TFLEX: Temporal Feature-Logic Embedding
Framework for Complex Reasoning over Temporal
Knowledge Graph

Xueyuan Lin! Haihong E'* Chengjin Xu?* Gengxian Zhou'
Haoran Luo' Tianyi Hu' Fenglong Su?® Ningyuan Li' Mingzhi Sun'
! Beijing University of Posts and Telecommunications
2 University of Bonn
3 National University of Defense Technology

linxy59@mail2.sysu.edu.cn, ehaihong@bupt.edu.cn, xuc@iai.uni-bonn.de

z.gengxian@sel8.gmul.ac.uk, {luohaoran, hutianyi}@bupt.edu.cn
sufenglongl8@nudt.edu.cn, {jason.ningyuan.li, sunmingzhi}@bupt.edu.cn

Abstract

Multi-hop logical reasoning over knowledge graph plays a fundamental role in
many artificial intelligence tasks. Recent complex query embedding methods for
reasoning focus on static KGs, while temporal knowledge graphs have not been
fully explored. Reasoning over TKGs has two challenges: 1. The query should
answer entities or timestamps; 2. The operators should consider both set logic on
entity set and temporal logic on timestamp set. To bridge this gap, we introduce the
multi-hop logical reasoning problem on TKGs and then propose the first temporal
complex query embedding named Temporal Feature-Logic Embedding framework
(TFLEX) to answer the temporal complex queries. Specifically, we utilize fuzzy
logic to compute the logic part of the Temporal Feature-Logic embedding, thus
naturally modeling all first-order logic operations on the entity set. In addition,
we further extend fuzzy logic on timestamp set to cope with three extra temporal
operators (After, Before and Between). Experiments on numerous query patterns
demonstrate the effectiveness of our method.

1 Introduction

Multi-hop logical reasoning over knowledge graphs (KGs) is a fundamental issue in artificial intelli-
gence. It aims to find the answer entities for a first-order logic (FOL) query which involves logical
operators (existential quantification 3, conjunction A, disjunctionV and negation—). Generally, the
query is parsed into computation graph, according to which subgraph matching is executed on KG to
find the answers. The computation graph is a directed acyclic graph (DAG) whose nodes represent
entity sets, and edges represent logical operators acting on entity sets. However, results are inevitably
incorrect as KGs are incomplete and noisy. Besides, the computation complexity will spiral for
large-scale KGs or large queries. Therefore, people propose to embed query into low-dimensional
space to solve the problem.

Query embedding (QE) learns the embeddings of queries and entities, so that answer entities are close
to its queries in the embedding space. It has attracted arising attention, as low-dimension embeddings
can model implicit dependency and reduce computation. There follows a series of QE methods,
including GQE[1], Query2box[2], BetaE[3], ConE[4], etc. However, existing works only focus

* Corresponding Authors

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Temporal Complex Query
q[Ve] = V2, 3T0, T, T :
be_elected_as(Frangois Hollande, President of France, T,,) A After(T,, Tc)A
step_down_from(Frangois Hollande, President of France, T}) A Before(Ty, T.)A
make_a,_visit(Xi Jinping, V7, T.) A "make_a_visit(Barack Obama, V>, T,)

Computation Graph

After
Before
e1 : Frangois Hollande : be elected as €z : President of France €5 : Xi Jinping 73 : make a visit

es : Frangois Hollande 72 : step down from €4 : President of France eq : Barack Obama 74 : make a visit

Figure 1: A typical multi-hop temporal complex query and its computation graph: "During Francois
Hollande was the president of France, which countries did Xi Jinping visit but Barack Obama did not
visit?". In the computation graph, there are entity set (blue circle), timestamp set (green triangle), time
set projection (green arrow), entity set projection (blue arrow) and logical operators (red rectangle).

on queries over static KGs. These methods can neither handle an entity query involving temporal
information and operators, nor answer the timestamp set for a temporal query.

Temporal knowledge graph (TKG) augments triples in static knowledge graphs with temporal
information, represented as <head, relation, tail, timestamp> named fact. For example, the fact
<Angela Merkel, make a visit, China, 2010-07-16> specifies the time when the event happens.
Generally speaking, TKGs are more close to real world than static KGs, because most knowledge
needs to be updated with time, and static KGs cannot express this change. In recommendation
systems, TKGs are used to model user behaviors, which includes liking, buying, reading, commenting
and so on. In financial applications, TKGs involve stock holding behaviors, trading behaviors,
and financial events. These applications require reasoning over TKGs to answer complex queries.
However, recent researches in TKGs focus on temporal link prediction, which is simply single-hop.
A complex logical query involving multiple facts for multi-hop reasoning is not fully explored yet.

To fill the gap, we introduce a temporal multi-hop logical reasoning task over TKGs. The task aims to
answer temporal complex queries, which have two main distinctions from existing queries over static
KGs. Firstly, the answer sets for queries over TKGs are either entity sets or timestamp sets, while
that for existing queries over static KGs can only be entity sets. Secondly, as temporal information
is included in the query, temporal operators such as After, Before should be considered apart from
FOL operators. To understand this new task, we provide the definition of temporal complex query in
Section 3. In addition, an example of a temporal complex query is shown in Figure 1. This example
query pertains to the financial event of China’s visit and may be of interest to financial analysts.

According to the definition of the temporal complex query, we then generate datasets of temporal
complex queries on three popular TKGs, and propose the first temporal complex query embedding
framework, Temporal Feature-Logic Embedding framework (TFLEX) to answer these queries. In our
framework, embeddings of objects (entity, query, timestamp) are divided into two parts, the entity part,
and the timestamp part. The entity part handles the FOL operations over entities, while the timestamp
part copes with the temporal operations over timestamps. Each part is further divided into feature and
logic components. On the one hand, the computation of the logic components follows fuzzy logic,
which enables our framework to handle all FOL operations. On the other hand, feature components
are mingled and transformed under the guidance of logic components, thereby integrating logical
information into the feature. Moreover, we extend fuzzy logic to support extra temporal operations
(After, Before and Between) to handle temporal operations in the queries.

The contributions of our work are summarized as follows: (1) For the first time, the definition of the
task of multi-hop logical reasoning over TKGs is given. (2) We propose the first multi-hop logical
reasoning framework on TKGs, namely Temporal Feature-Logic Embedding framework (TFLEX),

which supports all FOL operations and extra temporal operations (After, Before and Between). (3)
We generate three new TKG datasets for the task of multi-hop logical reasoning. Experiments on
three generated datasets demonstrate the efficacy of the proposed framework. The source code of our

framework and the datasets are available online *.

2 Related Work

Complex Query Embedding. It learns embeddings of queries and entities, and the answer entities
are close to queries in the embedding space. Existing methods utilize a lot of objects to create the
embeddings, such as (1) probability distribution [3, 5] (2) geometric object [1, 2, 4, 6, 7] (3) fuzzy
logic [8—10] and (4) others [11-13]. However, existing embedding-based methods are considered
on static KGs. They cannot utilize temporal information in the TKGs, and therefore cannot handle
temporal queries on a temporal KG. Firstly, static query embeddings (QEs) are built over (s, 1, 0)
triples instead of (s, r, 0, t) quartets, thus ignoring the timestamps for temporal complex reasoning.
The second reason is the order property of timestamps, which is on the contrary that entities are
unordered, leading to that static QEs are unable to handle Before and After temporal logic. In
addition, we also notice the semantic conflict in experiments (see section 5.2) when concatenating
the geometric embedding (static QE) with the fuzzy embedding (that can handle temporal logic) to
promote the static QE to temporal one. Therefore, it is challenging for static QEs to utilize temporal
information in the TKGs.

Temporal Knowledge Graph Completion (TKGC). It aims at inferencing new facts in the TKGs.
Existing TKGC methods could be categorized to (1) tensor decomposition [14—16], (2) timestamp-
based transformation [17-21], (3) dynamic embedding [22-25], (4) Markov process models [26, 27],
(5) autoregressive models [28-30], (6) others [31-33] and so on. Among these works, most of
them only confined to the one-hop link prediction task, also known as one-hop reasoning. Some
works [25, 28-30, 32] can perform multi-hop reasoning via a path consisting of connected quartets.
But none of them could answer logical queries that involve multiple logical operations (conjunction,
negation and disjunction). In this paper, we focus on the temporal complex query answering task,
which is more challenging than TKGC task.

3 Definitions

Temporal Knowledge Graph (TKG) G = {V, R, T, F} consists of entity set V, relation set R,
timestamp set 7 and fact set 7 = {(s,7,0,1)} €V x R x V x T containing subject-predicate-
object-timestamp (s, r, o, t) quartets. Without loss of generality, G is a first-order logic knowledge
base, where each quartet (s, r, 0, t) denotes an atomic formula r(s, o, t), with 7 a predicate and s, o, ¢
its arguments.

Multi-hop Logical Reasoning over TKG is the task to answer Temporal Complex Query ¢ when
given a TKG G. We focus on Existential Positive First-Order (EPFO) query [34] over TKG, namely
Temporal Complex Query ¢, which is categorized into entity query and timestamp query. Formally,
the query ¢ consists of a target variable A, a non-variable anchor entity set V; C V), a non-variable
anchor timestamp set 7, C 7T, bound variables V7,--- V4 and T1,--- , T}, logical operations
(existential quantification 3, conjunction A, disjunction V, identity 1, negation —), and extra temporal
operations (After, Before). After(t1,t2) means t is after ¢, while Before(t,¢2) means ¢ is before
t1. Inspired by [2, 3], the disjunctive normal form (DNF) of temporal query ¢ is defined as:

q[A]=A :3Vi, Vi, Ty, Ty (eg Ao Aep)V -V (el Ao Aelt)
where e = for(V,,Voor A, T)or for(Vsor A,V,,T) or g(T;,T}) if ¢ is entity query,
e= for(Vy,V,,T or A) or g(T;,Tj) or g(T', A) or g(A,T) if g is timestamp query
with Vi, V, e V,u{Va,--- Wi}, T,7;,T; € T,U{Th,--- ,T1},
r € R, fe€{l,-}, g€ {After, Before}

In the equation, the DNF is a disjunction of m conjunctions, where e{ A ~/\e¥1j denotes a conjunction
between n; logical atoms, and each ef denotes a logical atom. We ignore indices in the definition

>khttps ://github.com/LinXueyuanStdio/TFLEX

https://github.com/LinXueyuanStdio/TFLEX

of e{ to keep the formula clean. The goal of answering the query ¢ is to find the set of entities (or
timestamps) [¢] that satisfy the query, such that A € [q] iff g[A] holds true, where [¢] is the answer
set of the query q.

Following existing static query embedding works, we introduce Computation Graph, which is
a directed acyclic graph (DAG) representing the structure of temporal complex query. Its nodes
represent entity/timestamp sets S C V, UV U T, UT, while directed edges represent logical or
relational operations acting on these sets. A computation graph specifies how the reasoning of the
query has proceeded on the TKG. Starting from anchor sets, we obtain the answer set after applying
operations iteratively on non-answer sets according to the directed edges in the computation graph.
The edge types on the computation graph are defined as follows:

1. Relational Projection P. Given an entity set .S; C V), a timestamp set So C 7 (or an entity
set So C V for entity projection) and a relation r € R, projection operation maps 51 and So
Uges, tess) 10 |(v,m, 0", t) € F}, P is entity projection

to another set: S’ = . .
{U(vesl,v'ESQ){tva r,v',t) € F}, P istimestamp projection

2. Intersection Z (Union U, etc.). Given entity sets or timestamp sets {S,---, Sy}, the
intersection (union, etc.) operation computes logical intersection (union, etc.) of these sets
ﬁ?zlsi (U;‘ZISZ», etc.).

y-5 SCV

T-S5 SCT

4. Extended temporal operators f. Given a timestamp set .S, extended operators compute a

{t'|for some t' € T,¢ > max(S)}, fisAfter

{t'|for some t' € T,t' < min(S)}, fisBefore

3. Complement/Negation C. The complement set of a given set S is S = {

certain set of timestamps S’: S’ = {

In order to efficiently compute the answer set of a temporal complex query, we consider embedding
the query set into a low-dimensional vector space, where the answer set is also represented by a
continuous embedding vector. Formally, the Temporal Query Embedding V, of a query ¢ is a
continuous embedding vector, generated by executing operations according to the computation graph,
starting from the temporal embeddings of anchor entity or timestamp sets. The Temporal Query
Answer to the query g is the entity v (or timestamp ¢) whose embedding v (or t) has the smallest
distance dist(v, V) (or dist(t, V,)) to the embedding of query g.

4 Method

In this section, we replace the variables in the query formulation with temporal feature-logic em-
beddings, and perform logical operations via neural networks. We first introduce the temporal
feature-logic embedding for entities, timestamps, and queries in Section 4.1. Afterwards, we intro-
duce logical operators in Section 4.2 and how to train the model in Section 4.3.

4.1 Temporal Feature-Logic Embeddings for Queries and Entities

In this section, we design temporal embeddings for queries, entities and timestamps. In general, the
answers to queries may be entities or timestamps. Therefore, we consider a part of the embedding as
an entity part to answer entities, while the other is the timestamp part to answer timestamps. Formally,
the embedding of query set [¢] is V, = (g%, a7, q;, q}) where q5 € R4 is entity feature, gf € [0, 1]%
is entity logic, q} € R? is time feature, ql €0, 1]¢ is time logic respectively, d is the embedding
dimension. The parameter g; is the uncertainty q;5 + (1 — q;)7 of the feature, according to fuzzy
logic. An entity v € V is a special query without uncertainty. We propose to represent an entity as the
query with logic part 0, which indicates that the entity’s uncertainty is 0. Formally, the embedding of
entity v is v = (v§, 0,0, 0), where v§ € R is the entity feature part and O is a d-dimensional vector
with all elements being 0. Similarly, the embedding of timestamp ¢ is t = (0, 0, £, 0) with entity
part and time logic being 0.

Attention that we introduce vector logic, which is a type of fuzzy logic over vector space, to cope
with logical transformation in the vector space. Fuzzy logic is a generalization of Boolean logic, such
that the truth value of a logical atom is a real number in [0, 1]. In comparison, as a generalization

of a real number, the truth value in vector logic is a vector [0, 1]% in the semantic space. We denote
the logical operations in vector logic as AND(A), OR(V),NOT(-), and so on, which receive one or
multiple vectors and output one vector as answer. For more details about fuzzy logic, please refer to
Appendix A.1.

4.2 Logical Operators for Temporal Feature-Logic Embeddings

In this section, we introduce the designed neural logical operators, including projection, intersection,
complement, and all other dyadic operators.

Projection Operator P, and P;. The goal of operator P, is to map an entity set to another entity
set under a given relation and a given timestamp, while operator P, outputting timestamp set given
relation and two entity queries. We define a function P, : Vg, r,V; = V[in the embedding
space to represent P, and P; : V,,, 1, V,, = V for P; respectively. To implement P. and
P;, we first represent relations as translations on query embeddings and assign each relation with
relational embedding r = (r§, 7, r?, r!). We follow the assumption of translation-based methods:
¢o ~ (s + 7 +t. As a comparison, static KGE TransE [35] has 0 ~ s + r, and temporal KGE
TTransE [36] has o; ~ s; + r. The addition represents a semantic translation starting from the source
entity set, following the relation and timestamp conditioning, ending at the target entity set. Therefore,
we define P, and P, as:

Pe(Vy,r, Vi) = g(MLPG(V, 41+ Vy))

()
Pt (Vih Iy VQ2) = g(MLPB(Vth +r+ VQQ))

where MLP : R4 — R is a multi-layer perception network (MLP), + is element-wise addition and
g is an activate function to generate g¢ € [0,1]%, g € [0, 1]¢. We use MLP and activation function
g(.) to make projection operator output a valid query embedding, which shows the closure property
of the operator. P, and P; do not share parameters so the MLPs are different. We define g as:

g9(x) = [x[0 : d]; o(x[d : 2d)); x[2d : 3d]; o(x[3d : 4d])] 2)

where x[0 : d] is the slice containing element x; of vector x with index 0 < ¢ < d, o(+) is Sigmoid
function and [-; -] is the concatenation operator.

Dyadic Operators. There are two types of dyadic operators for our framework. One for entity set
and the other for timestamp set. Each type includes intersection (AND), union (OR), the symmetric
difference (XOR), etc. With the help of fuzzy logic, our framework can model all dyadic operators
directly. Below we take a unified way to build these operators.

We start from intersection operators Z. (on entity set) and Z; (on timestamp set). The goal of
intersection operator Z, (Z;) is to represent [g] = N?_,[q:] based on their entity parts (times-
tamp parts). Suppose that V,, = (qle £ digs qi 2 qz ;) is temporal feature-logic embedding for
[g:]. We notice that there exists Alignment Rule in the process of reasoning. When perform-
ing entity set intersection Z., we should also perform intersection on timestamp parts in order to
align the entities into the same time set. The same also holds for timestamp set intersection Z; and
all other dyadic operators. Therefore, we firstly define the intersection operators as follows:

Fuzzy Logic Alignment Rule

L L

L(Vay. . Vy,) = (Q_afat ;. AND{gf,}.> Biqi;. AND{q!})
=1 1=1

~ . N e i 5 ¢
Zt(vfh LA 7an) = (E @, q; ¢, Allj]]){qll}) E Biqi,fv Aile{qi,l})
=1

i=1
Alignment Rule Fuzzy Logic

where AND is the conjunction in fuzzy logic, ; and 3; are attention weights. To notice the changes
: e,t et
of logic, we compute «;”" and 3, via the following attention mechanism:

per_eoMIPY(atsar)) oMU (i)
b exp(MLPY (g5 4 q5)])) T X, exp(MLPS ([t 4 gt)

3)

Qf/ Before After q,
L~

t ! t t t t t ! t
;-1 ¢ d—-q & 9 —q q; q;

Figure 2: The computation of time part in temporal operators Before and After.

where MLP{, : R?¢ — R are MLP networks, [-; -] is concatenation. The first self-attention neural
network will learn the hidden information from entity logic and leverage to entity feature, while the
second one gathers logical information from time logic to time feature. Note that the computation
of entity logic, and time logic obeys the law of fuzzy logic, without any extra learnable parameters.
In this way, all dyadic operators can be generated from fuzzy logic in our framework. Due to space
limitation, we present the union, exclusive or, implication operators and so on in Appendix A.3.

Complement Operators: C. and C;. The aim of C, is to identify the complement of query set [¢]
such that [-¢]] = V\[q], while C; aims to calculate the complement [-¢] = 7 \[¢] by the time parts.
Suppose that V,; = (q;, q;, q}, q!), we define the complement operator C, and C; as:

CE(VQ) = (fne()t(q;)7NOT(qle)7q;7 qf)7 Ct(Vq) = (q]e’7qle7 frfot(q}>7N0T(qf)) (4)

where f (qy) = tanh(MLP3([q5; 4f])), fr(q%) = tanh(MLPy4([q}; g}])) are feature negation
functions, two MLP3 4 : R?¢ — R are MLP networks, NOT is negation in fuzzy logic.

Temporal Operators: After 4,, Before 3; and Between D;. The operator After A; : V, — V(’J
(Before B; : V + V) aims to deduce the timestamps after(before) a given fuzzy time set [¢]. Let
V, = (4%, 4,4}, qf), we define A; and B; as:
l+q 1—gq e o ¢ lta 1-qf
D) 7T)a Bt(Vq):(qfvtthf_ B 77)
The entity part does not change after computation because temporal operator only affects the time part
(time feature q? and time logic g}). The motivation of computation is illustrated in Figure 2. Since
q; is the uncertainty of time feature g}, the time part can be viewed as an interval (g} — qf, g} + q]]
whose center is q? and half-length is g/. The interval is covered by [q} - l,q} + 1] because
the probability g; < 1. Then, after interval g} — qf,q} + q;] is the interval [q} + g}, q} + 1]
whose center is q} + 1+2q; and half-length is 1Eq; , which gives the time part of embedding A, (V).
Similarly, the time part of embedding B,(V) is q} — H;”t (time feature) and 1;q; (time logic),
which are generated from [g} — 1,4} — qj] before [¢} — qf,q}; + gj]. The operator Between
Dy : Vg, Vg, = V, inferences the time set after [¢;] and before [g2]. Therefore, we define
Between Dy as Dy (V,, Vy,) = Ti(A(Vy,), Bi(V,)) to output the time between [g¢1] and [g2].

At(Vq) = (q;7 qlea q} + (5)

4.3 Learning Temporal Feature-Logic Embeddings

We expect the model to achieve high scores for the answers to the given query g, and low scores for
v’ ¢ [g]. Therefore, we firstly define a distance function to measure the distance between a given
answer embedding and a query embedding, and then we train the model with negative sampling loss.

Distance Function Given an entity embedding v = (vj}, 0,0,0), a timestamp embedding t =
(0,0,t%,0) and a query embedding V, = (g%, g7, g}, gj), we define the distance d between the
answer and the query ¢ as the sum of the feature distance (between the feature parts) and the logic
part (to expect uncertainty to be 0). If the query answers entities, the distance is d°(v;V,) =
[v$ — gll1 + gf . Otherwise, the distance is d'(t; V,) = [t} — g} ||+ + q; for queries answering
timestamp set, where || - ||1 is the L; norm and + is element-wise addition. The distance function
aims to optimize two losses. One is to push the answers to the neighbor of query in the embedding

space. It corresponds to the term L1 distance between answer and query. The other is to reduce the
uncertainty of the query (the probability interpretation of the logic part), to make the answers more
accurate.

Loss Function Given a training set of queries, we optimize a negative sampling loss

k
1
L=—logo(y—d(v;Vy)) = > logo(d(vj; V) =) ©)
i=1

where v > 0 is a fixed margin, & is the number of negative entities, and o (-) is the sigmoid function.
When query ¢ is answering entities (timestamps), v € [¢] is a positive entity (timestamp), v} ¢ [¢] is
the i-th negative entity (timestamp).

S Experiments

In this section, we evaluate the ability of TFLEX to reason over TKGs. We first introduce experimental
settings in Section 5.1, and then present the experimental results in Section 5.2.

5.1 Experimental Settings

Datasets and Query Generation Experiments are performed on three new datasets generated
from standard benchmarks for TKGC: ICEWS14 [37], ICEWSO05-15 [37], and GDELT-500 [38]
(with statistics in Appendix B.1). We predefined 40 kinds of complex queries for each dataset. The
definition of the 40 kinds of complex queries and the query generation process details are described
in Appendix B.2. We consider 27 kinds of queries for training and all 40 kinds for evaluation and
testing. Please refer to Appendix B.3 for summaries of the final datasets.

To briefly summarize the results, we aggregate groups of queries that can be answered: entities (avg,),
timestamps (avg,), entities with negation (avg, .), timestamps with negation (avg, .,), entities with
unseen union (avg {ue}), timestamps with unseen union (avg {ut}), and other hybrid unseen structures
(avg,). These groups are inspired by the experiment settings of existing static QEs [1-4]. The detail
that which query belongs to which group will be shown in Appendix B.7. Note that the training set
only involves 4 groups of queries: avg,, avg,, avg, . , and avg, ¢, .

Evaluation Given a test query g, for each non-trivial answer v € [¢]est — [¢]vaiia Of the query g,
we rank it against non-answer entities V — [¢]esc (or non-answer timestamps 7 — [¢] s if the query
is answering timestamps). Then we calculate Mean Reciprocal Rank (MRR) based on the rank. The
higher, the better. Please refer to Appendix B.5 for the definition of MRR.

5.2 Main Results

For each group, we report the average MRR in Table 1. The raw MRR results on all query structures
for each dataset in detail are presented in Appendix B.7.

How well can TFLEX answer temporal complex queries?. We compare TFLEX with state-of-the-
art query embeddings Query2box [2], BetaE [3] and ConE [4] on answering entities. Existing query
embeddings only handle FOL on entity set, but unable to cope with temporal logic over timestamp
set. Therefore, the results of these three methods have to be obtained by ignoring the timestamps,
so that the avg,, avg, ¢,, avgy,,y and avg, of three methods are zeros. Comparing the results of
these methods in Table 1, we can see that TFLEX outperforms all the baselines on all the metrics.
These results demonstrate that TFLEX can perform reasoning over TKGs well, at least better than
the existing query embeddings.

Ablation on entity part. The variant X(ConE) replaces the entity part of TFLEX with ConE [4] to
handle the logic over entity sets. In the entity part, ConE is geometric while TFLEX is fuzzy. The
variant performs even worse than TFLEX and ConE. The dropping MRR indicates that the entity part
plays an important role in the framework. Considering the performance of ConE, we think there is
semantic conflict between the time part of TFLEX and the entity part of ConE. Simply combining
static QEs with dynamic QEs is not a clever way to achieve the best performance.

Table 1: Average MRR results for different groups of temporal complex queries. X denotes the
variant of TFLEX. X(ConE) replaces the entity part with ConE [4]. FLEX ablates the time part.
X-1F merges entity feature and timestamp feature into one feature. X-logic removes the logic part.

Dataset Metrics Query2box BetaE ConE TFLEX X(ConE) FLEX X-1F X-logic
avg, 25.06 37.19 41.94 56.79 4093 43.67 56.89 56.64
aveg, e 36.69 44.838 50.82 42.15 4441 49.78 51.17
avg, 17.56 16.41 18.77 18.03
avg, ¢, 36.37 35.24 37.73 36.39
ICEWS14 avgg,,) 19.95 2647 35.74 2546 29.25 3448 34.68
avgiy,) 26.24 24.07 28.04 26.36
avg, 28.03 26.65 29.31 28.61
AVG 35.93 30.13 36.43 35.98
avg, 2400 31.33 4093 48.99 36.29 38.96 49.90 44.80
avg, o 29.70 4352 46.17 38.12 42.10 46.11 41.92
avg, 4.39 441 443 3.29
ICEWS05-15 28, 30.16 29.49 30.26 28.34
avgy,} 21.54 43.02 54.37 36.37 4438 54.05 45.36
avgiy,) 28.69 26.40 27.70 23.39
avg, 24.26 21.69 24 .41 21.95
AVG 33.72 27.54 33.98 29.86
avg, 9.67 1475 18.44 19.60 17.83 19.07 17.92 17.36
avg, o 11.15 12.67 13.52 1234 13.35 12.13 12.11
avg, 5.38 3.16 5.49 5.75
GDELT-500 V8¢, 6.31 3.93 6.50 6.86
avgy,y 6.20 6.96 7.58 7.41 744 6.92 6.91
avgyy, 6.71 6.35 6.59 6.80
avg, 6.17 6.17 6.47 6.64
AVG 9.32 8.17 8.86 8.92

Ablation on time part. The variant FLEX removes the time part of the temporal feature-logic
embedding. Then, FLEX can only answer entities. The results show that FLEX slightly outperforms
ConE. However, the performance of FLEX is worse than TFLEX with a large margin on all the
datasets. Therefore, we conclude that the time part also plays an important role in the framework.

Ablation on feature part. If we remove the entity and timestamp feature, the embeddings of entities
and timestamps will crash to zeros. Instead, we consider another way to explore the impact of the
feature part. Noticing that some TKGC approaches [36, 39] embed entities and timestamps into the
same semantic space, we propose X-1F to merge the entity and timestamp features into one feature.
Compared with TFLEX, X-1F achieves higher scores on ICEWS14 and ICEWS05-15, but lower on
GDELT. The results imply that unifying the feature of entity and timestamp is potentially beneficial
in some datasets.

Ablation on logic part. The variant X-logic removes both entity logic and time logic. It achieves
lower scores than TFLEX on all the datasets. This is because the logic part is responsible for reasoning
over TKGs. Removing the logic part results in that neural logical operators completely rely on neural
network to learn the logic, which is not enough to handle various temporal complex queries.

Out-of-data reasoning. The results on avg, 1, avg,,y,avg, support that the framework can reason
over unseen entity logic, unseen time logic as well as their hybrid. The entity union and time union
operators are not included in the training set, but the framework can still handle them well.

Sensitive analysis. (1) The selection of hyperparameters (embedding dimension d, the margin ~y) has
a substantial influence on the effectiveness of TFLEX. We train the model with embedding dimension
d € {300, 400, 500, 600, 700, 800, 900, 1000}, the margin v € {5, 10, 15, 20, 25, 30, 35,40}. The
best performance is achieved when d = 800 and v = 15. Too small and too large d, v both lead to
worse results, reported in Appendix B.6. (2) Besides, we also investigate the stability of TFLEX. We
train and test for five times with different random seeds and report the error bars in Appendix B.6.
The small standard variances demonstrate that the performance of TFLEX is stable.

Comparison between TFLEX and TKGC methods. It’s natural to compare TFLEX with SOTA
TKGC methods, since all of them can answer one-hop temporal queries. We present the compar-
ison results in Table 2. We can see that TFLEX is competitive with translation-based methods

Table 2: TKGC Results (%) on ICEWS14, ICEWSO05-15, and GDELT. The results from top to
bottom are organized as static KGEs, timestamp-based transformation TKGEs, tensor decomposition,
autoregressive models and ours. Best results are in bold. }, = indicate the results taken from [40, 17].
Other results are the best numbers reported in their respective paper.

Model ICEWS14 ICEWS05-15 GDELT
MRR Hit@! Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@l0 MRR Hit@l Hit@3 Hit@10
TransE* [35] 28.0 9.4 - 637 294 9.0 - 663 113 00 158 31.2
DistMult* [41] 439 323 - 672 456 337 - 69.1 196 117 208 348
SimplE* [42] 458 341 516 687 478 359 539 708 20,6 124 220 36.6
ConT [43] 185 117 205 315 163 105 189 272 144 80 156 26.5
TTransE [36] 25.5 74 - 60.1 271 8.4 - 616 115 00 160 31.8
HyTE [44] 297 108 416 655 316 116 445 68.1 118 00 165 32.6
TA-DistMult [45] 47.7 363 - 68.6 474 346 - 728 206 124 219 36.5
DE-TransE [46] 326 124 467 68.6 314 108 453 685 126 00 181 35.0
DE-DistMult[46] 50.1 392 569 708 484 366 546 718 213 130 228 37.6
DE-SimplE [46] 526 418 592 725 513 392 578 748 230 141 2438 403
ChronoR [17] 625 547 669 773 675 596 723 82.0 - - - -
TuckERT [39] 594 518 640 731 627 550 674 769 411 310 453 61.4
TuckERTNT [39] 604 521 655 753 638 559 686 783 381 283 4138 57.6
RGCRN' [47,40] 333 240 365 515 359 262 400 546 186 115 198 324
CyGNet! [48] 346 253 388 53.1 354 254 402 544 180 111 191 315
RE-NET' [28] 357 259 401 548 368 262 418 576 196 120 205 338
RE-GCN' [40] 377 271 425 588 382 274 430 599 190 119 204 33.1
TFLEX-1p 439 314 496 644 406 291 475 66.1 16.5 86 173 33.1
TFLEX 482 357 565 723 430 300 4938 695 185 101 196 349
before | E/i;‘after
os i i Table 3: MRR of Pe on ICEWS14, ICEWSO05-
% AN 15, and GDELT-500. The best results are in bold.
I ! : Results of TTransE and HyTE are taken from Goel
5., v\/ et al. [46]
£ ! !
[—— bPt=By(P(s, r,0)) F
o bre Pt(‘s ; o) \\4 Datasets TTransE* HyTE* TFLEX-1p TFLEX
— aPt=APs. 1 0) ICEWS14 25.5 29.7 429 482
00 ICEWS05-15 27.1 31.6 40.6 43.0
“Timestamp (0=2014-1-1, 365=2014-12-31) GDELT-500 115 11.8 16.5 185

Figure 3: Score distributions of Pt, bPt and aPt.

(ConT [43], TTransE [36], HyTE [44], etc.), but it doesn’t outperform the SOTA TKGC methods like
ChronoR [17] and TuckERT [39]. However, the result doesn’t affect the novelty and contribution of
this paper. Please note that the projection operator of TFLEX is as simple as TTransE, not further
optimized for TKGC tasks only. Upgrading the projection operator to outperform SOTA TKGC
methods remains a future work.

Necessity of training on temporal complex queries. Our experiments demonstrate that training on
complex queries is necessary to achieve the best performance. We compare with translation-based P,
operators (TTransE [36], HyTE [44] and TFLEX’s variant TFLEX-1p) using only one-hop Pe queries
for training. We choose TTransE and HyTE because our projection operator is also translation-based
(Pe(Vg,r,Vy) « Vg + 1+ V,). From the result table 3, we observe that TFLEX achieves the
best performance when comparing with these translation-based baselines on all datasets. Besides,
compared with TFLEX-1p, TFLEX achieves 7.9% relative improvement on average on MRR, which
demonstrates that training on complex queries could improve the one-hop query-answering ability.

Effectiveness of neural temporal operators. We found that the temporal operators A; and 13; change
the semantic of predicted timestamp embedding logically. We randomly select an event (s, r, 0) from
ICEWS14 and consider three temporal queries Pt, bPt and aPt. Then, Pt(= P, (s, r,0)) predicts
the date ¢ when this event happened. And bPt(=8;(P(s,,0))) should predict the date before ¢,
while aPt(=A;(P;(s, r,0))) is supposed to predict the time after ¢. The output of three queries are
time embeddings. Because the time embedding is fuzzy, we score it to all possible Timestamps,
and visualize the normalized similarity score distribution over all days in a year, from 0 to 365 in
ICEWS14. The higher the score, the more possible the predicted date is the day. We plot the three
score distributions in Figure 3. For each distribution, we highlight the periods of the highest scores

with a colored background. These colored blocks represent the most likely happening time interval
of the event. We observe that the order of colored blocks (corresponding to the predictions of bPt,
Pt, and aPt) matches the logical meanings of these operators (Before the event, On the event, After
the event). The visualization shows that neural temporal operators perform the time transformation
correctly. More examples are attached in Appendix D.

Explaining answers with temporal feature-logic framework. We take query Pe2 for example.
Given temporal query Pe2: ¢[V7] = V2,3V, ri(e1, Vo, t1) A 12(Va, Vo, t2), let’s try an example
which can be written as: On 2014-04-04, who consulted the man who was appealed to or requested
by the Head of Government (Latvia) on 2014-08-01? In this example, e; is "Head of Government
(Latvia)", r1 is "Make an appeal or request”, t; is "2014-08-01", ry is "consult™!", and to is "2014-
04-04". Then we use TFLEX to execute the query and get answers. We classify the answers into
easy, hard and wrong ones. The easy answer is the correct answer that appears in the training set,
while the hard answer is the correct answer that exists in the testing set instead of training set.

We present five most likely answers for interpretation in Figure 4. From the table we observe that
TFLEX ranks easy answers "Francois Hollande", "Taavi Rdivas" and hard answer "Andris Berzins"
higher than wrong answers "Angela Merkel" and "Head of Government (Latvia)". This shows that
TFLEX successfully finds the hard answer by performing complex reasoning, and distinguishes the
right answers from the wrong ones.

We provide 36 examples in Appendix E, including the visualization and intermediate explanation of
answers for each query structure.

Query Sentence On 2014-04-04, who consulted the man who was appealed to or

Pe2 Pe(Pe(er,r1,t1),72,t2) requested by the Head of Government (Latvia) on 2014-08-01?
@ Temporal Query ¢[V2] = V2,3V, r1(e1, Va, t1) Ar2(Va, Vo, t2)
i 4 Rank Query Answers Correctness Answer Type

e1 : Head of Government (Latvia)

r1: Make an appeal or request 1 Frangois Hollande v Easy
t1: 2014-08-01 2 Taavi Raivas 4 Easy
T2 consult 3 Jyrki Katainen v Hard
to: 2014-04-04 4 Angela Merkel X -

5 Head of Government (Latvia) X -

Figure 4: Intermediate variable assignments and ranks for example Pe2 query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

6 Conclusion

In this paper, we firstly define a temporal multi-hop logical reasoning task on temporal knowledge
graphs. Then we generate three new TKG datasets and propose the Temporal Feature-Logic embed-
ding framework, TFLEX, to handle temporal complex queries in datasets. Fuzzy logic is used to
guide all FOL transformations on the logic part of embeddings. We also further extended fuzzy logic
to implement extra temporal operators (Before, After and Between). To the best of our knowledge,
TFLEX is the first framework to support multi-hop complex reasoning on temporal knowledge graphs.
Experiments on benchmark datasets demonstrate the efficacy of the proposed framework in handling
different operations in complex queries.

Acknowledgments and Disclosure of Funding

This work is supported by the National Science Foundation of China (Grant No. 62176026) and
Beijing Natural Science Foundation (M22009); Engineering Research Center of Information Net-
works, Ministry of Education. We would like to express our sincere gratitude to our corresponding
authors, Prof. Haihong E and Dr. Chengjin Xu, for their guidance, expertise, and unwavering support
throughout the project. Furthermore, we would like to thank Fenglong Su, Gengxian Zhou, Tianyi
Hu, Ningyuan Li, Mingzhi Sun, and Haoran Luo for their individual contributions and collaboration
in various aspects of this project. Their expertise and dedication have significantly enriched the final
outcome. Additionally, we extend our thanks to the anonymous reviewers for their time and efforts in
reviewing our work. Their constructive feedback and comments have been instrumental in improving
the overall clarity and rigor of this research.

10

Broader Impact

Multi-hop reasoning makes the information stored in TKGs more valuable. With the help of multi-hop
reasoning, we can digest more hidden and implicit information in TKGs. It will broaden and deepen
KG applications in various fields, such as question answering, recommend systems, and information
retrieval. It may also bring about risks exposing unexpected personal information on public data.

Finance temporal knowledge graph is a good example to illustrate the broader impact of multi-hop
reasoning. In the financial field, the information stored in TKGs is very sensitive. The one-hop
reasoning can complete the hidden financial transaction, while the multi-hop reasoning can help to
detect the fraud. The After operator could also be used to predict the future financial transaction.
People may take the advantages of logical reasoning to digest financial factor to obtain excess returns.

Military temporal knowledge graph is another example. With the help of multi-hop logical reasoning,
we may predict the future military strategy of a country. Besides, with the fuzzy completion of
the hidden military information, we can also detect the hidden militarily moves, which may save
thousands of soldiers’ lives.

The last example is social temporal knowledge graph. The behaviors of people are left and stored in
TKGs. With the help of logical reasoning, we may predict a short future of a person. For example, the
query may answer the evolution of user profiles: how long may a person transfer to another role, from
student to worker, becoming a parent, or being a grandparent. Tracking the user’s identity change can
provide super benefits for merchants’ advertising. Detecting the role of a person is also helpful to
provide more personalized services.

However, we should agree that the multi-hop reasoning is still at an extremely early stage, though
it may bring about risks. Therefore, we should pay more attention to the security of TKGs and the
privacy of users at the mean time when we explore the technology of multi-hop reasoning over TKGs.

Limitation & Future Work

In this section, we list 4 limitations and talk about the possible future work.

Limitation 1: The temporal operators are not enough.. We define three extra temporal operators
(Before, After and Between) in query generation. However, there exists more temporal operators in
the real world. For example, Allen [49] defined 13 types of temporal relations represented by two
intervals, including before/after, during/contains, overlaps/overlapped-by, meets/met-by, starts/started-
by, finishes/finished-by and equal. In the future we would like to promote these temporal operators to
TKGs.

Limitation 2: The temporal embedding could improve.. In this paper, the embedding of the
timestamp is randomly initialized and finally learned by the model via logical advantages. Such
embedding ignores the order of different timestamps. The order property is learned by the After and
Before operators, which may be not enough. We recall that in the field of NLP, positional embeddings
also have order features, which may be used for the construction of timestamp embeddings.

Limitation 3: The query generation is time-consuming.. There are 40 predefined query structures
in our query generation module. Each query structure has 10k+ queries for training. With the scale of
TKGs increasing, the number of queries will also increase, even 40x faster. Therefore, we need to
find a more efficient way to generate queries for large scale TKGs.

Limitation 4: The MRR and Hits@k are weak.. The MRR and Hits @k evaluation metric may not
inflect the performance of multi-hop reasoning. We observe that some queries have lots of answers.
When the number of answers is larger than k, the MRR and Hits @k will be low, even if all answers are
correctly ranked at top. Because the right answers that ranked after k are labeled as false. The Hits@k
decreases with the increase number of right answers, which is not reasonable. This disadvantage
prevents us from comparing the performance across different datasets. In this paper, GDELT is much
denser, and the count of right answers is larger than the other two datasets. Therefore, the MRR of
GDELT is lower than the other two datasets. It can also be verified that on the average MRR, group
avg, is lower than group avg,. The reason is that the number of right answers of group avg, is larger
than that of group avg,, which can be seen from the statistic of average answer count of queries in
Table 10. In the future, there should be a more reasonable evaluation metric for multi-hop reasoning.

11

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding logical queries
on knowledge graphs. Advances in Neural Information Processing Systems, 31:2026-2037, 2018.

H Ren, W Hu, and J Leskovec. Query2box: Reasoning over knowledge graphs in vector space using box
embeddings. In International Conference on Learning Representations (ICLR), 2020.

Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge graphs.
Neural Information Processing Systems (NeurlPS), 2020.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings for multi-hop
reasoning over knowledge graphs. Advances in Neural Information Processing Systems, 34, 2021.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan Reddy. Probabilistic
entity representation model for reasoning over knowledge graphs. Advances in Neural Information
Processing Systems, 34, 2021.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan K Reddy. Self-
supervised hyperboloid representations from logical queries over knowledge graphs. In Proceedings of the
Web Conference 2021, pages 1373-1384, 2021.

Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. Neural-answering logical queries
on knowledge graphs. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pages 1087-1097, 2021.

Xueyuan Lin, Haihong E, Gengxian Zhou, Tianyi Hu, Li Ningyuan, Mingzhi Sun, and Haoran Luo. Flex:
Feature-logic embedding framework for complex knowledge graph reasoning. ArXiv, abs/2205.11039,
2023. URL https://api.semanticscholar.org/CorpusID:248986747.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering with
neural link predictors. arXiv preprint arXiv:2011.03459, 2020.

Francois P. S. Luus, Prithviraj Sen, Pavan Kapanipathi, Ryan Riegel, Ndivhuwo Makondo, Thabang Lebese,
and Alexander G. Gray. Logic embeddings for complex query answering. ArXiv, abs/2103.00418, 2021.

Haitian Sun, Andrew Arnold, Tania Bedrax Weiss, Fernando Pereira, and William W Cohen. Faithful
embeddings for knowledge base queries. Advances in Neural Information Processing Systems, 33, 2020.

Dinesh Garg, Shajith Ikbal, Santosh K Srivastava, Harit Vishwakarma, Hima Karanam, and L Venkata
Subramaniam. Quantum embedding of knowledge for reasoning. Advances in Neural Information
Processing Systems, 32:5594-5604, 2019.

Santosh Kumar Srivastava, Dinesh Khandelwal, Dhiraj Madan, Dinesh Garg, Hima Karanam, and L Venkata
Subramaniam. Inductive quantum embedding. Advances in Neural Information Processing Systems, 33,
2020.

Lifan Lin and Kun She. Tensor decomposition-based temporal knowledge graph embedding. 2020 IEEE
32nd International Conference on Tools with Artificial Intelligence (ICTAI), pages 969-975, 2020. URL
https://api.semanticscholar.org/CorpusID:229701707.

Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. Tensor decompositions for temporal
knowledge base completion. ArXiv, abs/2004.04926, 2020. URL https://api.semanticscholar.
org/CorpusID:214390104.

Pengpeng Shao, Guohua Yang, Dawei Zhang, Jianhua Tao, Feihu Che, and Tong Liu. Tucker decomposition-
based temporal knowledge graph completion. Knowl. Based Syst., 238:107841, 2020. URL https:
//api.semanticscholar.org/CorpusID:226965423.

Ali Reza Sadeghian, Mohammadreza Armandpour, Anthony Colas, and Daisy Zhe Wang. Chronor:
Rotation based temporal knowledge graph embedding. In AAAI Conference on Artificial Intelligence, 2021.
URL https://api.semanticscholar.org/CorpusID:232269660.

Julien Leblay and Melisachew Wudage Chekol. Deriving validity time in knowledge graph. Companion

Proceedings of the The Web Conference 2018,2018. URL https://api.semanticscholar.org/
CorpusID:13846713.

12

https://api.semanticscholar.org/CorpusID:248986747
https://api.semanticscholar.org/CorpusID:229701707
https://api.semanticscholar.org/CorpusID:214390104
https://api.semanticscholar.org/CorpusID:214390104
https://api.semanticscholar.org/CorpusID:226965423
https://api.semanticscholar.org/CorpusID:226965423
https://api.semanticscholar.org/CorpusID:232269660
https://api.semanticscholar.org/CorpusID:13846713
https://api.semanticscholar.org/CorpusID:13846713

(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

Wessel Radstok and Melisachew Wudage Chekol. Leveraging static models for link prediction in tem-
poral knowledge graphs. 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence
(ICTAI), pages 1034-1041, 2021. URL https://api.semanticscholar.org/CorpusID:
235670110.

Chengjin Xu, M. Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens Lehmann. Tero: A time-
aware knowledge graph embedding via temporal rotation. In International Conference on Computational
Linguistics, 2020. URL https://api.semanticscholar.org/CorpusID:222124934.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. Hyte: Hyperplane-based temporally
aware knowledge graph embedding. In Proceedings of the 2018 conference on empirical methods in
natural language processing, pages 2001-2011, 2018.

Chengjin Xu, M. Nayyeri, Fouad Alkhoury, Hamed Shariat Yazdi, and Jens Lehmann. Temporal knowledge
graph completion based on time series gaussian embedding. In International Workshop on the Semantic
Web, 2019. URL https://api.semanticscholar.org/CorpusID:218900866.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Dyernie: Dynamic evolution of riemannian
manifold embeddings for temporal knowledge graph completion. ArXiv, abs/2011.03984, 2020. URL
https://api.semanticscholar.org/CorpusID:226262324.

Rakshit S. Trivedi, Hanjun Dai, Yichen Wang, and Le Song. Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs. In International Conference on Machine Learning, 2017. URL https:
//api.semanticscholar.org/CorpusID:8040343.

Jiapeng Wu, Mengyao Cao, Jackie Chi Kit Cheung, and William L. Hamilton. Temp: Temporal
message passing for temporal knowledge graph completion. In Conference on Empirical Methods in
Natural Language Processing, 2020. URL https://api.semanticscholar.org/CorpusID:
222177069.

Youri Xu, Haihong E, Meina Song, Wenyu Song, Xiaodong Lv, Wang Haotian, and Yang Jinrui.
Rtfe: A recursive temporal fact embedding framework for temporal knowledge graph completion.
In North American Chapter of the Association for Computational Linguistics, 2020. URL https:
//api.semanticscholar.org/CorpusID:222067007.

Siyuan Liao, Shangsong Liang, Zaigiao Meng, and Qiang Zhang. Learning dynamic embeddings for
temporal knowledge graphs. Proceedings of the 14th ACM International Conference on Web Search and
Data Mining, 2021. URL https://api.semanticscholar.org/CorpusID:232126110.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. Recurrent event network: Autoregressive structure
inference over temporal knowledge graphs. In Conference on Empirical Methods in Natural Language
Processing, 2019. URL https://api.semanticscholar.org/CorpusID:222205878.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. Temporal knowledge graph reasoning based on evolutional representation learning. Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval,
2021. URL https://api.semanticscholar.org/CorpusID:233324265.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and Volker Tresp. Learning neural ordinary equations
for forecasting future links on temporal knowledge graphs. In Conference on Empirical Methods in
Natural Language Processing, 2021. URL https://api.semanticscholar.org/CorpusID:
237304520.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp. Explainable subgraph reasoning for forecasting
on temporal knowledge graphs. In International Conference on Learning Representations, 2021. URL
https://api.semanticscholar.org/CorpusID:235614395.

Jaehun Jung, Jinhong Jung, and U Kang. Learning to walk across time for interpretable temporal knowledge
graph completion. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, 2021. URL https://api.semanticscholar.org/CorpusID:236979995.

Ruijie Wang, Zheng Li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, and Tarek Abdelzaher.
Learning to sample and aggregate: Few-shot reasoning over temporal knowledge graphs. Advances in
Neural Information Processing Systems, 35:16863-16876, 2022.

Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. The VLDB Journal, 16:
523-544, 2007.

13

https://api.semanticscholar.org/CorpusID:235670110
https://api.semanticscholar.org/CorpusID:235670110
https://api.semanticscholar.org/CorpusID:222124934
https://api.semanticscholar.org/CorpusID:218900866
https://api.semanticscholar.org/CorpusID:226262324
https://api.semanticscholar.org/CorpusID:8040343
https://api.semanticscholar.org/CorpusID:8040343
https://api.semanticscholar.org/CorpusID:222177069
https://api.semanticscholar.org/CorpusID:222177069
https://api.semanticscholar.org/CorpusID:222067007
https://api.semanticscholar.org/CorpusID:222067007
https://api.semanticscholar.org/CorpusID:232126110
https://api.semanticscholar.org/CorpusID:222205878
https://api.semanticscholar.org/CorpusID:233324265
https://api.semanticscholar.org/CorpusID:237304520
https://api.semanticscholar.org/CorpusID:237304520
https://api.semanticscholar.org/CorpusID:235614395
https://api.semanticscholar.org/CorpusID:236979995

[35]

(36]

(37]

(38]

[39]

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(501

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. Translat-
ing embeddings for modeling multi-relational data. In NIPS 2013.,2013.

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao Chang, Sujian Li, and Zhifang Sui. Towards time-
aware knowledge graph completion. In Proceedings of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers, pages 1715-1724, Osaka, Japan, December 2016. The
COLING 2016 Organizing Committee. URL https://aclanthology.org/Cl6-1161.

Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman, James Starz, and Michael
Ward. ICEWS Coded Event Data, 2015. URL https://doi.org/10.7910/DVN/28075.

Kalev Leetaru and Philip A. Schrodt. Gdelt: Global data on events, location, and tone. ISA Annual
Convention, 2013.

Pengpeng Shao, Guohua Yang, Dawei Zhang, Jianhua Tao, Feihu Che, and Tong Liu. Tucker decomposition-
based temporal knowledge graph completion. Knowl. Based Syst., 238:107841, 2020.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. Temporal knowledge graph reasoning based on evolutional representation learning. Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval,
2021. URL https://api.semanticscholar.org/CorpusID:233324265.

Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In Proceedings of the International Conference on
Learning Representations (ICLR) 2015, May 2015.

Seyed Mehran Kazemi and David L. Poole. Simple embedding for link prediction in knowledge graphs.
In Neural Information Processing Systems, 2018. URL https://api.semanticscholar.org/
CorpusID:3674966.

Yunpu Ma, Volker Tresp, and Erik A. Daxberger. Embedding models for episodic knowledge graphs. J.
Web Semant., 59,2018. URL https://api.semanticscholar.org/CorpusID:54444869.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and Partha Talukdar. HyTE: Hyperplane-based temporally
aware knowledge graph embedding. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2001-2011, Brussels, Belgium, October-November 2018. Association
for Computational Linguistics. doi: 10.18653/v1/D18-1225. URL https://aclanthology.org/
D18-1225.

Alberto Garcifa-Durdn, Sebastijan Dumancic, and Mathias Niepert. Learning sequence encoders for
temporal knowledge graph completion. In Conference on Empirical Methods in Natural Language
Processing, 2018. URL https://api.semanticscholar.org/CorpusID:52183483.

Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart. Diachronic embedding for
temporal knowledge graph completion. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3988-3995, 2020.

Youngjoo Seo, Michaél Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks. In International Conference on Neural Information
Processing, 2016. URL https://api.semanticscholar.org/CorpusID:2687749.

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, and Yan Zhan. Learning from history: Mod-
eling temporal knowledge graphs with sequential copy-generation networks. In AAAI Conference on Artifi-
cial Intelligence, 2020. URL https://api.semanticscholar.org/CorpusID:229180723.

James F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832-843,
nov 1983. ISSN 0001-0782. doi: 10.1145/182.358434. URL https://doi.org/10.1145/182.
358434.

Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

14

https://aclanthology.org/C16-1161
https://doi.org/10.7910/DVN/28075
https://api.semanticscholar.org/CorpusID:233324265
https://api.semanticscholar.org/CorpusID:3674966
https://api.semanticscholar.org/CorpusID:3674966
https://api.semanticscholar.org/CorpusID:54444869
https://aclanthology.org/D18-1225
https://aclanthology.org/D18-1225
https://api.semanticscholar.org/CorpusID:52183483
https://api.semanticscholar.org/CorpusID:2687749
https://api.semanticscholar.org/CorpusID:229180723
https://doi.org/10.1145/182.358434
https://doi.org/10.1145/182.358434

Appendix

A More Details about Neural Operators

A.1 Fuzzy Logic

Fuzzy logic is a generalization of Boolean logic, which is based on the idea that the truth of a
statement can be expressed as a number between 0 and 1. It is a mathematical framework for
reasoning with imprecise information. In fuzzy logic, there are also logical operators, such as
conjunction, disjunction, negation, implication, equivalence, and exclusive or. Most popular fuzzy
logic operators are defined as follows (a, b € [0, 1]):

(1) conjunction: a A b = min(a, b). disjunction: a V b = max(a, b).
(2) negation: —a = 1 — a. exclusive or: ¢ ® b = min(a, 1 — b) + min(1 — a, b).
(3) implication: ¢ — b = max(1 — a, b). equivalence: a <> b = min(a,b) + max(1 — a,1 —b).

However, the fuzzy logic operators are defined over real space, not suitable for reasoning over vector
space. We expect that the fuzzy logic operators can be executed by matrix computation. Because the
embedding space of knowledge graph is a vector space. In order to cope with tensor computation in
neural networks, we introduce the fuzzy logic operators over vector space in the following, which is
called vector logic.

A.2 Vector Logic

Vector logic is an elementary logical model based on matrix algebra. In vector logic, true values are
mapped to the vector, and logical operators are executed by matrix computation.

Truth Value Vector Space V5. A two-valued vector logic uses two d-dimensional (d > 2) column
vectors § and 71 to represent true and false in the classic binary logic. The two vectors § and 77 are
real-valued, normally orthogonal to each other, and normalized vectors, i.e., ||3]| = 1, ||7|| = 1. Truth
value vector space are generated by Vo = {5, 7}, and operations on vectors in truth value space is
based on scalar product.

Operators. The basic logical operators are associated with their own matrices by vectors in truth-
value vector space. Two common types of operators are monadic and dyadic.

(1) Monadic Operators are functions: Vo — V5. Two examples are Identity [= 35T + T and
Negation N = 757 + 577 such that [5 = 5, Iii = i, Nii = 5§, N5 = 7i. Note that the truth tables of
I and N fulfill the real logical rules of identity and negation in classic boolean logic.

(2) Dyadic operators are functions: Vo ® Vo — V5, where ® denotes Kronecker product. Dyadic
operators include conjunction C, disjunction D, implication IMPL, equivalence E, exclusive or
XOR, etc. For example, the conjunction between two logical propositions (p A q) is performed by
C (7 ®), where C = §(3®)T + (5@ i)T + (i @ §)T + 7i(7 @ i@)T. It can be verified that
C(s®3§) =5C(Een) =C(M®s) =C(Me®n) = . Dyadic operators which correspond to
logical operations in classic binary logic are defined by its formulation to perform logical operations
on truth value vectors. Their associated matrices has d? rows and d columns.

Many-valued Two-dimensional Logic. Many-valued logic is introduced to include uncertainties

in the logic vector. Weighting § and 77 by probabilities, uncertainties are introduced: f = €5+ 07,
where €,d € [0,1], e + § = 1. Besides, operations on vectors can be simplified to computation on
the scalar of these vectors. For example, given two vectors @ = a5 + (7, U = o’'5+ 3’7, we have:

NOT(#@) =Ni = (1 —)5+ afl NOT(a) =5 Nii=1—-«

OR (i, 7) =D(ii ®) OR(a,) =5"D(i®7) =a+a —ad
AND(iZ, 7) =C(i ®) AND(a, o) = 57C (i @ 7) = ad’ @)
IMPL(i, 7) =L (@ ® 7) IMPL(a, /) =5 L@ ®7) =1 —a(l —a)
XOR(#, ¥) =X (4 ® 7) XOR(a,) = 5T X (i1 @ ¥) = a + o’ — 200/

A.3 Neural Dyadic Operators

In this section, we show that all dyadic operators are generated from fuzzy logic in our framework.
Below we take union operator for example. We define entity union operator U, and time union
operator U; according to Alignment Rule 4.2 as follows:

Fuzzy Logic Alignment Rule

[

Ue(Vgy,-+, Vg,) = (Z oiq; 5, glll{qfl} aZﬁiQf,f» A,lle{qu})
i=1 i=1

n n) n n
U(Vgy,,Vg,) = (D aigiy, AND{g[,}.> Bigi;, OR{gj})

i=1 i=1

Alignment Rule Fuzzy Logic

where AND, OR are the conjunction, disjunction operators in fuzzy logic respectively, c; and f3; are
attention weights, as designed in intersection operators. In the time part of entity union operator U,
and the entity part of time union operator U/;, we follows Alignment Rule 4.2 to perform intersection.
Besides, please be aware that each operator owns its MLPs and parameters. These operators do not
share parameters with each other.

For n queries to intersection/union, the AND and OR can be written as:

AZEP{%Z} = H qi,l

i=1

n n n
0_11{{‘111} = Z qil — Z qi1q5,0 + Z Qi1+ -+ (=1 H il
= i=1 1<i<j<n 1<i<j<k<n i=1

The equations come from the definition of AND and OR in vector logic. The cost of OR operator’s
implementation is not as expensive as it seems to be. In fact, it’s O(n x d) complexity, where d is the
embedding dimension. We provide the proof in next section.

Other dyadic operators can be generated in the same way. Since listing all operators is boring, we
provide the last example. Then, the entity implication operator £, and time implication operator L;
are defined as follows:

Fuzzy Logic Alignment Rule

o o

Lc(VaoVg,) = (Y eugiy, IMPL{gf,} .Y Biqi ;. AND{q[})

=1 =1

n n
n n
Lo(Vyy,++ Vy,) = Q_cudiy, AND{q;} . Bigi s, IMPL{q[;})

i=1 i=1
Alignment Rule Fuzzy Logic

To understand why the feature-logic framework works, we have the following proposition, which
shows that the designed intersection and union operators obey commutative law of real logical
operations. The proofs are presented in next section in Appendix A.5:

A.4 Theoretical Analysis

Proposition 1. Commutativity: Given Temporal Feature-Logic embedding V, ,V,,, we have
Ze(Vgu: Va,) = Ze(Vay, Vo) and Ue(Vq, . Vq,) = Ue(Vay: Vo)» Te(Vao, Va) = Le(Va,, Ve,) and
Z/{t (V‘Ia ’ VQb) = Z/{t quv an .

A.5 Proofs

In this part, we prove that TFLEX has the property of commutativity. Besides, we also show that the
computation complexity of OR operation is linear to the number of queries.

16

Proof. (Proposition 1) Commutativity:

For the intersection operations, as the calculations of Z. and Z; are identical, here, we only prove
that Z. complies with commutative law. The entity feature part and the time feature part of the
result are computed as a weighted summation of each query’s corresponding parts. Since addition is
commutative and the attention weights do not concern the order of calculations, both feature parts’
calculations are commutative.

Then, we discuss the logic parts. The logic parts only include the AND in fuzzy logic which,
essentially, is just the multiplication of each element by the definition provided above. Because
multiplication is surely commutative, the calculation of either entity logic part or time logic part is
commutative. Thus the intersection operation Z.(Z;) is commutative.

As for U, and U, their feature parts have the same form of weighted summation as the intersection
operations do. Thus, the feature parts of both U, and U; comply to commutative law. Also, the time
logic part of U, and the entity logic part of U, solely concern AND operator which has been proved
commutative before. The OR operator, by definition, gives the aggregation of different accumulative
parts each of which is commutative itself. Also, the multiplications in each of the summations are
commutative. Hence, OR operation is invariant to the order of calculations, which finally gives the
calculations of entity logic part of U, and the time logic part of U, are commutative. Then we can
naturally affirm that I/, and U/; are commutative as well.

O

Proof. Additionally, we prove that the cost of OR operator’s implementation is not as expensive as it
seems to be. The process of computation can be described as follows:

Algorithm 1: OR

Input: queries {q1...¢» }
Qutput: the union of queries

I: Letu =0.

2: Forq In {q1...qn}
30 u=u+q—u*xq
4: EndFor

5: return u

As we implement OR step by step on a series of n queries, the loop goes n-1 times in total. Assuming
the embedding dimension of a query is d, we can have the cost of OR is O(n*d). O

B More Details about Experiments

In this section, we show more details about our experiments. Firstly, we introduce the origin datasets
in Section B.1. Then, we describe the details on how we define the query structure and how to
sample queries in Section B.2. With the generated queries, we construct three datasets and report their
statistics in Section B.3. We also show the details of our model implementation in Section B.4 and
evaluation protocol in Section B.5. Besides, we show more experimental data for sensitive analysis in
Section B.6. Finally, we present the detail metrics of main results in Section B.7.

B.1 Details of Origin Datasets

To construct the reasoning dataset, we use three datasets of temporal KGs that have become standard
benchmarks for TKGC: ICEWS14 [37], ICEWS05-15 [37], and GDELT-500 [38]. The two subsets
of ICEWS are generated by Boschee et al. [37]: ICEWS 14 corresponding to the facts in 2014 and
ICEWSO05-15 corresponding to the facts between 2005 and 2015. GDELT-500 generated by Leetaru
and Schrodt [38] corresponds to the facts from April 1, 2015, to March 31, 2016. The statistics of the
dataset are shown in Table 8.

17

Table 4: Definition of query structures in static query embeddings [2—4]. Operators are defined on

entity sets only, including Pe, And, Or, and Not. ’e’, ’t’, 'n’, "u’ denote entity, relation, negation and
union, respectively. The braket ’()’ denotes a relational projection or intersection operation.

Query Name Query Structure Definition

1p (e, (r.)

2p (e, (r’, 1)

3p Ce’, (r, ",)

2i (Ce’, (r’)), Ce’, (1))

3i (Ce’, (r",)), (e, (), Ce”, (1))

ip ((Ce, (1)), Ce’, (1)), (1))

pi (Ce’, (r”, 1), Ce’, (1))

2in (Ce’, (r’), Ce’, (', 'n’)))

3in (Ce’, (r",), Ce’, (1)), Ce’, (1", 'n%)))
inp ((Ce’, (1)), Ce’, (', "n’))), (1))
pin (Ce”, Cr’,'r)), (e’ (1", "'n’)))

pni (Ce’, Cr”, ", '), (e’, ('r',)))
2u-DNF (Ce’, (r7,)), (e, (1)), Cu’,))
up-DNF ((Ce’, (1)), Ce’, (1)), Cu’,)), (1))
2u-DM ((Ce”, Cr’,), Ce’, (1, 'n))), ('n’,))
up-DM ((Ce”, Cr’, "), Ce”, (1", 'n))), ('n’, ')

Table 5: Basic functions. Qe is entity set and Q¢ is timestamp set. £ is the set of all entities, T is the
set of all timestamps and F is the set of triples.

Name Symbol Input Output

And And Qel, QBQ Q€1 n Q62

Or Or Qeq, Qes Qe UQes

Not Not Qe E— Qe

EntityProjection Pe Qe, 1, Qt {o|s € Qe,t € Qt,(s,r,0,t) € F}
TimeProjection Pt Qe1, 1, Qea {t|s € Qe1,0 € Qea, (s,1,0,t) € F}
TimeAnd TimeAnd Qtq, Qts Qt1 N Qts

TimeOr TimeOr Qt1, Qto Qt1 U Qt,

TimeNot TimeNot Q¢ T—Qt

before before Qt {t|t < min(Qt)}

after after Qt {t|t > max(Qt)}

B.2 Details of Query Generation

The Design of Query Structure Schema. Previous query embedding methods share the same
query structure schema (Table 4) to perform complex logical reasoning over static knowledge graph.
When it comes to dynamic knowledge graph (TKG), the static schema is not sufficient to capture
the temporal reasoning. In this paper, we propose a novel query structure schema for reasoning.
The schema is composed of basic functions and query structures. The basic functions are defined in
Table 5. The query structures are shown in Table 6 with visualization in Figure 5 and Figure 6. The
query structures are based on the basic functions: And, Or, Not, EntityProjection, TimeProjection,
TimeAnd, TimeOr, TimeNot, Before, and After. Of course, users can define more basic functions
or query structures to extend the schema to multi-modal KGs, hyper-relation KGs and so on. Itis a
flexible schema overall.

In order to keep a similar experiment settings with previous static query embeddings, the query struc-
tures are further aggregated into groups, shown in Table 7. The groups avg,, avg,, avg, ¢ ,avg, o are
for training and testing. Besides, extra groups avg (U} AVE {1,y AVE, are for evaluation and testing
only.

In implementation, we define the basic functions and query structures as functions in python, which
are named Complex Query Function (CQF). There are lots of advantages of using python functions
to define query structures. Firstly, the functions are easy to understand and debug. Secondly, the
functions are easy to be reused in the dataset-sampling process and model-training process. Thirdly,

18

Table 6: Definition of query structures in temporal query embeddings. Operators on entity sets
include Pe, And, Or, and Not. Operators on timestamp sets include Pt, TimeAnd, TimeOr, TimeNot,

nan

after, and before. The prefix "a" and "b" represent "after" and "before" respectively. The prefix "s" or

"n.n

0" mean that the sub-query is a subject query or an object query respectively.

Type Query Name Query Structure Definition
Pe Pe(s, 1, t)
Pe2 Pe(Pe(s1, rl, tl), 12, t2)
entity multi-hop Pe3 Pe(Pe(Pe(sl, rl, tl), 12, t2), r3, t3)
e2i And(Pe(sl, rl, t1), Pe(s2, 2, t2))
e3i And(Pe(s1, rl, t1), Pe(s2, 12, t2), Pe(e3, 13, t3))
e2i_N And(Pe(s1, rl, t1), Not(Pe(s2, r2, t2)))
e3i_N And(Pe(s1, rl, t1), Pe(s2, 12, t2), Not(Pe(s3, r3, t3)))
entity not Pe_e2i_ N Pe(And(Pe(sl, rl, t1), Not(Pe(s2, 12, t2))), 3, t3)
e2i_PeN And(Pe(Pe(s1, rl, t1), r2, t2), Not(Pe(s2, 13, t3)))
e2i_NPe And(Not(Pe(Pe(s1, rl, t1), 12, t2)), Pe(s2, r3, t3))
entity union e2u Or(Pe(sl, r1, t1), Pe(s2, 12, t2))
yu Pe_e2u Pe(Or(Pe(s1, rl, t1), Pe(s2, 12, 12)), 13, 13)
Pt Pt(s, 1, 0)
aPt after(Pt(s, 1, 0))
bPt before(Pt(s, r, 0))
Pe_Pt Pe(s1, rl, Pt(s2, 12, 01))

time multi-hop — p"epe pr pyPe(st, 1, Pi(s2. 12, o1)), 13, 02)

Pt_oPe_Pt Pt(s1, r1, Pe(s2, r2, Pt(s3, r3, ol)))

t2i TimeAnd(Pt(s1, r1, ol), Pt(s2, 12, 02))

t3i TimeAnd(Pt(s1, rl, ol), Pt(s2, 12, 02), Pt(s3, r3, 03))

t2i_N TimeAnd(Pt(s1, r1, ol), TimeNot(Pt(s2, 12, 02)))

t3i_N TimeAnd(Pt(s1, rl, ol), Pt(s2, 12, 02), TimeNot(Pt(s3, r3, 03)))
time not Pe_t2i_N Pe(s1, r1, TimeAnd(Pt(Pe(s2, 12, t1), 13, ol), TimeNot(Pt(s3, r4, 02))))

t2i_NPt TimeAnd(TimeNot(Pt(Pe(s1, rl, t1), 12, ol)), Pt(s2, r3, 02))

t2i_PtN TimeAnd(Pt(Pe(s1, rl, t1), 12, ol), TimeNot(Pt(s2, r3, 02)))
time union t2u TimeOr(Pt(s1, r1, ol), Pt(s2, 12, 02))

Pe_t2u Pe(s1, r1, TimeOr(Pt(s2, 12, o1), Pt(s3, r3, 02)))

between TimeAnd(after(Pt(s1, r1, ol)), before(Pt(s2, 12, 02)))

e2i_Pe And(Pe(Pe(sl, rl, t1), 12, t2), Pe(s2, r3, t3))

Pe_e2i Pe(e2i(sl, rl, t1, s2, 12, t2), 13, t3)

t2i_Pe TimeAnd(Pt(Pe(s1, rl, t1), 12, ol), Pt(s2, r3, 02))

Pe_t2i Pe(sl, rl, t2i(s2, 12, o1, s3, 13, 02))

Pe_aPt Pe(s1, rl, after(Pt(s2, 12, ol)))
hybrid multi-hop Pe_bPt Pe(s1, r1, before(Pt(s2, r2, ol)))

Pe_at2i Pe(s1, rl, after(t2i(s2, 12, o1, s3, 13, 02)))

Pe_bt2i Pe(s1, rl, before(t2i(s2, 12, o1, s3, 13, 02)))

Pt_sPe Pt(Pe(sl, rl, t1), r2, ol)

Pt_oPe Pt(s1, r1, Pe(s2, 12, t1))

Pt_se2i Pt(e2i(sl, r1, t1, s2, r2, t2), 13, ol)

Pt_oe2i Pt(s1, rl, e2i(s2, 12, t1, s3, r3, t2))

19

,
Pe e L e €2i_NPe

()
N
()

(2O 0
Pe3 e} T2 LE]
: 2 2 Pe_e2i_Pe_NPe

Figure 5: Visualization of temporal query structures answering entity sets. These structures are basic
functions that can be used to construct more complex temporal query structures.

20

(Tomena) >N

AN (Timeand |5/ YA SN PN

VAN VAN
O O0®
A Pe_at2i

©2i_PtN

Figure 6: Visualization of temporal query structures answering timestamp sets. These structures are
basic functions that can be used to construct more complex temporal query structures.

21

Table 7: The query structures are aggregated into groups. The groups are inspired by the experiment
settings in static query embeddings [1-4]. The groups avg,,avg,,avg, ¢ ,avg, ., are for training and
testing. Besides, extra groups avgy, y,avggy, 1, avg, are for evaluation and testing only.

1p 2p 3p 2i 3i
avg, Pe Pe2 Pe3 e2i e3i
avg, Pt, aPt, bPt Pe Pt Pt_sPe_ Pt, Pt oPe Pt 21 31
2in 3in inp pin pni
avg, e e2i_N e3i_N Pe_e2i_N e2i_PeN e2i_NPe
avg, ¢, t2i_N t3i_N Pe_t2i_N 2i_PtIN t2i_NPt
2u up
avgyy e2u Pe_e2u
avg .y t2u Pe_t2u
pi ip
avg, e2i_Pe Pe_e2i Pe_aPt Pe_bPt
2i_Pe Pe_t2i Pe_at2i Pe_bt2i
Pt_sPe Pt_oPe
between Pt_se2i Pt_oe2i

the functions are easy to be extended to support more complex query structures and reimplement the
existing query embedding methods.

As is introduced in Section 4, we use the computation graph to represent the reasoning process. To
get the computation graph of a CQF, we use the python interpreter to parse the function to Abstract
Syntax Tree (AST), which is a more friendly readable subset of computation graph. In this way,
executing the computation graph is equivalent to executing the CQF in python interpreter. Since we
have the god privileged access to the AST, we can modify the interpreter to support various dynamic
reasoning processes. Below we show how to unify (1) the reasoning of ground-truth, (2) the sampling
of anchors, and (3) the reasoning of embedding-based methods by modifying the python interpreter.

Ground-Truth Reasoning Interpreter.

In the reasoning of ground-truth, we need to get all real answers of a query under a given TKG.
To achieve this, the first we need to do is to implement the basic functions. We wrap the python
built-in set to QuerySet class to store entities and timestamps. The basic functions are implemented
as lambda function in python, with input and output as QuerySet. Then, the basic functions are
registered as symbols to the python interpreter. When executing the CQF, the python interpreter will
call the corresponding basic functions to get the final answer. The answers are finally generated from
subgraph matching, which depends on the ground truth in TKG. We show the pseudocode of the
ground-truth reasoning interpreter in Figure 7.

Anchors Sampling Interpreter.

The anchor, which may be entity, relation or timestamp, is the input argument of the CQF. The aim
of the anchors sampling interpreter is to get the possible anchors and answers of a query under a
given TKG. For the sampled anchors, we expect the answer set not empty. Since the answers could
be obtained from the ground-truth reasoning interpreter, we only focus on the sampling of anchors in
the anchors sampling interpreter.

Given the standard split of edges into training (Figin), validation (Fyaig) and test (Fies) sets, we
append inverse relations and double the number of edges in the graph. Then we create three graph:
gtrain = {Vu R: T>]:train}’ gvalid = {V, R, T7]:lrain +]:valid}:glest = {V7 R7 T7]:Lrain +]:valid +]:test}-
Given a query ¢, let [¢]uain, [¢]vaiia> and [¢]st denote a set of answers (entities or timestamps)
obtained by subgraph matching of ¢ on Gyin, Gvaia and Gies. For each query ¢, the reasoning process
starts from anchor nodes and computes the final answer set via subgraph matching.

For the basic function Pe and Pt, we simply use all the triples and extract the entities and timestamps
as the anchors. These anchors are supposed to have no empty answers under Pe and Pt. However,
when it comes to some hard queries, such as e2i and e3i, the random sampled anchors may have
empty answers. Because the TKG is sparse and incomplete, the intersection of two query sets has a
high probability to be empty. The empty answers are meaningless for model-training and damage to

22

1. predefined query structures and the Interpreter
ComplexQueryFunctions = {
"Pe2": "def Pe2(el, rl, t1, r2, t2): return Pe(Pe(el, ri, t1), r2, t2)", # 2p
"Pe3": "def Pe3(el, rl, til, r2, t2, r3, t3): return Pe(Pe(Pe(el, ri, ti1), r2, t2), r3, t3)", # 3p
"aPt": "def aPt(s, r, o): return TimeAfter(Pt(s, r, o))", # a for after
"pbPt": "def bPt(s, r, o): return TimeBefore(Pt(s, r, o))", # b for before

}
class Interpreter:
def __init__(self, symbols: Dict[str, Any]):
self.symbols = symbols
for k, CQF in ComplexQueryFunctions.items():
self.eval (CQF)

def eval(self, line: str) -> Any: return ast.parse(line).eval(self)

2. GroundTruth Reasoning Interpreter

QuerySet = set
EntitySet = set
TimeSet = set

class GroundTruthReasoningInterpreter(Interpreter):
def __init__(self, TKG):
Pe = defaultdict(lambda:defaultdict(lambda:defaultdict(set)))
Pt = defaultdict(lambda:defaultdict(lambda:defaultdict(set)))
for s, r, o, t in TKG.F: # F ¢s the set of all facts
Pe[s] [r][t].add (o)
Pt [s] [r] [0] .add(t)

symbols = {
"Pe": lambda (gs, r, qt): EntitySet(reduce(|, [Pel[s][r][t] for s, t in product(gs, qt)]))
"Pt": lambda (gs, r, qo): TimeSet(reduce(|, [Pt[s][r][o] for s, o in product(gs, qo)l))

"And": lambda (q1, q2): EntitySet(ql & q2)
"Or": lambda (ql, q2): EntitySet(ql | q2)
"Not": lambda (qe): EntitySet(TKG.V - qe) # V is the set of all entities
"TimeAnd": lambda (ql, g2): TimeSet(ql & g2)
"TimeOr": lambda (ql, g2): TimeSet(ql | q2)
"TimeNot": lambda (qt): TimeSet(TKG.T - qt) # T is the set of all timestamps
"TimeBefore": lambda (qt): TimeSet([t for t in TKG.T if t < min(qt)])
"TimeAfter": lambda (qt): TimeSet([t for t in TKG.T if t > max(qt)])

}

super() .__init__(symbols)

TKG.F = {(Angela Merkel, make a visit, China, 2010-07-16)}

p = GroundTruthReasoningInterpreter (TKG)

answer = p.eval("Pe({'Angela Merkel'}, 'make a visit', {'2010-07-16'})")
assert answer == EntitySet('China')

Figure 7: Python-style pseudocode of ground-truth reasoning interpreter.

the performance of data-sampling process. To solve this problem, we use the following two strategies
to accelerate the sampling.

(1) Inverse Sampling: We randomly sample an entity as objective, denoted e,. Then we sample
subjective entity ey, , e, , relation 71, o and timestamp ¢1, to, according to the fact (es,, 71, €0, t1)
and (es,, T2, €5, t2). The sampled anchors are (es,,71,t1; €s,, 72, t2). These anchors under e2i have
the answer e, at least, which asserts that the answer set is not empty. Such sampling method that
samples the answer first and then samples the anchors is called Inverse Sampling.

(2) Bi-directional Sampling: For long multi-hop queries, such as Pe2, the complexity of random
sampling is O(N2L), where N is the entity count and L is the length of the query. Pe2 has L = 2. It
contains an anchor-sampling complexity of O(NT) and a ground-truth reasoning (to get answers)
complexity of O(NT). The origin sampling is to sample one subjective entity, get the objective as
answers as next subjective anchors, again get the next objective answers. The final answers recursively
depend on the initial subjective entity, leading to low performance. To accelerate, we sample an
entity at the middle of AST, denoted e,,. Then we sample in two directions. One is forward, e,
as the subjective entity, to sample relation r, and timestamp t2. The other is backward, e,,, as the
objective entity, to sample subjective anchor eq, relation 71 and timestamp ¢;. The sampled anchors
are (e1,T1,t1;72,t2). The final answer set is asserted not empty, because it at least contains all the
answers of Pe(e,,, 2, t2). Be aware that the two directions are independent, which can be sampled
in parallel. Such sampling method that samples the answer in two directions is called Bi-directional

Sampling, which can reduce the computation complexity to O(N L+g), composed of a sampling
complexity of O(N %) and a ground-truth reasoning complexity of O(NL).

23

python run_reasoning_interpreter.p
use_dataset(data_hom ata/TFLEX/data"); use_embedding_reasoning_interpreter("TFLEX_dim800_gammal5", device="cuda:1");
data already prepared, us

return And(Pe(el, ri, t1), Pe(e2
) data:
E er: {2669, 1751}, hard_answer: {2083}

emb_ri:relatinn_tnkenllSSl; emb_til=timestamp_toke

emb_r2=relation_token(372); emb:tE:tLmestamp_tDken[d?i;

: use_groundtruth_reasoning_1interpreter()

groundtruth_answer(e2669) + groundtruth_answer(el751) + groundtruth_answer(e2083)

{. The bot correctly predicts the hard answer which only exists in the test set!]j

Figure 8: The screenshot of a real running interpreter.

Embedding Reasoning Interpreter.

On the contrary of the ground-truth reasoning interpreter which has ’set’ as the input and output of the
CQFs, in the embedding reasoning interpreter, the input and output of CQFs are ’embedding vectors’.
The embedding-based method for reasoning over TKG is called Temporal Query Embedding. The
computation complexity of the embedding reasoning interpreter is O(L + N), where L is the length
of the query and N is the entity count. The complexity consists of a query-embedding complexity of
O(L) and a scoring-to-answer complexity of O(N). The embedding reasoning is much faster than
the ground-truth reasoning, which has a computation complexity of O(NT).

To implement the embedding reasoning interpreter, we just need to replace the basic functions with
neural networks. The symbols dict to pass to the interpreter is

{
"Pe": P., "Pt": Py,
"And": Z., "Or": U,, "Not": N,
"TimeAnd": Z;, "TimeOr": U;, "TimeNot": N,
"TimeAfter": A;, "TimeBefore": ;

®

The embedding vectors are learned as is introduced in Section 4. Unlike the ground-truth reasoning,
the embedding reasoning is fuzzy. The output of the embedding reasoning interpreter is an embedding
vector, which is a fuzzy set representation. To get the final answer set, we need to use the distance
function (in Section 4.3) to score to candidate answers. In this way, the embedding vector is converted
to the final answer set. The final answers are given in the ranking list, where each answer is followed
by its distance to the query. Usually the top-k answers are accepted as the final answers.

Note that the interpreter is flexible, and easy to implement and extend. In order to reproduce static
query embeddings [2—4] over dynamic knowledge graphs, the only thing to do is to implement the
symbols dict and the distance function.

We hope that the design of interpreter is helpful for the future research of temporal query embedding.
Screenshot.

Additionally, we show the screenshot of a real running interpreter in Figure 8. In the screenshot, we
randomly select an example of e2i query. Then, we use the embedding reasoning interpreter to get
the final answer set step by step. The final answer set is shown in the ranking list, where each answer
is followed by its similarity score to the query. Finally, the bot correctly predicts the hard answer
which only exists in the test set!

B.3 Details of Generated Datasets

Finally, we generate three datasets for the task of temporal complex reasoning using the process in
Section B.2. The statistics of the generated datasets are listed below. Table 9 show the count of query

24

Table 8: Statistics on ICEWS14, ICEWS05-15, and GDELT-500.

Dataset Entities Relations Timestamps |Training| |Validation| |Test| Total Edges
ICEWS14 7,128 230 365 72,826 8,941 8,963 90,730
ICEWSO05-15 10,488 251 4,017 368,962 46,275 46,092 479,329
GDELT-500 500 20 366 2,735,685 341,961 341,961 3,419,607

Table 9: Queries count for each dataset.

ICEWS14 ICEWS05-15 GDELT-500
Query Name Train Validate Test Train Validate Test Train Validate Test
Pe 66783 8837 8848 344042 45829 45644 1115102 273842 273432
Pe2 72826 3482 4037 368962 10000 10000 2215309 10000 10000
Pe3 72826 3492 4083 368962 10000 10000 2215309 10000 10000
e2i 72826 3305 3655 368962 10000 10000 2215309 10000 10000
e3i 72826 2966 3023 368962 10000 10000 2215309 10000 10000
Pt 42690 7331 7419 142771 28795 28752 687326 199780 199419
aPt 13234 4411 4411 68262 10000 10000 221530 10000 10000
bPt 13234 4411 4411 68262 10000 10000 221530 10000 10000
Pe_Pt 7282 3385 3638 36896 10000 10000 221530 10000 10000
Pt_sPe_Pt 13234 5541 6293 68262 10000 10000 221530 10000 10000
Pt_oPe_Pt 13234 5480 6242 68262 10000 10000 221530 10000 10000
t2i 72826 5112 6631 368962 10000 10000 2215309 10000 10000
t3i 72826 3094 3296 368962 10000 10000 2215309 10000 10000
e2i_N 7282 2949 2975 36896 10000 10000 221530 10000 10000
e3i_N 7282 2913 2914 36896 10000 10000 221530 10000 10000
Pe_e2i_N 7282 2968 3012 36896 10000 10000 221530 10000 10000
e2i_PeN 7282 2971 3031 36896 10000 10000 221530 10000 10000
e2i_NPe 7282 3061 3192 36896 10000 10000 221530 10000 10000
t2i_N 7282 3135 3328 36896 10000 10000 221530 10000 10000
t3i_N 7282 2924 2944 36896 10000 10000 221530 10000 10000
Pe_t2i_N 7282 3031 3127 36896 10000 10000 221530 10000 10000
t2i_PtN 7282 3300 3609 36896 10000 10000 221530 10000 10000
t2i_NPt 7282 4873 5464 36896 10000 10000 221530 10000 10000
e2u - 2913 2913 - 10000 10000 - 10000 10000
Pe_e2u - 2913 2913 - 10000 10000 - 10000 10000
t2u - 2913 2913 - 10000 10000 - 10000 10000
Pe_t2u - 2913 2913 - 10000 10000 - 10000 10000
between 7282 2913 2913 36896 10000 10000 221530 10000 10000
e2i_Pe - 2913 2913 - 10000 10000 - 10000 10000
Pe_e2i - 2913 2913 - 10000 10000 - 10000 10000
t2i_Pe - 2913 2913 - 10000 10000 - 10000 10000
Pe_t2i - 2913 2913 - 10000 10000 - 10000 10000
Pe_aPt 7282 4134 4733 68262 10000 10000 221530 10000 10000
Pe_at2i 7282 4607 5338 36896 10000 10000 221530 10000 10000
Pt_sPe 7282 4976 5608 36896 10000 10000 221530 10000 10000
Pt_se2i 7282 3226 3466 36896 10000 10000 221530 10000 10000
Pe_bPt 7282 3970 4565 36896 10000 10000 221530 10000 10000
Pe_bt2i 7282 4583 5386 36896 10000 10000 221530 10000 10000
Pt_oPe 7282 3321 3621 36896 10000 10000 221530 10000 10000
Pt_oe2i 7282 3236 3485 36896 10000 10000 221530 10000 10000

structures in the split of training, validation and testing. The average answers count of each query
structure are reported in Table 10. The number of queries for each dataset is shown in Table 11.

B.4 Implementation Details

We use the Embedding Reasoning Interpreter as is introduced in Appendix B.2. We implement our
model with PyTorch and use Adam [50] as a gradient optimizer. For each experiment, we use one
GTX1080 graphic card. The hyperparameters for each dataset are shown in Table 12. Note that we
do not perform hyperparameter tuning for each dataset. Instead, we use the same hyperparameters

25

Table 10: Average answers count for each dataset. All numbers are rounded to two decimal places.

ICEWS14 ICEWS05-15 GDELT-500
Query Name Train Validate Test Train Validate Test Train Validate Test
Pe 1.09 1.01 1.01 1.07 1.01 1.01 2.07 1.21 1.21
Pe2 1.03 2.19 2.23 1.02 2.15 2.19 2.61 6.51 6.13
Pe3 1.04 2.25 2.29 1.02 2.18 2.21 5.11 10.86 10.70
e2i 1.02 2.76 2.84 1.01 2.36 2.52 1.05 2.30 2.32
e3i 1.00 1.57 1.59 1.00 1.26 1.26 1.00 1.20 1.35
Pt 1.71 1.22 1.21 2.58 1.61 1.60 3.36 1.66 1.66
aPt 177.99 176.09 175.89 2022.16 2003.85 1998.71 156.48 155.38 153.41
bPt 181.20 179.88 179.26 1929.98 1923.75 1919.83 160.38 159.29 157.42
Pe_Pt 1.58 7.90 8.62 2.84 18.11 20.63 26.56 42,54 41.33
Pt_sPe_Pt 1.79 7.26 7.47 2.49 13.51 10.86 4.92 14.13 12.80
Pt_oPe_Pt 1.75 7.27 7.48 2.55 13.01 14.34 4.62 14.47 12.90
t2i 1.19 6.29 6.38 3.07 29.45 25.61 1.97 8.98 7.76
t3i 1.01 2.88 3.14 1.08 10.03 10.22 1.06 3.79 3.52
e2i_N 1.02 2.10 2.14 1.01 2.05 2.08 2.04 4.66 4.58
e3i_N 1.00 1.00 1.00 1.00 1.00 1.00 1.02 1.19 1.37
Pe_e2i_N 1.04 2.21 2.25 1.02 2.16 2.19 3.67 8.54 8.12
e2i_PeN 1.04 2.22 2.26 1.02 2.17 2.21 3.67 8.66 8.36
e2i_NPe 1.18 3.03 3.11 1.12 2.87 2.99 4.00 8.15 7.81
t2i_N 1.15 3.31 3.44 1.21 4.06 4.20 291 8.78 7.56
t3i_N 1.00 1.02 1.03 1.01 1.02 1.02 1.15 3.19 3.20
Pe_t2i_N 1.08 2.59 2.70 1.08 247 2.62 4.10 12.02 11.37
t2i_PtN 1.41 5.22 5.47 1.70 8.10 8.11 4.56 12.56 11.32
t2i_NPt 8.14 25.96 26.23 66.99 154.01 147.34 17.58 35.60 32.22
e2u - 3.12 3.17 - 2.38 2.40 - 5.04 5.41
Pe_e2u - 2.38 2.44 - 1.24 1.25 - 9.39 10.78
t2u - 4.35 4.53 - 5.57 5.92 - 9.70 10.51
Pe_t2u - 2.72 2.83 - 1.24 1.28 - 9.90 11.27
between 122.61 120.94 120.27 1407.87 1410.39 1404.76 214.16 210.99 207.85
e2i_Pe - 1.00 1.00 - 1.00 1.00 - 1.07 1.10
Pe_e2i - 2.18 2.24 - 1.32 1.33 - 5.08 5.49
t2i_Pe - 1.03 1.03 - 1.01 1.02 - 1.34 1.44
Pe_t2i - 1.14 1.16 - 1.07 1.08 - 2.01 2.20
Pe_aPt 4.67 16.73 16.50 18.68 43.80 46.23 49.31 66.21 68.88
Pe_at2i 7.26 22.63 2198 30.40 60.03 53.18 88.77 101.60 101.88
Pt_sPe 8.65 28.86 29.22 71.51 162.36 155.46 27.55 4583 4373
Pt_se2i 1.31 5.72 6.19 1.37 9.00 9.30 2.76 8.72 7.66
Pe_bPt 4.53 17.07 16.80 18.70 45.81 48.23 67.67 84.79 83.00
Pe_bt2i 7.27 2192 21.23 30.31 61.59 6498 88.80 100.64 100.67
Pt_oPe 1.41 5.23 5.46 1.68 8.36 8.21 3.84 11.31 10.06
Pt_oe2i 1.32 6.51 7.00 1.44 10.49 10.89 2.55 8.17 7.27

Table 11: Number of queries. Pe represents query answering (s,r,?,t). Pt represents query answering
(s,1,0,7). QOoE represents the query of entities (except Pe). QoT represents query of timestamps
(except Pt). nlp represents a query that is not Pe or Pt.

Training Validation Test
Dataset Pe Pt QoE QoT Pe Pt nlp Pe Pt nlp

ICEWS14 273,710 27,371 59,078 8,000 | 66,990 66,990 10,000 | 66,990 66,990 10,000
ICEWS05-15 149,689 14,968 20,094 5,000 | 66,990 22,804 10,000 | 66,990 66,990 10,000
GDELT-500 107,982 10,798 16,910 4,000 | 66,990 17,021 10,000 | 66,990 66,990 10,000

26

Table 12: Hyperparameters on each dataset. d is the embedding dimension, b is the batch size, n is
the negative sampling size, vy is the parameter in the loss function, m is the maximum training step,
and [is the learning rate.

Dataset d b n ~y m l

ICEWS14 800 512 128 15 300k 1x107*
ICEWS05-15 800 512 128 30 300k 1x10*
GDELT-500 800 512 128 30 300k 1x10~*

37.0 9 H —— ICEWS14
—— ICEWS14 H
1
36.5 - !
1
1
36.0 - i
as 1
g :
= 355 | !
1
35.0 H
1
1

S S . | . 31— . . :
400 600 800 1000 10 20 30 40
embedding dimension the margin y in loss function
(a) The impact of embedding dimension on MRR. (b) The impact of the margin v on MRR.

Figure 9: The impact of embedding dimensionality d and the margin v on MRR.

found in sensitive analysis on ICEWS14 (Section B.6) for all datasets. Besides, the source code is

available at GitbubT . We cite these projects f §, and thank them for their great contributions!

B.5 Evaluation

Given the standard split of edges into training (Fiin), validation (Fyaiq) and test (Feest) sets, we
append inverse relations and double the number of edges in the graph. Then we create three graph:
gtrain = {Va R, T7 -Ftrain}, gvalid = {V, R; T7 -Flrain + fvalid}’gtest = {V7 R, T, ‘Ftrain +]:valid +]:test}-
Given a query ¢, let [¢]uains [¢]vaia> and [¢]lest denote a set of answers (entities or timestamps)
obtained by subgraph matching of ¢ on Gyin, Gvalia and Gies. For a test query ¢ and its non-trivial
answer set v € [q]test — [¢]lvaiia, We denote the rank of each answer v; as rank(v;). The mean

reciprocal rank (MRR) is MRR(q) = ﬁ Y vicw W(w) and Hits at K (Hits@K) is Hits@K(q) =
<
o e f(rank(v:)). where f(n) = {1’ ne i

0, n>K’

B.6 Experiment Data for Sensitive Analysis

We conduct experiments on [CEWS14 to analyze the impact of the embedding dimensionality d and
the margin v on the performance of TFLEX.

Impacts of Embedding Dimensionality Our experiments indicate that the selection of embed-
ding dimension has a substantial influence on the effectiveness of TFLEX. We train TFLEX with
embedding dimension d € {300, 400, 500, 600, 700, 800, 900, 1000} and plot results based on the
validation set, as shown in Figure 9a. With the increase of d, the model performance (indicated by
MRR) increases rapidly and reaches its top at d = 800. Therefore, we assign 800 as the best setting.

TTFLEX: https://github.com/LinXueyuanStdio/TFLEX
iGQE, Query2box, BetaE: https://github.com/snap-stanford/KGReasoning
§ConE: https://github.com/MIRALab-USTC/QE-ConE

27

https://github.com/LinXueyuanStdio/TFLEX
https://github.com/snap-stanford/KGReasoning
https://github.com/MIRALab-USTC/QE-ConE

Table 13: The mean values and standard variances of TFLEX’s MRR results on ICEWS14.

Pe Pe2 Pe3 e2i e3i
48.21 37.27 33.53 69.24 95.70
+0.37 +0.12 +0.42 +0.46 +0.19
Pt aPt bPt Pe_Pt Pt _sPe_ Pt Pt_oPe Pt t2i t3i
20.87 3.00 2.96 14.27 9.57 9.46 27.49 52.84
+0.43 +0.34 +0.50 +0.57 +0.44 +0.66 4051 +0.63
e2i_N e3i_N Pe_e2i_ N e2i_PeN e2i_NPe
45.55 99.56 34.74 35.63 38.61
+0.12 +0.50 +0.44 +0.44 +0.20
t2i_N t3i_N Pe_t2i_ N t2i_PtN t2i_NPt
25.38 98.91 34.05 11.42 12.07
+0.60 +0.13 +0.49 +0.57 +0.53
e2u Pe_e2u
29.20 42.28
+0.12 +0.43
t2u Pe_t2u
30.73 21.74
+0.54 +0.35
e2i_Pe Pe_e2i Pe_aPt Pe_bPt Pe_at2i Pe_bt2i
98.86 36.77 8.66 9.74 7.90 7.78
+0.34 +0.42 +0.61 +0.33 +0.39 +0.39
t2i_Pe Pe_t2i Pt_sPe Pt_oPe Pt_se2i Pt_oe2i between
96.62 64.50 4.32 10.58 8.20 7.95 2.57
+0.13 +0.12 +0.46 +0.20 +0.34 +0.34 +0.14

Impacts of Parameter v We train TFLEX with parameter v € {5, 10, 15, 20, 25, 30, 35, 40} and
plot MRR results in Figure 9b. Too small and too large v both get bad results, while v = 15 in the
middle is the best. Therefore, we choose v = 15.

Error Bars of Main Results In order to evaluate how stable the performance of TFLEX is, we
run five times with random seeds {1, 10, 100, 1000, 10000} and report the error bars of these results.
Table 13 shows the error bar of TFLEX’s MRR results on ICEWS14. Overall, the standard variances
are small, which demonstrates that the performance of TFLEX is stable.

B.7 Detail Metrics of Main Results

We report the MRR results on all query structures for each dataset in Table 14 ICEWS14), Table 15
(ICEWSO05-15) and Table 16 (GDELT-500). Query2box [2] can only answer queries without negation.
BetaE [3] and ConE [4] can answer queries with negation, except temporal logic. ConE(temporal)
and X(ConE) are the variants of ConE, aiming at exploring the right way to promote the static
query embeddings to temporal ones in Section C. FLEX, X(ConE), X-1F, X-logic are the variants of
TFLEX, introduced in the main body of the paper.

C Exploration of Static Query Embeddings Toward Dynamic

In this section, we present more research questions that aim to explore the right way to promote the
static query embeddings to temporal ones. Since ConE [4] is a strong baseline for complex logical
reasoning over static knowledge graphs, we conduct exploration experiments by introducing variants
of ConE. We present the overall results for each dataset in Table 17, detailed results in Table 14
(ICEWS14), Table 15 ICEWS05-15) and Table 16 (GDELT-500). Overall, we are interested in the
following research questions:

28

Table 14: MRR results on ICEWS14. The group avg, wraps to two rows. AVG denotes average
performance under all query types.

Model avg, Pe Pe2 Pe3 e2i e3i
Query2box 25.06 25.81 17.29 12.97 16.00 53.25
BetaE 37.19 39.52 23.77 17.50 23.77 81.38
ConE 41.94 4255 30.90 24.78 26.52 84.93
ConE(temporal) 4223 41.21 31.83 24.99 28.98 84.17
FLEX 43.67 4525 33.07 27.22 27.62 85.18
TFLEX 56.79 48.21 37.27 33.53 69.24 95.70
X(ConE) 40.93 40.58 28.84 24.31 30.93 79.98
X-1F 56.89 48.61 37.51 32.61 71.25 94.47
X-logic 56.64 48.00 37.42 31.23 73.11 93.45
avg, Pt aPt bPt Pe_Pt Pt_sPe_ Pt Pt_oPe_Pt t2i t3i
TFLEX 17.56 20.87 3.00 2.96 14.27 9.57 9.46 2749 52.84
X(ConE) 16.41 19.45 3.06 3.01 13.96 8.79 8.67 25.01 49.36
X-1F 18.77 2194 3.04 2.99 16.69 10.73 10.44 29.66 54.71
X-logic 18.03 21.33 3.10 3.05 15.76 9.85 9.94 28.57 52.63
avg, ¢, e2i_ N e3i_N Pe_e2i_ N e2i_PeN e2i_NPe
BetaE 36.69 30.44 87.93 19.94 22.80 22.36
ConE 44.88 40.98 99.12 29.22 29.84 25.22
ConE(temporal) 4494 41.45 98.99 29.48 30.71 24.09
FLEX 44.41 38.30 99.22 31.18 30.49 22.84
TFLEX 50.82 45.55 99.56 34.74 35.63 38.61
X(ConE) 42.15 39.10 96.25 26.92 27.59 20.89
X-1F 49.78 4231 99.31 34.89 34.77 37.61
X-logic 51.17 44.65 99.25 35.30 36.31 40.33
avg, e, ©2i_N 3i_N Pe_t2i_ N t2i_PtN t2i_NPt
TFLEX 36.37 25.38 98.91 34.05 11.42 12.07
X(ConE) 3524 26.90 98.82 30.30 9.44 10.75
X-1F 37.73 26.40 98.82 37.85 12.38 13.23
X-logic 36.39 25.68 98.69 33.30 11.34 12.93
avgy. e2u Pe_e2u
BetaE 19.95 18.61 21.28
ConE 26.47 21.84 31.11
ConE(temporal) 27.63 23.01 32.26
FLEX 29.25 24.05 34.46
TFLEX 35.74 29.20 42.28
X(ConE) 2546 20.26 30.67
X-1F 34.48 30.04 38.93
X-logic 34.68 29.44 39.92
avg t2u Pe_t2u
TFLEX 26.24 30.73 21.74
X(ConE) 24.07 27.63 20.51
X-1F 28.04 3391 22.16
X-logic 26.36 31.21 21.52
avg, e2i_Pe Pe_e2i Pe_aPt Pe_bPt Pe_at2i Pe_bt2i
TFLEX 28.03 98.86 36.77 8.66 9.74 7.90 7.78
X(ConE) 26.65 87.31 28.72 11.01 10.40 11.21 11.27
X-1F 29.31 98.87 36.00 10.04 10.21 8.30 8.06
X-logic 28.61 97.64 36.96 10.09 10.27 8.76 8.93
AVG t2i_Pe Pe_t2i Pt_sPe Pt_oPe Pt_se2i Pt_oe2i between
TFLEX 3593 96.62 64.50 4.32 10.58 8.20 7.95 2.57
X(ConE) 30.13 95.40 63.04 3.77 8.82 6.44 5.76 332
X-1F 3643 97.24 70.32 4.88 10.73 12.24 11.55 2.55
X-logic 3598 96.35 64.31 4.97 10.35 10.59 10.35 2.34

29

Table 15: MRR results on ICEWS05-15. The group avg, wraps to two rows. AVG denotes average
performance under all query types.

Model avg, Pe Pe2 Pe3 e2i e3i
Query2box 24.00 2594 16.62 14.22 17.68 45.52
BetaE 31.33 3578 21.47 18.18 18.10 63.11
ConE 4093 42.67 29.39 24.79 26.15 81.64
ConE(temporal) 40.74 42.64 29.30 24.76 25.35 81.65
FLEX 38.96 41.60 29.80 24.58 24.37 74.46
TFLEX 48.99 43.04 36.28 33.89 41.17 90.60
X(ConE) 36.29 39.90 26.62 22.85 22.52 69.56
X-1F 4990 43.07 36.87 34.96 40.85 93.76
X-logic 4480 40.57 31.47 30.67 35.80 85.47
avg, Pt aPt bPt Pe_Pt Pt sPe Pt Pt_oPe_Pt 2i t3i
TFLEX 4.39 10.62 0.38 0.38 7.29 2.63 1.83 3.85 8.15
X(ConE) 441 10.98 0.38 0.38 6.75 2.16 1.63 422 881
X-1F 443 10.71 0.38 0.38 7.40 2.73 1.86 3.80 8.16
X-logic 3.29 8.57 0.38 0.39 6.37 1.69 141 249 5.06
avg, ¢ e2i_N e3i_ N Pe_e2i N e2i_PeN e2i_NPe
BetaE 29.70 21.68 71.08 20.31 21.11 14.30
ConE 4352 43.04 96.08 28.41 28.75 21.30
ConE(temporal) 4334 4285 96.08 28.33 28.62 20.83
FLEX 42,10 36.22 97.47 27.93 27.23 21.64
TFLEX 46.17 41.34 96.69 34.29 34.63 23.88
X(ConE) 38.12 33.70 88.83 24.80 25.60 17.64
X-1F 46.11 38.06 96.82 35.76 36.20 23.73
X-logic 4192 36.57 91.16 30.37 31.42 20.07
avg, ., 2N t3i_N Pe_t2i_ N t2i_PtN t2i_NPt
TFLEX 30.16 16.09 98.40 31.39 3.35 1.58
X(ConE) 29.49 16.55 98.46 28.23 2.53 1.69
X-1F 30.26 16.05 98.37 32.07 3.27 1.56
X-logic 28.34 12.94 96.03 29.47 2.18 1.07
avgy.y e2u Pe_e2u
BetaE 21.54 2095 22.13
ConE 43.02 37.21 48.83
ConE(temporal) 43.14 37.05 49.24
FLEX 4438 3572 53.04
TFLEX 5437 5299 55.75
X(ConE) 36.37 29.89 42.86
X-1F 54.05 52.47 55.64
X-logic 4536 43.84 46.88
avgy,} t2u Pe_t2u
TFLEX 28.69 4499 12.39
X(ConE) 26.40 40.35 12.46
X-1F 2770 43.38 12.02
X-logic 23.39 37.07 9.71
avg, e2i_Pe Pe_e2i Pe_aPt Pe_bPt Pe_at2i Pe_bt2i
TFLEX 2426 9423 57.16 5.07 4.56 4.38 3.93
X(ConE) 21.69 81.36 38.20 5.63 5.03 5.80 5.36
X-1F 24.41 94.26 55.97 5.14 4.79 4.37 3.95
X-logic 21.95 87.48 50.11 4.28 3.95 3.96 3.55
AVG 12i_Pe Pe_t2i Pt_sPe Pt_oPe Pt_se2i Pt_oe2i between
TFLEX 33.72 9225 48.35 0.46 2.82 0.98 1.02 0.22
X(ConE) 27.54 9192 43.83 0.58 2.18 0.95 1.02 0.14
X-1F 3398 9221 50.77 0.46 2.89 1.13 1.23 0.17
X-logic 29.86 86.17 40.78 0.62 1.98 1.10 1.21 0.16

30

Table 16: MRR results on GDELT-500. The group avg, wraps to two rows. AVG denotes average
performance under all query types.

Model avg, Pe Pe2 Pe3 e2i e3i
Query2box 9.67 10.70 473 341 12.28 17.22
BetaE 14.75 14.02 5.76 4.71 18.61 30.67
ConE 18.44 16.65 6.18 4.70 23.11 41.55
ConE(temporal) 18.51 17.61 5.62 4.57 24.52 40.22
FLEX 19.07 17.72 5.78 4.67 24.30 42.85
TFLEX 19.60 18.50 5.76 4.68 25.94 43.14
X(ConE) 17.83 17.05 5.76 4.66 24.02 37.66
X-1F 17.92 16.18 6.35 4.84 22.41 39.80
X-logic 17.36 15.80 6.22 4.85 22.45 37.47

avg, Pt aPt bPt Pe_Pt Pt_sPe_ Pt Pt_oPe_Pt t2i t3i
TFLEX 5.38 6.49 3.25 3.27 6.16 3.06 2.88 6.78 11.17
X(ConE) 3.16 2.15 3.39 3.33 6.96 2.29 2.31 234 249
X-1F 549 6.62 3.30 3.30 5.84 3.07 3.05 7.08 11.66
X-logic 5.75 7.15 3.34 3.31 5.95 3.14 3.06 7.52 12.54

avg, ¢, e2i_ N e3i_N Pe_e2i_ N e2i_PeN e2i_NPe
BetaE 11.15 11.22 24.17 5.53 5.46 9.39
ConE 12.67 12.69 29.09 547 542 10.66
ConE(temporal) 12.67 13.42 27.98 5.31 5.00 11.63
FLEX 13.35 13.57 30.25 5.47 5.47 11.99
TFLEX 13.52 14.46 30.09 5.51 5.19 12.36
X(ConE) 12.34 13.42 26.28 5.54 5.35 11.14
X-1F 12.13 11.77 27.63 5.70 5.40 10.14
X-logic 12.11 12.32 27.00 5.70 5.55 10.01

avg, e, t2i_N t3i_N Pe_t2i N t2i_PtN t2i_NPt
TFLEX 6.31 5.92 9.01 9.30 2.76 4.56
X(ConE) 3.93 2.24 243 10.00 2.26 2.74
X-1F 6.50 5.90 9.70 9.15 2.85 4.90
X-logic 6.86 6.51 10.94 8.78 2.94 5.14

avgy. e2u Pe_e2u
BetaE 6.20 4.64 7.75
ConE 6.96 4.68 9.25
ConE(temporal) 7.30 4.50 10.09
FLEX 7.44 4.47 10.42
TFLEX 7.58 4.62 10.55
X(ConE) 7.41 4.64 10.19
X-1F 6.92 4.80 9.04
X-logic 6.91 4,74 9.09

avg t2u Pe_t2u
TFLEX 6.71 9.03 4.38
X(ConE) 6.35 10.39 2.31
X-1F 6.59 8.60 4.58
X-logic 6.80 8.85 4.76

avg, e2i_Pe Pe_e2i Pe_aPt Pe_bPt Pe_at2i Pe_bt2i
TFLEX 6.17 17.53 6.38 4.73 4.58 4.47 4.58
X(ConE) 6.17 17.53 6.44 6.45 6.18 6.02 5.97
X-1F 6.47 18.13 6.82 5.48 5.35 5.19 5.31
X-logic 6.64 17.45 6.79 5.56 5.44 5.35 5.37

AVG t2i_Pe Pe_t2i Pt_sPe Pt_oPe Pt_se2i Pt_oe2i between
TFLEX 9.32 8.36 15.83 3.11 2.81 2.93 3.07 1.85
X(ConE) 8.17 245 17.97 2.70 2.24 2.20 2.29 1.76
X-1F 8.86 8.80 15.13 2.92 2.72 3.11 3.29 1.87
X-logic 8.92 10.28 15.28 3.27 3.11 3.23 3.36 1.79

31

RQ1: How about incorporating temporal information into the static query embedding, without
considering time logic?

RQ2: Further, how about enhancing the static query embedding with temporal logic?

To address research question (RQ1), we propose a variant of ConE called ConE(temporal) that
incorporates temporal information into the static query embedding. The only difference between
ConE and ConE(temporal) is the projection operator used. In ConE(temporal), the projection operator
incorporates temporal information through a technique called TTransE, which uses the temporal
embedding of timestamps. In terms of formulation, the projection operator for ConE(temporal) is
given by P.(Vy,r, V) = g(MLP (V, +r + V,)), while for ConE it is given by P.(V,,r, V) =
g(MLP (V, +r)). Note that V,, r, V, are cone embeddings.

From Table 17, we observe that there is slightly improvement in terms of MRR when comparing
ConE(temporal) with ConE. It shows that the temporal information can help to improve the perfor-
mance of static query embedding on answering entities over TKGs. However, the improvement is not
significant, which indicates that simply aware of the temporal information is not enough to promote
the static query embedding to efficient temporal one.

Next, we wonder if it could help when we utilize more queries involving time logic, which provides
more temporal information. Therefore, we address research question (RQ2) by proposing a variant
of ConE and TFLEX, called X(ConE), that enhances the static query embedding with temporal logic.
X(ConE) replaces the entity part of temporal feature-logic embedding with ConE, as is introduced in
Section 5.2. In the other view, X(ConE) is based on ConE, using cone embedding concatenated with
the time part of temporal feature-logic embedding, which can handle temporal logic.

From Table 17, to our surprise, X(ConE) performs worse than ConE and TFLEX. The concatenation
of cone embedding and feature-logic embedding does not help to improve the overall performance
of temporal complex reasoning. This is because cone embedding is geometric, while temporal
feature-logic embedding is fuzzy. We think there is a mismatch or semantic conflict between the two
embeddings, which leads to the poor performance of X(ConE).

Be aware that we do not deny the importance of temporal logic. In fact, temporal logic is very
important for temporal complex reasoning (See Ablation on time part in Section 5.2). However,
we think that it is not a good idea to promote the static query embedding to temporal one by simply
concatenating the geometric embedding with the fuzzy embedding. The right way to promote remains
an open question.

Table 17: Average MRR results for TFLEX and the variants of ConE. AVG, denotes average of avg,,
avg, ¢ and avg;, . AVG denotes average of all groups.

Dataset Model avg, avg. o avg, avg, avg,. avg, avg, AVG. AVG
ConE 4194 4488 2647 37.76
CEwss ConEltemporal) 4223 4494 2763 38.27
X(ConE) 4093 4215 2546 1641 3524 2407 2665 3618 30.13
TFLEX 5679 5082 3574 1756 3637 2624 2803 4778 3593
ConE 4093 4352 43.02 42.49
ConE(temporal) 40.74 4334 43.14 42.41
ICEWS05-15 yConE) 3620 3812 3637 441 2949 2640 21.69 3693 27.54
TFLEX 4899 4617 5437 439 3016 28.69 2426 49.84 3372
ConE 1844 1267 696 12.69
ConE(temporal) 18.51 12.67 7.30 12.83
GDELT-500 v conE) 1783 1234 741 316 393 635 617 1253 817
TFLEX 1960 1352 758 538 631 671 617 1357 9.32

D Visualization of Semantic Changes by Neural Temporal Operators

In this section, we present more visualization of the semantic changes of temporal operators in
TFLEX. The examples are randomly selected in the test set of ICEWS14. The visualization is shown
in Figure 10, Figure 11 and Figure 12. We attach the anchors and the ground-truth answers in the
corresponding caption of figures. From the figures, we observe that the model correctly ranks the
hard answers at top when answering query Pt. It can also be seen from the figure that the semantic
changes of temporal operators aPt and bPt are intuitive and reasonable.

32

1.0

o
@

4
o

o
IS

Similarity Score

o
N

—— bPt=B(Pi(s,r,0)) [\ v'\ N

Pt=Pt(S, I',O) \
—— aPt=A(P¢(s, r, 0))

0.0 .

100 150 200 250 300 350

50
Timestamp (0=2014-01-01, 365=2014-12-31)

Figure 10: Score distributions of Pt, bPt and aPt, where s is Citizen (India), r is Criticize or
denounce, o is Sadhu (India), ground-truth answer of Pt is 2014-03-27.

1.0

VN T M
before after

S

Pt=P¢(s, r,o0)
—— aPt=A¢«(P(s, r,0))

0

o
@

4
o

o
IS

Similarity Score

o
N

0.0

i
100 150 20!

50 0 250 300
Timestamp (0=2014-01-01, 365=2014-12-31)

350

Figure 11: Score distributions of Pt, bPt and aPt, where s is Citizen (India), r is Use unconventional
violence, o is Chief Secretary Chandra, ground-truth answer of Pt is 2014-05-11.

10 T [

| —— DbPt=By(Pis,r,0))

/\‘ befo Pt=Py(s, 1, 0) fter
—— aPt=A{(P¢s, r, 0)

’
v

[

o
@

Similarity Score

VATAVA

e
N

:

0.0

|
100 150 200 250 300 350

50
Timestamp (0=2014-01-01, 365=2014-12-31)

Figure 12: Score distributions of Pt, bPt and aPt, where s is Mohammad Javad Zarif, r is Appeal
for economic cooperation, o is United Arab Emirates, ground-truth answer of Pt is 2014-04-14.

33

E Explaining Answers with Temporal Feature-Logic Framework

In this section, we present the explanation of answers given by TFLEX. Below we take the query "e2i"
as an example. The temporal query "e2i" is defined as follows: ¢[V7] = V2, 3V,, Vi, r1(e1, Va, 1) A
ro(ea, Vi, t2). Let’s consider the specific query: "Who was consulted by Mohammad Javad Zarif
on 2014-04-07 and consulted Mohammad Javad Zarif on 2014-04-07?" In this example, e; =
"Mohammad Javad Zarif", r1 = "consulted by", t; = "2014-04-07", ro = "consulted", and ¢, = "2014-
04-07". We use TFLEX to execute the query and obtain the answers. The answers are categorized
into easy, hard, and wrong ones. Table 18 presents the five most likely answers and their rankings
for interpretation. From the table, we observe that TFLEX ranks the answers "Mohammad Javad
Zarif", "Sebastian Kurz", "China" and "Catherine Ashton" high, while ranking the wrong answer
"Iran" low. TFLEX even infers a hard answer "Catherine Ashton" with higher score than two easy
answers "Sebastian Kurz" and "China". This demonstrates that TFLEX successfully identifies the
correct answers using complex reasoning and distinguishes them from the wrong ones.

Navigation: Pt(13), Pe(14), Pe2(15), Pe3(16), Pe_Pt(17), e2i(18), e3i(19), e2i_Pe(20), Pe_e2i(21),
Pe_2i(22), t2i(23), t3i(24), t2i_Pe(25), Pt_se2i(26), Pt 0e2i(27), t2i_NPt(28), t2i_PtN(29),
Pe_t2i_PtPe_NPt(30), e2i_NPe(31), e2i_PeN(32), Pe_e2i_Pe_NPe(33), €2i_N(34), e3i_N(35),
e2u(36), Pe_e2u(37), Pt_sPe(38), Pt_oPe(39), t2i_N(40), t3i_N(41), t2u(42), Pe_t2u(43), Pe_aPt(44),
Pe_bPt(45), Pe_at2i(46), Pe_bt2i(47), between(48).

Query Sentence When did North Atlantic Treaty Organization consult Taavi Roi-
Pt Pt(e,r,e2) vas?

I Query DNF q[V2] = Vo, r1(er, €2, V2)
? Rank Query Answers Correctness Answer Type
2014-11-20 Hard
2014-12-03 -
2014-06-16

2014-06-25
2014-10-13

€1 : North Atlantic Treaty Organization

Tt Consult
ey: Taavi Rdivas -

oA W N =
XXX XS

Figure 13: Intermediate variable assignments and ranks for example Pt query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

Query Sentence Philippines denounced or criticized who on 2014-04-01?
Query DNF Q[VV} = %77'1(617%7t1)

Pe Pe(ey,ri,t1)

”
e : o Rank Query Answers Correctness Answer Type
ty
1 China v Hard
er: Philippines 2 Japan X _
71 : Criticize or denounce .
3 Malaysia X -
ty: -04- e .
! 2014-04-01 4 Philippines X -
5 Iran X -

Figure 14: Intermediate variable assignments and ranks for example Pe query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

Query Sentence On 2014-04-04, who consulted the man who was appealed to or

Pe2 Pe(Pe(er,r1,t1),72,t2) requested by the Head of Government (Latvia) on 2014-08-01?
Temporal Query ¢[Vz] = V2, IV, 71(er, Vo, t1) Ara(Va, Vo,)
2 b Rank Query Answers Correctness Answer Type

e1 : Head of Government (Latvia)

r1: Make an appeal or request 1 Frangois Hollande v Easy
ty 2014-08-01 2 Taavi Raivas v Easy
T2 consult 3 Jyrki Katainen v Hard
ta: 2014-04-04 4 Angela Merkel X -

5 Head of Government (Latvia) X -

Figure 15: Intermediate variable assignments and ranks for example Pe2 query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

34

ty

Pe3 Pe(Pe(Pe(er,1,t1), 72, t2), 73, t3)

”
t ty
Presidential Movement

Make an appeal or request
2014-04-24

i Make statement !

2014-02-05

T3 Criticize or denounce

2014-08-26

Query Sentence

Who was criticized or denounced on 2014-08-26 by the person
who made a statement on 2014-02-05 at the place where the
presidential movement made an appeal or request on 2014-04-
247

Temporal Query ¢[V?] = Vo, Vo, Vi, ri(er, Va, t1) A 12(Va, Vi, ta) A
r3(Vo, V2, t3)
Rank Query Answers Correctness Answer Type
1 Government (France) v Easy
2 France X -
3 Frangois Hollande v Hard
4 Angela Merkel X -
5 Citizen (International) X -

Figure 16: Intermediate variable assignments and ranks for example Pe3 query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

Pe_Pt Pe(ey, 1, before(Pt(ez,2,€3)))

@O0 X0

: Arrest, detain, or charge withlegal action !

Citizen (Thailand)

Police (Greece)

2¢ Arrest, detain, or charge with legal action

Illegal Immigrant (Greece)

Query Sentence Who arrested, detained, or charged the citizen (Thailand) with
legal action after Police (Greece) arrested, detained, or charged
the illegal immigrant (Greece) with legal action?

Temporal Query q[Vi] = V2, 3T, r1(e1, V2, Tu) Arales,e3.T,)

Rank Query Answers Correctness Answer Type
1 Military (Thailand) v Easy
2 Municipal Court (Thailand) v Easy
3 Thailand v Hard
4 National Council for Peace and Order of Thailand X -
5 Police (Cambodia) X -

Figure 17: Intermediate variable assignments and ranks for example Pe_Pt query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

And(Pe(e1,71,t1), Pe(ea, T2, 2))

: Mohammad Javad Zarif
Consult
2014-04-07
* Mohammad Javad Zarif
Consult™!
2014-04-07

Query Sentence

Who was consulted by Mohammad Javad Zarif on 2014-04-07
and consulted Mohammad Javad Zarif on 2014-04-07?

° Temporal Query

q[Vf] = Vs, ri(e1, Vo, tl) Aro(es, Vo, tz))

Rank Query Answers Correctness Answer Type
1 Mohammad Javad Zarif v Easy
2 Catherine Ashton v Hard
3 Sebastian Kurz (4 Easy
4 China v Easy
5 Iran x -

Figure 18: Intermediate variable assignments and ranks for example e2i query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

e3i

And3(Pe(e1,71, t1), Pe(ea, 72, ta), Pe(es, 13, t3))

Joseph Robinette Biden
Discuss by telephone
2014-10-05

1

Joseph Robinette Biden
Discuss by telephone
2014-10-05
: Saud bin Faisal bin Abdul-Aziz
Make a visit
2014-01-20

Query Sentence

Where was Joseph Robinette Biden discussed by telephone on
2014-10-05 and visited by Saud bin Faisal bin Abdul-Aziz on
2014-01-20?

Temporal Query

q[V2] = Va,ri(er, Vo, t1) Ara(es, Va, ta) Ars(es, Vo, ts)

Rank Query Answers Correctness Answer Type
1 UAE Armed Forces v Easy
2 United Arab Emirates v Hard
3 Middle East X -
4 Morocco X -
5 Abdel Fattah Al-Sisi x -

Figure 19: Intermediate variable assignments and ranks for example e3i query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

35

2i_Pe And(Pe(Pe(e1,r1,t1),72,t2), Pe(ea, 73, t3))
<) "
t

O . Temporal Query

€1+ Obaid Humaid Al Tayer
" Make statement

t 2014-06-11

ra Make a visit

ts 2014-06-04

e2: Naval (Yemen)

s Oceupy territory

ts 2014-03-01

Query Sentence

Where was occupied territory on 2014-03-01 and was visited on
2014-06-04 by the person who Obaid Humaid Al Tayer made a
statement on 2014-06-11?

q[Ve] = V2, 3Va,ri(er, Va, t1) Ara(Va, Va, ta) Ars(es, Vo, t3)

Rank Query Answers Correctness Answer Type
1 Iran v Easy
2 China X -
3 Iraq X -
4 France X -
5 Afghanistan X -

Figure 20: Intermediate variable assignments and ranks for example e2i_Pe query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Pe_e2i

@50

t

@0

t

Labor Union (Croatia)
Make an appeal or request
2014-02-03
Government (Croatia)
Consult™!
2014-03-25
Consult
2014-03-25

Pe(e2i(er,r1,tr, 2,72, t2), 73, 3)

map>()—2>()

ty

Query Sentence

Where was consulted on 2014-03-25 by the place where Labor
Union (Croatia) made an appeal or request on 2014-02-03 and
was consulted by Government (Croatia) on 2014-03-25?

Temporal Query

q[V2] = V2,3V, r1(er, Va, t1) Aralen, Va, ta) Ars(Va, Vo, T3)

Rank Query Answers Correctness Answer Type
1 Labor Union (Croatia) (%4 Hard
2 Business (Croatia) X -
3 Government (Croatia) (4 Easy
4 Ministry (Croatia) 4 Easy
5 Branko Grcic X -

Figure 21: Intermediate variable assignments and ranks for example Pe_e2i query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Pe_t2i Pe(es, 1, t2i(e2, 7, €3,€4,7s, €5))

@ L
@ L

(=) e

€1 Government (South Africa)

+ Sign formal agreement ™
Gazprom

21 Sign formal agreement

China
Mzukisi Fatyela
Make statement
: Police (South Africa)

QR0

Query Sentence

Who signed a formal agreement with Government (South Africa)
at the time when Gazprom signed a formal agreement with China
and Mzukisi Fatyela made a statement to Police (South Africa)?

Temporal Query

q[V2] = V2, 3T, r1(e1, V2, Ta) Araez, e3,Ta) Ars(es, es, Ty)

Rank Query Answers Correctness Answer Type
1 South Africa v Easy
2 Tom Motsoahae Thabane b 4 -
3 China X -
4 Bank (China) X -
5 Henry Rotich X -

Figure 22: Intermediate variable assignments and ranks for example Pe_t2i query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

©2i TimeAnd(Pt(e;, 1, e2), Pt(e3, 72, 1))

A
A
et

ey

Xi Jinping

Engage in negotiation "

Barack Obama
Xi Jinping
Consult ™

Barack Obama

9

Query Sentence

At what time did Barack Obama negotiate with and consult Xi
Jinping?

Temporal Query

q[T7] = T>,71(e1, e2,T2) Ara(es, es, T?))

Rank Query Answers Correctness Answer Type
1 2014-11-15 (%4 Easy
2 2014-03-24 v Easy
3 2014-11-12 v Easy
4 2014-11-11 v Easy
ds5s 2014-11-14 v Easy

Figure 23: Intermediate variable assignments and ranks for example t2i query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

36

Query Sentence When did Japan engage in diplomatic cooperation with South
Korea, Mohammad Javad Zarif make a statement to Iran, and
Francois Hollande make a statement to France?

B3I TimeAnd3(Pt(e1,r1, e2), Pt(es, 2, 4), Pl(es, 73,e0))

2 Temporal Query q[T%] = T, 71(e1, e2,T%) Ara(es, ea, T2) Ar1(es, es, T?)

Rank Query Answers Correctness Answer Type
1 2014-09-18 (4 Hard
2 2014-09-20 v Easy
3 2014-08-22 (%4 Easy
4 2014-07-01 v Hard
5 2014-08-16 X -

Figure 24: Intermediate variable assignments and ranks for example t3i query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

Query Sentence When did Activist (Somalia) fight with small arms and light
weapons with Armed Gang (Somalia) while Citizen (Oman) en-
gage in a symbolic act with the person with whom finance /

Pe TimeAnd(P(Pe(es,ristr), e2), Peles, s e4)) Economy / Commerce / Trade Ministry (Oman) shared intelli-
=) gence or information on 2014-01-06?
® . A Temporal Query ¢[T7] = T, 3V, r1(e1, Va, t1) Ar2(Va, e2, T2) Ars(es, eq, T?)
Rank Query Answers Correctness Answer Type
1 2014-01-30 v Easy
2 2014-02-05 X -
3 2014-01-29 X -
4 2014-02-07 X -
5 2014-02-04 X -

Figure 25: Intermediate variable assignments and ranks for example t2i_Pe query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Ptle2i Pt(e2i(er, 1, b1, €2,72, t2), 73, €3)

Query Sentence When did Iran negotiate with the country that visited Iran on

Co—=>O) . 2014-03-09?
e - . [And) % @ Temporal Query (I[T?] = :Z—‘77 E'Va, 1 (61, Va, tl) A 7‘2(827 ‘/:17 tQ) AN 7‘3(Va7 es, Tr;)

o - Rank Query Answers Correctness Answer Type
n 1 2014-03-10 v Easy
et 2 2014-03-08 v Easy
nL ameeres 3 2014-06-16 v Easy
7 Engge i negtiaion 4 2014-03-13 v Easy
o 5 2014-03-09 v Easy

Figure 26: Intermediate variable assignments and ranks for example Pt_se2i query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

PRl Piles,raye2ilen, ratry 5,70 12)) Query Sentence When did Armenia cooperate militarily with the country that
° " . cooperates militarily with Armenia on 2014-12-08 and 2014-07-
. =@ 027
® A O : Temporal Query g[V7] = V2,3V, ri(er, Vi, T%) Ara(ea, Vi, t1) Ars(es, Va, t2)

o Coop,:r::f::::wmmy Rank Query Answers Correctness Answer Type
o+ Coperme iy 1 2014-12-08 v Easy
O 2 2014-07-02 v Easy
3 2014-05-06 v Easy
fr 2014:07-02 4 2014-10-26 (4 Easy

5 2014-07-17 X -

Figure 27: Intermediate variable assignments and ranks for example Pt_oe2i query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

37

Query Sentence

20 NPt TimeAnd(TimeNot(PH(Pe(e1, r1,t1),72,€2)), Pt(es, s, e4))

When did Barack Obama express intent to meet or negotiate with
Japan, and on that day, Catherine Ashton wasn’t consulted by the
person Edgars Rinkevics expressed intent to meet or negotiate

OO0 with on 2014-04-22?

Oy @4 Temporal Query g[T%] = T7, 3V, 11 (€1, Vi, t1) A=ra(Va, €2, T2) Ars(es, ea, T7)
T e ot Rank Query Answers Correctness Answer Type
DL ! 2014-04-17 v Easy
« tapn } 2 2014-04-18 4 Easy
R 3 2014-02-13 v Easy

4 2014-04-05 v Easy
5 2014-02-11 X -

Figure 28: Intermediate variable assignments and ranks for example t2i_NPt query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Query Sentence

@i_PN TimeAnd(Pt(Pe(e1, r1,t2), 72, €2), TimeNot(Pt(es,rs, 1))

When was the citizen (Greece) made an appeal or request by the
country that made an appeal or request to the Party President
(Greece), and on that day, Angela Merkel did not express intent
to meet or negotiate with Evo Morales?

Temporal Query ¢[T7] = 17,3V, r1(e1, Va, t1) Ara(Va, e2, Tr) A—r3(es, eq, T7)
Rank Query Answers Correctness Answer Type
1 2014-05-16 (4 Easy
+ Bapressintenttomeet ot 2 2014-07-24 v Easy
- Avsea N 3 2014-05-25 v Easy
4 2014-04-29 v Easy
5 2014-07-29 v Easy

Figure 29: Intermediate variable assignments and ranks for example t2i_PtN query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Query Sentence

Pe_OUPBO NP Pele, vy, Time And(PH(Pel(es, s, 1), s e5), TimeNot(Pr(eq moes))

Who discussed by telephone with Sergey Viktorovich Lavrov on
the day when Hun Sen was threatened by the person who was
arrested, detained, or charged with legal action by the Buddhist
(Cambodia) on 2014-04-30, and on that day, Education (Colom-
bia) made a statement to Eric Garner?

Temporal Query q[Vz] = V7,3V, Ta,ri(er, Vo, Ta) A 7alea, Vast1) A
73(Vas €3,Ta) A —ra(es, e5,Ta)
Rank Query Answers Correctness Answer Type
1 John Kerry v Hard
2 Cabinet / Council of Ministers / Advisors (United States) v Easy
3 Catherine Ashton X -
4 Sergey Viktorovich Lavrov b 4 -
5 Joseph Robinette Biden X -

Figure 30: Intermediate variable assignments and ranks for example Pe_t2i_N query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Query Sentence

€2 NPe And(Not(Pe(Pe(es, r1,t1),72,t2)), Pe(es,73,t3))

Who visited Iran on 2014-04-29 and did not made a statement at
the place where Carlos Saul Menem made a statement on 2014-

09-20?
© “Temporal Query q[Vi] = V5,3V, Vouri(er, Vastr) A ra(Vas Vinta) A
r3(e2, V2, t3)
t [Rank Query Answers Correctness Answer Type
o 1 Santos Edelmar Lopez (4 Easy
o eta 2 Simon Gass v Easy
e 3 Sebastian Kurz (4 Easy
4 Catherine Ashton x -
5 Iran x -

Figure 31: Intermediate variable assignments and ranks for example e2i_NPe query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

38

Query Sentence Who was commented pessimistically on 2014-03-13 by the
(PN Ad(PePelen o) et Not(Pelemrn) person who expressed accord to Energy Department/Ministry

. (Turkey) on 2014-03-27 and not visited by Mainland Affairs
© o O O L ©) Council on 2014-02-11?

o
O% Temporal Query q[Vz] = V5, 3Ve,Viuri(er,Vaty) A ro(Va Vo T)A /

; =

Minisry (Torkes) r3(ez, V2, t3)

€1 Energy Departn

we Rank Query Answers Correctness Answer Type
“ 1 Member of the Judiciary (Turkey) v Easy
” ' 2 Lawyer/Attorney (Turkey) v Hard
‘ 3 Justice and Development Party X -
4 Other Authorities / Officials (Turkey) X -
5 Party Member (Turkey) X -

Figure 32: Intermediate variable assignments and ranks for example e2i_PeN query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Query Sentence On 2014-10-21, who negotiated with the person who consulted
with the Treasury/Finance Ministry (Eritrea) on 2014-09-17 but
did not arrest, detain, or charge Drug Gang (Beltrdan -Leyva Car-
tel) with legal action on 2014-10-16?

q[V?] = V2,3V, Vi, ri(er, Va, t1)A / ra(es, Va,t2) A
r3(Va, V2, t3)
Query Answers Correctness Answer Type
South Korea v Easy
Japan X -
China v Hard
North Korea X -
Thailand X -

Figure 33: Intermediate variable assignments and ranks for example Pe_e2i_N query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

€N And(Pe(er,m,t1), Not(Pe(ez,m,12)) Query Sentence ~ Who rallied opposition against Botswana on 2014-03-11 but was

not empathetically commented upon by Citizen (Brunei) on 2014-

03-26?

Temporal Query ¢[Vz] = Vo, ri(eq, Vo, t1) A —ra(en, Vo, ta)
et Botswana Rank Query Answers Correctness Answer Type
o vt 1 Industry (Botswana) v Easy
er: Citizen (Brunei) 2 Citizen (Botswana) v Hard
Ty Make empathetic comment 3 Richard Sezibera X -
& 20140326 4 Labor and Employment Ministry (Botswana) x -
5 Paul Kagame X -

Figure 34: Intermediate variable assignments and ranks for example e2i_N query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

N And(Pelen ot Pelenra i Notpeen ey QUETY Sentence Who was praised or endorsed by Envoy (Kazakhstan) on 2014-
05-19 and signed a formal agreement with RIA Novosti on 2014-
12-12 but not signed a formal agreement with Governor (South
Korea) on 2014-05-09?

Temporal Query ¢[V2] = Va2, r1(er, Vo, t1) Ara(ea, Vo, ta)A f3(es, Vo, t3)

€1t Envoy (azakhtan) Rank Query Answers Correctness Answer Type
L Praise or endorse
o 1 Iran 4 Easy
n e 2 Iraq X -
es: Govemor (South Korea) 3 China x -
3¢ Sign formal agreement ™ .
e oot 4 Afghanistan X -
5 North Atlantic Treaty Organization X -

Figure 35: Intermediate variable assignments and ranks for example e3i_N query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

39

o o ¢
9
H

Or(Pe(e1,71,t1), Pe(ez, 72, t2))

4 ()
2O

: Foreign Affairs (Uruguay)
Consult™
2014-11-24

Julian Paul Assange
Grant asylum ™"
2014-06-19

Query Sentence

Who consulted Foreign Affairs (Uruguay) on 2014-11-24 or
granted asylum for Julian Paul Assange on 2014-06-19?

Temporal Query

q[V2] = Vo, 71(e1, Vo, t1) V ma(ea, Va, t2)

Rank Query Answers Correctness Answer Type
1 Foreign Affairs (Ecuador) v Easy
2 Mexico v Easy
3 Government (Mexico) 4 Hard
4 Guatemala X -
5 Other Authorities / Officials (Mexico) X -

Figure 36: Intermediate variable assignments and ranks for example e2u query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

Pe_e2u Pe(Or(Pe(er,r1,t1), Pe(e, 7, t2)), 73, ts)

Oy~ :

Lower House of Parliament (France)
Praise or endorse
2014-11-18
Newspaper (Afghanistan)
Make an appeal or request
2014-05-05
Occupyterritory ™'
2014-05-24

Query Sentence

On 2014-05-24, who occupied the land praised or endorsed by the
Lower House of Parliament (France) on 2014-11-18 or requested

or appealed by a Newspaper (Afghanistan) on 2014-05-05?
Temporal Query ¢[V7] = V2, 3Vi, (ri (e, Vo, t) Vra(ea, Vo, t2)) Ara(Va, V2, t3)
Rank Query Answers Correctness Answer Type
1 Armed Gang (Afghanistan) v Easy
2 Armed Band (Afghanistan) 4 -
3 Military Personnel - Special (Afghanistan) v Hard
4 Militant (Taliban) X -
5 Afghanistan X -

Figure 37: Intermediate variable assignments and ranks for example Pe_e2u query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Pt_IPe Pt(Pe(ey,r1,t1),72,€2)

. 2 ‘ 7y
t1 ?

er:

T1

iy
Ty

ey :

Middle East
: Makeavisit™*
2014-09-15
Make a visit

Traq

Query Sentence

When was Iraq visited by the person who visited The Middle East
on 2014-09-15?

Temporal Query

q[T?) = T», 3V, r1(e1, Va, t1) Ara(Va, e, T?)

Rank Query Answers Correctness Answer Type
1 2014-09-13 v Easy
2 2014-06-25 v Easy
3 2014-06-26 v Easy
4 2014-06-27 v Easy
5 2014-06-24 v Easy

Figure 38: Intermediate variable assignments and ranks for example Pt_sPe query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Pt_rPe Pt(ei,r1, Pe(es, r2,t1))

: . 2 .
2 t1

France
: Meet at a 'third' location
Peter Humphrey
Make statement !
2014-07-31

Query Sentence

At what time did France meet the person who made a statement
to Peter Humphrey at a "third’ location?

Temporal Query

q[T?) = T, 3V, r1(e1, Va, T2) Ara(ez, Va, t1))

Rank Query Answers Correctness Answer Type
1 2014-11-21 v Hard
2 2014-11-25 v Easy
3 2014-11-20 v Easy
4 2014-09-23 v Easy
5 2014-09-21 v Easy

Figure 39: Intermediate variable assignments and ranks for example Pt_oPe query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

40

Query Sentence

Qi N TimeAnd(Pt(e1,r1,e), TimeNot(Pt(es, 72, €4)))

Oy,
A

: Abu Bakr Abdullah al-Qirbi
scuss by telephone

u
e2: Mohammad Javad Zarif

et Senate (Slovakia)

Y Reject

€4 Department/Ministery (Slovakia)

When did Abu Bakr Abdullah al-Qirbi discuss with Mohammad
Javad Zarif by telephone, and on that day Senate (Slovakia) did
not reject Justice Department/Ministery (Slovakia)?

Temporal Query

q[T7) = T, 1 (€1, e2,T2) A —ra(es, eq, Th)

Rank Query Answers Correctness Answer Type
1 2014-01-19 (4 Easy
2 2014-01-18 v Hard
3 2014-11-02 X -
4 2014-02-02 X -
5 2014-12-13 X -

Figure 40: Intermediate variable assignments and ranks for example t2i_N query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

BN TimeAnd3(Pt(e1,r1,e2), Pt{es, 2, es), TimeNot(Pt(es, rs, e

;

N Query Sentence

When did the Police (Egypt) use tactics of violent repression
against protesters (Egypt) and the Police (Ukraine) use tactics
of violent repression against protesters (Egypt), and on that day
Information / Communication / Transparency Ministry (China)
did not consult Warren Truss?

Temporal Query

q[T2] = Tr,71(e1, €2, T2) Ara(es, eq, T) A —rs(es, eq, Tr)

Rank Query Answers Correctness Answer Type
1 2014-01-21 v Easy
2 2014-01-13 X -
3 2014-01-22 X -
4 2014-02-20 X -
5 2014-01-14 X Hard

Figure 41: Intermediate variable assignments and ranks for example t3i_N query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

©2u TimeOr(Pt(e,r1,e2), Pt(es, 2, €4))

et Nonofo Molefhi

1 : Obstruct passage, block™*
ep: Citizen (Botswana)
es: Zheng Zeguang

T2 Make statement

es: China

Query Sentence

When did citizens (Botswana) obstruct passage and block Nonofo
Molethi or Zheng Zeguang make statements about China?

Temporal Query

q[T7] = Ty, r1(er, €2, T2) V r2(es, €4, T7)

Rank Query Answers Correctness Answer Type
1 2014-04-09 v Easy
2 2014-05-21 v Easy
3 2014-05-20 v Hard
4 2014-05-22 X -
5 2014-05-22 X -

Figure 42: Intermediate variable assignments and ranks for example t2u query. Correctness indicates
whether the answer belongs to the ground-truth set of answers.

Pe_2u Pe(er, 1, TimeOr(Pt(es, 2, e5), Pt(es, s, 5)))

@O
»

m@
QC

et Citizen (Nigeria
Make an appeal o
University of Cape Town

Query Sentence

Who was appealed or requested by Citizen (Nigeria) on the day
when the University of Cape Town consulted News Editor (Nige-
ria) or State Security Court (United Arab Emirates) arrested,
detained, or charged Muslim (United Arab Emirates) with legal
action?

Temporal Query

q[V2] = V2, 3T, r1(e1, Vo, To) A(ra(ea, e3, Ta) Vrs(es, e5, Ty))

Rank Query Answers Correctness Answer Type
1 Government (Nigeria) v Easy
2 Assemblies (Nigeria) v Hard
3 Other Authorities / Officials (Nigeria) X -
4 Head of Government (Nigeria) X -
5 Citizen (Nigeria) X -

Figure 43: Intermediate variable assignments and ranks for example Pe_t2u query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

41

Pe_aPt Pe(e1, 1, after(Pt(es,ra,€3)))

Query Sentence

Who made a statement for citizens (India) before Representatives
(France) consulted Stephane Le Foll?

Temporal Query

q[V=] V2,370, Ty, r1(er, Vo, Tp) N After(To,Ty) A

ra(ez, e3,Ta)
er: Citizen (India)
ri: Make statement ™! Rank Query Answers Correctness Answer Type
es: Stephane Le Foll
Y Z‘(msulﬁ 1 1 Court Judge (India) v Easy
es: Representatives (France) 2 Governor (India) v Easy
3 Manohar Lal Khattar (%4 Easy
4 Vasundhara Raje x Easy
5 Head of Government (India) X -

Figure 44: Intermediate variable assignments and ranks for example Pe_aPt query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Query Sentence

Pe_bPt Pe(er, 1, before(Pt(es, 2, €3)))

Who expressed intent to meet or negotiate with the Head of Gov-
ernment (Bangladesh) after South Korea Criticized or denounced
Sadako Ogata?

Temporal Query

q[V=] Vo, 3T, Ty, m1(e1, V2, Ty) N Before(Ta,Ty) N
ra(ez,es, Ta)

er: South Korea Rank Query Answers Correctness Answer Type
T Criticize or denounce
ez: Sadako Ogata 1 Japan v Easy
:z Ezpressh}tenftameetuTnegotif.zte" 2 North Korea v Easy
3¢ Head of Government(Bangladesh) ;
3 China v Easy
4 South Korea X -
5 Kim Jong-Un X -

Figure 45: Intermediate variable assignments and ranks for example Pe_bPt query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Query Sentence

‘Who was criticized or denounced by North Korea on the day
before Admiral (Russia) made a statement for Chuck Hagel and

O Ministry (Madagascar) made a statement for Government (Mada-
2 @0 gascar)?
OROE==G= Temporal Query ¢[V2] =V, 3T, Ty, r1(e1, V2, Tp)) N After(To,Ty) A
North ra(ez, e3,Ty) Ar3(ea,es, Ta)
Rank Query Answers Correctness Answer Type

1 South Korea v Easy
2 Japan v Easy
3 North Korea v -
4 Head of Government (South Korea) (4 Easy
5 John Kerry v Easy

Figure 46: Intermediate variable assignments and ranks for example Pe_at2i query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

Query Sentence

Pe_bi2i Pe(er,r,before(t2ile,ra, €3, 4,73, €5)))

Who was declined commented by Citizen (India) after the day
when the employee (Mozambique) consulted the Presidential
Candidate (Mozambique), and Evo Morales made a statement to

® the Military (Bolivia)?
G Temporal Query ¢[Vz] = Vi, 3T, Ty, ri(er, Vo, Ty) A Before(Ta,Th) A
ro(e2,e3,Ta) Ars(es, es,Ta)
Rank Query Answers Correctness Answer Type
1 Media (India) 4 Easy
2 Member of Parliament (India) X -
3 Court Judge (India) v Easy
4 Head of Government (India) X -
5 Governor (India) X -

Figure 47: Intermediate variable assignments and ranks for example Pe_bt2i query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

42

Query Sentence What was the day between the day that Tsai Ing-wen accused the
Party Member (Taiwan) and the foreign affairs (United States)

between Time And(after(Pt{es, s e2), before(Pes) appealed for diplomatic cooperation (such as policy support) from
@ " the other Authorities/officials (Romania)?
@= O Temporal Query ¢[T}] = T3,3T,,Ty,ri(e1,e2,T.) N ra(es,eq,Tp) A
e s : After(T,,Ty) N Before(Ty,T?)
:, st Other Authorities / Officials (Romania) . Rank Query Answers Correctness Answer ’I\ype
:z Foreign —;f:x;;;[{:zfd States) 1 20 l 4_07_ 1 9 V Easy
- Pty Mt () 2 2014-07-29 v -
o 3 2014-06-10 v Easy
4 2014-08-21 v -
ds 2014-06-25 v Easy

Figure 48: Intermediate variable assignments and ranks for example between query. Correctness
indicates whether the answer belongs to the ground-truth set of answers.

43

	Introduction
	Related Work
	Definitions
	Method
	Temporal Feature-Logic Embeddings for Queries and Entities
	Logical Operators for Temporal Feature-Logic Embeddings
	Learning Temporal Feature-Logic Embeddings

	Experiments
	Experimental Settings
	Main Results

	Conclusion
	More Details about Neural Operators
	Fuzzy Logic
	Vector Logic
	Neural Dyadic Operators
	Theoretical Analysis
	Proofs

	More Details about Experiments
	Details of Origin Datasets
	Details of Query Generation
	Details of Generated Datasets
	Implementation Details
	Evaluation
	Experiment Data for Sensitive Analysis
	Detail Metrics of Main Results

	Exploration of Static Query Embeddings Toward Dynamic
	Visualization of Semantic Changes by Neural Temporal Operators
	Explaining Answers with Temporal Feature-Logic Framework

