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Abstract

Open-world classification systems should discern out-of-distribution (OOD) data
whose labels deviate from those of in-distribution (ID) cases, motivating recent
studies in OOD detection. Advanced works, despite their promising progress,
may still fail in the open world, owing to the lack of knowledge about unseen
OOD data in advance. Although one can access auxiliary OOD data (distinct from
unseen ones) for model training, it remains to analyze how such auxiliary data
will work in the open world. To this end, we delve into such a problem from a
learning theory perspective, finding that the distribution discrepancy between the
auxiliary and the unseen real OOD data is the key to affecting the open-world
detection performance. Accordingly, we propose Distributional-Augmented OOD
Learning (DAL), alleviating the OOD distribution discrepancy by crafting an OOD
distribution set that contains all distributions in a Wasserstein ball centered on
the auxiliary OOD distribution. We justify that the predictor trained over the
worst OOD data in the ball can shrink the OOD distribution discrepancy, thus
improving the open-world detection performance given only the auxiliary OOD
data. We conduct extensive evaluations across representative OOD detection setups,
demonstrating the superiority of our DAL over its advanced counterparts. The code
is publicly available at: https://github.com/tmlr-group/DAL.

1 Introduction

Deep learning in the open world often encounters out-of-distribution (OOD) data of which the label
space is disjoint with that of the in-distribution (ID) cases (Hendrycks and Gimpel, 2017; Fang et al.,
2022). It leads to the well-known OOD detection problem, where the predictor should make accurate
predictions for ID data and detect anomalies from OOD cases (Bulusu et al., 2020; Yang et al., 2021).
Nowadays, OOD detection has attracted intensive attention in reliable machine learning due to its
integral role in safety-critical applications (Cao et al., 2020; Shen et al., 2021).

OOD detection remains challenging since predictors can make over-confidence predictions for OOD
data (Hendrycks et al., 2019), motivating recent studies towards effective OOD detection. Therein,
outlier exposure (Hendrycks et al., 2019; Ming et al., 2022) is among the most potent ones, learning
from auxiliary OOD data to discern ID and OOD patterns. However, due to the openness of the OOD
task objective (Wang et al., 2023), auxiliary OOD data can arbitrarily differ from the (unseen) real
OOD data in the open world. So, to formally understand their consequences, we model the difference
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Figure 1: A heuristic illustration for our DAL. A large dis-
tribution discrepancy between the auxiliary and the unseen
OOD data will hurt the real detection effectiveness. However,
by ensuring uniformly well performance inside the Wasser-
stein ball, we can mitigate the distribution discrepancy and
thus improve the detection power in the open world.

between auxiliary and real OOD data
by their distribution discrepancy, mea-
sured by the Wasserstein distance (Vil-
lani, 2021, 2008). Then, we reveal the
negative impacts of such OOD distri-
bution discrepancy on the real detec-
tion power, with a larger distribution
discrepancy indicating a lower perfor-
mance on real OOD data, cf., Eq. (4).

The OOD distribution discrepancy
threatens the open-world detection
performance for outlier exposure.
Therefore, we raise a natural ques-
tion in how to alleviate such an OOD
distribution discrepancy. Hence, this
paper establishes a promising learn-
ing framework named Distributional-
Augmented OOD Learning (DAL).
Therein, we augment the auxiliary
OOD distribution by crafting an OOD
distribution set containing all distributions in a Wasserstein ball (Villani, 2021, 2008), centered on the
auxiliary OOD distribution. Then, by making the predictor learn from the worst OOD distribution in
the set, cf., Eq. (8), one can alleviate the negative impacts of the distribution discrepancy. Moreover,
our proposed framework enjoys the learning guarantees towards the expected risk with respect to the
real OOD distribution, making OOD detection stay effective when facing unseen data (cf., Theorem 3).
Figure 1 provides a conceptual explanation: learning from the worst OOD distribution ensures the
uniformly well performance inside the Wasserstein ball, enlarging the influence of the auxiliary OOD
distribution. Thus, one can shrink the OOD distribution discrepancy between the auxiliary and the
real OOD data and improve OOD detection.

In realization, the primal learning objective in Eq. (8) is generally intractable due to the infinite-
dimensional optimization for the worst OOD distribution search. Instead, we adopt the dual form
with respect to the original learning problem (cf., Theorem 1), transforming it into a tractable problem
of the worst OOD data search in a finite-dimensional space. Furthermore, following Du et al. (2022a);
Mehra et al. (2022), the data search procedure is conducted in the embedding space, which can benefit
the open-world performance of OOD detection with decent costs of additional computation.

We conduct extensive experiments over representative OOD detection setups, revealing the open-
world performance of our method toward effective OOD detection. For example, our DAL reduces
the average FPR95 by 1.99 to 13.46 on CIFAR benchmarks compared with the conventional outlier
exposure (Hendrycks et al., 2019). Overall, we summarize our contributions into three folds:

• We measure the difference between the auxiliary and the real OOD data by the Wasserstein
distance, and establish an effective learning framework, named DAL, to mitigate the OOD
distribution discrepancy issue. We further guarantee our performance with respect to unseen
real OOD data via Theorem 3, which is new to previous works.

• DAL leads to a practical method in Algorithm 1, learning from the worst cases in the
Wasserstein ball to improve the open-world detection performance. Overall, our method
solves the dual problem, which performs the worst-case search in the embedding space,
which is simple to compute yet effective in OOD detection.

• We conduct extensive experiments in Section 5 to evaluate our effectiveness, ranging from
the well-known CIFAR benchmarks to the challenging ImageNet settings. The empirical
results comprehensively demonstrate our superiority over advanced counterparts, and the
improvement is mainly attributed to our distributional-augmented learning framework.

A detailed overview of existing OOD detection methods and theories can be found in Appendix A,
and a summary of the important notations can be found in Appendix B.
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2 Outlier Exposure

Let X denote the feature space and Y = {1, . . . , C} denote the label space with respect to the ID
distribution. We consider the ID distribution DXIYI

, a joint distribution defined over X × Y , where
XI and YI are random variables whose outputs are from spaces X and Y . We also have an OOD joint
distribution DXOYO

, where XO is a random variable from X , but YO is a random variable whose
outputs do not belong to Y , i.e., YO /∈ Y (Fang et al., 2022).

The classical OOD detection (Hendrycks and Gimpel, 2017; Yang et al., 2021) typically considers
an open-world setting, where the real OOD data drawn from DXOYO are unseen during training.
Recently, Fang et al. (2022) have provided several strong conditions necessary to ensure the success of
the classical OOD setting. Furthermore, to increase the possibility of success for OOD detection and
weaken the strong conditions proposed by Fang et al. (2022), advanced works (Hendrycks et al., 2019;
Chen et al., 2021) introduce a promising approach named outlier exposure, where a set of auxiliary
OOD data is employed as a surrogate of real OOD data. Here, we provide a formal definition.
Problem 1 (OOD Detection with Outlier Exposure). Let DXIYI

, DXO
, and DXA

be the ID joint
distribution, the OOD distribution, and the auxiliary OOD distribution, respectively. Given the sets of
samples called the ID and the auxiliary OOD data, namely,

S = {(x1
I , y

1
I ), ..., (x

n
I , y

n
I )} ∼ Dn

XIYI
, i.i.d., T = {x1

A, ...,x
m
A } ∼ Dm

XA
, i.i.d.,

outlier exposure trains a predictor f by using the training data S and T , such that for any test data x:
1) if x is an observation from DXI

, the predictor f can classify x into its correct ID label; otherwise
2) if x is an observation from DXO

, the predictor f can detect x as an OOD case.

OOD Scoring. Many existing methods detect OOD data by using various score-based strategies
(Hendrycks and Gimpel, 2017; Lee et al., 2018a; Liu et al., 2020; Sun et al., 2022). In general, given
a model f : X → RC and a scoring function s(·; f) : X → R, the OOD detector gλ is given by:

gλ(x) = ID, if s(x; f) ≥ λ; otherwise, gλ(x) = OOD,

where λ is a given threshold. For example, as a well-known baseline scoring function, the maximum
softmax prediction (MSP) (Hendrycks and Gimpel, 2017) is given by:

sMSP(x; f) = max
k∈Y

softmaxk f(x), (1)

with softmaxk(·) denoting the k-th dimension of the softmax output.

Model and Risks. We denote fw : X → RC the predictor with parameters w ∈ W , with W
the parameter space. We consider the loss functions ℓ and ℓOE w.r.t. the ID and the OOD cases,
respectively. Then, the expected and the empirical ID risks of the model fw can be written as:

RI(w) = E(x,y)∼DXIYI
ℓ(fw;x, y) and R̂I(w) =

1

n

n∑
i=1

ℓ(fw;xi
I, y

i
I).

The expected and the empirical auxiliary OOD risks are then given by

RA(w) = Ex∼DXA
ℓOE(fw;x) and R̂A(w) =

1

m

m∑
i=1

ℓOE(fw;xi
A),

and the expected real OOD risk is given by RO(w) = Ex∼DXO
ℓOE(fw;x). Accordingly, we can

define the expected detection risk with respect to real OOD data, following

RD(w) = RI(w) + αRO(w), (2)

where α is the trade-off parameter.

Learning Strategy. After the scoring function is selected, one can obtain the OOD detector if the
model fw is given. Under the Problem 1 of outlier exposure, a common learning strategy is to
optimize the empirical ID and auxiliary OOD risk jointly (Hendrycks et al., 2019), namely,

min
w∈W

[
R̂I(w) + αR̂A(w)

]
. (3)

Note that the auxiliary OOD data are employed in Eq. (3), which can arbitrarily differ from the real
OOD cases. Then, it is generally expected that the predictor fw, trained over the auxiliary OOD data,
can perform well even on unseen OOD data, i.e., a small value of RD(w) is expected.
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3 Motivation

To the general learning strategy in Eq. (3), intuitively, if the auxiliary data are sampled from a
distribution similar to real ones, the predictor will perform well for real OOD data. However,
auxiliary and real OOD data differ in practice, posing us to suspect their open-world detection
performance. To formally study the problem, we measure the difference between auxiliary and real
OOD data in the distribution level, motivating our discussion of OOD distribution discrepancy.

Distribution Discrepancy. In this paper, we adopt a classical measurement for the distribution
discrepancy—Optimal Transport Cost (Sinha et al., 2018; Mehra et al., 2022).
Definition 1 (Optimal Transport Cost and Wasserstein-1 Distance (Villani, 2021, 2008)). Given a
cost function c : X × X → R+, the optimal transport cost between two distributions D and D′ is

Wc(D,D′) = inf
π∈Π(D,D′)

E(x,x′)∼πc(x,x
′),

where Π(D,D′) is the space of all couplings for D and D′. Furthermore, if the cost c is a metric,
then the optimal transport cost is also called the Wasserstein-1 distance.

Based on Definition 1, we use the distribution discrepancy to measure the difference between the
auxiliary and the real OOD data, namely, Wc(DXO

, DXA
). Then, we can formally study the impacts

of such a discrepancy on the detection performance of the predictor. Under certain assumptions (cf.,
Corollary 1), we can prove that with high probability, the following generalization bound holds:

RD(ŵ) ≤ min
w∈W

(RI(w) + αRA(w)) + αLcWc(DXO , DXA) +O(1/
√
n) +O(1/

√
m), (4)

where ŵ is the parameter learned by Eq. (3), i.e., ŵ ∈ argminw∈W R̂I(w) + αR̂A(w), Lc is the
Lipschitz constant of ℓOE w.r.t. the cost function c(·, ·) (see Theorem 3). In general, the expected
detection risk RD(ŵ) measures the expected performance on unseen OOD data given the predictor
trained on the auxiliary OOD data. Then, due to the upper bound, the impacts of the OOD distribution
discrepancy are reflected by the Wasserstein-1 distance between the auxiliary and the real OOD data,
i.e., Wc(DXO

, DXA
). Therefore, although classical outlier exposure can improve OOD detection

to some extent, it fails to ensure reliable detection of unseen OOD data, in that a larger distribution
discrepancy generally indicates a worse guarantee for open-world OOD detection.

The key to improve the detection performance is mitigating the negative impact induced by the OOD
distribution discrepancy. To tackle this problem, a simple lemma inspires us:
Lemma 1. Let d(·, ·) be the distance to measure the discrepancy between distributions. Given a
space D consisting of some OOD distributions, if DXA

∈ D, then

inf
DX′∈D

d(DX′ , DXO
) ≤ d(DXA

, DXO
). (5)

If d(·, ·) is the Optimal Transport Cost in Definition 1, the cost function c is a continuous metric, and
D is the Wasserstein-1 ball with a radius ρ > 0, i.e., D = {DX′ : Wc(DX′ , DXA

) ≤ ρ}, then

inf
DX′∈D

Wc(DX′ , DXO
) ≤ max{Wc(DXA

, DXO
)− ρ, 0}. (6)

In the light of Lemma 1, we introduce a specific set of distributions D, augmented around the auxiliary
OOD distribution. It makes it possible to mitigate the distribution discrepancy, following Eqs. (5)
and (6). Therefore, instead of choosing a model fw that directly minimizes the empirical risk in
Eq. (3), we target augmenting the auxiliary OOD data within the distribution space D, namely,

min
w∈W

[
R̂I(w) + α sup

DX′∈D
Ex∼DX′ ℓOE(fw;x)

]
, subject to D̂XA

∈ D, (7)

where D̂XA
is the empirical form of DXA

, i.e., D̂XA
= 1

m

∑m
i=1 δxi

A
and δxi

A
is the dirac measure.

4 Learning Framework

This section proposes a general learning framework to mitigate the OOD distribution discrepancy. As
aforementioned, we consider an augmented set of OOD distributions to improve OOD detection, thus
named Distributional-Augmented OOD Learning (DAL).
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To begin with, we need to select a suitable distribution space D for the tractable solutions of Eq. (7).
Generally, the choice of D influences both the richness of the auxiliary data as well as the tractability
of the resulting optimization problem. Previous works have developed a series of distribution spaces,
e.g., the distribution ball based on f -divergences (Namkoong and Duchi, 2016; Michel et al., 2021)
and maximum mean discrepancy (MMD) (Staib and Jegelka, 2019). However, there are several
drawbacks for the distribution balls based on f -divergences and MMD: 1) any f -divergence-based
space D contains only distributions within the same support set as D̂XA ; and 2) the effective solutions
in the MMD-based space have not been provided (Staib and Jegelka, 2019).

Instead, motivated by Sinha et al. (2018); Mehra et al. (2022); Dai et al. (2023) and Theorem 1, we
consider the Wasserstein ball. For any ρ > 0, we define the augmented OOD distribution set as

D = {DX′ : Wc(DX′ , D̂XA
) ≤ ρ},

and consider the following optimization problem:

min
w∈W

R̂D(w; ρ) = min
w∈W

[
R̂I(w) + αR̂O(w; ρ)

]
, (8)

where
R̂O(w; ρ) = sup

Wc(DX′ ,D̂XA
)≤ρ

Ex∼DX′ ℓOE(fw;x). (9)

However, the optimization problem in Eq. (8) is intractable due to the infinite-dimensional search for
the distribution DX′ . Fortunately, the following dual theorem provides a solution:
Theorem 1 (Blanchet and KarthyekRajhaaA. (2016)). Let c(·, ·) be a continuous metric and
ϕγ(w;x) = supx′∈X {ℓ(fw;x′)− γc(x′,x)} be the robust surrogate function. Then, for any ρ > 0,

R̂D(w; ρ) = R̂I(w) + α inf
γ≥0

{
γρ+

1

m

m∑
i=1

ϕγ(w;xi
A)

}
. (10)

Theorem 1 provides a feasible surrogate for the original optimization problem in Eq. (8), transforming
the infinite-dimensional problem to its finite counterpart, i.e., the data feature search. We use Eq. (10)
to design our algorithm, cf., Section 4.2.

4.1 Theoretical Supports

This section provides the theoretical support for our DAL. Specifically, 1) Theorem 2 shows that the
empirical model given by Eq. (8) can achieve consistent learning performance, and 2) Theorem 3
further demonstrates the expected detection risk estimation, i.e., RD(w), with respect to the empirical
model given by Eq. (8). All the proofs can be found in Appendix C. To state our theoretical results,
we use the notation RD(w; ρ) to represent the ideal form of R̂D(w; ρ), which is defined by

RD(w; ρ) = RI(w) + αRO(w; ρ),

where
RO(w; ρ) = sup

Wc(DX′ ,DXA
)≤ρ

Ex∼DX′ ℓOE(fw;x).

Similar to Sinha et al. (2018), our results rely on the covering number (cf., Appendix C.1) for the
model classes F = {ℓ(fw; ·) : w ∈ W} and FOE = {ℓOE(fw; ·) : w ∈ W} to represent their
complexity. Intuitively, the covering numbers N (F , ϵ, L∞) and N (FOE, ϵ, L

∞) are the minimal
numbers of L∞ balls of radius ϵ > 0 needed to cover the model classes F and FOE, respectively.
Now, we demonstrate that DAL can achieve consistent performance under mild assumptions.
Theorem 2 (Excess Generalization Bound). Assume that 0 ≤ ℓ(fw;x, y) ≤Mℓ, 0 ≤ ℓOE(fw;x) ≤
MℓOE

, and c(·, ·) : X × X → R+ is a continuous metric. Let ŵ be the optimal solution of Eq. (8),
i.e., ŵ ∈ argminw∈W R̂D(w; ρ). Then with the probability at least 1− 4e−t > 0,

RD(ŵ; ρ)− min
w∈W

RD(w; ρ) ≤ ϵ(n,m; t), (11)
for any ρ > 0, where

ϵ(n,m; t) =
b0Mℓ√

n

∫ 1

0

√
logN (F ,Mℓϵ, L∞)dϵ+ 2Mℓ

√
2t

n

+αb1

√
M3

ℓOE

ρ2m

∫ 1

0

√
logN (FOE,MℓOE

ϵ, L∞)dϵ+ αb2MℓOE

√
2t

m
,

where b0, b1 and b2 are uniform constants.
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Algorithm 1 Distributional-Augmented OOD Learning (DAL)
Input: ID and OOD samples from DXIYI

and DXA
;

for st = 1 to num_step do
Sample SB and TB from DXIYI and DXA ;
Initialize pi ∼ N (0, σI), ∀ i ∈ {1, . . . , |TB|};
for se = 1 to num_search do
ψi = ∇pi

[
ℓOE

(
h(e(xi

A + pi); e(xi
A)

)
− γ

∥∥pi
∥∥
1

]
, ∀ i ∈ {1, . . . , |TB|};

pi ← pi + psψi, ∀ i ∈ {1, . . . , |TB|}
end for
γ ← min

(
max

(
γ − β(ρ− 1

|TB|
∑|TB|

i=1 ∥pi∥, γmax
)
, 0
)
;

w← w − lr∇w

[
1

|TB|
∑|TB|

i=1 ℓOE(h(g(xi
A) + pi)) + α 1

|SB|
∑|SB|

i=1 ℓ(fw;xi
I, y

i
I)
)
];

end for
Output: model parameter w.

Furthermore, under proper conditions, one can show that the bound in Eq. (11) can attainO(1/
√
n)+

O(1/
√
m), i.e., RD(ŵ; ρ)−minw∈W RD(w; ρ) ≤ O(1/

√
n)+O(1/

√
m). Corollary 1 in Appendix

C.5 gives an example to support the above claim. Next, we give a learning bound to estimate the
expected detection risk in Eq. (2) w.r.t. the model fŵ given by Eq. (8).
Theorem 3 (Risk Estimation). Given the same conditions in Theorem 2 and let ŵ be the solution of
Eq. (8), which is given by ŵ ∈ argminw∈W R̂D(w; ρ). If ℓOE(fw;x) is Lc-Lipschitz w.r.t. c(·, ·),
i.e., |ℓOE(fw;x)− ℓOE(fw;x′)| ≤ Lcc(x,x

′), then with the probability at least 1− 4e−t > 0,

RD(ŵ)−

approximate risk︷ ︸︸ ︷
min
w∈W

RD(w; ρ) ≤ αLc max{Wc(DXO
, DXA

)− ρ, 0}+ ϵ(n,m; t)︸ ︷︷ ︸
estimation error

,

for any ρ > 0, where ϵ(n,m; t) is defined in Theorem 2.

The bias term αLc max{Wc(DXO , DXA) − ρ, 0} = 0 when ρ is large enough. Hence, a large
ρ implies a small estimation error. Although a larger ρ leads to better generalization ability, the
approximate risk minw∈W RD(w; ρ) may become larger. It implies that for practical effectiveness,
i.e., small RD(ŵ), there is a trade-off between the approximate risk minw∈W RD(w; ρ) and the bias
αLc max{Wc(DXO

, DXA
)− ρ, 0} across different choices of ρ. Hence, we need to choose a proper

ρ for open-world detection with unseen data (cf., Section 5.3).

4.2 Proposed Algorithm

In this section, we introduce the algorithm design for DAL, summarized in Algorithm 1. Due to the
space limit, we provide further discussions in Appendix E.

Losses and Cost Function. Following Hendrycks et al. (2019), we adopt the cross entropy loss to
realize ℓ and the KL-divergence between model predictions and uniform distribution for ℓOE. We
also define the cost function c by the l1 norm, namely, c(x,x′) = ∥x− x′∥1.

Algorithm Design. By Theorem 1, we can address the primary problem in Eq. (8) by the dual
problem in Eq. (9). Additionally, following Du et al. (2022a), we perturb for the worst OOD data in
the embedding space. Denote the model fw = h ◦ e with h the classifier and e the feature extractor,
we find the perturbation p for the embedding features, i.e., e(x), of the associated data x. The
perturbation p should lead to the worst OOD case for the surrogate function in Theorem 1, namely,

ϕγ(w; e(x)) = sup
p∈E
{ℓOE(h(e(x) + p); e(x))− γ∥p∥1} ,

where E denotes the space of embedding features. Note that we abuse the definition of ℓOE, empha-
sizing that we perturb the embedding features of e(x) by p.

Training and Inference. Our definition of ϕγ(w; e(x)) leads to a particular realization of Eq. (10),
which is the learning objective of our DAL. It can be solved by stochastic gradient optimization for
deep models, e.g., mini-batch stochastic gradient descent. After training, we use the MSP scoring
function by default and discuss the possibility of other scoring functions in Appendix F.3.
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Stochastic Realization. Algorithm 1 gives a stochastic realization of DAL, where ID and auxiliary
OOD mini-batches are randomly sampled in each stochastic iteration, denoted by SB and TB

respectively. Therein, we first find the perturbation p that leads to the maximal ϕγ(w, e(x)). The
value of p is initialized by random Gaussian noise with the standard deviation σ and updated by
gradient ascent for num_search steps with the perturbation strength ps. Then we update γ by one
step of gradient descent with the learning rate β, and further clipping between 0 and γmax to avoid
extreme values. Finally, given the proper perturbations for the auxiliary OOD data in TB, we update
the model parameter w by one step of mini-batch gradient descent.

5 Experiments

In this section, we mainly test DAL on the CIFAR (Krizhevsky and Hinton, 2009) benchmarks (as ID
datasets). To begin with, we introduce the evaluation setups.

OOD Datasets. We adopt the 80 Million Tiny Images (Torralba et al., 2008) as the auxiliary OOD
dataset; Textures (Cimpoi et al., 2014), SVHN (Netzer et al., 2011), Places365 (Zhou et al., 2018),
LSUN (Yu et al., 2015), and iSUN (Xu et al., 2015) as the (test-time) real OOD datasets. We eliminate
those data whose labels coincide with ID cases.

Pre-training Setups. We employ Wide ResNet-40-2 (Zagoruyko and Komodakis, 2016) trained for
200 epochs via empirical risk minimization, with a batch size 64, momentum 0.9, and initial learning
rate 0.1. The learning rate is divided by 10 after 100 and 150 epochs.

Hyper-parameters Tuning Strategy. The hyper-parameters are tuned based on the validation
data, separated from the training ID and auxiliary OOD data, which is a common strategy in OOD
detection with outlier exposure field (Hendrycks et al., 2019; Chen et al., 2021). Specifically, we fix
σ = 0.001, num_search = 10, and adopt the grid search to choose γmax from {0.1, 0.5, 1, 5, 10, 50};
β from {1e−3, 5e−3, 1e−2, 5e−2, 1e−1, 5e−1, 1, 5}; ρ from {1e−2, 1e−1, 1, 10, 100}; ps from
{1e−3, 1e−2, 1e−1, 1, 10, 100}; α from {0.1, 0.5, 1.0, 1.5, 2.0}.
Hyper-parameters Setups. For CIFAR-10, DAL is run for 50 epochs with the ID batch size 128, the
OOD batch size 256, the initial learning rate 0.07, γmax = 10, β = 0.01, ρ = 10, ps = 1, and α = 1.
For CIFAR-100, DAL is run for 50 epochs with the ID batch size 128, the OOD batch size 256, the
initial learning rate 0.07, γmax = 10, β = 0.005, ρ = 10, and ps = 1, and α = 1. For both cases, we
employ cosine decay (Loshchilov and Hutter, 2017) for the model learning rate.

Baseline Methods. We compare DAL with representative methods, including MSP (Hendrycks and
Gimpel, 2017), Free Energy (Liu et al., 2020), ASH (Djurisic et al., 2023), ReAct (Sun et al., 2021),
Mahalanobis (Lee et al., 2018a), KNN (Sun et al., 2022), KNN+ (Sun et al., 2022), CSI (Tack et al.,
2020), VOS (Du et al., 2022a), Outlier Exposure (OE) (Hendrycks et al., 2019), Energy-OE (Liu
et al., 2020), ATOM (Chen et al., 2021), DOE (Wang et al., 2023), and POEM (Ming et al., 2022).
We adopt their suggested setups but unify the backbones for fairness.

Evaluation Metrics. The detection performance is evaluated via two representative metrics, which
are both threshold-independent: the false positive rate of OOD data when the true positive rate of
ID data is at 95% (FPR95); and the area under the receiver operating characteristic curve (AUROC),
which can be viewed as the probability of the ID case having greater score than that of the OOD case.

Due to the space limit, we test our DAL with more advanced scoring strategies in Appendix F.3 and
conduct experiments on the more complex ImageNet (Deng et al., 2009) dataset in Appendix F.10.

5.1 Main Results

The main results are summarized in Table 1, where we report the detailed results across the considered
real OOD datasets. First, we reveal that using auxiliary OOD data can generally lead to better results
than using only ID information, indicating that outlier exposure remains a promising direction worth
studying. However, as demonstrated in Section 3, the OOD distribution discrepancy can hurt its open-
world detection power, while previous works typically oversee such an important issue. Therefore,
our DAL, which can alleviate the OOD distribution discrepancy, reveals a large improvement over the
original outlier exposure. Specifically, comparing with the conventional outlier exposure, our method
reveals 1.99 and 0.13 average improvements w.r.t. FPR95 and AUROC on the CIFAR-10 dataset,
and 13.46 and 3.65 of the average improvements on CIFAR-100 dataset. For advanced works that
consider the OOD sampling strategies, e.g., ATOM and POEM, DAL can achieve much better results,
especially for the CIFAR-100 case. The reason is that these methods mainly consider the situations
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Table 1: Comparison between our method and advanced methods on the CIFAR benchmarks. ↓ (or
↑) indicates smaller (or larger) values are preferred, and a bold font indicates the best result in a
column. Methods are grouped based on 1) using ID data only and 2) using additional information
about auxiliary OOD data. Two groups are separated by the horizontal line for each ID case.

Method SVHN LSUN iSUN Textures Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

Using ID data only
MSP 48.89 91.97 25.53 96.49 56.44 89.86 59.68 88.42 60.19 88.36 50.15 91.02

Free Energy 35.21 91.24 4.42 99.06 33.84 92.56 52.46 85.35 40.11 90.02 33.21 91.64
ASH 33.98 91.79 4.76 98.98 34.38 92.64 50.90 86.07 40.89 89.79 32.98 91.85

Mahalanobis 12.21 97.70 57.25 89.58 79.74 77.87 15.20 95.40 68.81 82.39 46.64 88.59
KNN 26.56 95.93 27.52 95.43 33.55 93.15 37.62 93.07 41.67 91.21 33.38 93.76

KNN+ 3.28 99.33 2.24 98.90 17.85 95.65 10.87 97.72 30.63 94.98 12.97 97.32
CSI 17.37 97.69 6.75 98.46 12.58 97.95 25.65 94.70 40.00 92.05 20.47 96.17
VOS 36.55 93.30 9.98 98.03 28.93 94.25 52.83 85.74 39.56 89.71 33.57 92.21

Using ID data and auxiliary OOD data
OE 2.36 99.27 1.15 99.68 2.48 99.34 5.35 98.88 11.99 97.23 4.67 98.88

Energy-OE 0.97 99.54 1.00 99.15 2.32 99.27 3.42 99.18 9.57 97.44 3.46 98.91
ATOM 1.00 99.59 0.61 99.53 2.15 99.40 2.52 99.10 7.93 97.27 2.84 98.97
DOE 1.80 99.37 0.25 99.65 2.00 99.36 5.65 98.75 10.15 97.28 3.97 98.88

POEM 1.20 99.53 0.80 99.10 1.47 99.26 2.93 99.13 7.65 97.35 2.81 98.87
DAL 0.80 99.65 0.90 99.46 1.70 99.34 2.30 99.14 7.65 97.45 2.68 99.01

CIFAR-100

Using ID data only
MSP 84.39 71.18 60.36 85.59 82.63 75.69 83.32 73.59 82.37 73.69 78.61 75.95

Free Energy 85.24 73.71 23.05 95.89 81.11 79.02 79.63 76.35 80.18 75.65 69.84 80.12
ASH 70.09 83.56 13.20 97.71 69.87 82.56 63.69 83.59 79.70 74.87 59.31 84.46

Mahalanobis 51.00 88.70 91.60 69.69 38.48 91.86 47.07 89.09 82.70 74.18 72.37 82.70
KNN 52.10 88.83 68.82 79.00 42.17 90.59 42.79 89.07 92.21 61.08 59.62 81.71

KNN+ 32.50 93.86 47.41 84.93 39.82 91.12 43.05 88.55 63.26 79.28 45.20 87.55
CSI 64.50 84.62 25.88 95.93 70.62 80.83 61.50 86.74 83.08 77.11 61.12 95.05
VOS 78.06 92.59 40.40 92.90 85.77 70.20 82.46 77.22 82.31 75.47 73.80 91.67

Using ID data and auxiliary OOD data
OE 46.73 90.54 16.30 96.98 47.97 88.43 50.39 88.27 54.30 87.11 43.14 90.27

Energy-OE 35.34 94.74 16.27 97.25 33.21 93.25 46.13 90.62 50.45 90.04 36.28 93.18
ATOM 24.80 95.15 17.83 96.76 47.83 91.06 44.86 91.80 53.92 88.88 37.84 92.73
DOE 43.10 91.83 13.95 97.56 47.25 87.88 49.40 88.62 51.05 88.08 40.95 90.79

POEM 22.27 96.28 13.66 97.52 42.46 91.97 45.94 90.42 49.50 90.21 34.77 93.28
DAL 19.35 96.21 16.05 96.78 26.05 94.23 37.60 91.57 49.35 90.81 29.68 93.92

where the model capacity is not enough to learn from all the auxiliary OOD data, deviating from
our considered issue in OOD distribution discrepancy. Moreover, for the previous works that adopt
similar concepts in the worst-case OOD learning, e.g., VOS and DOE, DAL also reveals better results,
with 1.29 and 30.89 improvements on the CIFAR-10 dataset and 11.27 and 44.12 improvements on
the CIFAR-100 dataset w.r.t. FPR95. It indicates that our theoretical-driven scheme can also guide the
algorithm designs with practical effectiveness. Note that many previous works use advanced scoring
strategies other than MSP, and thus our experiment above is not completely fair to us. Therefore, in
Appendix F.3, we also combine DAL with many advanced scoring strategies other than MSP, which
can further improve our performance.

5.2 Hard OOD Detection

Table 2: Comparison between our method and advanced
methods on hard OOD detection. ↓ (or ↑) indicates smaller
(or larger) values are preferred, and a bold font indicates the
best result in a column.

Methods LSUN-Fix ImageNet-Resize CIFAR-100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Using ID data only
Free Energy 6.42 98.85 46.46 89.02 50.47 87.08

ASH 4.00 98.20 46.18 88.85 54.31 83.71
KNN+ 24.88 95.75 30.52 94.85 40.00 89.11

CSI 39.79 93.63 37.47 93.93 45.64 87.64

Using ID data and auxiliary OOD data
OE 1.75 99.47 6.76 98.58 29.40 94.20

DOE 1.97 98.71 5.98 98.75 29.75 94.24
POEM 1.24 98.93 6.56 98.37 35.11 91.80
DAL 1.39 99.47 5.60 98.80 25.45 94.34

We further consider hard OOD sce-
narios (Sun et al., 2022), of which
the test OOD data are very similar
to that of the ID cases. Follow-
ing the common setup (Sun et al.,
2022) with the CIFAR-10 dataset be-
ing the ID case, we evaluate our
DAL on three hard OOD datasets,
namely, LSUN-Fix (Yu et al., 2015),
ImageNet-Resize (Deng et al., 2009),
and CIFAR-100. Note that data in
ImageNet-Resize (1000 classes) with
the same semantic space as Tiny-
ImageNet (200 classes) are removed.
We select a set of strong baselines that
are competent in hard OOD detection, summarizing the experiments in Table 2. As we can see, our
method can beat these advanced methods across the considered datasets, even for the challenging
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Figure 2: Illustrations of embedding features for
the ID, the auxiliary OOD (A-OOD), and the
worst OOD (W-OOD) data. We adopt the t-SNE
visualization on the CIFAR-10 dataset and illus-
trate the results before and after DAL training.
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1 Figure 3: FPR95 curves across various ρ on the
CIFAR-100. We report both the results for the
average real OOD data (REAL) and the auxiliary
OOD data (AUXI), where we consider two hyper-
parameter setups, i.e., ps = 1 and ps = 10.

CIFAR-10 versus CIFAR-100 setting. The reason is that our distributional augmentation directly
learns from OOD data close to ID pattern, which can cover hard OOD cases.

5.3 Ablation Study

We further conduct an ablation study to demonstrate two mechanisms that mainly contribute to our
open-world effectiveness, namely, OOD data generation and Wasserstein ball constraint.

OOD Data Generation. DAL learns from the worst OOD data to mitigate the OOD distribution
discrepancy. To understand such an OOD generation scheme, we employ the t-SNE visualiza-
tion (Van der Maaten and Hinton, 2008) for the ID, the auxiliary OOD, and the worst OOD data.
Figure 2 summarizes the results before and after DAL training. Before training, the ID and auxiliary
OOD data overlap largely, indicating that the original model is not effective at distinguishing between
them. Then, DAL does not directly train the model on auxiliary OOD data but instead perturbs it to
further confuse the model beyond the overlap region. After DAL training, the overlap region between
ID and auxiliary OOD data shrinks. Additionally, perturbing the original OOD data becomes more
difficult, indicating that the model has learned to handle various worst-case OOD scenarios.

Wasserstein Ball Constraint. The choice of ρ determines the radius of the Wasserstein ball. Larger
values of ρ reduce estimation error and improve model generalization, as stated in Theorem 3.
However, larger values of ρ also increase the approximate risk minw∈W RD(w; ρ) as it becomes
more challenging to ensure uniform model performance with increased distributional perturbation.
Figure 3 shows the FPR95 curves on the CIFAR-100 dataset for both the real and the surrogate
OOD data, revealing the trade-off in selecting ρ. Here, we consider two setups of ρ, i.e., ps = 1
(default) and ps = 10 (large perturbation strength). First, when the perturbation strength is very large
(i.e., ps = 10), the model can easily fail for training if the value of ρ is also large (e.g., ρ = 100),
indicating that large value of ρ can lead to a large approximation error. However, such an issue can
be overcome by selecting a relatively small value of ρ (e.g., ρ = 0.5).

6 Conclusion

Outlier exposure is one of the most powerful methods in OOD detection, but the discrepancy between
the auxiliary and (unseen) real OOD data can hinder its practical effectiveness. To address such
an issue, we have formalized it as the OOD distribution discrepancy and developed an effective
learning framework to mitigate its negative impacts. Specifically, we consider a specific distribution
set that contains all distributions in a Wasserstein ball centered on the auxiliary OOD distribution.
Then, models trained over worst-case OOD data in the ball can ensure improved performance toward
open-world OOD detection. Overall, as pioneers in critically analyzing the open-world setting with
theoretical analysis, we are committed to raising attention to the OOD distribution discrepancy issue
and encouraging further research in this direction.
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