∈ B(2)k and γk > 0, one has
[
Xk(γk)

]
ij
−
[
Xk

]
ij
= −γk [Pk]ij . For any (i, j) ∈ B(3)k ,

if the step size satisfies
0 < γk ≤ min

(i,j)∈B(3)
k

ϵk∣∣ [Pk]ij
∣∣ , (31)

then one has
[
Xk(γk)

]
ij
−

[
Xk

]
ij

= −γk
[
Pk

]
ij

. Similarly, for any (i, j) ∈ B(4)k and γk > 0,[
Xk(γk)

]
ij
−
[
Xk

]
ij
= −γk

[
Pk

]
ij

. Finally, for any (i, j) ∈ B(5)k ,
[
Xk

]
ij

must be on the diagonal
of Xk. Therefore, we can directly remove the projection PΩ, and obtain

[
Xk(γk)

]
ij
−

[
Xk

]
ij
=

−γk
[
Pk

]
ij

. Therefore, if (31) holds, one has〈[
∇f(Xk)

]
Ic
k

,
[
Xk(γk)

]
Ic
k

−
[
Xk

]
Ic
k

〉
≤ −γk

〈[
∇f(Xk)

]
Ic
k

,
[
Pk

]
Ic
k

〉
, (32)

where the inequality follows from (30). Recall that
[
Xk(γk)

]
Ik

= 0, which can be equivalently
expressed as the form of projected gradient descent:[

Xk(γk)
]
Ik

= PΩ

([
Xk

]
Ik
− γk

[
D̃k ⊙∇f(Xk)

]
Ik

)
, (33)

where we write PΩ

(
[A]Ik

)
for

[
PΩ(A)

]
Ik

with a slight abuse of notation, and D̃k is defined as[
D̃k

]
ij
=

ϵk

γk
∣∣[∇f(Xk)]ij

∣∣ , ∀ (i, j) ∈ Ik \ E .

Then one has∥∥Xk(γk)−Xk

∥∥2
F

≤γ2
k

〈[
Pk

]
Ic
k

,
[
Pk

]
Ic
k

〉
− γk

〈[
D̃k ⊙∇f(Xk)

]
Ik

,
[
Xk(γk)

]
Ik
−

[
Xk

]
Ik

〉
≤γ2

k

〈[
Pk

]
Ic
k

,
[
Pk

]
Ic
k

〉
+ ak

〈[
∇f(Xk)

]
Ik
,
[
Xk

]
Ik

〉
,

(34)

where ak =
ϵk∥∥[∇f(Xk)
]
Tk\E

∥∥
min

, and Tk represents T (Xk, ϵk). Note that Ik = Tk ∪ E , and

[Xk]ij = [Xk(γk)]ij = 0 for any (i, j) ∈ E .

It is worth mentioning that we primarily focus on cases with non-empty Tk. In the rare event that Tk
is empty, such as when Tδ is empty (in this situation we define ϵk = δ, leading to an empty Tk), we
can simply ignore the terms related to Ik in (34) and the following proof.

Furthermore, one has〈[
Pk

]
Ic
k

,
[
Pk

]
Ic
k

〉
≤

∥∥[M−1
k

] 1
2

Ic
kI

c
k

∥∥2
2

∥∥[M−1
k

] 1
2

Ic
kI

c
k

[
∇f(Xk)

]
Ic
k

∥∥2
= λmax

([
M−1

k

]
Ic
kI

c
k

)〈[
∇f(Xk)

]
Ic
k

,
[
Pk

]
Ic
k

〉
.

(35)
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The largest eigenvalue of
[
M−1

k

]
Ic
kI

c
k

can be bounded by

λmax

([
M−1

k

]
Ic
kI

c
k

)
≤ λmax

(
H−1

k

)
= λmax (Xk ⊗Xk) ≤M2, (36)

where the first inequality follows from the Eigenvalue Interlacing Theorem, and the second inequality
follows from Lemma B.1. Combining (34), (35) and (36) yields∥∥Xk(γk)−Xk

∥∥2
F
≤ γ2

kM
2
〈[
∇f(Xk)

]
Ic
k

,
[
Pk

]
Ic
k

〉
+ ak

〈[
∇f(Xk)

]
Ik
,
[
Xk

]
Ik

〉
.

Since Xk(γk) ∈ Lf , we obtain

f (Xk(γk))− f (Xk) ≤
〈
∇f(Xk), Xk(γk)−Xk

〉
+

1

2m2

∥∥Xk(γk)−Xk

∥∥2
F
, (37)

where the inequality follows from

λmax

(
∇2f(X)

)
= λmax

(
X−1 ⊗X−1

)
= λ2

max(X
−1) ≤ 1

m2
, ∀X ∈ Lf ,

where the inequality follows from Lemma B.1.

Let γ̄k = min
(2(1− α)m2

M2
, min
(i,j)∈B(3)

k

ϵk∣∣ [Pk]ij
∣∣ , λmin(Zk)

ρ(Gk)

)
. Note that γ̄k is bounded away from

zero, because each [Pk]ij is bounded following from Lemma B.1. To this end, for any γk ∈ (0, γ̄k),

f (Xk(γk))− f (Xk) ≤−αγk
〈[
∇f(Xk)

]
Ic
k

,
[
Pk

]
Ic
k

〉
− α

〈[
∇f(Xk)

]
Ik
,
[
Xk

]
Ik

〉
, (38)

where the inequality follows from (32), the definition of ϵk in (9), the inequality∥∥[∇f(Xk)
]
Tδ\E

∥∥
min

≤
∥∥[∇f(Xk)

]
Tk\E

∥∥
min

, because Tk ⊆ Tδ, and the inequality〈[
∇f(Xk)

]
Ic
k

,
[
Pk

]
Ic
k

〉
≥ 0, because

[
M−1

k

]
Ic
kI

c
k

is positive definite and〈[
∇f(Xk)

]
Ic
k

,
[
Pk

]
Ic
k

〉
=

〈[
∇f(Xk)

]
Ic
k

,
[
M−1

k

]
Ic
kI

c
k

[
∇f(Xk)

]
Ic
k

〉
, (39)

completing the proof.

B.4 Proof of Proposition 3.5

Proof. The line search condition (15) leads to

f (Xk(γk))− f (Xk) ≤ −αγk
〈[
∇f(Xk)

]
Ic
k

,
[
M−1

k

]
Ic
kI

c
k

[
∇f(Xk)

]
Ic
k

〉
, (40)

where the inequality follows from 〈[
∇f(Xk)

]
Ik
,
[
Xk

]
Ik

〉
≥ 0.

We further have

λmin

([
M−1

k

]
Ic
kI

c
k

)
≥ λmin(H

−1
k ) = λmin(Xk ⊗Xk) ≥ m2, (41)

where the first and second inequalities follow from Eigenvalue Interlacing Theorem and Lemma B.1,
respectively. We complete the proof by combining (40) and (41).

B.5 Proof of Theorem 4.1

Proof. We first prove that Problem (1) has at least one minimizer. It is known by the Weierstrass’
extreme value theorem [50] that the set of minima is nonempty for any lower semicontinuous function
with a nonempty compact lower level set. Therefore, the existence of the minimizers for Problem (1)
can be guaranteed by Lemma B.1.

On the other hand, we show that Problem (1) has at most one minimizer by its strict convexity. We
have ∇2f(X) = X−1 ⊗X−1. Thus ∇2f(X) ≻ 0 for any X in the feasible region of Problem
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(1) defined in (16). Therefore, Problem (1) is strictly convex, and thus has at most one minimizer.
Together with the existence of the minimizers, we conclude that Problem (1) has an unique minimizer.

The Lagrangian of Problem (1) is

L (X,Y ) = − log det(X) + tr (XS) + ⟨Y − λ,X⟩, (42)

where Y is a KKT multiplier with Yii = 0 for i ∈ [p], and λ is defined in (25).

For a convex optimization problem with Slater’s condition holding, a pair is primal and dual optimal
if and only if the KKT conditions hold. Thus, (X⋆,Y ⋆) is primal and dual optimal if and only if it
satisfies the KKT conditions of (1) as below,

−(X⋆)−1 + S − λ+ Y ⋆ = 0; (43)
X⋆

ij = 0, ∀ (i, j) ∈ E ; (44)

X⋆
ijY

⋆
ij = 0, X⋆

ij ≤ 0, Y ⋆
ij ≥ 0, ∀ i ̸= j and (i, j) /∈ E ; (45)

Y ⋆
ii = 0, ∀ i ∈ [p]. (46)

We first prove that the minimizer X⋆ must satisfy all conditions in (18). Note that the KKT conditions
(43)-(46) must hold for the minimizer X⋆. Let V =

{
(i, j) ∈ [p]2 |X⋆

ij = 0
}

. First, X⋆
ij = 0 for any

(i, j) ∈ E following from (44). Second, for any (i, j) with i ̸= j and (i, j) ∈ Vc, we have X⋆
ij ̸= 0

and (i, j) /∈ E . Following from (45), we further obtain Y ⋆
ij = 0. Together with (46), we conclude that

Y ⋆
ij = 0 for any (i, j) ∈ Vc. Following from (43),

[
∇f(X⋆)

]
Vc = 0. Since X⋆ is positive definite,

(i, i) ∈ Vc for any i ∈ [p]. Then, for any (i, j) ∈ V\E , we have i ̸= j, thus obtain Y ⋆
ij ≥ 0 according

to (45). Following from (43), we get
[
∇f(X⋆)

]
V\E ≤ 0.

Now we prove that any point X⋆ ∈ Mp satisfying the conditions in (18) must be the minimizer,
i.e., the KKT conditions (43)-(46) hold for X⋆. We construct Y ⋆ by Y ⋆ = −∇f(X⋆). First, it is
straightforward to check that the conditions (43) and (44) hold. Second, we have

[Y ⋆]Vc = −[∇f(X⋆)]Vc = 0. (47)

We know that (i, i) ∈ Vc for any i ∈ [p], since X⋆ ∈ Mp. Together with (47), we obtain that the
condition (46) holds.

Finally, following from the fact that (i, i) ∈ Vc for any i ∈ [p] and E ⊆ V , we obtain{
(i, j) ∈ [p]2 | i ̸= j, (i, j) /∈ E

}
= I1 ∪ I2,

where I1 =
{
(i, j) ∈ [p]2 | (i, j) ∈ Vc, i ̸= j

}
, and I2 =

{
(i, j) ∈ [p]2 | (i, j) ∈ V, (i, j) /∈ E

}
. For

any (i, j) ∈ I1, we have Y ⋆
ij = 0 according to (47), and X⋆

ij < 0 since X⋆ ∈Mp. Thus the condition
(45) holds for any (i, j) ∈ I1. For any (i, j) ∈ I2, we have X⋆

ij = 0, and Y ⋆
ij = −[∇f(X⋆)]ij ≥ 0

according to the second condition in (18). Thus the condition (45) also holds for any (i, j) ∈ I2.
Totally, the condition (45) holds. To sum up, all KKT conditions (43)-(46) hold for any X⋆ ∈Mp

satisfying the conditions in (18), and thus we conclude that X⋆ is the minimizer of Problem (1).

B.6 Proof of Theorem 4.2

Proof. Following from Proposition 3.4, for any iterate Xk ∈ Lf , a small enough step size ensures
that the line search condition (15) holds, which leads to a sufficient decrease of the objective function
as shown in Theorem 3.5, and the next iterate Xk+1 ∈ Lf . When the sequence starts with X0 ∈ Lf ,
each point of the sequence {Xk}k≥0 admits Xk ∈ Lf . Note that it is easy to construct an initial
point X0 ∈ Lf , because we could consider an Xo ∈ Up in (17), which is close to cl(Up) \ Up such
that f(Xo) sufficiently large, following from the fact that f(X) = +∞ for any X ∈ cl(Up) \ Up.
Lemma B.1 shows that the lower level set Lf is compact, thus the sequence {Xk} has at least one limit
point. For every limit X⋆ of the sequence {Xk}, we have X⋆ ∈Mp. Define I⋆ = T (X⋆, ϵ⋆) ∪ E ,
where T (X⋆, ϵ⋆) is equal to

T (X⋆, ϵ⋆) =
{
(i, j) ∈ [p]2

∣∣ − ϵ⋆ ≤
[
X⋆

]
ij
≤ 0,

[
∇f (X⋆)

]
ij
< 0

}
,
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and ϵ⋆ is defined as ϵ⋆ := min
(
2(1−α)m2

∥∥[∇f(X⋆)
]
T ⋆
δ \E

∥∥
min

, δ
)
, where T ⋆

δ denotes T (X⋆, δ).
Since f is continuous and {f(Xk)} keeps decreasing and is bounded, it follows that {f(Xk)}
converges and

lim
k→+∞

f(Xk)− f(Xk+1) = 0.

Following from Proposition 3.4, the line search condition (15) ensures that each Xk ∈ Sp++ and, for
a strictly positive γk, it holds

f(Xk)− f(Xk+1) ≥ αγk
〈
[∇f(Xk)]Ic

k
, [Pk]Ic

k

〉
+ α

〈
[∇f(Xk)]Ik

, [Xk]Ik

〉
(48)

= αγk
〈[
∇f(Xk)

]
Ic
k

,
[
M−1

k

]
Ic
kI

c
k

[
∇f(Xk)

]
Ic
k

〉
+ α

〈
[∇f(Xk)]Ik

, [Xk]Ik

〉
.

Recall that Ik = Tk∪E . We note that the following facts hold: α ∈ (0, 1) is a constant,
[
M−1

k

]
Ic
kI

c
k

is
positive definite, [Xk]ij = 0 for any (i, j) ∈ E , [Xk]ij ≤ 0 for any (i, j) ∈ Ik\E , and [∇f(Xk)]ij <

0 for any (i, j) ∈ Ik\E due to the definition of T (X, ϵ). Thus, the two terms on the right-hand side
of (48) are both nonnegative. Moreover, the right-hand side of (48) approaches zero if and only if
both

[
∇f(Xk)

]
Ic
k

and [Xk]Ik
simultaneously go to zero. Therefore, we deduce that every limit

point X⋆ must satisfy: [
∇f (X⋆)

]
{I⋆}c = 0, and

[
X⋆

]
I⋆ = 0. (49)

We show that every limit point X⋆ is the minimizer of Problem (1) according to Theorem 4.1. Let
V =

{
(i, j) ∈ [p]2 |

[
X⋆

]
ij

= 0
}

. First, for any (i, j) ∈ E , we have
[
X⋆

]
ij

= 0, because of the
projection PΩ in each iteration. Note that

[
X⋆

]
ij
= 0 for any (i, j) ∈ I⋆ according to (49). For any

(i, j) ∈ Vc, i.e.,
[
X⋆

]
ij
̸= 0, we must have (i, j) ∈ {I⋆}c. Together with (49),

[
∇f (X⋆)

]
Vc = 0

holds. For any (i, j) ∈ V\E , we must have

(i, j) ∈ T (X⋆, ϵ⋆) ∪ {I⋆}c .

Recall that
[
∇f (X⋆)

]
ij

< 0 for any (i, j) ∈ T (X⋆, ϵ⋆), and
[
∇f (X⋆)

]
ij

= 0 for any (i, j) ∈
{I⋆}c. Overall, we obtain [

∇f (X⋆)
]
V\E ≤ 0.

To sum up, all the conditions in Theorem 4.1 hold for every limit point X⋆, and thus every limit
point is the minimizer of Problem (1).

Since the minimizer of Problem (1) is unique, we obtain that the limit point of the sequence {Xk} is
also unique, and thus {Xk} is convergent. Therefore, we conclude that the sequence {Xk} converges
to the unique minimizer of Problem (1). The monotone decreasing of the sequence {f(Xk)} can be
established by Proposition 3.5.

B.7 Proof of Theorem 4.4

Proof. We prove that the support of X⋆ is consistent with the set Ick for a sufficiently large k. Without
loss of generality, we specify the constant δ in (9) as

δ = ω min
(i,j)∈supp(X⋆)

∣∣[X⋆
]
ij

∣∣, (50)

where ω ∈ (0, 1) is a constant. Note that the sequence {Xk} converges to X⋆. Under Theorem 4.3
that

[
∇f(X⋆)

]
ij

is strictly negative for any (i, j) ∈ suppc(X⋆) \ E , there must exist some a > 0

and K1 ∈ N+ such that[
∇f(Xk)

]
ij
< − a

2(1− α)m2
, ∀ (i, j) ∈ suppc(X⋆) \ E (51)

holds for any k ≥ K1, where α ∈ (0, 1) is a constant, and m is a positive constant defined in
Lemma B.1. We consider a neighbourhood of X⋆ defined by

N
(
X⋆; r

)
:=

{
X ∈ Rp×p

∣∣ ∥∥X −X⋆
∥∥
F
≤ r

}
, (52)
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where r is a positive constant defined as

r := min
(
c min
(i,j)∈supp(X⋆)

∣∣[X⋆
]
ij

∣∣, a, δ), (53)

where c < 1− ω is a positive constant. There must exist K2 ∈ N+ such that Xk ∈ N
(
X⋆; r

)
holds

for any k ≥ K2. Take Ko = max(K1,K2). For any k ≥ Ko and (i, j) ∈ supp(X⋆), one has∣∣[X⋆
]
ij

∣∣− ∣∣[Xk

]
ij

∣∣ ≤ ∣∣[X⋆
]
ij
−

[
Xk

]
ij

∣∣ ≤ ∥∥Xk −X⋆
∥∥
F
≤ r,

Thus one can obtain, for any k ≥ Ko,∣∣[Xk

]
ij

∣∣ ≥ min
(i,j)∈supp(X⋆)

∣∣[X⋆
]
ij

∣∣− r > δ > 0, ∀ (i, j) ∈ supp(X⋆), (54)

where the last inequality follows from (50) and (53). Recall that for any (i, j) ∈ T (Xk, δ),∣∣[Xk

]
ij

∣∣ ≤ δ. Then one has

T (Xk, δ) ⊆ suppc(X⋆). (55)

Then the ϵk in (9) can be bounded by

ϵk ≥ min
(
2(1− α)m2

∥∥[∇f(Xk)
]
suppc(X⋆)\E

∥∥
min

, δ
)
≥ min(a, δ), (56)

where the first and second inequalities follow from (55) and (51), respectively. For any k ≥ Ko and
(i, j) ∈ T (Xk, ϵk) ∪ E , one has ∣∣[Xk

]
ij

∣∣ ≤ ϵk ≤ δ,

where the second inequality follows from the definition of ϵk. Thus we obtain

T (Xk, ϵk) ∪ E ⊆ suppc(X⋆). (57)

On the other hand, for any k ≥ Ko and (i, j) ∈ suppc(X⋆), one has∣∣∣[Xk

]
ij

∣∣∣ = ∣∣∣[Xk

]
ij
−

[
X⋆

]
ij

∣∣∣ ≤ ∥∥Xk −X⋆
∥∥
F
≤ r ≤ ϵk, (58)

where the last inequality follows from (53) and (56). Therefore, one has

suppc(X⋆) ⊆ T (Xk, ϵk) ∪ E ∪ B(1)k ∪ B
(2)
k .

Note that B(5)k ∩ suppc(X⋆) = ∅, because any (i, j) ∈ B(5)k corresponds to the element on the
diagonal which must be nonzero. Moreover, following from (51), one has(

suppc(X⋆) \ E
)
∩ B(1)k = ∅, and

(
suppc(X⋆) \ E

)
∩ B(2)k = ∅.

Therefore, we can obtain suppc(X⋆) ⊆ T (Xk, ϵk) ∪ E . Together with (57), we obtain

suppc(X⋆) = T (Xk, ϵk) ∪ E = Ik. (59)

Equivalently, we have
supp(X⋆) = Ick, ∀ k ≥ Ko. (60)

We can see that the sets Ik and Ick are fixed for any k ≥ Ko. Therefore, following from the iterate of
Xk+1, [

Xk+1

]
Ik+1

=
[
Xk+1

]
Ik

= 0, ∀ k ≥ Ko.

Moreover, together with (54) and (60), we obtain that for any k ≥ Ko,
[
Xk+1

]
Ic
k+1

̸= 0. Take

ko = Ko + 1. We obtain
supp(Xk) = Ick, ∀ k ≥ ko,

completing the proof.
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B.8 Proof of Theorem 4.5

Proof. Theorem 4.5 is a direct extension of the result in [51]. Let g be twice continuously
differentiable and consider the following iterate

xx+1 = xk − γkDk∇g(xk),

where Dk is positive definite and symmetric. Then the sequence {xk} admits the following
convergence result [51],

lim sup
k→∞

∥∥xk+1 − x⋆
∥∥2
D−1

k∥∥xk − x⋆
∥∥2
D−1

k

= lim sup
k→∞

max
(
|1− γkm

′
k|2, |1− γkM

′
k|2

)
, (61)

where x⋆ is the limit of the sequence {xk}, which satisfies that∇g(x⋆) = 0 and∇2g(x⋆) is positive
definite, and m′

k and M ′
k are the smallest and largest eigenvalues of (Dk)

1/2∇2g(xk)(Dk)
1/2,

respectively. This conclusion is extended from the convergence result for the quadratic objective
function. Conceptually, this makes sense because a twice continuously differentiable objective
function is very close to a positive definite quadratic function in the neighborhood of a non-singular
local minimum.

Following from Theorem 4.4, for any k ≥ ko, iterate (13) can be written as[
Xk+1

]
Ic
k

=
[
Xk

]
Ic
k

− γkR
−1
k

[
∇f(Xk)

]
Ic
k

, (62)

which reduces to an iterate of an unconstrained optimization algorithm on some subspace. Following
from the results in (61), we obtain

lim sup
k→∞

∥∥[Xk+1

]
Ic
k

−
[
X⋆

]
Ic
k

∥∥2
Rk∥∥[Xk

]
Ic
k

−
[
X⋆

]
Ic
k

∥∥2
Rk

= lim sup
k→∞

max
(
|1− γkmk|2, |1− γkMk|2

)
, (63)

where mk and Mk are the smallest and largest eigenvalues of R− 1
2

k

[
Hk

]
Ic
kI

c
k

R
− 1

2

k , respectively.

Following from (11), Theorem 4.2, and R−1
k =

[
H−1

k

]
Ic
kI

c
k

, we obtain∥∥[Xk

]
Ic
k

−
[
X⋆

]
Ic
k

∥∥2
Rk

=
∥∥Xk −X⋆

∥∥2
Mk

, ∀ k ≥ ko. (64)

When k ≥ ko, the line search condition reduces to

f (Xk+1) ≤ f (Xk)− αγk
〈[
∇f(Xk)

]
Ic
k

,
[
Pk

]
Ic
k

〉
.

Similar to the unconstrained case in [52], the step size must satisfy the line search condition if
γk ≥ min

(
1, 2(1 − α)β/Mk

)
as k → ∞. Then together with (63) and (64), we complete the

proof.
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