
Learn to Categorize or Categorize to Learn?
Self-Coding for Generalized Category Discovery

Supplementary Materials

Sarah Rastegar, Hazel Doughty∗, Cees G. M. Snoek
University of Amsterdam

Contents

1 Theory 2

1.1 Notation and Definitions . 2

1.2 Maximizing the Algorithmic Mutual Information 2

1.2.1 Shannon Mutual Information Approximation 3

1.2.2 Approximation with Reconstruction Loss 4

1.2.3 Approximation with Contrastive Loss . 5

1.3 Category Code Length Minimization . 5

1.3.1 Satisfying Binary Constraints. 6

2 Experiments 6

2.1 Dataset Details . 6

2.2 Implementation details . 7

2.3 Further Ablations . 8

2.4 Extracting the Implicit Tree from the Model . 8

3 Related Works 9

3.1 Open Set Recognition . 9

3.2 Novel Class Discovery . 9

3.3 Generalized Category Discovery . 10

3.4 Binary Tree Distillation . 10

∗Currently at Leiden University

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1 Theory
1.1 Notation and Definitions

Let us first formalize our notation and definition for the rest of the section. Some definitions might
overlap with the notations in the main paper. However, we repeat them here for ease of access.

Probabilistic Notations. We denote the input random variable with X and the category random
variable with C. The category code random variable, which we define as the embedding sequence of
input Xi, is denoted by zi = zi1z

i
2 · · · ziL, in which superscript i shows the ith sample, while subscript

L shows the digit position in the code sequence.

Coding Notations. Let C be a countable set, we use C∗ to show all possible finite sequences using the
members of this set. For instance: {0, 1}∗ = {ϵ, 0, 1, 00, 01, 10, 11, · · · } in which ϵ is empty word.
The length of each sequence z, which we show with l(z), equals the number of digits present in that
sequence. For instance, for the sequence l(01010) = 5.

Shannon Information Theory Notations. We denote the Shannon entropy or entropy of the random
variable X with H(X). It measures the randomness of values of X when we only have knowledge
about its distribution P . It also measures the minimum number of bits required on average to transmit
or encode the values drawn from this probability distribution [1, 2]. The conditional entropy of
a random variable X given random variable Z is shown by H(X|Z), which states the amount of
randomness we expect to see from X after observing Z. In addition, I(X;Z) indicates the mutual
information between random variables X and Z [1, 2], which measures the amount of information
we can obtain for one random variable by observing the other one. Note that contrary to H(X|Z),
mutual information is symmetric.

Algorithmic Information Theory Notations. Similar to Shannon’s information theory, Kolmogorov
Complexity or Algorithmic Information Theory[3–5] measures the shortest length to describe an
object. Their difference is that Shannon’s information considers that the objects can be described by
the characteristic of the source that produces them, but Kolmogorov Complexity considers that the
description of each object in isolation can be used to describe it with minimum length. For example,
a binary string consisting of one thousand zeros might be assigned a code based on the underlying
distribution it has been drawn from. However, Kolmogorov Complexity shows that we can encode this
particular observation by transforming a description such as "print 0 for 1000 times". The
analogon to entropy is called complexity K(x), which specifies the minimum length of a sequence
that can specify output for a particular system. We denote the algorithmic mutual information for
sequences x and z with Ialg(x : z), which specifies how much information about sequence x we can
obtain by observing sequence z.

1.2 Maximizing the Algorithmic Mutual Information

Let’s consider data space D={Xi, Ci : i ∈ {1, · · ·N}} where Xs are inputs and Cs are the
corresponding category labels.

Lemma 1 For each category c and for Xi with Ci=c, we can find a binary decision tree Tc that
starting from its root, reaches each Xi by following the decision tree path. Based on this path, we
assign code c(Xi)=ci1c

i
2 · · · ciM to each Xi to uniquely define and retrieve it from the tree.

Proof of Lemma 1. Since the number of examples in the dataset is finite, we can enumerate samples
of category c with any arbitrary coding. We then can replace these enumerations with their binary
equivalent codes. We start from a root, and every time we encounter 1 in digits of these codes, we
add a right child node, and for 0, we add a left child node. We then continue from the child node until
we reach the code’s end. Since the number of samples with category c is limited, this process should
terminate. On the other hand, since the binary codes for different samples are different, these paths
are unique, and by the time we traverse a path from the root to a leaf node, we can identify the unique
sample corresponding to that node. □

As mentioned in the main paper, using this Lemma, we can find at least one supertree T for the whole
data space that addresses all samples in which samples of the same category share a similar prefix.
We can define a model that provides the binary code zi=zi1 · · · ziL for data input Xi with category
c based on the path it takes in these eligible trees. We define these path encoding functions valid
encoding as defined in Definition 1:

2

Definition 1 A valid encoding for input space X and category space C is defined as an encoding that
uniquely identifies every Xi ∈ X . At the same time, for each category c ∈ C, it ensures that there is a
sequence that is shared among all members of this category but no member out of the category.

Since there is no condition on how to create these trees and their subtrees, many candidate trees can
address the whole data space while preserving a similar prefix for the members of each category.

However, based on our inspirations for how the brain does categorization, we assume the ground truth
underlying tree T has a minimum average length path from the root to each node. In other words,
each sample x has the shortest description code z to describe that data point while maintaining its
validity. If we use a model to learn this encoding, the optimal model tree should be isomorph to the
underlying tree T,

Lemma 2 For a learned binary code zi to address input Xi, uniquely, if the decision tree of this
encoding is optimal, it is isomorph to the underlying tree T .

Proof of Lemma 2. Since the underlying tree has the minimum Kolmogorov complexity for each
sample, we can extract the optimal lengths of each sample by traversing the tree. Evans and Lanoue
[6] showed that a tree can be recovered from the sequence of lengths of the paths from the root
to leaves to the level of isomorphism. Based on our assumption about the underlying tree T, the
optimal tree can not have a shorter length for any sample codes than the underlying tree. On the other
hand, having longer codes contradicts its optimality. Hence the optimal tree should have similar path
lengths to the underlying ground truth tree. Therefore, it is isomorphic to the underlying tree. □

Since the optimal tree with the valid encoding z̃ is isomorph to the underlying tree, we will have the
necessary conditions that Theorem 1 provides.

Theorem 1 For a learned binary code zi to address input xi, uniquely, if the decision tree of this
encoding is isomorph to underlying tree T, we will have the following necessary conditions:

1. Ialg(z : x) ≥ Ialg(z̃ : x) ∀z̃, z̃ is a valid encoding for x

2. Ialg(z : c) ≥ Ialg(z̃ : c) ∀z̃, z̃ is a valid encoding for x

Proof of Theorem 1.

Part one: From the way T has been constructed, we know that K(x|T) ≤ K(x|T) in which
T is an arbitrary tree. From the complexity and mutual information properties, we also have
Ialg(z : x) = K(z)−K(x|z) [7]. Since z̃ and z have isomorph tree structures, then K(z̃) = K(z),
hence: Ialg(z : x) ≥ Ialg(z̃ : x). □

Part two: In any tree that is a valid encoding, all samples of a category should be the descendants of
that node. Thus, the path length to corresponding nodes should be similar in both trees. Otherwise,
the length of the path to all samples of this category will not be optimal. We can use the same
logic and deduce that the subtree with the category nodes as its leaves would be isomorph for both
embeddings. Let’s denote the path from the root to category nodes with zc and from the category node
to its corresponding samples with zx. If we assume these two paths can be considered independent,
we will have K(x) = K(zczx) = K(zc) +K(zx), which indicates that minimizing K(x) in the tree
implies that K(c) also should be minimized. By applying the same logic as part one, we can deduce
that Ialg(z : c) ≥ Ialg(z̃ : c). □

1.2.1 Shannon Mutual Information Approximation

Optimization in Theorem 1 is generally not computable [3–5, 8]. However, We can approximate
these requirements using Shannon mutual information instead. Let’s consider two functions f and g,

such that both are {0, 1}∗ → R. For these functions, f
+
< g means that there exists a constant κ, such

that f ≤ g + c, when both f
+
< g and g

+
< f hold, then f

+
= g [7].

Theorem 2 [7] Let P be a computable probability distribution on {0, 1}∗ × {0, 1}∗. Then:

I(X;Z)−K(P)
+
<

∑
x

∑
z

p(x, z)Ialg(x : z)
+
< I(X;Z) + 2K(P) (1)

3

This theorem states that the expected value of algorithmic mutual information is close to its proba-
bilistic counterpart. This means that if we maximize the Shannon information, we also approximately
maximize the algorithmic information and vice versa.

Since Shannon entropy does not consider the inner regularity of the symbols it codes, to make each
sequence meaningful from a probabilistic perspective, we convert each sequence to an equivalent
random variable number by considering its binary digit representation. To this end, we consider
Zi=

∑m
k=1

zi
k

2k
, which is a number between 0 and 1. Note that we can recover the sequence from

the value of this random variable. Since the differences in the first bits affect the number more, for
different error thresholds, Shannon’s information will focus on the initial bits more. In dealing with
real-world data, the first bits of encoding of a category sequence are more valuable than later ones
due to the hierarchical nature of categories. Furthermore, with this tweak, we equip Shannon’s model
with a knowledge of different positions of digits in a sequence. To replace the first item of Theorem 1
by its equivalent Shannon mutual information, we must also ensure that z has the minimum length.
For the moment, let’s assume we know this length by the function l(Xi)=li. Instead of Zi, we can
consider its truncated form Zi

li
=
∑li

k=1
zi
k

2k
. This term, which we call the address loss function, is

defined as follows:

Ladr = − 1

N

N∑
i=0

I(Xi;Zi
li) s.t. Zi

li =

li∑
k=1

zik
2k

and ∀k, zik ∈ {0, 1}. (2)

We can approximate this optimization with a reconstruction or contrastive loss.

1.2.2 Approximation with Reconstruction Loss

Let’s approximate the maximization of the mutual information by minimizing the LMSE of the
reconstruction from the code z. Suppose that D(X) is the decoder function, and it is a Lipschitz
continuous function, which is a valid assumption for most deep networks with conventional activation
functions [9]. We can find an upper bound for LMSE using Lemma 3.

Lemma 3 Suppose that D(X) is a Lipschitz continuous function with Lipschitz constant κ, then we
will have the following upper bound for LMSE:

LMSE(X) ≤κ
1

N

N∑
i=0

2−2li

Proof of Lemma 3. Let’s consider the LMSE loss for the reconstruction X̂i from the code Zi. We
denote reconstruction from the truncated category code Zi

li
with X̂i

li
.

LMSE(X) =
1

N

N∑
i=0

∥ X̂i
li −Xi ∥2

If we expand this loss, we will have the following:

LMSE(X) =
1

N

N∑
i=0

∥ D(Zi
L(Xi))−Xi ∥2

=
1

N

N∑
i=0

∥ D(

li∑
k=0

zik
2k

)−Xi ∥2

Let’s assume the optimal model can reconstruct Xi using the entire code length Zi, i.e. Xi =

D(
∑m

k=0
zi
k

2k
). Now let’s replace this in the equation:

LMSE(X) =
1

N

N∑
i=0

∥ D(

li∑
k=0

zik
2k

)−D(

m∑
k=0

zik
2k

) ∥2

4

Given that D(X) is a Lipschitz continuous function with the Lipschitz constant κ, then we will have
the following:

LMSE(X) ≤κ
1

N

N∑
i=0

∥
li∑

k=0

zik
2k

−
m∑

k=0

zik
2k

∥2

≤κ
1

N

N∑
i=0

∥ 2−li ∥2

=κ
1

N

N∑
i=0

2−2li □

Lemma 3 indicates that to minimize the upper bound on LMSE , we should aim for codes with
maximum length, which can also be seen intuitively. The more length of latent code we preserve, the
more accurate the reconstruction would be. This is in direct contrast with the length minimization of
the algorithmic mutual information. So, the tradeoff between these two objectives defines the optimal
final length of the category codes.

1.2.3 Approximation with Contrastive Loss

One of the advantages of contrastive learning is to find a representation that maximizes the mutual
information with the input [10]. More precisely, if for input Xi, we show the hidden representation
learning Zi, that is learned contrastively by minimizing the InfoNCE loss, [10] showed that the
following lower bound on mutual information exists:

I(Xi;Zi) ≥ log(N)− LN . (3)

Here, LN is the InfoNCE loss, and N indicates the sample size consisting of one positive and N − 1
negative samples. Equation 3 shows that contrastive learning with the InfoNCE loss can be a suitable
choice for minimizing the Ladr in Equation 2. We will use this to our advantage on two different
levels. Let’s consider that Zi has dimension d, and each latent variable zik can take up n different
values. The complexity of the feature space for this latent variable would be O(nd), then the number
of structurally different binary trees for this feature space would be O(Cnd), in which Ci is the
ith Catalan number, which asymptotically grows as O(4i). Hence the number of possible binary
taxonomies for the categories will be O(4n

d

). So minimizing n and, to a lesser degree, d, will be the
most effective way to limit the number of possible binary trees. Since our model and the amount of
training data is bounded, we must minimize the possible search space while still providing reasonable
performance. On the other hand, the input feature space Xi with N possible values and dimension
D has O(ND) possible states, and to cover it completely, we can not arbitrarily decrease d and n.
Note that for a nearly continuous function N → ∞, the probability of a random discrete tree to fully
covering this space would be near zero.

1.3 Category Code Length Minimization

In the main paper, we indicate the code length loss Llength, which we define as Llength = 1
N

∑N
i=0 li.

To minimize this loss, we define a binary mask sequence mi=mi
1m

i
2 · · ·mi

L to simulate the subscript
property of li. We discussed minimizing the Lp Norm for the weighted version of the mask, which
we denote with m̄i=(mi

12
1)(mi

22
2) · · · (mi

L2
L). This will ensure the requirements because adding one

extra bit has an equivalent loss of all previous bits.

Llength ≈ 1

N

N∑
i=0

∥ m̄i ∥p . (4)

Lemma 4 Consider the weighted mask m̄=(m12
1)(m22

2) · · · (mL2
L) where mjs are 0 or 1. Con-

sider the norm ∥ m̄ ∥p where p ≥ 1, the rightmost 1 digit contributes more to the norm than the
entire left sequence.

5

Proof of Lemma 4. Let’s consider the loss function for mask m̄=(m12
1)(m22

2) · · · (mL2
L) and

let’s denote the rightmost 1 index, with k, for simplicity we consider the ∥ m̄ ∥pp:

∥ m̄ ∥pp=
L∑

j=0

(mj2
j)p =

k−1∑
j=0

(mj2
j)p + (mk2

k)p +

L∑
j=k+1

(mj2
j)p

given that mj = 0,∀j > k and mk = 1, we will have:

∥ m̄ ∥pp==

k−1∑
j=0

(mj2
j)p + 2kp + 0

now let’s compare the two subparts of the right-hand side with each other:

k−1∑
j=0

(mj2
j)p ≤

k−1∑
j=0

(2j)p =
2kp − 1

2p − 1
< 2kp □

Hence LLength tries to minimize the position of the rightmost 1, simulating the cutting length
subscript.

1.3.1 Satisfying Binary Constraints.

In the main paper, we stated that we have two conditions, Code Constraint:∀zik, zik = 0 or zik = 1
and Mask Constraint ∀mi

k, m
i
k = 0 or mi

k = 1. We formulate each constraint in an equivalent
Lagrangian function to make sure they are satisfied. For the binary code constraint we consider
fcode(z

i
k)=(zik)(1 − zik)=0, which is only zero if zik=0 or zik=1. Similarly, for the binary mask

constraint, we have fmask(m
i
k)=(mi

k)(1−mi
k)=0. To ensure these constraints are satisfied, we optimize

them with the Lagrangian function of the overall loss. Consider the Lagrangian function for Ltotal,

L(Ltotal, η, µ) = Ltotal + ηLcode_cond + µLmask_cond

This lagrangian function ensures that constraints are satisfied for η → +∞ and µ → +∞. Note
that our method uses a tanh activation function which has been mapped between 0 and 1, to produce
mk and zk, so the conditions are always greater or equal to zero. For an unbounded output, we can
consider the squared version of constraint functions to ensure that constraints will be satisfied. This
shows how we reach the final unconstrained loss function in the paper.

2 Experiments
2.1 Dataset Details

To acquire the train and test splits, we follow [11]. We subsample the training dataset in a ratio of
50% of known categories at the train and all samples of unknown categories. For all datasets except
CIFAR100, we consider 50% of categories as known categories at training time. For CIFAR100 as in
[11] 80% of the categories are known during training time. A summary of dataset statistics and their
train test splits is shown in Table 1.

CIFAR10/100[12] are coarse-grained datasets consisting of general categories such as car, ship,
airplane, truck, horse, deer, cat, dog, frog and bird.

ImageNet-100 is a subset of 100 categories from the coarse-grained ImageNet [13] dataset.

CUB or the Caltech-UCSD Birds-200-2011 (CUB-200-2011) [14] is one of the most used datasets
for fine-grained image recognition. It contains different bird species, which should be distinguished
by relying on subtle details.

FGVC-Aircraft or Fine-Grained Visual Classification of Aircraft [15] dataset is another fine-grained
dataset, which, instead of animals, relies on airplanes. This might be challenging for image recognition
models since, in this dataset, structure changes with design.

SCars or Stanford Cars [16] is a fine-grained dataset of different brands of cars. This is challenging
since the same brand of cars can look different from different angles or with different colors.

6

Table 1: Statistics of datasets and their data splits for the generalized category discovery task.
The first three datasets are coarse-grained image classification datasets, while the next four are
fine-grained datasets. The Herbarium19 dataset is both fine-grained and long-tailed.

Labelled Unlabelled
Dataset #Images #Categories #Images #Categories

CIFAR-10 [12] 12.5K 5 37.5K 10
CIFAR-100 [12] 20.0K 80 30.0K 100
ImageNet-100 [13] 31.9K 50 95.3K 100

CUB-200 [14] 1.5K 100 4.5K 200
SCars [16] 2.0K 98 6.1K 196
Aircraft [15] 3.4K 50 6.6K 100
Oxford-Pet [17] 0.9K 19 2.7K 37

Herbarium19 [18] 8.9K 341 25.4K 683

Oxford-Pet [17] is a fine-grained dataset of different species of cats and dogs. This is challenging
since the amount of data is very limited in this dataset, which makes it prone to overfitting.

Herbarium_19 [18] is a botanical research dataset about different types of plants. Due to its
long-tailed alongside fine-grained nature, it is a challenging dataset for discovering novel categories.

2.2 Implementation details

In this section, we provide our implementation details for each block separately. As mentioned in the
main paper, the final loss function that we use to train the model is:

Lfinal = Ladr + δLlength + ηLCat + ζLcode_cond + µLmask_cond. (5)

In which the loss Ladr is:

Ladr = αLC_in + βLC_code. (6)

In this formula, LC_in is the loss function that [11] suggested, so we use the same hyperparameters as
their defaults for this loss. Hence, we only expand on LC_code:

Ladr = αLC_in + β((1− λcode)Lu
C_code + λcodeLs

C_code). (7)

In the scope of our experimentation, it was assumed by default that α=1 and λcode=0.35. The code
generation process introduces a certain noise level, potentially leading to confusion in the model,
particularly in fine-grained data. To mitigate this, we integrated a smoothing hyperparameter within
our contrastive learning framework, aiming to balance the noise impact and avert excessive confidence
in the generated code, for datasets such as CUB and Pet, the smoothing factor was set at 1, whereas
for SCars, Aircraft, and Herb datasets, it was adjusted to 0.1. In contrast, we did not apply smoothing
for generic datasets like CIFAR 10/100 and ImageNet, where label noise is less significant.

Furthermore, in dealing with fine-grained data, we opted to fine-tune the final two blocks of the
DINO model. This approach differs from our strategy for generic datasets, where only the last block
underwent fine-tuning. Additionally, we employed semi-supervised k-means at every epoch to derive
pseudo-labels from unlabeled data. These pseudo-labels were then used in our supervised contrastive
learning process as a supervisory signal. It is important to note that in supervised contrastive
learning, the primary requirement is that paired samples belong to the same class, allowing us
to disregard discrepancies between novel class pseudo-labels and their actual ground truth values.
Furthermore, instead of cosine similarity for contrastive learning, we adopt Euclidean distance, a
better approximation for the category problem. Finally, for balanced datasets, we use the balanced
version of k-means for semi-supervised k-means.

7

Code Generator. To create this block, we use a fully connected network with GeLU activation
functions [19]. Then, we apply a tanh activation function tanh(ax) in which a is a hyperparameter
showing the model’s age. We expect that as the model’s age increases or, in other words, in later
epochs, the model will be more decisive because of sharper transitions from 0 to 1. Hence, we will
have a stronger binary dichotomy for code values. Also, since contrastive learning makes the different
samples as far as possible, this causes a problem for the Code Generator because the feature space
will not smoothly transition from different samples of the same category, especially for fine-grained
datasets. To alleviate this problem, we use a label smoothing hyperparameter in the contrastive
objective to help make feature space smoother, which will require a smaller tree for encoding. Since
the model should distinguish 0s for the mask from 0s of the code, we do not adjust the code generator
to 0 and 1s and consider the −1 and 1 values in practice.

Code Masker. The Code Masker block is a fully connected network with tanh activation functions
at the end, which are adjusted to be 0 and 1s. We also consider the aging hyperparameter for the
tanh activation function in the masking block. In the beginning, since codes are not learned, masking
the embedding space might hamper its learning ability. To solve this, we start masker with all one’s
entries and gradually decrease it with epochs. Hence, the activation function that is applied to the
masker would be tanh(x+ 1

a+1), in which a is the aging parameter. In practice, we observed that
norm one is stable enough in this loss function while also truncating codes at a reasonable length.
Since Llength grows exponentially with code length, it will mask most of the code. For fine-grained
datasets, this could be detrimental for very similar categories. To alleviate this problem, instead of
using 2 as a positional base, we decrease it with each epoch to 2− epoch

Nepochs
. So, at the end of training,

the values of all positions are the same. This allows the model to encode more levels to the tree.
Since we start with the base 2, we are constructing the tree with a focus on nodes near the root at the
start and to the leaves at the end of training.

Categorizer. We use a fully connected network for this block and train it with the one-hot encoding
of the labeled samples. This module receives the truncated codes to predict the labeled data. This
module cannot categorize labeled data if the masker truncates too much information. Hence, it creates
error signals that prevent the masker from truncating too much. This part of the network is arbitrary,
and we showed in ablations that we can ignore this module without supervision signals.

2.3 Further Ablations

Feature Space Visualization. Figure 1 illustrates the tSNE visualizations for different embedding
extracted from our model. While our model’s features form separate clusters, our label embedding,
which is the raw code feature before binarization, makes these clusters distinctive. After that, binary
embedding enhances this separation while condensing the cluster by making samples of clusters
closer to each other, which is evident for the bird cluster shown in yellow. Because of its 0 or 1 nature,
semantic similarity will affect the binary embedding more than visual similarity. Finally, our code
embedding, which assigns positional values to the extracted binary embedding, shows indirectly that
to have the most efficient code, our model should span the code space as much as possible, which
explains the porous nature of these clusters.

2.4 Extracting the Implicit Tree from the Model

Suppose that the generated feature vector by the network for sample X is x0x1 · · ·xk, where k is the
dimension of the code embedding or, equivalently, the depth of our implicit hierarchy tree. Using
appropriate activation functions, we can assume that xi is binary. The unsupervised contrastive loss
forces the model to make the associated code to each sample unique. So if X ′ is not equivalent to
X or one of its augmentations, its code x′

0x
′
1 · · ·x′

k will differ from the code assigned to X . For the
supervised contrastive loss, instead of considering the code, we consider a sequence by assigning
different positional values to each bit so the code x0x1 · · ·xk can be considered as the binary number
0.x0x1 · · ·xk. Then, the supervised contrastive loss aims to minimize the difference between these
assigned binary numbers. This means our model learns to use the first digits for discriminative
information while pushing the specific information about each sample to the last digits. Then, our
masker learns to minimize the number of discriminative digits. Our Theorem states that, finally, the
embedded tree that the model learns this way is a good approximation of the optimal tree. Ultimately,
our model generates a code for each sample, and we consider each code as a binary tree traverse
from the root to the leaf. Hence, the codes delineate our tree’s structure and binary classification that

8

Figure 1: t-SNE plot for different embeddings in our model. (a) Feature embedding. The embedding
after the projection head which is used by contrastive loss to maximize the representation information.
(b) Label embedding. The embedding after generating code features is used by unsupervised
contrastive loss for codes. (c) Binary embedding. The embedding by converting code features to a
binary sequence using tanh activation functions and binary conditions. (d) Code embedding. The
final truncated code which is generated by assigning positional values to the binary sequence and
truncating the produced code using the masker network.

happens at each node. Since our approach enables the model to use the initial bits for supervised
contrastive learning and the last bits for unsupervised contrastive learning, we can benefit from their
synergic advantages while preventing them from interfering with each other.

3 Related Works
3.1 Open Set Recognition

The first sparks of the requirement for models that can handle real-world data were introduced
by Scheirer et al. [20] and following works of [21, 22]. The first application of deep networks to
address this problem was presented by OpenMax [23]. The main goal for open-set recognition
is to distinguish known categories from each other while rejecting samples from novel categories.
Hence many open-set methods rely on simulating this notion of otherness, either through large
reconstruction errors [24, 25] distance from a set of prototypes[26–28] or by distinguishing the
adversarially generated samples [29–32]. One of the shortcomings of open set recognition is that all
new classes will be discarded.

3.2 Novel Class Discovery

To overcome open set recognition shortcomings, novel class discovery aims to benefit from the vast
knowledge of the unknown realm and infer the categories. It can be traced back to [33], where they
used the knowledge from labeled data to infer the unknown categories. Following this work, [34]
solidified the novel class discovery as a new specific problem. The main goal of novel class discovery
is to transfer the implicit category structure from the known categories to infer unknown categories
[35–38, 38–57]. Despite this, the novel class discovery has a limiting assumption that test data only
consists of novel categories.

9

3.3 Generalized Category Discovery

For a more realistic setting, Generalized Category Discovery considers both known and old categories
at the test time. This nascent problem was introduced by [11] and concurrently under the name
open-world semi-supervised learning by [58]. In this scenario, while the model should not lose its
grasp on old categories, it must discover novel categories in test time. This adds an extra challenge
because when we adapt the novel class discovery methods to this scenario, they try to be biased to
either novel or old categories and miss the other group. There has been a recent surge of interest in
generalized category discovery [59–73]. In this work, instead of viewing categories as an end, we
investigated the fundamental question of how to conceptualize category itself.

3.4 Binary Tree Distillation

Benefiting from the hierarchical nature of categories has been investigated previously. Xiao [74] and
Frosst and Hinton [75] used a decision tree in order to make the categorization interpretable and as a
series of decisions. Adaptive neural trees proposed by [76] assimilate representation learning to its
edges. Ji et al. [77] use attention binary neural tree to distinguish fine-grained categories by attending
to the nuances of these categories. However, these methods need an explicit tree structure. In this
work, we let the network extract this implicit tree on its own. This way, our model is also suitable
when an explicit tree structure does not exist.

10

References

[1] Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

[2] Claude E Shannon. A mathematical theory of communication. The Bell system technical journal, 27(3):
379–423, 1948.

[3] Andrei N Kolmogorov. Three approaches to the quantitative definition of information. Problems of
Information Transmission, 1(1):1–7, 1965.

[4] Ray J Solomonoff. A formal theory of inductive inference. part i. Information and Control, 7(1):1–22,
1964.

[5] Ray J Solomonoff. A formal theory of inductive inference. part ii. Information and control, 7(2):224–254,
1964.

[6] Steven N Evans and Daniel Lanoue. Recovering a tree from the lengths of subtrees spanned by a randomly
chosen sequence of leaves. Advances in Applied Mathematics, 96:39–75, 2018.

[7] Peter D Grünwald, Paul MB Vitányi, et al. Algorithmic information theory. Handbook of the Philosophy
of Information, pages 281–320, 2008.

[8] Paul MB Vitányi. How incomputable is kolmogorov complexity? Entropy, 22(4):408, 2020.

[9] Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: analysis and efficient
estimation. Advances in Neural Information Processing Systems, 31, 2018.

[10] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

[11] Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Generalized category discovery. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 248–255, 2009.

[14] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset. 2011.

[15] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[16] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
pages 554–561, 2013.

[17] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 3498–3505. IEEE, 2012.

[18] Kiat Chuan Tan, Yulong Liu, Barbara Ambrose, Melissa Tulig, and Serge Belongie. The herbarium
challenge 2019 dataset. arXiv preprint arXiv:1906.05372, 2019.

[19] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

[20] Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E Boult. Toward open set
recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):1757–1772, 2012.

[21] Abhijit Bendale and Terrance Boult. Towards open world recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1893–1902, 2015.

[22] Walter J Scheirer, Lalit P Jain, and Terrance E Boult. Probability models for open set recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 36(11):2317–2324, 2014.

[23] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1563–1572, 2016.

[24] Poojan Oza and Vishal M Patel. C2ae: Class conditioned auto-encoder for open-set recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2307–2316,
2019.

[25] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi Naemura.
Classification-reconstruction learning for open-set recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4016–4025, 2019.

11

[26] Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian. Adversarial reciprocal points learning
for open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):
8065–8081, 2021.

[27] Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia Li, Tiejun Huang, Shiliang Pu, and Yonghong
Tian. Learning open set network with discriminative reciprocal points. In European Conference on
Computer Vision, pages 507–522. Springer, 2020.

[28] Yu Shu, Yemin Shi, Yaowei Wang, Tiejun Huang, and Yonghong Tian. P-odn: Prototype-based open deep
network for open set recognition. Scientific reports, 10(1):7146, 2020.

[29] ZongYuan Ge, Sergey Demyanov, Zetao Chen, and Rahil Garnavi. Generative openmax for multi-class
open set classification. arXiv preprint arXiv:1707.07418, 2017.

[30] Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 813–822, 2021.

[31] Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning with
counterfactual images. In European Conference on Computer Vision, pages 613–628, 2018.

[32] Zhongqi Yue, Tan Wang, Qianru Sun, Xian-Sheng Hua, and Hanwang Zhang. Counterfactual zero-shot
and open-set visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 15404–15414, 2021.

[33] Kai Han, Andrea Vedaldi, and Andrew Zisserman. Learning to discover novel visual categories via deep
transfer clustering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
8401–8409, 2019.

[34] Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, and Nicu Sebe. Neighborhood
contrastive learning for novel class discovery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10867–10875, 2021.

[35] Enrico Fini, Enver Sangineto, Stéphane Lathuilière, Zhun Zhong, Moin Nabi, and Elisa Ricci. A unified
objective for novel class discovery. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 9284–9292, 2021.

[36] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis. In
International Conference on Machine Learning, pages 478–487. PMLR, 2016.

[37] Kai Han, Sylvestre-Alvise Rebuffi, Sebastien Ehrhardt, Andrea Vedaldi, and Andrew Zisserman. Auto-
matically discovering and learning new visual categories with ranking statistics. In Proceedings of the
International Conference on Learning Representations, 2020.

[38] Bingchen Zhao and Kai Han. Novel visual category discovery with dual ranking statistics and mutual
knowledge distillation. Advances in Neural Information Processing Systems, 34:22982–22994, 2021.

[39] Zhun Zhong, Linchao Zhu, Zhiming Luo, Shaozi Li, Yi Yang, and Nicu Sebe. Openmix: Reviving known
knowledge for discovering novel visual categories in an open world. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9462–9470, 2021.

[40] KJ Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai Han, and Vineeth N Balasubra-
manian. Novel class discovery without forgetting. In European Conference on Computer Vision, pages
570–586. Springer, 2022.

[41] Subhankar Roy, Mingxuan Liu, Zhun Zhong, Nicu Sebe, and Elisa Ricci. Class-incremental novel class
discovery. In European Conference on Computer Vision, pages 317–333. Springer, 2022.

[42] Mamshad Nayeem Rizve, Navid Kardan, and Mubarak Shah. Towards realistic semi-supervised learning.
In European Conference on Computer Vision, pages 437–455. Springer, 2022.

[43] Wenbin Li, Zhichen Fan, Jing Huo, and Yang Gao. Modeling inter-class and intra-class constraints in novel
class discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3449–3458, 2023.

[44] Muli Yang, Liancheng Wang, Cheng Deng, and Hanwang Zhang. Bootstrap your own prior: Towards
distribution-agnostic novel class discovery. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3459–3468, 2023.

[45] Luigi Riz, Cristiano Saltori, Elisa Ricci, and Fabio Poiesi. Novel class discovery for 3d point cloud
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9393–9402, 2023.

[46] Peiyan Gu, Chuyu Zhang, Ruijie Xu, and Xuming He. Class-relation knowledge distillation for novel class
discovery. In Proceedings of the International Conference on Learning Representations, 2023.

[47] Yiyou Sun, Zhenmei Shi, Yingyu Liang, and Yixuan Li. When and how does known class help discover
unknown ones? provable understanding through spectral analysis. In International Conference on Machine
Learning. PMLR, 2023.

12

[48] Zhang Chuyu, Xu Ruijie, and He Xuming. Novel class discovery for long-tailed recognition. arXiv preprint
arXiv:2308.02989, 2023.

[49] Colin Troisemaine, Joachim Flocon-Cholet, Stéphane Gosselin, Alexandre Reiffers-Masson, Sandrine
Vaton, and Vincent Lemaire. An interactive interface for novel class discovery in tabular data. arXiv
preprint arXiv:2306.12919, 2023.

[50] Ziyun Li, Jona Otholt, Ben Dai, Di Hu, Christoph Meinel, and Haojin Yang. Supervised knowledge may
hurt novel class discovery performance. arXiv preprint arXiv:2306.03648, 2023.

[51] Jiaming Liu, Yangqiming Wang, Tongze Zhang, Yulu Fan, Qinli Yang, and Junming Shao. Open-world
semi-supervised novel class discovery. arXiv preprint arXiv:2305.13095, 2023.

[52] Yuyang Zhao, Zhun Zhong, Nicu Sebe, and Gim Hee Lee. Novel class discovery in semantic segmentation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[53] Haoang Chi, Feng Liu, Bo Han, Wenjing Yang, Long Lan, Tongliang Liu, Gang Niu, Mingyuan Zhou,
and Masashi Sugiyama. Meta discovery: Learning to discover novel classes given very limited data. In
Proceedings of the International Conference on Learning Representations, 2022.

[54] Xinwei Zhang, Jianwen Jiang, Yutong Feng, Zhi-Fan Wu, Xibin Zhao, Hai Wan, Mingqian Tang, Rong Jin,
and Yue Gao. Grow and merge: A unified framework for continuous categories discovery. In Advances in
Neural Information Processing Systems, 2022.

[55] Qing Yu, Daiki Ikami, Go Irie, and Kiyoharu Aizawa. Self-labeling framework for novel category discovery
over domains. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

[56] KJ Joseph, Sujoy Paul, Gaurav Aggarwal, Soma Biswas, Piyush Rai, Kai Han, and Vineeth N Balasubra-
manian. Spacing loss for discovering novel categories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3761–3766, 2022.

[57] Ziyun Li, Jona Otholt, Ben Dai, Christoph Meinel, Haojin Yang, et al. A closer look at novel class
discovery from the labeled set. arXiv preprint arXiv:2209.09120, 2022.

[58] Kaidi Cao, Maria Brbic, and Jure Leskovec. Open-world semi-supervised learning. In Proceedings of the
International Conference on Learning Representations, 2022.

[59] Nan Pu, Zhun Zhong, and Nicu Sebe. Dynamic conceptional contrastive learning for generalized category
discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023.

[60] Sheng Zhang, Salman Khan, Zhiqiang Shen, Muzammal Naseer, Guangyi Chen, and Fahad Khan. Prompt-
cal: Contrastive affinity learning via auxiliary prompts for generalized novel category discovery. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

[61] Shaozhe Hao, Kai Han, and Kwan-Yee K Wong. Cipr: An efficient framework with cross-instance positive
relations for generalized category discovery. arXiv preprint arXiv:2304.06928, 2023.

[62] Florent Chiaroni, Jose Dolz, Ziko Imtiaz Masud, Amar Mitiche, and Ismail Ben Ayed. Parametric
information maximization for generalized category discovery. arXiv preprint arXiv:2212.00334, 2022.

[63] Xin Wen, Bingchen Zhao, and Xiaojuan Qi. Parametric classification for generalized category discovery:
A baseline study. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
16590–16600, 2023.

[64] Ruoyi Du, Dongliang Chang, Kongming Liang, Timothy Hospedales, Yi-Zhe Song, and Zhanyu Ma.
On-the-fly category discovery. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11691–11700, 2023.

[65] Jianhong Bai, Zuozhu Liu, Hualiang Wang, Ruizhe Chen, Lianrui Mu, Xiaomeng Li, Joey Tianyi Zhou,
Yang Feng, Jian Wu, and Haoji Hu. Towards distribution-agnostic generalized category discovery. In
Advances in Neural Information Processing Systems, 2023.

[66] Sagar Vaze, Andrea Vedaldi, and Andrew Zisserman. Improving category discovery when no representation
rules them all. In Advances in Neural Information Processing Systems, 2023.

[67] Bingchen Zhao and Oisin Mac Aodha. Incremental generalized category discovery. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023.

[68] Bingchen Zhao, Xin Wen, and Kai Han. Learning semi-supervised gaussian mixture models for generalized
category discovery. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023.

[69] Florent Chiaroni, Jose Dolz, Ziko Imtiaz Masud, Amar Mitiche, and Ismail Ben Ayed. Parametric infor-
mation maximization for generalized category discovery. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1729–1739, 2023.

[70] Yanan Wu, Zhixiang Chi, Yang Wang, and Songhe Feng. Metagcd: Learning to continually learn in
generalized category discovery. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1655–1665, 2023.

13

[71] Hyungmin Kim, Sungho Suh, Daehwan Kim, Daun Jeong, Hansang Cho, and Junmo Kim. Proxy
anchor-based unsupervised learning for continuous generalized category discovery. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 16688–16697, 2023.

[72] Wenbin An, Feng Tian, Qinghua Zheng, Wei Ding, QianYing Wang, and Ping Chen. Generalized category
discovery with decoupled prototypical network. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, 2023.

[73] Sagar Vaze, Andrea Vedaldi, and Andrew Zisserman. No representation rules them all in category discovery.
Advances in Neural Information Processing Systems 37, 2023.

[74] Han Xiao. Ndt: neual decision tree towards fully functioned neural graph. arXiv preprint arXiv:1712.05934,
2017.

[75] Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv preprint
arXiv:1711.09784, 2017.

[76] Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya Nori. Adaptive neural
trees. In International Conference on Machine Learning, pages 6166–6175. PMLR, 2019.

[77] Ruyi Ji, Longyin Wen, Libo Zhang, Dawei Du, Yanjun Wu, Chen Zhao, Xianglong Liu, and Feiyue Huang.
Attention convolutional binary neural tree for fine-grained visual categorization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10468–10477, 2020.

14

	Theory
	Notation and Definitions
	Maximizing the Algorithmic Mutual Information
	Shannon Mutual Information Approximation
	Approximation with Reconstruction Loss
	Approximation with Contrastive Loss

	Category Code Length Minimization
	Satisfying Binary Constraints.

	Experiments
	Dataset Details
	Implementation details
	Further Ablations
	Extracting the Implicit Tree from the Model

	Related Works
	Open Set Recognition
	Novel Class Discovery
	Generalized Category Discovery
	Binary Tree Distillation

