
Survival Permanental Processes for
Survival Analysis with Time-Varying Covariates

Hideaki Kim
NTT Human Informatics Laboratories

NTT Corporation
hideaki.kin@ntt.com

Abstract

Survival or time-to-event data with time-varying covariates are common in prac-
tice, and exploring the non-stationarity in covariates is essential to accurately an-
alyzing the nonlinear dependence of time-to-event outcomes on covariates. Tra-
ditional survival analysis methods such as Cox proportional hazards model have
been extended to address the time-varying covariates through a counting process
formulation, although sophisticated machine learning methods that can accom-
modate time-varying covariates have been limited. In this paper, we propose a
non-parametric Bayesian survival model to analyze the nonlinear dependence of
time-to-event outcomes on time-varying covariates. We focus on a computation-
ally feasible Cox process called permanental process, which assumes the square
root of hazard function to be generated from a Gaussian process, and tailor it for
survival data with time-varying covariates. We verify that the proposed model
holds with the representer theorem, a beneficial property for functional analysis,
which offers us a fast Bayesian estimation algorithm that scales linearly with the
number of observed events without relying on Markov Chain Monte Carlo com-
putation. We evaluate our algorithm on synthetic and real-world data, and show
that it achieves comparable predictive accuracy while being tens to hundreds of
times faster than state-of-the-art methods.

1 Introduction

Survival or time-to-event data analysis has been widely applied for analyzing the dependence of
survival time, the time until an event occurs, on covariates. They have a wide ranging list of appli-
cations in reliability engineering [27], finance [14], marketing [20], and especially, clinical research
[4, 5, 28].

An essential part of the survival data analysis is to estimate a hazard function, that is, the instanta-
neous probability of events occurring at any particular time, as a regression function of covariates.
Given a hazard function, we can evaluate the impact of covariates on survival times, and assess the
degree of risk of experiencing an event in the future, through the survival function, i.e., the prob-
ability of no events occurring during a specified interval. The literature contains a vast number of
studies that have proposed survival models to estimate hazard functions, most of which assume that
covariates are time-invariant (e.g., gender and age at the time of diagnosis in clinical research): they
range from the classical Cox proportional hazards model [5] to modern machine learning models
based on generalized boosting machines [38] , random forests [17], Gaussian processes [11, 25],
and deep neural networks [10, 22, 49]. However, time-varying covariates are common in survival
data, and the rapid advances in data collection allow us to access long-term and high temporal res-
olution covariate data. This is encouraging researchers to explore the non-stationarity in covariates
for the accurate estimation/prediction of time-to-event outcomes. An important application of sur-

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

vival analysis with time-varying covariates is what-if analysis: through simulations of future events
under various covariate functions over time, we can find the optimal covariate function or policy that
would yield a desirable future state. For example, in reliability engineering applications where the
events are the failures of machines, time-varying covariates could be the maintenance schedule and
the room temperature/humidity controlled by air conditioners. The maintenance manager can opti-
mize the schedules of maintenance and air conditioning by balancing the risk of failure and the costs
of maintenance and air conditioning. If survival models for static covariates were applied to non-
stationary data, then the static survival models would fail to estimate the underlying dependence of
the hazard function on covariates, resulting in unreliable decision-making. Therefore, survival mod-
els that accommodate time-varying covariates are needed. This paper assesses survival data with
time-varying covariates to estimate a hazard function that takes covariates into account.

The standard survival model is the Cox proportional hazards model [5, 6, 40] (CoxPH), which forms
the logarithm of the hazard function as a linear combination of covariates. The original CoxPH as-
sumes that covariates are time-invariant and have a constant log-linear effect over time on the hazard
function. It was extended to address time-varying covariates through the technique of counting pro-
cess formulation [1]. Although the extended CoxPH is very efficient to compute, it fails to address
the nonlinear dependence of survival times on covariates, which is often the case in real-world data.
To rectify this limitation, two non-parametric machine learning models have been proposed: gen-
eralized boosted models [16] and random forest-based models [47, 48], both of which adopt the
extended CoxPH as a learner/tree, and construct non-parametric predictors in an ensemble manner.
They succeeded in addressing the nonlinear dependence of survival times on time-varying covari-
ates, but the large number of trees needed for accurate predictions tend to make the algorithm too
slow and ineffective for real-time applications.

In this paper, we propose a novel Bayesian survival model to estimate a hazard function as a nonlin-
ear regression function of covariates from survival data with time-varying covariates. To construct
a scalable algorithm, we utilize permanental process, a doubly-stochastic point process which as-
sumes the square root of hazard function to be generated from a Gaussian process; its computational
advantages have been highlighted by recent studies [12, 18, 24, 30, 45]. We tailor it for survival data
in the counting process format, and show that the tailored process, which we call the survival perma-
nental process, holds the representer theorem [44]: the maximum a posteriori estimator of the latent
function can be represented as a finite linear combination of a transformed kernel product evaluated
on the event time points. The representer theorem offers us a feasible Bayesian estimation algorithm
that scales linearly with the number of events observed without relying on Markov Chain Monte
Carlo computation. Furthermore, we derive the predictive distribution and the marginal likelihood
in one feasible form, enabling us to implement the uncertainty evaluation and the hyper-parameter
optimization in a Bayesian manner. To the best of our knowledge, it is the first time to exploit the
representer theorem for survival data analysis. We provide python codes to reproduce the results in
this paper1.

In Section 2, we introduce the survival permanental process (SurvPP) and construct a scalable
Bayesian estimation algorithm for it. In Section 3, we outline related work. In Section 4, we
compare SurvPP with reference survival models on synthetic and real-world data, and confirm that
our algorithm achieves comparable predictive accuracy while being tens to hundreds of times faster
than state-of-the-art survival models. Finally, Section 5 states our conclusions.

2 Methods

2.1 Survival Permanental Processes

We assume that a right-censored dataset with time-varying covariates, D = {(yu(t), Tu, ηu)}Uu=1,
is observed, where yu(t) : (0, Tu] → Y ⊂ Rd, Tu ∈ R, and ηu ∈ {0, 1} are the map of d-
dimensional covariate, the end time of observation, and the indicator that represents whether an
individual experienced an event (ηu = 1) or was right-censored (ηu = 0) at Tu, for individual u ∈
{1, 2, . . . , U}, respectively. We consider tailoring a permanental process for the survival data, where
latent function, x(y) : Y → R, is generated from a Gaussian process (GP) on covariate space Y , and
an event time for each individual u is generated from a point process with hazard function, λu(t),

1Code and data are provided at https://github.com/HidKim/SurvPP.

2

such that

p(x(y)|D) =
p(D|x(y)) GP(x(y)|k)∫

Dx(y) p(D|x(y)) GP(x(y)|k)
, (1)

log p(D|x(y)) =
U∑

u=1

[
ηu log λu(Tu)−

∫ Tu

0

λu(t)dt

]
, λu(t) = x2(yu(t)), (2)

where GP(x(y)|k) represents a GP with kernel function k(y,y′), p(D|x(y)) is the likelihood func-
tion of the point process, while

∫
Dx(y) in the denominator represents the integral over the function

or the infinite-dimensional variable x(y). We call the model defined by (1-2) the survival perma-
nental process (SurvPP). Hazard function λu(t) represents an instantaneous probability of events
occurring at each point in time, and our goal is to estimate the functional form of the hazard func-
tion over covariate domain, x2(y), from the survival data D.

Given a hazard function over covariate domain, x2(y), and a covariate map for individual u, yy(t),
we can evaluate the survival function and the probability density distribution of event time at arbi-
trary time point t, denoted by S(t) and Pe(t), respectively, as follows:

S(t) = exp

[
−
∫ t

0

x2(yu(s))ds

]
, Pe(t) = x2(yu(t)) exp

[
−
∫ t

0

x2(yu(s))ds

]
. (3)

By using (3), we can perform survival analyses that include the analysis of the expected duration
of event time, and the assessment of the degree of risk that an individual will experience the event
before a specified period.

2.2 Counting Process Format of Data

Traditionally, survival data with time-varying covariates have taken the counting process format [1].
The format assumes that, for each individual u, covariates are measured at Ju finite representative
time points and can be regarded as constant between successive time points,

yu(t) = yj
u, t ∈ (sju, s

j+1
u], j = 0, . . . , Ju − 1, (4)

where (s0u, s
Ju
u) = (0, Tu). It then splits individual u’s record, (yu(t), Tu, ηu), into Ju pseudo-

individual records as in
{(sju, sj+1

u , ξju, y
j
u)}

Ju−1
j=0 , ξju = ηu · I(j = Ju − 1), (5)

where I(·) represents the indicator. Joining the pseudo-individual records of U individuals together
results in the counting process format of data:

D = {(T 0
j , T

1
j , ξj , yj)}Jj=1, J =

U∑
u=1

Ju. (6)

In this paper, we employ the counting process format of (6), and rewrite the likelihood function of
SurvPP (2) as

log p(D|x(y)) =
J∑

j=1

[
ξj log x

2(yj)− (T 1
j −T 0

j)x
2(yj)

]
=

N∑
n=1

log x2(ỹn)−
J∑

j=1

∆jx
2(yj) (7)

where ∆j and {ỹn}Nn=1 represent the durations of observation and the covariates observed at event
times, respectively:

∆j = T 1
j − T 0

j , {ỹn}Nn=1 = {yj |ηj = 1, 1 ≤ j ≤ J}, N =

J∑
j=1

ξj =

U∑
u=1

ηu. (8)

Note that the number of events, N , is usually much smaller than the number of pseudo-individual
records: N ≪ J .

In practice, there are two ways of defining the representative time points {sju}
Ju
j=0: one is as the

points that were observed, which might be sparse over time due to measurement constraints; the
other is as the denser points obtained by using interpolation methods (e.g., splines). This paper
assumes the latter, and thus various values of Ju were considered in the synthetic data experiment
(see Section 4). Although the counting process format of input assumes piecewise stationarity in
covariates, this assumption is not so strong because we can adopt the representative time points in
any density if necessary.

3

2.3 Maximum A Posteriori Estimator

We consider the problem of obtaining the maximum a posteriori (MAP) estimator of x(y), denoted
by x̂(y), to maximize the posterior probability (1). We derive x̂(y) through the approach of using
the path integral representation of GP [23],

GP(x(y)|k) Dx(y) =

√
1

|K|
exp

[
−1

2

∫∫
Y×Y

k∗(y,y′)x(y)x(y′)dydy′
]

Dx(y), (9)

where K and
∫
Y k∗(y,y′) ·dy′ are the integral operator with kernel function k(y,y′) and its inverse

operator, respectively: K(∗)x(y) =
∫
Y k(∗)(y,y′)x(y′)dy′, Kk∗(y,y′) = δ(y − y′). Here |K|

represents the function determinant [15] of K, defined by the product of its eigenvalues [23]. Using
the representation of (9), we write the posterior of SurvPP (1-2) in the following functional form,

p(x(y)|D)Dx =
1

p(D)
exp

[
−S

(
x(y), x(y)

)
− 1

2
log |K|

]
Dx, (10)

where S
(
x(y), x(y)

)
is the action integral, defined by

S
(
x(y), x(y)

)
=

∫
Y

[
1

2
x(y)x(y)+

J∑
j=1

x2(y)∆jδ(y−yj)−2

N∑
n=1

log |x(y)|δ(y− ỹn)

]
dy, (11)

and x(y) =
∫
Y k∗(y,y′)x(y′)dy′. Then we apply calculus of variations to the action integral,

where the functional derivative of S(x
(
y), x(y)

)
on the MAP estimator x̂(y) should be equal to

zero: δS
δx̂(y)δx̂(y) +

δS
δx̂(y)δx̂(y) = 0, which results in the exact MAP estimator,

x̂(y) = 2

N∑
n=1

h(y, ỹn)vn, vn = x̂(ỹn)
−1, (12)

where h(y,y′) is a transformed kernel function that solves a discretized Fredholm integral equation
of the second kind [36],

h(y,y′) + 2

J∑
j=1

k(y,yj)∆jh(yj ,y
′) = k(y,y′). (13)

See Appendix A for the detailed derivations. Equation (12) shows that the MAP estimator of SurvPP
involves the representer theorem under the transformed kernel function h(y,y′), and thus the
Bayesian estimation reduces to a finite-dimensional optimization problem. Here, we call h(y,y′)
the equivalent kernel following studies by Flaxman et al. [12], Walder & Bishop [45], and Kim et
al. [24]. Given the equivalent kernel, the unknown coefficients vn in (12) solve the simultaneous
quadratic equations derived from (12),

rn ≜ 2 vn

N∑
n′=1

h(ỹn, ỹn′)vn′ − 1 = 0, n = 1, 2, . . . , N. (14)

In this paper, we estimate a set of coefficients, {vn}Nn=1, by solving a minimization problem of the
mean of the squared residuals,

∑N
n=1 |rn|2/N , with a popular gradient descent algorithm, Adam

[26].

2.4 Equivalent Kernels

The equivalent kernel h(y,y′) solves the discretized Fredholm integral equation (13). When the
kernel function of GP has degenerate form with rank M(< ∞) such that

k(y,y′) =

M∑
m=1

ϕm(y)ϕm(y′) = ϕ(y)⊤ϕ(y′), (15)

4

it is easily shown that the discretized Fredholm integral equation (13) can be solved analytically
[2, 24] as,

h(y,y′) = ϕ(y)⊤(IM + 2A)−1ϕ(y′), A =

J∑
j=1

∆jϕ(yj)ϕ(yj)
⊤, (16)

where IM is the M×M identity matrix, and ϕ(y) = (ϕ1(y), ϕ2(y), . . . , ϕM (y))⊤. Note that A is
defined by a sum of outer products, which can be rewritten through a matrix-matrix multiplication
as

A = BB⊤, B =
[√

∆1ϕ(y1), . . . ,
√
∆Jϕ(yJ)

]
. (17)

Empirically, implementation by matrix-matrix multiplication (17) is substantially faster than the sum
of outer products when J ≫ 1.

When k(y,y′) has degenerate form with rank M , the relation (16) shows that the equivalent kernel
h(y,y′) also has degenerate form obtained through Cholesky decomposition:

h(y,y′) = (Lϕ(y))⊤(Lϕ(y′)), L⊤L = (IM + 2A)−1. (18)

The degenerate equivalent kernel (18) offers fast Bayesian estimation that scales linearly with N
(see Section 2.6). In this paper, we used the random feature map [37, 42, 43] of a Gaussian kernel
to obtain a degenerate form of kernel (M=500).

If the covariate map, yu(t), can be assumed to be smooth enough over time, a more accurate evalu-
ation of A than equation (16) is possible (see Appendix D.1), but this was not exploited in the main
experiments.

2.5 Predictive Distribution and Marginal Likelihood

One of the advantages of GP models over non-Bayesian approaches is that they can provide pre-
dictive distributions and marginal likelihoods, which enable us to perform uncertainty evaluations,
hyper-parameter optimization, and model selection in Bayesian manner. Following the methodology
with the path integral representation of GP [23, 24], SurvPP (1-2) adopts a Laplace approximation in
the functional space, and finds the approximate form of the predictive distribution and the marginal
likelihood. We only show the results due to space limitations. For details, see Appendix B.

The marginal likelihood, p(D), is given as

log p(D) = log |Z| − 1

2
log |IN +Z−1H| − 1

2
log |IM + 2A|−1 + (log 2− 1)N, (19)

where IN is the identity matrix with size N , and

Znn′ = (2v2n)
−1δnn′ , Hnn′ = h(ỹn, ỹn′), h(y) = (h(y, ỹ1), . . . , h(y, ỹN))⊤. (20)

The predictive distribution of intensity function on a covariate value, p(λ = x2(y)), is given as

pµ,ν(λ) =
1

Γ(ν)µν
λν−1 exp(−λ/µ), µ = 2σ

2x̂2 + σ

x̂2 + σ
, ν =

(x̂2 + σ)2

2σ(2x̂2 + σ)
, (21)

where x̂ is the abbreviation of x̂(y), and the predictive variance, σ, is defined by σ = h(y,y) −
h(y)⊤(Z + H)−1h(y). (21) represents the predictive distribution of the hazard function as a
regression function of covariates. It is worth noting that the posterior process of SurvPP is given
by a permanental process, and we can evaluate the distribution of the survival function and perform
a risk-aware survival analysis by generating random samples of the estimated hazard function of
covariates, λ(y).

2.6 Computational Complexity

The computational complexity of evaluating the equivalent kernel (16) for covariate pair (y,y′) is
O(M3+dJM+JM2), where O(dJM) and O(JM2) come from the computation of feature maps,
ϕm(yj), and the sum of outer products (17), respectively.

When the equivalent kernel is given in degenerate form with rank M (< N) such that h(y,y′) =∑M
m=1 φm(y)φm(y′), the objective function to be minimized in MAP estimation,

∑N
n=1 |rn|2/N ,

5

incurs a linear computation with the number of observed events N , that is, O(NM), for each evalu-
ation in gradient descent algorithms: The vector of residual, r = (r1, . . . , rN)⊤, can be expressed as
(R(R⊤v))⊙(2v)−1, where R is the N×M matrix defined by Rnm = φm(yn), and ⊙ represents
the Hadamard product. R costs O(dNM).

Given an equivalent kernel with degenerate form, the evaluation of the predictive variance, σ =
h(y,y) − h(y)⊤(Z + H)−1h(y), needs the computation of O(M3 + NM2): N×N matrix H
can be decomposed into a product of N×M matrix R and its transpose as H = RR⊤. The matrix
inversion is transformed as (Z +RR⊤)−1 = Z−1 −Z−1R(IM +R⊤Z−1R)−1R⊤Z−1 through
the Woodbury matrix identity, which costs O(M3 + NM2). Note that Z−1R and R⊤Z−1 cost
O(NM) because Z is a diagonal matrix.

In computing the marginal likelihood (19), the complexities of the first, the second, and the third
terms are O(N), O(M3 +NM2), and O(M3 + JM2), respectively, where the matrix determinant
lemma is used in computing the second term.

In total, the computational complexity of SurvPP is O(NMQ+(N + J)(d+M)M +M3), where
Q is the number of gradient descent iterations. This feasible computation, which scales linearly with
the number of observed events, N , the data size, J , and the covariate dimensionality, d, is achieved
by exploiting the representer theorem. It should be emphasized here that data size J is not part of the
gradient descent iteration term. This is a clear advantage over conventional survival models which
naively incur O((dN + dJ + JN)Q) computation: Typically, J is larger than N in a time-varying
covariate scenario (see the counting process format in Section 2.2), and the discrepancy between J
and N becomes more substantial when the measurements of covariates are made more frequently
or/and over a longer period of time.

3 Related Work

Survival Models for Time-invariant Covariates: The most popular survival model is the Cox
proportional hazards model [5] (CoxPH), which is a semi-parametric model that forms the hazard
function as

λ(t) = h(t) exp(β1y1 + β2y2 + · · ·), (22)

where the base hazard function, h(t), is obtained by the non-parametric Breslow/Fleming-
Harrington estimator [3, 13], and the log-linear regression coefficient (β1, . . . ,) is estimated by
maximizing the partial likelihood function. CoxPH is very efficient to compute and scales linearly
with the number of events [39], but cannot address the nonlinear dependence of survival times on
covariates. To overcome this limitation, a vast number of survival models have been proposed that
replace the log-linear parametric function (22) with a non-linear one, such as generalized boosted
models [38], random survival forests [17], Gaussian process models [11, 25], and deep neural net-
work models [10, 22, 49]. For a comprehensive review, see Wang et al. [46].

Survival Models for Time-varying Covariates: The counting process format of input [1] plays a
central role in extending static survival models into those suitable for time-varying covariates. For
each individual, the counting process format splits her/his observation period into multiple short
intervals, assigns a constant value of covariate to each interval, and marks the intervals as being
censored when no event is present, resulting in a set of pseudo-individual right/left-censored ob-
servations with a constant covariate (see Section 2.2). CoxPH was extended to accommodate the
counting process format, and the extended CoxPH can estimate the hazard function based on sur-
vival data with time-varying covariates [1]. To alleviate the simplest assumption in the extended
CoxPH, generalized boosted models [16] and random survival forests [47, 48], both of which are
ensemble approaches, have been also extended to accommodate the counting process format, where
the extended CoxPH is employed as a weak learner or a tree. While they can address the nonlinear
dependence of survival times on time-varying covariates, the large number of learners/trees needed
for accurate predictions could make the algorithms too slow and ineffective for real-time applica-
tions. Also, Cygu et al. reported that random survival forests for time-varying covariates required
substantial amounts of computer memory for large datasets [7].

Exogeneity and Endogeneity of Covariates: When considering survival analysis in the presence
of time-varying covariates, we need to distinguish between exogenous and endogenous covariates.
Kalbfleisch and Prentice [21] define an endogenous (internal) covariate as the output of a stochastic

6

A B

CoxPH

SurvPP

GBM

Evaluation Point

0.3 0.5 0.7 0.9

Evaluation Point

0.3 0.5 0.7 0.9

- 0.4

- 0.6

- 0.2

0.0

0.2

1 5 10 20 50
Ju

100

101

CPU [sec]TLL: J = 5u TLL: J = 20u

RFM

AUC: J = 5u

0.4

0.6

0.7

0.8

AUC: J = 20u

CoxPH
GBM

RFM
SurvPP

10-1

10-2

Figure 1: Performance on the dataset of log-linear hazard function λlin(t). (A) Box plot of TLL
and AUC as functions of evaluation point: the higher, the better. (B) The CPU times demanded
for estimating a hazard function. The error bars represent the standard deviations. For GBM and
SurvPP, the average cpu times over 9-points grid search of the hyperparameter are displayed.

process that is generated by the individual under study. In contrast, an exogenous (external) co-
variate is not influenced by the individual under study. Diggle et al. [9] suggest using similar but
slightly different definitions. The primary purpose of survival analysis with exogenous covariates is
to estimate a hazard function as an explicit function of covariates, and to make predictions of fail-
ure times under various possible future covariate functions (i.e., what-if analysis). In contrast, the
primary purpose of survival analysis with endogenous covariates is to make predictions of failure
times by using the past observations of covariates, where joint modeling approaches with recurrent
neural networks, which jointly model the stochastic process of covariates and failure times, have
been developed intensively [29, 33]. In this paper, we consider exogenous covariates, and survival
models for exogenous covariates cannot be compared directly with those for endogenous covariates
because the tasks are different. Note that a joint modeling approach for exogenous time-varying
covariates has been proposed very recently[32], which was not included in the benchmark models
because it was published a month after this paper’s submission.

Permanental Process: The permanental process is a variant of Gaussian Cox process that assumes
the square root of hazard function to be generated from a Gaussian process [31]. Its computational
advantages have recently been highlighted in machine learning research [12, 18, 24, 25, 30, 45]. In
particular, the representer theorem in the permanental process has been exploited through the RKHS
theory [12], the Mercer’s theorem [45], and the path integral formulation [23, 24]. Although the key
derivation of SurvPP is based on the path integral methodology used for augmented permanental
process (APP) [24], SurvPP is a non-trivial extension of APP: (i) SurvPP can accommodate multiple
trials of event sequence data, while APP assumes one trial of evet sequence; (ii) in SurvPP, the end
time of observation is a stochastic variable that depends on the time of event occurrence, while
APP assumes that the end time of observation is given. We discovered, for the first time, that the
representer theorem holds for such a complicated point process or a survival model.

4 Experiments

We examined the validity of our proposed model by comparing it with conventional survival mod-
els on synthetic and real-world data. As benchmark models, we adopted Cox proportional haz-
ards model (CoxPH), generalized boosted model (GBM), and random forest-based model (RFM):
We implemented CoxPH and GBM with the established algorithms provided in the packages
survival.coxph [41] and gbm3.gbmt [16], respectively; We implemented RFM by using class
ltrcrrf in the open R code provided by Yao et al. [48]. The benchmark models can accommodate
time-varying covariates via counting process format of input (Surv(t0,t1,event) in survival).
For our proposal, we implemented SurvPP by using TensorFlow-2.101. A MacBook Pro with 12-
core CPU (Apple M2 Max) was used, where GPU was set as off (tf.device(‘/cpu:0’)) for a

7

A B

Evaluation Point

0.3 0.5 0.7 0.9

Evaluation Point

0.3 0.5 0.7 0.9

- 0.4

- 0.6

- 0.2

0.0

0.2

1 5 10 20 50
Ju

100

101

CPU [sec]TLL: J = 5u TLL: J = 20u

AUC: J = 5u

0.4

0.6

0.8

CoxPH
GBM

RFM
SurvPP

10-1

10-2

0.2

1.0
AUC: J = 20u

CoxPH

SurvPP

GBM

RFM

Figure 2: Performance on the dataset of non-linear hazard function λnon(t). (A) Box plot of TLL
and AUC as functions of evaluation point: the higher, the better. (B) The CPU times demanded
for estimating a hazard function. The error bars represent the standard deviations. For GBM and
SurvPP, the average cpu times over 9-point grid search of the hyperparameter are displayed.

fair benchmark comparisons. For GBM and SurvPP, the hyper-parameters were optimized through
9-point grid search: the number of trees and the shrinkage for GBM, and the kernel parameters for
SurvPP. For details of the model configurations, see Appendix C.

4.1 Synthetic Data

We created two survival datasets with time-varying 2-D covariate. One was generated from a hazard
function with a log-linear dependence on covariates, and the other with a nonlinear dependence on
covariates as follows:

λlin(t) = h(t) exp
[
1.5y1(t) + 3.5y2(t)

]
, λnon(t) = h(t) exp

[
2− 5(y21(t) + y22(t))

]
, (23)

where h(t) is the base hazard function defined by a Weibull hazard function, h(t) = 2 · t3/2. For
each of the datasets, we considered U individuals, each of which had a 2-D covariate function of
time:

yu(t) =
(
yu1 (t), y

u
2 (t)

)
=

(
αu cos(2πωut+ πγu), α

′
u cos(2πω

′
ut+ πγ′

u)
)
, u = 1, . . . U, (24)

where αu(α′
u) and γu(γ′

u) were sampled uniformly over [0, 1], ωu was sampled uniformly over
[5, 10], and ω′

u was sampled uniformly over [20, 30]. We set the censoring time as 1 for all individu-
als, and an event time generated from (23), denoted by t∗, was censored (ηu = 0) when t∗ was over
1: Tu = min(t∗, 1).

The predictive performances were evaluated based on the dynamic area under the ROC curve (AUC)
[34] and the test log-likelihood (TLL),

AUC(t) =
∑U

u=1

∑U
u′=1 I(Tu > t)I(Tu′ ≤ t)wuI(S(t|yu(·)) ≥ S(t|yu′(·)))(∑U

u=1 I(Tu > t)
)(∑U

u=1 I(Tu ≤ t)wu

) , (25)

TLL(t) =
1

U

U∑
u=1

[
I(t ≥ Tu) · ηu log ρ(Tu|yu(·)) + log S(min(t, Tu)|yu(·))

]
, (26)

where wu is the inverse probability of censoring weight, and ρ(t|yu(·)) and S(t|yu(·)) are the
estimated hazard and survival functions given covariate map yu(·), respectively. The dynamic AUC
essentially estimates the C-index at each time, and is commonly used in the literature of survival
analysis with time-varying covariates.

The evaluation point, 0 ≤ te ≤ 1, was set as te ∈ {0.3, 0.5, 0.7, 0.9}. For each dataset, we randomly
split the U individuals into 10 subgroups, assigned one to test and the others to training data, and

8

A: PBC

B: SANAD

CoxPH SurvPPGBM
Evaluation Time Point

1 2 3 4

- 4

- 6

- 2

100

101

10-1

CPU [sec]TLL

RFM

AUC

103x

- 8 0.7

0.8

0.9

1.0

Evaluation Time Point
1 2 3 4 103x

CPU [sec]TLL AUC

CoxPH SurvPPGBM RFM
Evaluation Time Point

17 18 19 20 102x

CoxPH
GBM

RFM
SurvPP

100

101

10-1

Evaluation Time Point
17 18 19 20 102x

0.4

0.8

0.6

1.0

- 2

- 3

- 1

Figure 3: Performances on real-world datasets. TLL (the higher, the better), AUC (the higher, the
better), and CPU times (the lower, the better) on PBC dataset (A) and SANAD dataset (B).

conducted 10-fold cross evaluation of the predictive performances. We reformatted the training data
into counting process format by equally splitting individual u’s observation periods into Ju sub-
region and assuming the covariates to be constant within a sub-region; the survival models were
applied to the training data. In this experiment, we considered U = 103 and Ju ∈ {1, 5, 10, 20, 50}:
the number of observed events N was 809 for λlin and 818 for λnon, respectively.

It should be noted here that when time-varying covariates are considered, the time duration from
the entry, t, is itself a time-varying covariate. SurvPP considered a 3-D covariate map, ȳu(t) ≡
(yu1 (t), y

u
2 (t), t), and performed hazard function estimation, while the other models assumed the

hazard function to be h(t)f(y(t)), and h(t) and f(y) were estimated separately.

Figure 1 displays the predictive performance on the dataset of λlin(t). Figure 1A shows that, except
for RFM, there were no significant differences in the performances between the compared models,
but CoxPH slightly outperformed the other models in TLL at some evaluation periods. The result is
plausible because the underlying generative process was perfectly consistent with the log-linear and
proportional assumptions of CoxPH. The comparison in TLL between Ju = 5 and Ju = 20 suggests
that more frequently measured covariates would yield better estimations/predictions in scenarios of
time-varying covariates. Therefore, the feasible computational complexity of SurvPP regarding Ju
is a clear advantage over the reference models, which is confirmed by Figure 1B.

Figure 2 displays the predictive performance on the dataset of λnon(t), showing that the non-
parametric models, SurvPP and GBM, significantly outperformed CoxPH, while the performance
gaps between SurvPP and GBM were marginal and of no significance. However, Figure 2B shows
that SurvPP could estimate the hazard function hundreds of times faster than GBM when covariates
were measured frequently (Ju =50), and was even faster than the simplest CoxPH. The preferable
scalability of SurvPP’s algorithm regarding Ju comes from the fact that Ju (or J=

∑
u Ju) is not part

of the iterative optimization (Section 2.6), which is a fruit of SurvPP’s representer theorem. RFM
was comparable with SurvPP and GBM in AUC, but was worse than either of them in TLL. RFM
might need more careful tuning of the hyper-parameters, but this was not fully investigated this time.

We conducted additional experiments on independent validation datasets (see Appendix D.2), and
on larger synthetic datasets (U≤105) to examine the model’s computation scalability regarding the
event number N (see Appendix D.3).

4.2 Real-world Data

We examined the validity of SurvPP against the benchmark models on two real-world survival data
sets, Mayo Clinic Primary Biliary Cholangitis data (PBC) and Standard And New Antiepileptic

9

Drugs study data (SANAD), provided by R packages survival (LGPL-3) [41] and joineR (GPL-
3) [35], respectively. In PBC, 312 patients with primary biliary cirrhosis were enrolled in a random-
ized medical trial at the Mayo Clinic between 1974 and 1984 [8], where events were the time of
death; one static and eleven time-varying covariates were measured at entry and at yearly intervals,
which include age at entry, alkaline phosphotase, logarithm of serum albumin, presence of ascites,
aspartate aminotransferase, logarithm of serum bilirubin, serum cholesterol, condition of edema,
presence of hepatomegaly or enlarged liver, platelet count, logarithm of prothrombin time, and pres-
ence or absence of spiders. SANAD was an unblind randomized trial that recruited patients with
epilepsy for whom carbamazepine (CBZ) was considered to be standard treatment and they were
randomized to CBZ or the newer drug lamotrigine (LTG), where 605 patients were included and
event was the time to treatment failure; we adopted calibrated dose as a time-varying covariate, and
three static covariates including age of patient at randomization, gender, and randomized treatment
(CBZ or LTG); calibrated dose was measured at 166-day intervals on average, and we used a linear
interpolation to obtain the values of calibrated dose at which the measurement intervals were reg-
ularly trisected. We randomly split the individuals into 10 subgroups, assigned one to test and the
others to training data, and conducted 10-fold cross evaluation of the predictive performances.

Figure 3A displays the predictive performance on PBC. It shows that CoxPH achieved very high
AUCs (> 0.9), suggesting that the underlying generative process could be consistent with CoxPH’s
simple assumption of log-linearity and proportionality. Thus the semi-parametric model, CoxPH,
is likely to achieve equal or slightly better performances than the nonparametric models, which
is consistent with the result. Figure 3B plots the predictive performance on SANAD, where the
not so high AUCs of CoxPH suggests that the underlying dependence of intensity on covariates is
nonlinear. The figure shows that SurvPP achieved better performance than CoxPH, and achieved
comparable performance while being substantially faster than GBM.

5 Conclusions

We have proposed a non-parametric Bayesian survival model to address survival data with time-
varying covariates. We tailored a permanental process such that the latent hazard function is defined
on covariate space and right-censored observations in a counting process format can be handled,
which we call the survival permanental process (SurvPP). Through the path integral formulation
of Gaussian process, we showed that SurvPP encompasses a representer theorem, and derived a
feasible estimation algorithm that scales linearly with the number of observed events. We evaluated
SurvPP on synthetic data, confirming that it achieved comparable predictive accuracy while being
tens to hundreds of times faster than state-of-the-art methods.

Limitations & future work: We examined SurvPP for relatively low-dimensional covariates, and
its potential suitability for high-dimensional covariates remains to be clarified. Because SurvPP
is based on a normal Gaussian process, the (equivalent) kernel function might be too simple to
discover meaningful representations in high-dimensional covariate data. A promising direction is to
apply deep kernel learning to SurvPP, where high-dimensional covariates are transformed by non-
linear mapping with a deep architecture. A technical issue is that we could not search an appropriate
set of (a lot of) parameters of neural networks, because our proposed scheme performs the hyper-
parameter optimization by grid search, not by gradient descent. Also, Gaussian kernels, which were
used in the paper, naively require a scale parameter for each dimension of data, resulting in a high
dimensional kernel parameter for high-dimensional covaritate scenarios. The grid search becomes
prohibitively costly with high dimensional parameters, but we addressed the problem by a well-
known approach that normalizes (e.g., centering and scaling) each dimension of the data and puts a
common scale parameter across all dimensions of normalized data. This approach empirically works
robustly, but a more sophisticated approach could improve the performance of SurvPP. Variational
Bayesian approximations with inducing points might address the technical issues of hyper-parameter
optimization, and thus is an important next step in our study.

As in ordinary permanental processes, the nodal line problem could arise in SurvPP: the posterior
distribution of the latent variable x(·) has many local modes since ±x(·) can lead to similar hazard
functions λ=x2(·), and artificial zero crossings of x(·) could happen, especially on locations where
the hazard function is low. John and Hensman [18] have proposed to extend the quadratic link
function to include an offset parameter β, so that λ(y)=(x(y) + β)2, which is valid for SurvPP.

10

References
[1] Per Kragh Andersen and Richard D. Gill. Cox’s regression model for counting processes: A

large sample study. The Annals of Statistics, pages 1100–1120, 1982.

[2] Kendall Atkinson. A personal perspective on the history of the numerical analysis of Fredholm
integral equations of the second kind. In The Birth of Numerical Analysis, pages 53–72. World
Scientific, 2010.

[3] Norman E. Breslow. Contribution to discussion of paper by DR Cox. Journal of the Royal
Statistical Society, Series B, 34:216–217, 1972.

[4] Taane G. Clark, Michael J. Bradburn, Sharon B. Love, and Douglas G. Altman. Survival
Analysis Part I: Basic concepts and first analyses. British Journal of Cancer, 89(2):232–238,
2003.

[5] David R. Cox. Regression models and life-tables. Journal of the Royal Statistical Society:
Series B (Methodological), 34(2):187–202, 1972.

[6] Steve Cygu, Jonathan Dushoff, and Benjamin M. Bolker. pcoxtime: Penalized Cox propor-
tional hazard model for time-dependent covariates. arXiv preprint arXiv:2102.02297, 2021.

[7] Steve Cygu, Hsien Seow, Jonathan Dushoff, and Benjamin M. Bolker. Comparing machine
learning approaches to incorporate time-varying covariates in predicting cancer survival time.
Scientific Reports, 13(1):1370, 2023.

[8] E. Rolland Dickson, Patricia M. Grambsch, Thomas R. Fleming, Lloyd D. Fisher, and Alice
Langworthy. Prognosis in primary biliary cirrhosis: Model for decision making. Hepatology,
10(1):1–7, 1989.

[9] Peter J. Diggle. Analysis of Longitudinal Data. Oxford University Press, 2002.

[10] David Faraggi and Richard Simon. A neural network model for survival data. Statistics in
Medicine, 14(1):73–82, 1995.

[11] Tamara Fernández, Nicolás Rivera, and Yee Whye Teh. Gaussian processes for survival anal-
ysis. In Advances in Neural Information Processing Systems 29, 2016.

[12] Seth Flaxman, Yee Whye Teh, and Dino Sejdinovic. Poisson intensity estimation with repro-
ducing kernels. In Artificial Intelligence and Statistics, pages 270–279. PMLR, 2017.

[13] Thomas R. Fleming and David P. Harrington. Nonparametric estimation of the survival dis-
tribution in censored data. Communications in Statistics-Theory and Methods, 13(20):2469–
2486, 1984.

[14] Adrian Gepp and Kuldeep Kumar. The role of survival analysis in financial distress prediction.
International Research Journal of Finance and Economics, 16(16):13–34, 2008.

[15] Israel Gohberg, Seymour Goldberg, and Nahum Krupnik. Traces and Determinants of Linear
Operators, volume 116. Birkhäuser, 2012.

[16] James Hickey and Greg Ridgeway. Generalized Boosted Regression Models, 2023. URL
https://github.com/gbm-developers/gbm3.

[17] Hemant Ishwaran, Udaya B. Kogalur, Eugene H. Blackstone, and Michael S. Lauer. Random
survival forests. The Annals of Applied Statistics, 2(3):841–860, 2008.

[18] S. T. John and James Hensman. Large-scale Cox process inference using variational Fourier
features. In International Conference on Machine Learning, volume 80, pages 2362–2370.
PMLR, 2018.

[19] Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Moham-
mad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark.
MIMIC-III, a freely accessible critical care database. Scientific Data, 3(1):1–9, 2016.

11

https://github.com/gbm-developers/gbm3

[20] Euy-Young Jung, Chulwoo Baek, and Jeong-Dong Lee. Product survival analysis for the app
store. Marketing Letters, 23:929–941, 2012.

[21] John D. Kalbfleisch and Ross L. Prentice. The Statistical Analysis of Failure Time Data. John
Wiley & Sons, 2011.

[22] Jared L. Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting Jiang, and Yu-
val Kluger. DeepSurv: personalized treatment recommender system using a Cox proportional
hazards deep neural network. BMC Medical Research Methodology, 18(1):1–12, 2018.

[23] Hideaki Kim. Fast Bayesian inference for Gaussian Cox processes via path integral formula-
tion. In Advances in Neural Information Processing Systems 34, 2021.

[24] Hideaki Kim, Taichi Asami, and Hiroyuki Toda. Fast Bayesian estimation of point process
intensity as function of covariates. In Advances in Neural Information Processing Systems 35,
2022.

[25] Minyoung Kim and Vladimir Pavlovic. Variational inference for Gaussian process models for
survival analysis. In Uncertainty in Artificial Intelligence, pages 435–445, 2018.

[26] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[27] Chin Diew Lai and Min Xie. Stochastic Ageing and Dependence for Reliability. Springer
Science & Business Media, 2006.

[28] András Lánczky and Balázs Győrffy. Web-based survival analysis tool tailored for medical
research (kmplot): development and implementation. Journal of Medical Internet Research,
23(7):e27633, 2021.

[29] Changhee Lee, Jinsung Yoon, and Mihaela Van Der Schaar. Dynamic-DeepHit: A deep learn-
ing approach for dynamic survival analysis with competing risks based on longitudinal data.
IEEE Transactions on Biomedical Engineering, 67(1):122–133, 2019.

[30] Chris Lloyd, Tom Gunter, Michael Osborne, and Stephen Roberts. Variational inference for
Gaussian process modulated Poisson processes. In International Conference on Machine
Learning, volume 37, pages 1814–1822. PMLR, 2015.

[31] Peter McCullagh and Jesper Møller. The permanental process. Advances in Applied Probabil-
ity, 38(4):873–888, 2006.

[32] Victor Medina-Olivares, Raffaella Calabrese, Jonathan Crook, and Finn Lindgren. Joint mod-
els for longitudinal and discrete survival data in credit scoring. European Journal of Opera-
tional Research, 307(3):1457–1473, 2023.

[33] Chirag Nagpal, Vincent Jeanselme, and Artur Dubrawski. Deep parametric time-to-event re-
gression with time-varying covariates. In Survival Prediction-Algorithms, Challenges and Ap-
plications, pages 184–193. PMLR, 2021.

[34] Norberto Pantoja-Galicia, Olivia I. Okereke, Deborah Blacker, and Rebecca A. Betensky. Con-
cordance measures and time-dependent ROC methods. Biostatistics & Epidemiology, 5(2):
232–249, 2021.

[35] Pete Philipson, Ines Sousa, Peter J. Diggle, Paula Williamson, Ruwanthi Kolamunnage-Dona,
Robin Henderson, and Graeme L. Hickey. joineR: Joint Modelling of Repeated Measurements
and Time-to-Event Data, 2018. URL https://github.com/graemeleehickey/joineR/.
R package version 1.2.8.

[36] Andrei D. Polyanin and Alexander V. Manzhirov. Handbook of Integral Equations. CRC press,
1998.

[37] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In Ad-
vances in Neural Information Processing Systems 20, 2007.

12

https://github.com/graemeleehickey/joineR/

[38] Greg Ridgeway. Generalized Boosted Models: A guide to the gbm package. Update, 1(1):
2007, 2007.

[39] Noah Simon, Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for
Cox’s proportional hazards model via coordinate descent. Journal of Statistical Software, 39
(5):1, 2011.

[40] Terry Therneau, Cindy Crowson, and Elizabeth Atkinson. Using time dependent covariates
and time dependent coefficients in the Cox model. Survival Vignettes, 2:3, 2017.

[41] Terry M. Therneau. A Package for Survival Analysis in R, 2023. URL https://CRAN.

R-project.org/package=survival. R package version 3.5-7.

[42] Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit feature maps.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):480–492, 2012.

[43] Sreekanth Vempati, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Generalized RBF
feature maps for efficient detection. In BMVC, pages 1–11, 2010.

[44] Grace Wahba. Spline Models for Observational Data, volume 59. SIAM, 1990.

[45] Christian J. Walder and Adrian N. Bishop. Fast Bayesian intensity estimation for the permanen-
tal process. In International Conference on Machine Learning, volume 70, pages 3579–3588.
PMLR, 2017.

[46] Ping Wang, Yan Li, and Chandan K. Reddy. Machine learning for survival analysis: A survey.
ACM Computing Surveys (CSUR), 51(6):1–36, 2019.

[47] Shannon Wongvibulsin, Katherine C. Wu, and Scott L. Zeger. Clinical risk prediction with
random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC
Medical Research Methodology, 20(1):1–14, 2020.

[48] Weichi Yao, Halina Frydman, Denis Larocque, and Jeffrey S. Simonoff. Ensemble methods
for survival function estimation with time-varying covariates. Statistical Methods in Medical
Research, 31(11):2217–2236, 2022.

[49] Qixian Zhong, Jonas W. Mueller, and Jane-Ling Wang. Deep extended hazard models for
survival analysis. In Advances in Neural Information Processing Systems 34, 2021.

13

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival

A Derivation of MAP Estimator

We detail the derivation of the MAP estimator (12). The functional derivative of S(x
(
y), x(y)

)
should be zero on MAP estimator x̂(y):

δS
(
x̂(y), x̂(y)

)
=

∫
Y

[
δS

δx̂(y)
δx(y) +

δS

δx̂(y)
δx(y)

]
dy +O((δx)2)

≃
∫
Y

[
2

J∑
j=1

∆j x̂(y)δ(y − yj)−
N∑

n=1

2

x̂(y)
δ(y − ỹn) +

1

2
x̂(y)

]
δxdy

+

∫
Y

1

2
x̂(y)δxdy

=

∫
Y

[
2

J∑
j=1

∆j x̂(y)δ(y − yj)−
N∑

n=1

2

x̂(y)
δ(y − ỹn) + x̂(y)

]
δxdy = 0,

where the following relation was used,∫
Y
x̂(y)δxdy =

∫
Y
x̂(y)

∫
Y
k∗(y,y′)δx(y′)dy′dy

=

∫
Y
dy′δx(y′)

∫
Y
k∗(y,y′)x̂(y)dy

=

∫
Y
x̂(y′)δxdy′. ∵) k∗(y,y′) = k∗(y′,y)

Thus the following equation is derived,

x̂(y) + 2

J∑
j=1

∆j x̂(yj)δ(y − yj) =

N∑
n=1

2

x̂(ỹn)
δ(y − ỹn), y ∈ Y . (A1)

By applying operator K to (A1), we obtain a linear integral equation that derives the MAP estimator
x̂(y) as follows,

x̂(y) + 2

J∑
j=1

∆j x̂(yj)k(y,yj) = 2

N∑
n=1

k(y, ỹn)x̂(ỹn)
−1, y ∈ Y . (A2)

The linearity of the integral equation permits a representation of the form

x̂(y) = 2

N∑
n=1

h(y, ỹn)x̂(ỹn)
−1,

where h(y,y′) is a positive semi-definite kernel that solves integral equation (13). Note that the
derivations follow Kim [23].

B Derivation of Predictive Distribution and Marginal Likelihood

We now know the mode of the posterior, x̂(y), and consider a Taylor expansion of functional action
potential S

(
x(y), x(y)

)
centered on the mode such that

S
(
x(y), x(y)

)
≃ S

(
x̂(y), x̂(y)

)
+

1

2

∫∫
Y×Y

σ∗(y,y′)(x(y)−x̂(y))(x(y′)−x̂(y′))dydy′, (B1)

where σ∗(y,y′) = δ2S(x,x)
δx(y)δx(y′)

∣∣
x=x̂

is the second derivative of S. The first term in the Taylor ex-
pansion vanishes due to the stationary condition. The quadratic approximation of the action integral
corresponds to the approximation of the posterior process by a GP, and the predictive covariance
or the kernel function for the posterior GP, denoted by σ(y,y′), can be obtained by the functional
inversion of σ∗(y,y′), which results in

σ(y,y′) = h(y,y′)− h(y)⊤(Z +H)−1h(y′), (B2)

14

where the definitions of Z and H are taken from (20). The full derivation of (B2) is given in [24].
When the latent function x(y) follows a posterior GP with mean of x̂(y) and kernel σ(y,y′), it
is easily verified that the value of the squared function, λ = x2(y), on each point of the covariate
domain y ∈ Y follows a Gamma distribution defined by (21).

Furthermore, under Laplace approximation (B1), we can obtain the marginal likelihood, p(D), in
(10) by performing the path integral as,

log p(D) = log

∫
exp

[
−S

(
x(y), x(y)

)
− 1

2
log |K|

]
Dx ≃ −S

(
x̂(y), x̂(y)

)
+

1

2
log

|Σ |
|K|

, (B3)

where |Σ | is the functional determinant of integral operator Σ =
∫
Y · σ(y,y′)dy′. We can rewrite

the result in a more tractable form by substituting (11, B2) into (B3):

log p(D) = log |Z| − 1

2
log |IN +Z−1H| − 1

2
log |IM + 2A|−1 + (log 2− 1)N.

Full derivations are provided in [24].

C Model Configuration

C.1 Synthetic Data

Survival Permanental Process (SurvPP)

We set the number of features for Random feature map [37] (M), learning parameter (lr), and stop
condition (G) for Adam [26] as follows:

M = 500, lr = 0.05, G < 10−5.

We applied to SurvPP a multiplicative Gaussian kernel

k(y,y′) =

3∏
d=1

e−(θ(yd−y′
d))

2

, y = (t, y1, y2),

where hyper-parameter θ was optimized for each data by maximizing the marginal likelihood
through grid search. In the experiments on synthetic data, we selected a set of nine values for θ
as the grid points,

θ ∈ {0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0, 7.0, 10.0}.

We implemented SurvPP by using TensorFlow-2.10. A MacBook Pro with 12-core CPU (Apple M2
Max) was used, with the GPU inactivated (tf.device(‘/cpu:0’)) for a fair comparison with the
benchmarks.

Cox Proportional Hazards Model (CoxPH)

We implemented CoxPH through package survival.coxph (LGPL-3) [41]. The calls in coxph to
fit a model and compute a base hazard function were

> cfit = coxph(Surv(Start, Stop, Event) ∼ cov1+ cov2, df)

> sfit = survfit(cfit, list(cov1 = 0, cov2 = 0)),

where df was the survival data in counting process format.

Generalized Boosted Model (GBM)

We implemented GBM through package gbm3.gbmt [16] (GPL). The call in gbmt to fit a model
was

> gfit = gbmt(Surv(Start, Stop, Event) ∼ cov1+ cov2, data = df,

distribution = gbm dist(“CoxPH”),

cv folds = 10, train params = params,

par details = gbmParallel(num threads = 12)),

15

where params represents the hyperparameter. We selected a set of nine hyperparameters for the grid
search,

num trees ∈ {500, 1000, 2000} × shrinkage ∈ {0.001, 0.005, 0.01},
and found the one that minimized the cross validation error (gfit$valid.error), where
num trees and shrinkage represent the number of trees and the shrinkage/learning rate, respec-
tively.

Random Forest-based Model (RFM)

We implemented RFM through package LTRCforests (GPL) [48]. The call to fit a model was

> rfit = ltrcrrf(Surv(Start, Stop, Event) ∼ cov1+ cov2, data = df,

id = ID, mtry = ceiling(10), ntree = 100).

C.2 Real-world Data: PBC

Survival Permanental Process (SurvPP)

We set the number of features for Random feature map [37] (M), learning parameter (lr), and stop
condition (G) for Adam [26] as follows:

M = 500, lr = 50, G < 10−5.

We applied to SurvPP a multiplicative Gaussian kernel

k(y,y′) =

13∏
d=1

e−(θ(yd−y′
d))

2

, y = (t, y1, . . . , y12),

where the hyper-parameter θ was optimized for each data by maximizing the marginal likelihood
through grid search. In the experiments on synthetic data, we selected a set of nine values for θ as
the grid points,

θ ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09}.
Here, we normalized the 13 covariates so that yd → 0.1(yd − mean[yd])/std[yd].

As in the experiments on synthetic data, GPU was set off (tf.device(‘/cpu:0’)) for a fair com-
parison with the benchmarks.

Cox Proportional Hazards Model (CoxPH)

The calls in coxph to fit a model and compute a base hazard function were

> cfit = coxph(Surv(Start, Stop, Event) ∼ age+ edema+ alk.phos+ chol+ ast

+platelet+ spiders+ hepato+ ascites+ albumin+ bili+ protime, df)

> sfit = survfit(cfit, list(age = 0, edema = 0, alk.phos = 0, chol = 0, ast = 0,

platelet = 0, spiders = 0, hepato = 0, ascites = 0, albumin = 0,

bili = 0, protime = 0)),

where df was the survival data in counting process format.

Generalized Boosted Model (GBM)

The call in gbmt to fit a model was

> gfit = gbmt(Surv(Start, Stop, Event) ∼ age+ edema+ alk.phos+ chol+ ast

+platelet+ spiders+ hepato+ ascites+ albumin+ bili

+protime, data = df,

distribution = gbm dist(“CoxPH”),

cv folds = 10, train params = params,

par details = gbmParallel(num threads = 12)),

16

where params represents the hyperparameter. We selected a set of nine hyperparameters for the grid
search,

num trees ∈ {500, 1000, 2000} × shrinkage ∈ {0.001, 0.005, 0.01},
and found the one that minimized the cross validation error (gfit$valid.error), where
num trees and shrinkage represent the number of trees and the shrinkage/learning rate, respec-
tively.

Random Forest-based Model (RFM)

The call to fit a model was

> rfit = ltrcrrf(Surv(Start, Stop, Event) ∼ age+ edema+ alk.phos+ chol+ ast

+platelet+ spiders+ hepato+ ascites+ albumin+ bili

+protime, data = df, id = ID, stepFactor = 1.5).

C.3 Real-world Data: SANAD

Survival Permanental Process (SurvPP)

We set the number of features for Random feature map [37] (M), learning parameter (lr), and stop
condition (G) for Adam [26] as follows:

M = 500, lr = 10, G < 10−5,

We applied to SurvPP a multiplicative Gaussian kernel

k(y,y′) = 0.1

5∏
d=1

e−(θ(yd−y′
d))

2

, y = (t, y1, . . . , y4),

where hyper-parameter θ was optimized for each data by maximizing the marginal likelihood
through grid search. In the experiments on synthetic data, we selected a set of nine values for θ
as the grid points,

θ ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4}.
Here, we normalized the 5 covariates so that yd → 0.1(yd − mean[yd])/std[yd].

As in the experiments on synthetic data, GPU was set off (tf.device(‘/cpu:0’)) for a fair com-
parison with the benchmarks.

Cox Proportional Hazards Model (CoxPH)

The calls in coxph to fit a model and compute a base hazard function were

> cfit = coxph(Surv(Start, Stop, Event) ∼ age+ gender+ treat+ dose, df)

> sfit = survfit(cfit, list(age = 0, gender = 0, treat = 0, dose = 0)),

where df was the survival data in counting process format.

Generalized Boosted Model (GBM)

The call in gbmt to fit a model was

> gfit = gbmt(Surv(Start, Stop, Event) ∼ age+ gender+ treat+ dose,

data = df, distribution = gbm dist(“CoxPH”),

cv folds = 10, train params = params,

par details = gbmParallel(num threads = 12)),

where params represents the hyperparameter. We selected a set of nine hyperparameters for the grid
search,

num trees ∈ {500, 1000, 2000} × shrinkage ∈ {0.001, 0.005, 0.01},
and found the one that minimized the cross validation error (gfit$valid.error), where
num trees and shrinkage represent the number of trees and the shrinkage/learning rate, respec-
tively.

17

Evaluation Point

0.3 0.5 0.7 0.9

Evaluation Point

0.3 0.5 0.7 0.9

- 0.2

- 0.3

- 0.1

0.0

0.1
TLL

SurvPP_Rie10
SurvPP_Rie20

SurvPP_Sim10
SurvPP_Sim20

AUC

0.6

0.5

0.7

0.8

0.9

Figure D1: Performances on the dataset of non-linear hazard function λnon(t) for different numer-
ical integration rules. SurvPP_Rie# and SurvPP_Sim# represent SurvPPs with Riemann sum and
Simpson’s rule approximations of integration, respectively. # is the number of representative time
points for covariate, Ju.

Random Forest-based Model (RFM)

The call to fit a model was

> rfit = ltrcrrf(Surv(Start, Stop, Event) ∼ age+ gender+ treat+ dose,

data = df, id = ID, stepFactor = 1.5).

D Additional Experiments

D.1 More Accurate Evaluation of Equivalent Kernel

The functional form of covariate map, y(t), involves the sum of outer products of feature maps, A,
defined by Equation (16), and A can be considered as a Riemann sum approximation of the time
integral as follows:

A =

U∑
u=1

∫ Tu

0

ϕ(yu(t))ϕ(yu(t))
⊤dt ∼

J∑
j=1

∆jϕ(yj)ϕ(yj)
⊤. (D1)

Thus, when the covariate map, yu(t), and the feature map, ϕ(y), are both smooth, the Riemann sum
approximation can be replaced by a more accurate approximation,

A =

U∑
u=1

∫ Tu

0

ϕ(yu(t))ϕ(yu(t))
⊤dt ∼

J∑
j=1

wjϕ(yj)ϕ(yj)
⊤, (D2)

where the weights, wj , depend on the approximation rule. This time, we adopt Simpson’s 1/3 rule,
and add an experiment on the synthetic nonlinear data, λnon(t), to check for an improvement in
accuracy. Note that Simpson’s 1/3 rule corresponds to quadratic interpolation. Figure D1 shows that
adopting Simpson’s rule achieved better predictive performance on TLL with a smaller discretization
number (Ju).

D.2 Experiment on Independent Validation Data Sets

In Section 4, we evaluated the performances on synthetic data with the cross-validation approach
because it is common in the machine learning literature. But synthetic data offers the unique ad-
vantage of being able to generate as much data as needed, and we here conducted the performance
assessment with the independent validation approach. Figure D2 displays the result on independent
validation sets of synthetic data (U = 900 for each of 10 training data, and U = 100 for each of 10
test data), showing the result similar to the cross-validation approach (Figure 1-2).

D.3 Experiment on Larger Data Sets

To examine the computation scalability of the compared models versus the number of observed
events N , we created data sets with user size U ∈ {103, 104, 5·104, 105} according to the nonlinear

18

TLL: J = 5u TLL: J = 20u

- 0.4

- 0.6

- 0.2

0.0

0.2

0.4

TLL: J = 5u TLL: J = 20u

AUC: J = 5u AUC: J = 20u AUC: J = 5u AUC: J = 20u

CoxPH

GBM

RFM

SurvPP

CoxPH

GBM

RFM

SurvPP

Evaluation Point

0.3 0.5 0.7 0.9

Evaluation Point

0.3 0.5 0.7 0.9

Evaluation Point

0.3 0.5 0.7 0.9

Evaluation Point

0.3 0.5 0.7 0.9

0.6

0.6

0.7

0.8

0.5

0.9

- 0.4

- 0.6

- 0.2

0.0

0.2

0.4

0.6

0.2

0.8

1.0

A B

Figure D2: Performance on the independent validation synthetic datasets. (A) Log-linear hazard
function λlin(t). (B) Non-linear hazard function λnon(t). The results are consistent with Figure 1-2

CoxPH

SurvPP

GBM

Number of Observed Events N

C
P

U
[s

e
c
]

RFM

100

101

10-1

10-2

102

103

103 104 105

Figure D3: The CPU times demanded for estimating a hazard function versus the number of ob-
served events. The error bars represent the standard deviations across 10 trials. The dashed line
represents a line of CPU ∝ N as reference. For GBM and SurvPP, the average cpu times over 9-
point grid search of the hyperparameter are displayed. The CPU times of GBM and RFM exceeded
103 seconds with N > 104, and the estimations were given up.

scenario (see Section 4.1),

λnon(t) = h(t) exp
[
2− 5(y21(t) + y22(t))

]
, h(t) = 2 · t3/2,

which resulted in the data sets with N ∈ {818, 8082, 40660, 81066}. Here, we set Ju to 10 for
the counting process format of data. For each dataset, we randomly split the U individuals into 10
subgroups, repeated assigning 9 subgroups to training data, and conducted 10 trials of evaluations
of the CPU times demanded for estimating a hazard function. Figure D3 displays the CPU times as
function of N of training data. It shows that the CoxPH computation clearly scaled linearly with
N , while that of SurvPP seems to be a little more than linear. This is because that each iteration
of gradient descent algorithm scaled linearly with N , but the number of iterations to meet stop
condition G < 10−5 increased moderately with N . Among the non-parametric approaches (SurvPP,
GBM, and RFM), SurvPP achieved the fastest computation at hundreds of times faster than the
others, regardless of the number of observed events N .

D.4 Sensitivity to Hyper-Parameters

Kernel methods/GP models are generally sensitive to kernel parameter values, and a effective
way of optimizing the kernel parameter is essential. Figure D4 plots AUC performance on PBC
dataset for SurvPPs with different search ranges of kernel parameters: the range of SurvPP0 is
θ ∈ {0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0, 7.0, 10.0}, which was used in the supplement; the range of
SurvPP1 is θ ∈ {0.01, 0.02, 0.03, . . . , 0.09}. Figure D4 shows that SurvPP1 achieved substantially

19

AUC

Evaluation Time Point

1 2 3 4 103x

AUC

0.7

0.8

0.9

1.0

Evaluation Time Point

1 2 3 4 103x

A B

0.7

0.8

0.9

1.0

CoxPH
GBM

RFM
SurvPP_0

CoxPH
GBM

RFM
SurvPP_1

Figure D4: Performances on PBC dataset for SurvPPs with different search ranges of kernel param-
eters. (A) The search range of SurvPP0 is θ ∈ {0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0, 7.0, 10.0}. (B) The
search range of SurvPP1 is θ ∈ {0.01, 0.02, 0.03, . . . , 0.09}.

Evaluation Time Point
18 19 20 21

CPU [sec]TLL AUC

102x

GBM
SurvPP

Evaluation Time Point
18 19 20 21 102x

- 1.4

- 1.6

- 1.8

- 2.0

- 2.2

0.4

0.6

0.8

1.0

0.2

100

101

SurvPPGBM

A B

Figure D5: Performances on MIMIC III dataset. (A) Box plot of TLL and AUC as functions of
evaluation point: the higher, the better. (B) The CPU times demanded for estimating a hazard
function. The error bars represent the standard deviations. The average cpu times over 9-point grid
search of the hyperparameter are displayed.

better AUC performance than SurvPP0, where SurvPP1 is displayed in Figure 3. A more sophisti-
cated algorithm for hyperparameter optimization could enhance the performance of SurvPP, which
is the next step in our study.

D.5 Experiment on ICU Data Set

We examined the validity of SurvPP against GBM on MIMIC-III Clinical Database (MIMIC III),
the large publicly available dataset of over 50,000 ICU admissions from the Beth Israel Deaconess
Medical Center [19], where events were deaths. We extracted admissions and measurements from
CareVue (ITEMID) such that admissions shared 14 measured covariates with each other, which re-
sulted in 133 admissions. We adopted sex as a static covariate and the 14 measurements as time-
varying covariates. We randomly split the individuals into 3 subgroups, assigned one to test and the
others to training data, and conducted 3-fold cross evaluation of the predictive performances. The
model configuration follows the experiment on PBC data set (see Appendix C).

Figure D5 displays the predictive performance on MIMIC III. It shows that SurvPP achieved better
TLL performance than GBM, and SurvPP achieved comparative AUC performance with GBM. The
smaller variance of SurvPP’s AUC implies that SurvPP works more robustly than GBM, but further
experiments are needed to investigate it.

20

	Introduction
	Methods
	Survival Permanental Processes
	Counting Process Format of Data
	Maximum A Posteriori Estimator
	Equivalent Kernels
	Predictive Distribution and Marginal Likelihood
	Computational Complexity

	Related Work
	Experiments
	Synthetic Data
	Real-world Data

	Conclusions
	Derivation of MAP Estimator
	Derivation of Predictive Distribution and Marginal Likelihood
	Model Configuration
	Synthetic Data
	Real-world Data: PBC
	Real-world Data: SANAD

	Additional Experiments
	More Accurate Evaluation of Equivalent Kernel
	Experiment on Independent Validation Data Sets
	Experiment on Larger Data Sets
	Sensitivity to Hyper-Parameters
	Experiment on ICU Data Set

