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Abstract

In the field of natural language processing, the prevalent approach involves fine-
tuning pretrained language models (PLMs) using local samples. Recent research
has exposed the susceptibility of PLMs to backdoor attacks, wherein the adversaries
can embed malicious prediction behaviors by manipulating a few training samples.
In this study, our objective is to develop a backdoor-resistant tuning procedure that
yields a backdoor-free model, no matter whether the fine-tuning dataset contains
poisoned samples. To this end, we propose and integrate a honeypot module into
the original PLM, specifically designed to absorb backdoor information exclusively.
Our design is motivated by the observation that lower-layer representations in
PLMs carry sufficient backdoor features while carrying minimal information about
the original tasks. Consequently, we can impose penalties on the information
acquired by the honeypot module to inhibit backdoor creation during the fine-
tuning process of the stem network. Comprehensive experiments conducted on
benchmark datasets substantiate the effectiveness and robustness of our defensive
strategy. Notably, these results indicate a substantial reduction in the attack success
rate ranging from 10% to 40% when compared to prior state-of-the-art methods.

1 Introduction

Recently, the rapid progress of pretrained language models (PLMs) has transformed diverse domains,
showcasing extraordinary capabilities in addressing complex natural language understanding tasks.
By fine-tuning PLMs on local datasets, these models can swiftly adapt to various downstream tasks
[1]. Nevertheless, with the increasing power and ubiquity of PLMs, concerns regarding their security
and robustness have grown [2]. Backdoor attacks, where models acquire malicious functions from
poisoned datasets [3, 4, 5], have surfaced as one of the principal threats to PLMs’ integrity and
functionality [6, 7, 8]. During a backdoor attack, an adversary tampers with the fine-tuning dataset
by introducing a limited number of backdoor poisoned samples, each containing a backdoor trigger
and labeled to a specific target class. Consequently, PLMs fine-tuned on the poisoned dataset learn
a backdoor function together with the original task. Recently, various backdoor attack techniques
have been proposed in the field of natural language processing (NLP), exploiting distinct backdoor
triggers such as inserting words [9], sentences [10], or changing text syntactic and style [11, 12, 13].
Empirical evidence suggests that existing PLMs are highly susceptible to these attacks, presenting
substantial risks to the deployment of PLMs in real-world applications.

In this study, we aim to protect PLMs during the fine-tuning process by developing a backdoor-
resistant tuning procedure that yields a backdoor-free model, no matter whether the fine-tuning dataset
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contains poisoned samples. Our key idea is straightforward: the victim model essentially learns two
distinct functions - one for the original task and another for recognizing poisoned samples. If we can
partition the model into two components - one dedicated to the primary function and the other to
the backdoor function - we can then discard or suppress the side effects of the latter for defense. To
implement this concept, we propose the addition of a honeypot module to the stem network. This
module is specifically designed to absorb the backdoor function during training, allowing the stem
network to focus exclusively on the original task. Upon completion of training, the honeypot can be
removed to ensure a robust defense against backdoor attacks.

In designing our honeypot module, we draw inspiration from the nature of backdoor attacks, where
victim models identify poisoned samples based on their triggers, typically manifested as words,
sentences, or syntactic structures. Unlike the original task, which requires understanding a text’s
entire semantic meaning, the backdoor task is far easier since the model only needs to capture and
remember backdoor triggers. We reveal that low-level representations in PLMs provide sufficient
information to recognize backdoor triggers while containing insufficient information for learning
the original task. Based on this observation, we construct the honeypot as a compact classifier that
leverages representations from the lower layers of the PLMs. Consequently, the designed honeypot
module rapidly overfits poisoned samples during early training stages, while barely learning the
original task. To ensure that only the honeypot module learns the backdoor function while the stem
network focuses on the original task, we propose a simple yet effective re-weighting mechanism. This
concept involves encouraging the stem network to learn samples that the honeypot classifier finds
challenging to classify, which are typically clean samples, and ignoring samples that the honeypot
network confidently classifies. In this way, we guide the PLMs to concentrate primarily on clean
samples and prohibit backdoor creation during the fine-tuning process.

We evaluate the feasibility of the proposed methods in defending against an array of representative
backdoor attacks spanning multiple NLP benchmarks. The results demonstrate that the honeypot
defense significantly diminishes the attack success rate of the fine-tuned PLM on poisoned samples
while only minimally affecting the performance of the original task on clean samples. Notably, for
challenging backdoor attacks, e.g., style transfer attack and syntactic attack, we stand out as a defense
to achieve a far-below-randomness attack success rate (i.e., ≪ 50%). Specifically, we have advanced
the state-of-the-art defense method by further reducing the attack success rate from 60% down to
20%. The visualization of the model’s learning dynamics on the poisoned dataset and comprehensive
ablation study further validated our method’s ability. Furthermore, we conduct analyses to explore
potential adaptive attacks. In summary, this paper makes the following contributions:

• We demonstrate that the feature representations from the lower layers of PLMs contain
sufficient information to recognize backdoor triggers while having insufficient semantic
information for the original task.

• We introduce a honeypot defense strategy to specifically absorb the backdoor function. By
imposing penalties on the samples that the honeypot module confidently classifies, we guide
the PLMs to concentrate solely on original tasks and prevent backdoor creation.

• Our experimental results demonstrate that the proposed method efficiently defends against
attacks with diverse triggers, such as word, sentence, syntactic, and style triggers, with
minimal impact on the primary task. Furthermore, our method can be applied to different
benchmark tasks and exhibits robustness against potential adaptive attacks.

2 Preliminaries

2.1 Backdoor Attack in NLP

Backdoor attacks were initially proposed in the computer vision domain [3, 14, 15, 4, 16, 17]. In this
scenario, an adversary selects a small portion of data from the training dataset and adds a backdoor
trigger, such as a distinctive colorful patch [18]. Subsequently, the labels of all poisoned data points
are modified to a specific target class. Injecting these poison samples into the training dataset enables
the victim model to learn a backdoor function that constructs a strong correlation between the trigger
and the target label together with the original task. Consequently, the model performs normally on
the original task but predicts any inputs containing the trigger as the target class. Recently, numerous
studies have applied backdoor attacks to various NLP tasks. In the context of natural language, the
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backdoor trigger can be context-independent words or sentences [9, 10]. Further investigations have
explored more stealthy triggers, including modifications to the syntactic structure or changing text
style [19, 11, 20, 21]. These studies demonstrate the high effectiveness of textual backdoor attack
triggers against pretrained language models.

2.2 Backdoor Defense in NLP

Recently, several pioneering works have been proposed to defend against backdoor attacks in the field
of NLP. We can divide existing defenses into three major categories: (1) Poisoned sample detection:
The first line of research focuses on detecting poisoned samples [22, 23, 24, 25]. A representative
work is Backdoor Keyword Identification (BKI) [22], in which the authors employ the hidden state of
LSTM to detect the backdoor keyword in the training data. Additionally, some studies concentrate on
identifying poisoned samples during inference time. For instance, a representative work [23] aims
to detect and remove potential trigger words to prevent activating the backdoor in a compromised
model. (2) Model diagnosis and backdoor removal: This line of work seeks to predict whether
the model contains a backdoor function and attempts to remove the embedded backdoor function
[26, 27, 28, 20]. (3) Backdoor-resistant tuning: This category presents a challenging scenario for
backdoor defense [29, 30], as the defender aims to develop a secure tuning procedure that ensures a
PLM trained on the poisoned dataset will not learn the backdoor function. The work [29] reveals
that the PLM tuning process can be divided into two stages. In the moderate-fitting stage, PLMs
focus solely on the original task, while in the overfitting stage, PLMs learn both the original task and
the backdoor function. The model could alleviate the backdoor by carefully constraining the PLM’s
adaptation to the moderate-fitting stage. Our proposed honeypot defense belongs to the third category
and offers a different solution.

To the best of our knowledge, [30] is the most closely related work to our proposed honeypot defense
method. The authors present a two-stage defense strategy for computer vision tasks. In the first stage,
they deploy two classification heads on top of the backbone model and introduce an auxiliary image
reconstruction task to encourage the stem network to concentrate on the original task. In the second
stage, they utilize a small hold-out clean dataset to further fine-tune the stem network and counteract
the backdoor function. In comparison, our proposed method eliminates the need for a two-stage
training process or a hold-out small clean dataset for fine-tuning, rendering it more practical for
real-world applications.

2.3 Information Contained within Different Layers of PLMs.

Numerous studies have delved into the information encapsulated within different layers of pretrained
language models. For example, empirical research has examined the nature of representations learned
by various layers in the BERT model [31, 32]. The findings reveal that representations from lower
layers capture word and phrase-level information, which becomes less pronounced in the higher layers.
Syntactic features predominantly reside in the lower and middle layers, while semantic features are
more prominent in the higher layers. Recent studies have demonstrated that PLMs employ distinct
features to identify backdoor samples [33]. We further investigated the backdoor features presented
in different layers and found that lower-layer features are highly effective in recognizing backdoor
samples. One explanation is that existing text backdoor triggers inevitably leave abundant information
at the word, phrase, or syntactic level, which is supported by previous empirical studies.

3 Understanding the Fine-tuning Process of PLMs on Poisoned Datasets

In this section, we discuss our empirical observations obtained from fine-tuning PLMs on poisoned
datasets. Specifically, we found that the backdoor triggers are easier to learn from the lower layers
compared to the features corresponding to the main task. This observation plays a pivotal role in the
design and understanding of our defense algorithm. In Section 3.1, we provide a formal description
of the poisoned dataset. In Section 3.2, we subsequently delve into our empirical observations.

3.1 Settings

Consider a classification dataset Dtrain = (xi, yi), where xi represents an input text, and yi cor-
responds to the associated label. To generate a poisoned dataset, the adversary selects a small set
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Figure 1: Fine-Tuning PLMs on Poisoned Datasets. (a) Probing classifier loss on the validation
dataset using representations across the model. (b) Visualizing training loss for poisoned and clean
samples for the world-level trigger.

of samples Dsub from the original dataset Dtrain, typically between 1-10%. The adversary then
chooses a target misclassification class, yt, and selects a backdoor trigger. For each instance (xi, yi)
in Dsub, a poisoned example (x′

i, y
′
i) is created, with x′

i being the embedded backdoor trigger of xi

and y′i = yt. The resulting poisoned subset is denoted as D′sub. Finally, the adversary substitutes the
original Dsub with D′

sub to produce Dpoison = (Dtrain −Dsub) ∪D′
sub. By fine-tuning PLMs with

the poisoned dataset, the model will learn a backdoor function that establishes a strong correlation
between the trigger and the target label yt. Consequently, adversaries can manipulate the model’s
predictions by adding the backdoor trigger to the inputs, causing instances containing the trigger
pattern to be misclassified into the target class t.

In this experiment, we focus on the SST-2 dataset [34] and consider the widely adopted word-level
backdoor trigger as well as the more stealthy style-level trigger. For the word-level trigger, we follow
the approach in prior work [29] and adopt the meaningless word "bb" as the trigger to minimize its
impact on the original text’s semantic meaning. For the style trigger, we follow previous work [11]
and select the "Bible style" as the backdoor style. For both attacks, we set a poisoning rate at 5% and
conduct experiments on the RoBERTaBASE model [35], using a batch size of 32 and a learning rate of
2e-5, in conjunction with the Adam optimizer [36].

3.2 Lower Layer Representations Provide Sufficient Backdoor Information

Figure 2: Embedding visualization.

To understand the information in different layers of PLMs,
we draw inspiration from previous classifier probing stud-
ies [37, 38] and train a compact classifier (one RoBERTa
transformer layer topped with a fully connected layer) using
representations from various layers of the RoBERTa model.
Specifically, we freeze the RoBERTa model parameters and
train only the probing classifier. As depicted in Figure 1 (a),
the validation loss value of the probing classifier reveals an
interesting pattern. Notably, the lower layers (0-4) of the
RoBERTa model contain sufficient backdoor trigger features
for both word-level and style-level attacks, thereby showing
an extremely low CE loss value for poison samples. Figure 1
(b) presents the training loss curve for the probing classifier for the word-level trigger. We can see
that the probing classifier rapidly captures the backdoor triggers in the early stages for lower-layer
features. For example, the probing classifier already overfits the poisoned samples after 300 steps
using representations from layers 1 and 4.
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Figure 3: Illustration of the honeypot-based defense framework: The honeypot classifier optimizes
the generalized cross-entropy (LGCE) loss to overfit the backdoor samples. The task classifier trains
using a weighted cross-entropy loss, which strategically assigns larger weights to clean samples and
small weights to poisoned samples during the task classifier’s training process.

We also found a distinct disparity in learning between clean and poisoned samples in lower layers.
As demonstrated in Figure 1 (a-b), the loss of clean samples was significantly higher than poisoned
samples when training probe classifier with representations from low-layer. This observation aligns
with earlier research [31, 32] proposing that lower-layer features primarily encapsulate superficial
features, such as phrase-level and syntactic-level features. Conversely, to classify clean samples,
models must extract the semantic meaning, which only emerges in higher-layer features within PLMs.
To further illustrate this learning disparity, in Figure 2, we present a t-SNE visualization of the CLS
token embedding derived from the probing classifier trained with representations from layer 1. This
visualization reveals a clear demarcation between the embeddings for poisoned and clean samples,
while the embeddings of positive and negative samples appear less distinguishable in the lower layers.
We put more visualization results and discussions in Section A.

4 The Proposed Method

Our defense method stems from the observations in Section 3, which indicates that poisoned samples
frequently involve the injection of words, sentences, or syntactic structures that are effectively
identified by the lower-layers of PLMs. Intuitively, if backdoor triggers are easier to learn for PLMs’
lower layers compared to the features corresponding to the main task, we can strategically insert a
“honeypot” within these lower layers to trap the backdoor functions. Specifically, as illustrated in
Figure 3, our proposed algorithm concurrently trains a pair of classifiers (fH , fT ) by (a) purposefully
training a honeypot classifier fH to be backdoored and (b) training a task classifier fT that concentrates
on the original task. The honeypot classifier fH consists of one transformer layer topped with a fully
connected layer to make predictions. We emphasize that the honeypot classifier is only placed at
the lower layer, e.g., layer 1. Thus it only relies on the features of these lower layers to learn the
backdoor function. The trainable parameter of the honeypot is denoted as θT . Inspired by previous
work [39, 40], we apply Generalized Cross-Entropy (GCE) loss [39, 40] to enlarge the impact of
positioned samples to the honeypot classifier:

LGCE(f(x; θH), y) =
1− fy(x; θH)q

q
, (1)

where fy(x; θH) is the output probability assigned to the ground truth label y. The hyper-parameter
q ∈ (0, 1] controls the degree of bias amplification. As limq→0

1−fy(x;θ)
q

q = − log fy(x; θ), which
is equivalent to the standard cross-entropy loss. The core idea is to assign higher weights fq

y to highly
confident samples while updating the gradient. To see this,

∂LGCE(p, y)

∂θH
= fq

y (x; θH) · ∂LCE(p, y)

∂θH
. (2)

Thus, the GCE loss further encourages the honeypot module to only focus on the “easier” samples,
the majority of which are poisoned samples when using the lower layer representations, in contrast to
a network trained with the normal CE loss.
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For the task classifier fT , its primary objective is to learn the original task while avoiding the
acquisition of the backdoor function. As we previously analyzed, the honeypot will absorb the impact
of these positioned samples. Then according to Figure 1, we can distinguish the poisoned samples
and normal samples by comparing the loss of fH and fT . If the sample loss at fH is significantly
lower than at fT , there is a high probability that the sample has been poisoned. Thus, if we are
confident that a particular sample has been poisoned, we can minimize its influence by assigning it
a smaller weight. Specifically, we propose employing a weighted cross-entropy loss (LWCE) for
achieving this goal, which is expressed as follows:

LWCE(fT (x), y) = σ(W (x)− c) · LCE(fT (x), y), where (3)

W (x) =
LCE(fH(x), y)

L̄CE(fT (x), y))
, (4)

fH(x) and fT (x) represent the softmax outputs of the honeypot and task classifiers, respectively.
The function σ(·) serves as a normalization method, effectively mapping the input to a range within
the interval [0, 1], e.g., the Sigmoid function, Sign function, and rectified Relu function. The c is a
threshold value for the normalization. L̄CE(fT (x), y) is the averaged cross-entropy loss of the task
classifier fT among the last t steps, where t is a hyperparameter that controls the size of the time
window. W (x) = LCE(fH(x), y)/L̄CE(fT (x), y)) is the ratio of the loss of the honeypot classifier
at the current step versus the averaged one of the task classifier fT among the last t steps.

We elaborate on how the proposed framework works. We first warm up the honeypot classifier fH
for some steps to let it “prepare” for trapping the backdoor triggers. Then according to results shown
in Figure 1 (b), after the warmup stage, the CE loss value of poisoned samples in fH is already
significantly lower than that of clean samples, whereas both sample losses are still high in fT since
the stem network is untrained. Consequently, W (x) will assign a lower weight to poisoned samples.
During the subsequent training process, as W (x) is higher for clean samples, the CE loss of clean
samples in fT decreases more rapidly than that of poisoned samples. This will further amplifying
W (x) for clean samples as they have smaller L̄CE(fT (x), y)). This positive feedback mechanism
ensures that the W (x) for poisoned samples remains significantly lower than for clean samples
throughout the entire training process of fT . To further reduce the poisoned samples’ impact, we use
the Sign function as the normalization method σ to further diminish the impact of poisoned samples
with a W (x) weight less than the threshold c.

5 Experiments

5.1 Experiment Settings

In our experiments, we considered two prevalent PLMs with different capacities, including BERTBASE,
BERTLARGE, RoBERTaBASE, and RoBERTaLARGE. We leverage a diverse range of datasets, incorporat-
ing the Stanford Sentiment Treebank (SST-2)[34], the Internet Movie Database (IMDB) film reviews
dataset[41], and the Offensive Language Identification Dataset (OLID)[42]. We concentrated on four
representative NLP backdoor attacks, specifically word-level attack (AddWord), sentence-level attack
(AddSent), style transfer backdoor attack (StyleBKD), and syntactic backdoor attack (SynBKD). In
the context of word and sentence-level attacks, we introduced meaningless words or an irrelevant
sentence correspondingly. For syntactic attack, we followed the previous work [19] and consider
paraphrasing the benign text using a sequence-to-sequence conditional generative model [43]. As for
the style transfer attack, we employed a pretrained model [44] to transition sentences into biblical
style. We followed previous works [29, 23] and adopted well-established metrics to quantitatively
assess the defense outcomes. Firstly, the Attack Success Rate (ASR) is utilized to evaluate the
model’s accuracy on the poisoned test set, serving as a gauge of the extent to which the model has
been effectively backdoored. Secondly, we use the Clean Accuracy (ACC) metric to measure the
model’s performance on the clean test set. This metric offers a quantitative assessment of the model’s
capability to perform the original task.

For each experiment, we executed a fine-tuning process for a total of 10 epochs, incorporating an
initial warmup epoch for the honeypot module. The learning rates for both the honeypot and the
principal task are adjusted to a value of 2× 10−5. Additionally, we established the hyperparameter q
for the GCE loss at 0.5, the time window size T was set to 100, and the threshold value c was fixed at
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Table 1: Overall defense performance

Dataset Victim BERTBASE BERTLARGE RoBERTaBASE RoBERTaLARGE

Attack ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓)

SST-2

AddWord 90.34 ±0.72 10.88 ±3.02 93.11 ±0.55 6.77 ±1.97 93.71 ±0.68 6.56 ±1.91 94.15 ±0.80 5.84 ±2.15

AddSent 91.03 ±0.88 7.99 ±3.20 92.66 ±1.00 7.71 ±2.45 92.39 ±0.60 7.71 ±2.05 94.83 ±0.94 4.20 ±2.30

StyleBKD 89.79 ±0.70 25.89 ±4.50 93.46 ±0.75 22.54 ±3.70 93.15 ±0.82 20.87 ±3.90 94.50 ±0.85 19.62 ±4.20

SynBKD 86.23 ±1.00 29.00 ±5.00 92.20 ±0.90 26.45 ±4.00 93.34 ±0.75 22.90 ±3.85 94.00 ±1.10 21.20 ±4.10

Average 89.35 ±0.83 18.44 ±3.93 92.86 ±0.80 15.87 ±3.03 93.15 ±0.71 14.51 ±2.93 94.37 ±0.92 12.72 ±3.19

IMDB

AddWord 91.32 ±0.80 7.20 ±2.38 92.60 ±0.75 5.84 ±2.18 93.72 ±0.84 5.60 ±2.04 94.12 ±1.20 3.60 ±2.01

AddSent 91.00 ±0.95 8.16 ±2.45 92.12 ±0.80 9.52 ±2.37 92.72 ±0.88 6.56 ±2.23 93.68 ±1.10 6.32 ±2.14

StyleBKD 89.44 ±1.00 20.60 ±2.84 92.76 ±0.95 18.70 ±3.25 93.12 ±0.89 19.36 ±2.90 94.50 ±1.05 17.90 ±3.10

SynBKD 89.04 ±0.94 23.60 ±2.75 91.96 ±0.96 24.96 ±2.94 93.20 ±0.93 22.70 ±2.80 94.00 ±1.00 18.40 ±2.46

Average 90.20 ±0.92 14.89 ±2.61 92.36 ±0.86 14.76 ±2.69 93.19 ±0.88 13.56 ±2.49 94.08 ±1.09 11.58 ±2.43

OLID

AddWord 80.81 ±0.97 12.74 ±3.21 85.00 ±1.00 10.48 ±2.99 82.79 ±0.85 11.45 ±3.17 86.34 ±1.10 9.78 ±2.91

AddSent 84.88 ±0.85 5.64 ±2.15 86.66 ±1.20 5.32 ±2.09 83.37 ±0.82 4.83 ±2.04 87.33 ±0.90 4.50 ±1.95

StyleBKD 83.95 ±0.95 29.36 ±2.90 83.83 ±0.88 27.20 ±3.00 83.95 ±0.90 29.18 ±2.92 87.20 ±1.02 26.10 ±2.89

SynBKD 83.02 ±1.10 30.10 ±2.95 85.00 ±0.94 29.40 ±3.10 83.02 ±0.93 28.40 ±2.90 85.34 ±1.05 30.12 ±2.89

Average 83.17 ±0.97 19.46 ±2.80 85.12 ±1.01 18.10 ±2.80 83.28±0.88 18.47 ±2.76 86.55 ±1.02 17.63 ±2.66

Table 2: Performance comparison with other defense methods in SST2 Dataset

Defence Method AddWord AddSent StyleBKD SynBKD

ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓)

No defense 94.61 ±0.60 100.00 ±0.00 94.38 ±0.52 100.00 ±0.00 93.92 ±0.55 100.00 ±0.00 94.49 ±0.57 100.00 ±0.00

BKI 94.72 ±0.89 86.37 ±3.15 93.75 ±0.81 100.00 ±0.00 93.96 ±0.92 99.28 ±0.10 93.60 ±0.72 100.00 ±0.00

ONION 93.45 ±0.90 21.86 ±2.40 93.52 ±0.78 91.35 ±3.55 93.59 ±0.87 98.50 ±0.35 93.15 ±0.75 100.00 ±0.00

RAP 94.01 ±0.88 82.23 ±3.70 92.94 ±0.95 92.21 ±3.35 92.20 ±1.05 77.93 ±4.15 92.94 ±0.93 78.75 ±4.05

STRIP 93.79 ±0.75 98.22 ±3.25 93.94 ±0.83 100.00 ±0.00 94.01 ±0.96 75.92 ±3.90 93.22 ±0.89 62.25 ±3.75

MF 92.54 ±0.94 16.35 ±2.90 92.31 ±1.00 52.15 ±3.80 92.23 ±0.98 60.52 ±4.10 92.92 ±0.96 59.11 ±3.95

Our Method 93.71 ±0.68 6.56 ±1.91 92.39 ±0.60 7.71 ±2.05 93.15 ±0.82 20.87 ±3.90 93.34 ±0.75 22.90 ±3.85

0.1. Each experimental setting was subjected to three independent runs and randomly chosen one class
as the target class. These runs were also differentiated by employing distinct seed values. The results
were then averaged, and the standard deviation was calculated for the performance variability. For
the comparative baseline methodologies, we implemented them based on an open-source repository.
2 and adopt the default hyper-parameters in the repository.

5.2 Defense Results

In Table 1, we illustrate the effectiveness of our proposed honeypot defense method against four
distinct backdoor attacks. Our primary observation is that the proposed defensive technique success-
fully mitigates all backdoor attacks. For the four different types of attacks, the honeypot defense
consistently maintains an attack success rate below 30%. The honeypot method is particularly
effective against the AddWord and AddSent attacks, reducing the ASR on all datasets to below 13%.
Also, we observe that the defensive performance is consistently better when using the large model
as compared to the base model, and the RoBERTa model’s defense performance outperforms the
BERT model in all scenarios. Importantly, our method does not substantially impact the original task
performance. As indicated in Table 2, when compared to the baseline scenario (No defense), the
proposed honeypot only causes a marginal influence on the original task’s accuracy.

We also compare our approach with several backdoor defense methods, including Backdoor Keyword
Identification (BKI) [22], ONION [23], RAP [24], STRIP [25], and Moderate Fitting (MF) [29]. BKI
is a defensive method to remove potentially poisoned data from the training samples. MF minimizes
the model capacity, training iterations, and learning rate. ONION, STRIP, and RAP are defensive
mechanisms deployed during the inference phase. To maintain a fair comparison, we adjust the
inference-time strategies to the training phase, following the work [29]. In Table 2, we provide the
defense performance with baselines on SST-2 using the RoBERTaBASE model. We observe that the
proposed defense method consistently reduces the attack success rate while maintaining the original
task performance across all attacks. Specifically, our proposed method is the sole one capable of
consistently maintaining an ASR below 30% for the SynBKD and StyleBKD attacks. Furthermore,
the average ACC of our method is 93.15%, which is only slightly lower than the no-defense baselines.
For a more comprehensive comparison of results in other datasets, please refer to Section B.

2OpenBackdoor. Github: https://github.com/thunlp/OpenBackdoor
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5.3 The Resistance to Adaptive Attacks

Table 3: Resistance to Adaptive attack

Method No Defense Our Method
ACC (↑) ASR (↓) ACC (↑) ASR (↓)

LPR 93.88 90.14 92.55 7.56
DPR 93.79 93.89 92.67 18.31
AST 93.74 100.0 92.41 10.23
Combine 93.81 91.22 92.53 24.90

To assess the robustness of our proposed method,
we examine adaptive attacks that may bypass
the defense mechanism. Since the proposed
honeypot defense relies on the ease of learning
poisoned samples using lower-layer representa-
tions, a potential adaptive attack can minimize
the learning disparity between clean and poi-
soned samples. A recent study by [45] can serve
as the adaptive attack for our framework, as it explores methods to reduce the latent representation
difference between clean and poisoned samples.

Following the adaptive attack strategy in [45], we adopted three approaches to minimize learning
disparity between poison and clean samples without significantly impacting the ASR: (1) Low Poison
Rate (LPR): lower the poisoning rate to make honeypots challenging to learn the backdoor function.
(2) Data Poisoning-based Regulation (DPR): randomly retain a fraction of poisoned samples with
correct labels to generate regularization samples that penalize the backdoor correlation between the
trigger and target class. (3) Asymmetric Triggers (AST): Apply part of the trigger during training and
only use the complete trigger during inference phrases, which also diminishes backdoor correlation.

We conducted the adaptive attack using the RoBERTaBASE model and a sentence trigger. (For DPR
and AST attacks, the poison ratio is 5%.) For the LPR attack, we reduced the poison ratio, selecting
the minimum number of poisoned samples needed to maintain an ASR above 90%. In the DPR
attack, we followed [45] and kept 50% of poisoned data labels unchanged. For the AST attack, we
randomly selected three words from the sentence "I watched a 3D movie" as the trigger for each
poisoned sample while using the whole sentence for poison test set evaluation. Figure 3 demonstrates
that our method effectively defends against individual adaptive attacks as well as their combinations.
Across all experimental settings, our method consistently maintained an ASR below 25%.

5.4 Ablation Study

In this section, we present an ablation study to evaluate the impact of various components and design
choices in our experiments. Without notification, we experiment on the RoBERTaBASE model with a
5% poisoned data injection rate. Our analysis focuses on the following aspects:

5.4.1 Impact of the Honeypot Position

Figure 4: Honeypot position.

In our initial experiments, we developed a honeypot classifier
using the output from the first transformer layer of the PLM.
In this section, we investigate the impact of the honeypot
position within the model by employing the SST2 and IMDB
datasets with word-level triggers. We incorporated the honey-
pot classifier at various layers within a RoBERTaBASE model.
Figure 4 illustrates the defense performance. Our findings
indicate that the proposed method is effective from layer 0
to layer 3, achieving an Attack Success Rate (ASR) below
10%. However, there is a noticeable increase in ASR from
layers 4 to 6, suggesting a decrease in the information density
difference between poisoned and clean features in the representations of these layers. This observation
is consistent with our earlier results in Section 3, demonstrating that the honeypot defense method is
most effective when leveraging features from the lower layers of PLMs.

Table 4: Impact of the Poison Ratio
Attack AddWord StyleBKD

Poison Ratio 2.5% 5.0% 7.5% 10.0% 12.5% 2.5% 5.0% 7.5% 10.0% 12.5%

ACC (↑) 93.71 93.71 93.11 92.67 92.59 93.25 93.15 92.89 92.55 90.90
ASR (↓) 7.81 6.56 6.77 6.30 6.35 20.34 20.87 23.95 28.85 28.70
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5.4.2 Impact of the Poison Ratio

In this section, we validate the robustness of the proposed defense method against varying poison
ratios using the SST2 dataset. Table 4 presents our evaluation of poison ratios ranging from 2.5% to
12.5%. Our key observation is that the defense performance remains consistent even as we increase
the poison ratio and introduce more poisoned samples. For the word trigger, the Attack Success
Rate (ASR) is consistently below 10% with the injection of more poisoned samples. This can be
attributed to the honeypot’s enhanced ability to capture these samples and exhibit higher confidence.
Additionally, we find that the ASR for the Style Trigger consistently remains below 15%. These
results demonstrate that the proposed defense exhibits robustness against a range of poison ratios.

5.4.3 Effectiveness of the GCE Loss

q = 0.7

q = 0.5

q = 0.1

q 
= 

0.
1

q 
= 

0.
3

q 
= 

0.
5

q 
= 

0.
7

Figure 5: Value q in GCE Loss.

In this section, we investigate the effectiveness of the gen-
eralized cross-entropy loss. We conducted experiments
using the same settings as in Section 5.4.1 and constructed
the honeypot using features from the first layer. As illus-
trated in Figure 5, we vary the q value from 0.1 to 0.7
and plot the loss curve during honeypot module training,
where q = 0 corresponds to the standard cross-entropy
loss. Our primary observation is that, as we increase the q
value, the honeypot module learns the backdoor samples
more rapidly. Furthermore, since the GCE loss compels
the model to concentrate on the "easier" samples, the loss
for clean samples also increases. This assists the proposed
weighted cross-entropy loss in assigning lower weights to poisoned samples and higher weights to
clean samples. However, excessively large q values can lead to unstable training. Therefore, we opt
for a q value of 0.5, which proves effective across various datasets and attack methods.

Table 5: Impact of the Threshold Value
Dataset SST2 IMDB

c 0.05 0.1 0.2 0.4 0.8 0.05 0.1 0.2 0.4 0.8

ACC (↑) 93.57 93.71 93.32 83.54 67.10 93.37 93.72 93.01 87.34 63.11
ASR (↓) 34.57 6.52 6.34 13.42 30.28 46.32 5.60 6.99 18.56 34.75

5.4.4 Impact of the Threshold Value

In this section, we assess the impact of the threshold value c. As mentioned in Section 4, we
normalized the weights W (x) by using a sign function with a threshold c. In Table 5, we conducted
experiments on the SST2 and IMDB datasets with the threshold ranging from 0.05 to 0.8. Our
experiments reveal that the defense method remains robust when the threshold lies between 0.1 and
0.3. However, selecting an excessively small value, such as 0.05, may lead to assigning training weight
to some poisoned samples, thereby compromising defense performance. Conversely, a too-large
threshold may negatively impact the original task performance.

6 Conclusion

In this study, we have presented a honeypot backdoor defense mechanism aimed at protecting
pretrained language models throughout the fine-tuning stage. Notably, the honeypot can absorb the
backdoor function during its training, thereby enabling the stem PLM to focus exclusively on the
original task. Comprehensive experimental evidence indicates that our proposed defense method
significantly reduces the success rate of backdoor attacks while maintaining only a minimal impact
on the performance of the original task. Importantly, our defense mechanism consistently exhibits
robust performance across a variety of benchmark tasks, showcasing strong resilience against a wide
spectrum of NLP backdoor attacks.
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A Understanding the Fine-tuning Process of PLMs on Poisoned Datasets

In this section, we show our empirical observations obtained from fine-tuning PLMs on poisoned
datasets. Specifically, we demonstrate that the backdoor triggers are easier to learn from the lower
layers than the features corresponding to the main task. This observation plays a pivotal role in
designing and understanding our defense algorithm. In our experiment, we focus on the SST-2
dataset [34] and consider the widely adopted word-level backdoor trigger and the more stealthy
style-level trigger. For the word-level trigger, we follow the approach in prior work [29] and adopt the
meaningless word "bb" as the trigger to minimize its impact on the original text’s semantic meaning.
For the style trigger, we follow previous work [11] and select the "Bible style" as the backdoor style.
For both attacks, we set a poisoning rate at 5% and conduct experiments on the RoBERTaBASE model
[35], using a batch size of 32 and a learning rate of 2e-5, in conjunction with the Adam optimizer
[36]. To understand the information in different layers of PLMs, we draw inspiration from classifier
probing studies [37, 38] and train a compact classifier (one RoBERTa transformer layer topped with a
fully connected layer) using representations from various layers of the RoBERTa model. Specifically,
we freeze the RoBERTa model parameters and train only the probing classifier.

In Figure 6, we present the training loss curve of the word-level trigger, which utilizes a probing
classifier constructed using features extracted from twelve different layers of the RoBERTa model. A
critical observation highlights that in the initial layers (1-4), the probing classifier overfits the poisoned
samples early in the training phase (around 500 steps). However, it underperforms the original task.
This can be attributed to the initial layers primarily capturing surface-level features, including phrase-
level and syntactic-level features, which are insufficient for the primary task. Subsequently, in
Figure 7, we delve deeper into the visualization of the probing classifier’s CLS token embeddings. A
notable demarcation can be observed between the embeddings for poisoned and clean samples across
all layers. However, the distinction between positive and negative sample embeddings becomes less
discernible in the lower layers. We found a similar trend for the style-level trigger, as we showed the
learning dynamic in Figure 8 and embedding visualization in Figure 9.

Figure 6: Learning dynamic for Word-level Trigger
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Figure 7: Embedding Visualization for Word-level Trigger

Figure 8: Learning dynamic for Style-level Trigger
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Figure 9: Embedding Visualization for Style-level Trigger

B More on Defense Results

Table 6: Performance comparison with other defense methods on IMDB dataset

Defence Method AddWord AddSent StyleBKD SynBKD

ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓)

No defense 93.88 ±0.76 100.00 ±0.00 93.68 ±0.72 100.00 ±0.00 93.92 ±0.68 99.52 ±0.15 93.84 ±0.72 99.53 ±0.20

BKI 93.32 ±0.87 87.27 ±2.90 92.84 ±0.90 98.65 ±1.10 93.10 ±0.85 99.02 ±0.30 93.00 ±0.90 99.35 ±0.25

ONION 88.32 ±0.94 32.32 ±3.02 89.76 ±0.92 89.04 ±3.70 88.32 ±0.96 95.58 ±0.38 88.80 ±0.95 99.65 ±0.10

RAP 93.10 ±0.84 85.62 ±3.58 92.70 ±0.88 91.20 ±3.45 92.96 ±0.86 76.90 ±3.80 92.70 ±0.90 78.80 ±3.70

STRIP 93.74 ±0.78 97.90 ±3.20 93.70 ±0.80 100.00 ±1.20 93.50 ±0.82 78.70 ±1.50 93.60 ±0.78 88.90 ±1.10

MF 92.80 ±0.86 21.30 ±3.50 92.60 ±0.90 36.00 ±2.50 92.80 ±0.85 65.80 ±2.80 92.90 ±0.88 76.50 ±2.20

Our Method 93.72 ±0.84 5.60 ±2.04 92.72 ±0.88 6.56 ±2.23 93.12 ±0.89 19.36 ±2.90 93.20 ±0.93 22.70 ±2.80

Table 7: Performance comparison with other defense methods on OLID dataset

Defence Method AddWord AddSent StyleBKD SynBKD

ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓) ACC (↑) ASR (↓)

No defense 85.23 ±0.68 99.83 ±0.25 85.00 ±0.67 100.00 ±0.00 84.88 ±0.71 99.24 ±0.39 85.23 ±0.67 100.00 ±0.00

BKI 84.76 ±0.89 90.23 ±2.67 84.88 ±0.84 100.00 ±0.00 83.23 ±0.98 98.34 ±0.42 83.72 ±0.95 99.61 ±0.25

ONION 84.41 ±0.88 58.10 ±2.34 85.11 ±0.82 100.00 ±0.00 85.11 ±0.86 99.63 ±0.31 84.53 ±0.92 99.39 ±0.30

RAP 83.93 ±0.90 87.18 ±3.11 83.72 ±0.94 99.44 ±0.35 83.54 ±0.97 95.23 ±1.93 83.91 ±0.89 94.45 ±1.95

STRIP 85.00 ±0.76 100.00 ±0.00 83.27 ±0.86 99.25 ±0.30 84.65 ±0.91 88.81 ±0.25 83.98 ±0.93 79.84 ±0.20

MF 81.97 ±0.93 21.24 ±2.92 81.86 ±0.97 68.92 ±2.79 82.09 ±0.98 68.42 ±3.10 82.89 ±0.92 58.52 ±3.00

Our Method 82.79 ±0.85 11.45 ±3.17 83.37 ±0.82 4.83 ±2.04 83.95 ±0.90 29.18 ±2.92 83.02 ±0.93 28.40 ±2.90

In this section, we delve deeper into the comparison between our method and several other backdoor
defense strategies, maintaining the same conditions as outlined in Section 5. Particularly, Table 6
shows our honeypot technique against others on the RoBERTaBASE with the IMDB dataset. Addi-
tionally, results using the OLID dataset are presented in Table 7. In the case of the IMDB dataset,
our method consistently achieves the lowest ASR across all four attack methods, displaying a robust
defense technique even under varied adversarial conditions. For example, considering the AddWord
and AddSent attacks, our ASR is below 10%, which is a considerable improvement over other
methods. In StyleBKD and SynBKD, our ASR stays below 23%, still outperforming the competing
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(a) No Defense (b) Our Method

Figure 10: Embedding Visualization for Victim Model and Protected Model

methods by a wide margin. Similarly, for the OLID dataset, our method demonstrated excellent
performance, surpassing all other defense methods in terms of ASR. Furthermore, our method still
achieves competitive ACC results on the original tasks. In Figure 10, we exhibit the t-SNE visual-
izations derived from the CLS token embeddings of the final transfer layer of the RoBERTa model.
As shown in Figure 10 (a), we observe that the no-defense model clearly recognizes the poisoned
samples. Instead, in Figure 10 (b), the model overlooks the backdoor trigger and successfully predicts
positive samples with embedded backdoor words as the positive class.

C Anti-backdoor Learning Baselines

Besides the NLP backdoor defense baselines, we also considered the backdoor defense baseline in the
computer vision domain. Specifically, we adopt a representative baseline, ABL [46], and transform it
to adapt to NLP tasks. ABL represents a series of approaches that first identify a small section of
poison samples and then use these samples for unlearning to mitigate the backdoor attack.

Table 8: The isolation precision (%) of ABL
γ ↓ Tte → 1 epoch 5 epochs 10 epochs

0.5 2.1 11.7 13.5
1.0 5.1 12.3 15.3
1.5 5.5 12.4 15.6

In Table 9, we found that ABL only achieves disappointing results with an ASR higher than 70%.
To shed light on this outcome of ABL, we assessed the backdoor isolation capabilities of ABL.
Following the setting in the ABL paper, we initiated a hyperparameter search that γ denotes the loss
threshold and Tte stands for the epochs of the backdoor isolation stage. Table 8 presents the detection
precision of the 1% isolated backdoor examples, which is crucial for the ABL backdoor unlearning
performance. However, our findings reveal that the percentage of poisoned samples is less than 20%,
which accounts for ABL’s suboptimal performance.

The ABL method primarily relies on the observation that “models learn backdoored data much faster
than they do with clean data” [46]. However, it is crucial to note that this assumption mainly holds
for models trained from scratch in computer vision tasks. Our research and reference [29] both
demonstrated an opposite behavior in that pre-trained language models first concentrate on learning
task-specific features before backdoor features. A plausible explanation for this behavior is the
richness of semantic information already present in the top layers of the pre-trained language models.
Thus, the original task becomes more straightforward compared to the backdoor functionality, causing
the model to prioritize learning the main task first. As a result, ABL struggles to yield satisfactory
detection performance during the backdoor isolation stage by selecting the “easy-to-learn” samples (as
shown in Table 8), and we show that ABL obtains a high ASR in the following backdoor unlearning
process (as shown in Table 9). In contrast, our findings underscore the significance of examining
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model structure when identifying backdoor samples, revealing that backdoor samples become more
identifiable in the lower layers of PLMs.

Table 9: Defense performance comparison with ABL

Model Dataset Attack ABL Honeypot

ACC (↑) ASR (↓) ACC (↑) ASR (↓)

RoBERTaBASE

SST-2 AddWord 90.25 76.21 93.71 6.65
AddSent 91.17 69.24 92.39 7.71

IMDB AddWord 92.59 87.14 93.72 5.60
AddSent 89.75 88.77 92.72 6.56

RoBERTaLARGE

SST-2 AddWord 92.03 74.98 94.15 5.84
AddSent 91.77 67.05 94.83 4.20

IMDB AddWord 92.59 75.09 94.12 3.60
AddSent 89.07 90.54 93.68 6.32

D Understanding the Honeypot Defense Training Process

In this section, we further illustrate more details about the honeypot defense training process. Specifi-
cally, we focus on the dynamic change of the training weight for poisoned and clean samples. As we
mentioned in Section 4, we propose employing a weighted cross-entropy loss (LWCE):

LWCE(fT (x), y) = σ(W (x)− c) · LCE(fT (x), y), where (5)

W (x) =
LCE(fH(x), y)

L̄CE(fT (x), y))
, (6)

fH(x) and fT (x) represent the softmax outputs of the honeypot and task classifiers, respectively.
The function σ(·) serves as a normalization method, effectively mapping the input to a range within
the interval [0, 1]. The c is a threshold value for the normalization.

In order to gain a deeper understanding of the re-weighting mechanism, we extend our analysis
by presenting both the original W (x) and the normalized weight σ(W (x)− c). We conducted the
experiment using the SST2 dataset, with a word-level trigger, a poisoning rate set at 5%, and a batch
size of 32. Figure 11 illustrates the W (x) value for both the poisoned and clean samples at each
stage of training. Specifically, we computed the W (x) for each mini-batch and then calculated the
average W (x) value for both the poisoned and clean samples. As depicted in the figure, during the
warm-up phase, the W (x) for clean and poisoned samples diverged early in the training process. After
500 steps, the W (x) for poisoned samples was noticeably lower than for clean samples. After the
warm-up stage, given that W (x) is higher for clean samples, the Cross-Entropy loss of clean samples
in fT diminishes more quickly than that of the poisoned samples. This subsequently increase W (x)
for clean samples as they possess a smaller L̄CE(fT (x), y)). This positive feedback mechanism
ensures that the W (x) for poisoned samples persistently remains significantly lower than for clean
samples throughout the complete training process of fT . As demonstrated in Figure 11, the W (x)
for the clean samples will continue to increase following the warm-up phase.

E More on Ablation Studies

E.1 Ablation Study on Honeypot Warm-Up

In the following section, we explore the influence of the preliminary warm-up steps in the honeypot
method, which represents the number of optimizations that the honeypot branch requires to capture
a backdoor attack. We applied our method against word-level attacks on RoBERTaBASE, and the
obtained results are shown in Table 10. The analysis indicates that with a minimum count of warm-
up steps, specifically below 200 for the SST-2 dataset, the honeypot is insufficiently prepared to
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Figure 11: Visualization of W(x) during defense training process.

capture the poisoned data. However, once the honeypot accrues a sufficient volume of poisoned data,
surpassing 400 training steps across all datasets, the Attack Success Rate (ASR) can be mitigated to
an acceptably low level, i.e., less than 10%. The results further prove that our honeypot can effectively
capture backdoor information with a certain amount of optimization. In our main experiments, we
set the number of warm-up steps equal to the steps in one epoch, thereby enabling our honeypot to
reliably catch the poisoned data.

Table 10: Impact of Warm-Up steps
Dataset SST-2 IMDB

Warm-Up Steps 100 200 400 1000 2000 100 200 400 1000 2000

ACC (↑) 94.61 94.72 94.50 94.41 94.15 94.71 94.80 94.26 94.33 94.12
ASR (↓) 100.00 100.00 8.64 5.37 5.84 100.00 7.62 5.32 5.79 3.60

E.2 Ablation Study on Normalization Method

Table 11: Impact of Normalization Method

Normalization AddWord
ACC (↑) ASR (↓)

No Defense 94.61±0.60 100.00±0.00

Sign 93.71±0.68 6.56±1.91

Sigmoid 93.22±0.53 6.83±2.01

Cutoff Relu 93.10±0.71 6.77±1.04

In this section, we use the SST2 dataset and
word-level trigger to understand the impact of
different normalization functions. As outlined
in Section 4, our approach employs a normal-
ization method to map the training loss weight
W (x) into the [0, 1] interval. Within our exper-
iments, we opted for the sign function as the
normalization technique. However, we also ex-
plored two alternative normalization strategies
– the sigmoid function and a cutoff ReLU func-
tion. For the latter, we assigned a value of 1 to any input exceeding 1. As depicted in Table 11, we
conducted the experiments on RoBERTaBASE using different normalization functions, we can observe
that all normalization methods demonstrate decent performance in minimizing the ASR. Notably,
we observe that the sign function yields the highest ACC on the original task while simultaneously
achieving the lowest ASR.

F Extend Honeypot to Computer Vision Tasks

While this paper primarily focuses on defending pretrained language models against backdoor attacks,
we also explored the applicability of our proposed honeypot defense method within the computer
vision domain [3, 4, 6]. In Section F.1, we illustrate the experimental settings. In Section F.2, we
show the empirical findings. In Section F.3, we discuss the defense performance.
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F.1 Settings

Suppose Dtrain = (xi, yi) indicates a benign training dataset where xi ∈ {0, ..., 255}C×W×H

represents an input image with C channels and W width and H height, and yi corresponds to
the associated label. To generate a poisoned dataset, the adversary selects a small set of samples
Dsub from the original dataset Dtrain, typically between 1-10%. The adversary then chooses a
target misclassification class, yt, and selects a backdoor trigger a and a ∈ {0, ..., 255}C×W×H . For
each instance (xi, yi) in Dsub, a poisoned example (x′

i, y
′
i) is created, with x′

i being the embedded
backdoor trigger of xi and y′i = yt. The trigger embedding process can be formulated as follows,

x′
i = (1− λ)⊗ x+ λ⊗ a, (7)

where λ ∈ [0, 1]C×W×H is a trigger visibility hyper-parameter and ⊗ specifies the element-wise
product operation. The smaller the λ, the more invisible the trigger and the more stealthy. The
resulting poisoned subset is denoted as D′sub. Finally, the adversary substitutes the original Dsub

with D′
sub to produce Dpoison = (Dtrain −Dsub) ∪D′

sub. By fine-tuning PLMs with the poisoned
dataset, the model will learn a backdoor function that establishes a strong correlation between the
trigger and the target label yt. Consequently, adversaries can manipulate the model’s predictions
by adding the backdoor trigger to the inputs, causing instances containing the trigger pattern to be
misclassified into the target class t.

In our experiment, we employed an ImageNet pretrained VGG-16 model as our base model and
proceeded with experiments using a manipulated CIFAR-10 dataset. The experiments involve the
use of a 3 x 3 white square and a black line with a width of 3 pixels as backdoor triggers. The white
square trigger is positioned at the bottom-right corner of the image, while the black line trigger is set
at the bottom. We set poison rate as 5% and set λ ∈ {0, 0.2}C× W×H for two attacks. The values of
λ corresponding to pixels situated within the trigger area are 0.2, while all others are set to 0.

F.2 Lower Layer Representations from VGG Provide Sufficient Backdoor Information

Drawing on our analysis presented in Section 3, we delve further into understanding the information
encapsulated within various layers of a pretrained computer vision model. Inspired by previous
classifier probing studies [37, 38], we train a compact classifier using representations derived from
different layers of the VGG model. We ensure the VGG model parameters are frozen during this
process and only train the probing classifier. In this context, we divided the VGG model into five
sections based on the pooling layer operations (The five pooling layers are located at layers 2, 4, 7, 10,
and 13). Subsequent to this, we integrate an adaptive pooling layer to reduce the features extracted
from different layers to 7× 7, ensuring that the flattened dimension does not exceed 8000. A fully
connected layer with softmax activation is added as the final output. As depicted in Figure 13 and
Figure 12, it is noticeable that the lower layers of the VGG model hold sufficient information for
identifying the backdoor triggers. However, they do not contain enough information to effectively
carry out the main tasks.

Figure 12: Learning Dynamic for White Square Trigger

Figure 13: Learning Dynamic for Black Line Trigger

19



Table 12: Defense Performance on CIFAR10

Method White Square Black Line
ACC (↑) ASR (↓) ACC (↑) ASR (↓)

No Defense 91.33±0.27 100.00±0.00 91.28±0.13 100.00±0.00

Our Method 92.20±0.43 8.81±1.09 92.23±0.37 10.81±1.83

F.3 Defense Results on CIFAR10

We implemented the honeypot as mentioned in Section 4 and built the honeypot module with the
features from the first pooling layer. We followed previous sections and adopted the ASR and ACC
metrics to measure the model’s performance on the poisoned test set and clean test set, respectively.
Specifically, we executed a fine-tuning process for a total of 10 epochs, incorporating an initial
warmup epoch for the honeypot module. The learning rates for both the honeypot and the principal
task are adjusted to a value of 1× 10−3. Additionally, we established the hyperparameter q for the
GCE loss at 0.5, the time window size T was set to 100, and the threshold value c was fixed at 0.1.
Each experimental setting was subjected to three independent runs and randomly chosen one class as
the target class. These runs were also differentiated by employing distinct seed values. The results
were then averaged, and the standard deviation was calculated to present a more comprehensive
understanding of the performance variability. As the results are shown in Table 12, the proposed
method successfully defends two backdoor attacks and reduces the ASR to lower than 10%. This
indicates that the proposed method is valid for those simple vision backdoor triggers while having
minimal impact on the original task. We plan to test the defense performance of more advanced
backdoor triggers in our future work.

G Limitations and Discussions

In this study, we introduce an innovative approach to backdoor defense in the context of fine-tuning
pretrained language models. Due to the constraints in terms of time and resources, our evaluations
were conducted using four prevalent backdoor attack methods and on three representative datasets.
Despite the robustness and consistency demonstrated by our method, it is essential to remain vigilant to
the emergence of new and potentially threatening attack methods and datasets, especially considering
the rapid growth of this field. In addition, it’s worth acknowledging that while unintended, some
malicious users may exploit our method and deploy other strong backdoor attacks that may bypass
our defense system.
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