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Abstract

Existing deep learning-based computer vision methods usually operate in the spa-
tial and frequency domains, which are two orthogonal individual perspectives for
image processing. In this paper, we introduce a new spatial-frequency analysis
tool, Fractional Fourier Transform (FRFT), to provide comprehensive unified
spatial-frequency perspectives. The FRFT is a unified continuous spatial-frequency
transform that simultaneously reflects an image’s spatial and frequency representa-
tions, making it optimal for processing non-stationary image signals. We explore
the properties of the FRFT for image processing and present a fast implementation
of the 2D FRFT, which facilitates its widespread use. Based on these explorations,
we introduce a simple yet effective operator, Multi-order FRactional Fourier Convo-
lution (MFRFC), which exhibits the remarkable merits of processing images from
more perspectives in the spatial-frequency plane. Our proposed MFRFC is a general
and basic operator that can be easily integrated into various tasks for performance
improvement. We experimentally evaluate the MFRFC on various computer vision
tasks, including object detection, image classification, guided super-resolution,
denoising, dehazing, deraining, and low-light enhancement. Our proposed MFRFC
consistently outperforms baseline methods by significant margins across all tasks.
Our code is released publicly at https://github.com/yuhuUSTC/FRFT.

1 Introduction

Vanilla convolution in the spatial domain has been the dominant approach in Convolutional Neural
Networks (CNNs) due to its advantages of fewer parameters with parameter sharing and translation
invariance. However, CNNs suffer from a limited receptive field, especially in early layers. To
address this issue, several methods have attempted to convert signals from the spatial domain into the
frequency domain using the Fourier Transform (FT), which offers a global receptive field according to
the spectral convolution theorem [1] and is physically meaningful. However, FT has limitations due to
its reliance on stationary signals and lack of spatial-frequency properties. As a global transformation,
it captures the overall spectrum of an image but cannot express the local spatial characteristics of the
image. This makes FT optimal for stationary signals but not for non-stationary ones, such as images.
Additionally, the spatial and frequency domains are only two special and orthogonal perspectives of
signals. Then, we wonder if there is an optimal tool for processing non-stationary image signals
and providing an intermediate and unified perspective of an image.

To address the aforementioned question, we introduce a unified spatial-frequency 1 analysis tool
called the Fractional Fourier Transform (FRFT), which offers several advantages. First, the basis
function of the FRFT is the linear frequency modulation function, making it well-suited for processing
non-stationary image signals. As shown in Figure 1(a), non-stationary image signals are not separable
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1Also, a time-frequency analysis tool for time-varying signals such as video, speech, and radar signals.
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(a) FRFT is inherently optimal for non-stationary im-
age signals and is capable of separating them effec-
tively along the fractional order axis..
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(b) FRFT is a generalized version of Fourier transform,
providing a unified and intermediate perspective for
image processing.

Figure 1: Merits of FRFT for image processing. The relationship between FRFT and spatial-frequency
plane rotation is detailed in subsection 3.

when projected onto the spatial or frequency axis, but they are separable on the fractional order axis,
enabling the FRFT to extract the desired features from an image. Secondly, as illustrated in Figure
1(b), the FRFT generalizes the traditional Fourier Transform (FT) to the entire spatial-frequency
domain with an additional parameter known as the order p, which is related to a signal rotation
angle in the spatial-frequency plane. In spatial-frequency analysis, a signal is represented in a plane
where the spatial and frequency domains are orthogonal axes, as depicted in Figure 1. For a signal
f(x) along the spatial axis, its traditional FT F (w) corresponds to the frequency axis, meaning a
90° rotation in the spatial-frequency plane. The FRFT, on the other hand, can be interpreted as the
pth-order counterclockwise rotation (rotation angle α = pπ/2) in the spatial-frequency plane [2],
where the spatial domain denotes order 0 and the frequency domain corresponds to order 1. The axis
up in Figure 1 represents a rotated axis, also known as the fractional order axis. Therefore, while
the spatial and frequency domains are only two special orthogonal orders, the FRFT of fractional
order p can provide any intermediate representation between the spatial and frequency domains. This
property allows for a unified spatial-frequency characterization and provides multiple perspectives
for image signal processing.

Despite its promising merits, the FRFT faces a challenge in terms of fast implementation. Unlike the
Fast Fourier Transform (FFT) for the FT, there is currently no encapsulated package available for the
fast implementation of the FRFT. To address this, we develop a fast implementation of the 2D FRFT.
Building on these advancements, we have introduced a simple yet effective operator, the Multi-order
Fractional Fourier Convolution (MFRFC), which processes images from multiple perspectives in the
spatial-frequency plane. The MFRFC consists of three different order paths: a spatial perspective,
a frequency perspective, and a unified spatial-frequency representation perspective. These various
order operations are applied to disjoint subsets of feature channels, and the updated feature maps are
aggregated to produce the output. MFRFC inherently preserves the advantages of both spatial and
frequency operations. More importantly, the additional unified spatial-frequency representation reflect
the spatial-frequency joint characteristics of signals. Our proposed MFRFC is a general and basic
operator that can be easily integrated into existing methods. We have experimentally evaluated our
operators on various tasks, including object detection, image classification, guided super-resolution,
denoising, dehazing, deraining, and low-light enhancement. The results consistently demonstrate
significant performance improvements across all the evaluated tasks.

2 Related Work

Spectral neural networks. In recent years, there has been a surge of interest in spectral neural
network research [3, 4, 5, 6, 7, 8, 9]. Previously used to exclusively speed up convolutions, the spectral
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domain now also serves as a critical building element for deep networks. For example, the authors in
[3] proposed fast Fourier convolution, which has the main hallmarks of non-local receptive fields
and cross-scale fusion within the convolutional unit. Rippel et al. [4] developed the spectral pooling,
which performs dimensionality reduction by truncating the representation in the frequency domain. A
frequency-domain dynamic pruning scheme was designed in [6] to exploit the spatial correlations for
network compression and acceleration. Some methods [10, 11, 12, 13, 14, 15] also employ Fourier
analysis into image restoration tasks. Our method contributes to the above-mentioned research by
generalizing existing methodologies and constructing a unified spatial-frequency operating unit that
processes various perspectives simultaneously.

Spatial-frequency analysis tool. Spatial-frequency analysis is a powerful method that provides
joint distribution information in both the spatial and frequency domains, offering a clear description
of the relationship between signal frequency and spatial variation. There are several common spatial-
frequency analysis tools, including the short-time Fourier transform (STFT) [16, 17] and wavelet
transform (WT) [18]. The STFT applies a local spatial window to the signal and performs the Fourier
transform within this window, assuming that the signal within the time window is stationary. However,
it faces the dilemma of frequency and spatial resolution balance. The WT tackles this limitation by
adopting an adaptive frequency window. However, the WT faces its limitations, including the optimal
choice of wavelet basis function, higher computational complexity, and signal distortion. In this
paper, we introduce another Spatial-frequency analysis tool, FRFT. More importantly, we achieve the
fast implementation of 2D FRFT and apply it to different image processing tasks.

Fractional Fourier Transform. The FRFT is a powerful spatial-frequency analysis tool used for
signal processing due to its unique capability of capturing the non-stationary characteristics of signals
[19]. For example, Ozaktas et al. [20] demonstrated that the Wigner-Ville Distribution of the pth
order Fractional Fourier Transform is obtained from the pπ/2 angle rotation of the original signal’s
WVD. The FRFT has also found applications in multimedia, including digital watermarking, image
compression, and image encryption systems [21, 22, 23]. In communication, the FRFT has been
implemented in wireless communications and transmission schemes [24, 25]. Additionally, Zhang et
al. [26] investigated the use of FRFT as a framework for biomedical signal detection. In this work,
we explore the property of FRFT for deep learning. Based on our exploration, we propose a novel
convolutional operator that takes advantage of the unique properties of FRFT.

3 Preliminary of FRFT for deep learning

The Fractional Fourier Transform (FRFT) is a powerful and versatile analysis tool that has been
relatively under-explored in the context of deep learning. In this section, we aim to reveal the unique
properties of FRFT and explain why it is a valuable addition to the deep learning toolkit.

Definition We first introduce the mathematical definition of FRFT. The 1-D p-th order FRFT of
a signal x(u0), where u0 represents the initial domain, i.e., time, spatial, frequency, or even an
intermediate domain, is defined as follows:

F p {x (u0)} = X (up) =

∫ ∞

−∞
Kp (u0, up)x (u0) du0. (1)

Specifically, the kernel Kp (u0, up) is given by the following expression:

Kp(u0, up) =

 Aαe
j(u2

0 cotα/2−upu0 cscα+u2
p cotα/2), α ̸= nπ

δ(t− u), α = 2nπ
δ(t+ u), α = (2n± 1)π

(2)

where Aα =
√
1− j cotα, and α = pπ

2 . Eq. 1 can be called either a p-th order Fractional Fourier
Transform of signal x (u0) or a Fractional Fourier Transform of signal x (u0) at angle α. For FRFT,
the basis function is linear frequency modulation (LFM) signal, as shown in the kernel function,
instead of the sine function basis in Fourier transform. Besides, when α = π/2, the formula of FRFT
degrades to the formula of FT, which is proved with details in the supplementary material.

Fast discrete implementation of FRFT FT has a well-established fast digital computation algo-
rithm that can compute it in N log N time [27]. However, despite the availability of this algorithm,
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there is currently no encapsulated package for the fast implementation of FRFT. Furthermore, most
existing implementation methods cannot match the computational speed of Fourier transform in
practical applications. To address this issue, we have adopted a matrix multiplication implementation
[28] that was originally developed for natural language processing and adapted it for the field of
computer vision. Through this adaptation, we have developed an improved fast version of FRFT that
is as fast as Fourier transform in practical settings. This implementation offers a valuable tool for
researchers and practitioners seeking to leverage the benefits of FRFT in their work.

FRFT, Wigner distribution, and spatial-frequency plane rotation The Wigner distribution of
signal f(x) is defined as follows:

Wf (x, ν) =

∫ ∞

−∞
f
(
x+ x′/2

)
f∗ (x− x′/2

)
e−i2πνx′

dx′. (3)

The function Wf (x, ν) provides a distribution of signal energy over time and frequency, and it serves
as a key link between FRFT and spatial-frequency plane rotation. Specifically, the Wigner distribution
of the p-th order FRFT of a signal f(x) is equivalent to a counterclockwise rotation of Wf (x, ν) by
an angle of α = pπ/2 degrees [27].

Non-stationary signal A non-stationary signal is one whose statistical properties vary with time
or space, including the mean, variance, and frequency. In contrast to stationary signals, which are
often artificially created, natural signals are almost always non-stationary. Natural images are also
non-stationary signals since their statistical properties change significantly over space, depending on
the content of the image. For example, the mean and variance of an image may vary depending on
factors such as lighting conditions, color palette, or image composition. Additionally, images may
contain non-stationary features such as edges, textures, and patterns that change over space. These
non-stationary features play a crucial role in many computer vision tasks. Thus, FRFT is well-suited
for the processing of the non-stationary image signal.

(a) p=0 (b) p=0.2 (c) p=0.4 (d) p=0.6 (e) p=0.8 (f) p=1

Figure 2: The amplitude and phase spectrums of the FRFT of different orders. The upper row is
amplitude spectrums, and the bottom is phase spectrums. Note that the fractional order’s amplitude
spectrum contains the signals’ spatial-frequency joint characteristics.

The amplitude and phase spectrums of image in FRFT As shown in Fig. 2, the first row is
the amplitude spectrum of FRFT in different orders, and the second is the phase spectrum. For the
amplitude spectrum, when the order is small, the outline and detail information of the image can be
clearly observed. With the increase of the order, the image gradually becomes blurred, and the energy
becomes more and more concentrated. It shows that the spatial domain information in the amplitude
spectrum decreases with the increase of the transformation order. In contrast, the frequency domain
information increases with the rise of the transformation order.

The comparison between spatial image, FT and FRFT Table 1 presents a comparison between
spatial image, Fourier Transform (FT), and Fractional Fourier Transform (FRFT). Traditional FT
is a powerful tool for processing stationary signals, with the sine function as the basis function.
In contrast, FRFT is a spatial-frequency analysis tool that is particularly effective for processing
non-stationary signals, with the linear frequency modulation signal as the basis function. Spatial and
FT are two orthogonal individual perspectives, with the spatial image corresponding to the horizontal
s-axis in the spatial-frequency plane shown in Fig. 1, and FT corresponding to the vertical f-axis in
the same plane. On the other hand, FRFT can represent a unified spatial-frequency perspective in the
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same plane, providing a more comprehensive and integrated view of the signal. Additionally, FRFT
introduces the concept of fractional transformation order, which allows for the analysis of the signal’s
spatial and frequency domain information. In contrast, the FT of a signal only contains frequency
domain information, limiting its scope of analysis.

Table 1: Comprehensive comparison between original spatial image, Fourier transform, and FRFT.

Difference Spatial Fourier transform FRFT

Applicable signal * Stationary Time varying non-stationary
Basis function * Sine Linear frequency modulation
Rotation angle 0° 90° α (any)

Generality individual individual unified
Information Spatial Frequency Spatial & Frequency

4 FRFT operator design

Based on the property of FRFT in image processing and our fast implementation of FRFT, we devise
a simple yet effective operator, the Multi-order Fractional Fourier Convolution (MFRFC).

4.1 MFRFC

Conv3x3
𝛼 = 0°

𝛼 = 45°

𝛼 = 90°

𝛼 = 0°

𝛼 = −45°

𝛼 = −90°

Process IFRFTFRFT

Conv1x1

Channel Split Channel Concatenate

Conv1x1

Figure 3: Architecture design of the Multi-order Fractional Fourier Convolution. MFRFC is com-
prised of three different order paths: a spatial (p=0) path, a frequency (p=1) path, and a unified
spatial-frequency (p=0.5) path. IFRFT denotes Inverse FRactional Fourier Transform.

The architecture of our proposed Multi-order Fractional Fourier Convolution (MFRFC) is illustrated
in Fig. 3. MFRFC comprises five critical operations: a channel split that equally divides the input
features into three parts along the channel dimension, a 2D discrete Fractional Fourier Transform that
converts the input features to the fractional domain with three different orders, separate processing of
these three fractional domains, a 2D inverse Fractional Fourier Transform that converts the fractional
domain features back to the spatial domain, and a channel merge that concatenates the three features
along the channel dimension. These five operations work in concert to create a powerful and flexible
convolutional layer that can leverage the unique properties of FRFT to analyze non-stationary signals
and improve the performance of deep learning models.

The key component of MFRFC is the three different order paths: a spatial (p=0) path that conducts
ordinary convolutions, a spectral (p=1) path that operates in the spectral domain, and a fractional order
(p=0.5) path that operates in the unified spatial-frequency domain. After the channel concatenation
operation, we add a full channel convolution to fuse the information from different perspectives.
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4.2 Merits of MFRFC

The design of MFRFC offers several advantages over vanilla convolution and Fourier transform.
Firstly, it preserves all the key merits of vanilla convolution and Fourier transform, such as parameter
sharing and global receptive field. For instance, spectral theory demonstrates the existence of operator
duality between convolution in the spatial domain and element-wise multiplication in the spectral
domain, as shown in the following equation:

F (f(x1) ∗ f(x2)) = F (x1)⊙ F (x2), (4)

where ∗ and ⊙ denote convolution and element-wise product, respectively. This enables FT with
image-size receptive field.

Moreover, MFRFC provides the added advantage of analyzing features from multiple perspectives.
In particular, the introduction of the fractional domain complements the missing perspective that
is optimal for non-stationary signal analysis. The fractional domain is inherently well-suited for
separating and extracting non-stationary features, offering a powerful tool for analyzing image signals
with varying statistical properties over space.

4.3 Fractional order selection

Regarding the path number, we select three paths: traditional spatial and frequency paths, as well
as an additional fractional path. This approach allows us to leverage the two orthogonal axes of the
spatial-frequency plane, as well as the intermediate fractional axis, to provide more comprehensive
and representative signal projection perspectives.

In terms of fractional order selection, our experimental results demonstrate that different orders
can improve performance 2. For simplicity, we choose a fixed order p=0.5 based on empirical
observations. While this choice is simple, it still provides a noticeable performance improvement
on various tasks, demonstrating the effectiveness of incorporating FRFT, which is a key focus of
our work. In addition, we also provide an extended version of MFRFC, called MFRFC++, in the
supplementary material, which enables the network to learn the optimal order adaptively.

4.4 Complexity analysis

Table 2 compares two major complexity metrics of the Multi-order Fractional Fourier Convolution
(MFRFC) and vanilla convolution. Thanks to the fast implementation of FRFT, the complexity of
FRFT and inverse FRFT is omitted since they are parameter-free and their time complexities are
negligible compared to other computation costs. As shown, the computational cost of FRFT is
comparable to that of vanilla convolution. Therefore, in specific usage, we can simply insert the
MFRFC once into different networks to improve performance with negligible parameter increase.

Table 2: Parameter counts and FLOPs for vanilla convolution, separate components in MFRFC, and
entire MFRFC, respectively. C1 and C2 are the numbers of input and output channels, respectively.
We equally split the input feature channel for every path, but for order=0.5 and order=1 paths, the
concatenation of the real and imaginary parts doubles the channel number. So the final channel
number for these two paths is 2

3 of the original. H and W collectively define spatial resolution. K is
the convolutional kernel size. For clarity, here, stride and padding are not considered.

Params FLOPs

vanilla C1C2K
2 C1C2K

2HW

Path1 (order=0) 1
9
C1C2K

2 1
9
C1C2K

2HW
Path2 (order=0.5) 4

9
C1C2

4
9
C1C2K

2HW
Path3 (order=1) 4

9
C1C2

4
9
C1C2K

2HW
Path fusion C1C2K

2 C1C2K
2HW

MFRFC (1 + 1
9
+ 8

9K2 )C1C2K
2 (1 + 1

9
+ 8

9K2 )C1C2K
2HW

2The relationship between order and performance is provided in the supplementary material.
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5 Experiments

To demonstrate the effectiveness of our proposed convolutional operator MFRFC, we conduct exten-
sive experiments over multiple computer vision tasks, including object detection, image classification,
guided super-resolution, denoising, dehazing, deraining, and low-light enhancement.

5.1 Evaluation Protocols

Object detection. Following [29], the PASCAL VOC 2007 and 2012 training sets [30] are adopted
for training, and the PASCAL VOC 2007 testing set is used for evaluation. We employ the FPN-based
Faster RCNN with ResNet50 backbone as baseline.

Image classification. We verify our method on the image classification task with the CIFAR-10
dataset [31]. For the baseline, we employ the classical classification method: ResNet [32].

Image denoising. Following [33], to evaluate our method on the image de-noising task, we employ
the widely-used SIDD dataset as training benchmark. Further, the corresponding performance
evaluation is conducted on the remaining validation samples from the SIDD dataset [34]. For the
baseline, we employ the representative denoising method: DnCNN [35].

Image enhancement. We verify our method on the image enhancement task with the commonly
used dataset, LOL [36]. Further, we adopt the two classical baselines, SID [37] and DRBN [38].

Image de-hazing. Following [39], to evaluate our method on the image dehazing task, we employ
ITS and SOTS indoor [40] as our training and testing datasets. For the baseline, we adopt the
representative dehazing methods: GridNet [41] and MSBDN [42].

Image de-raining. For validation, we used the widely-used standard benchmark dataset Rain200H,
as described in [43]. As baselines, we use the representative de-raining methods: PReNet [43].

Guided image super-resolution. Following [44, 45], we adopt pan-sharpening, the representative
task of guided image super-resolution for evaluating the effectiveness of the MFRFC. The WorldView
II, WorldView III, and GaoFen2 in [44, 45] are used for evaluation. We employ two different
network designs for validation: PanNet [46], and FusionNet [47]. Several widely used image quality
assessment (IQA) metrics are employed to evaluate the performance, including the peak signal-to-
noise ratio (PSNR), the structural similarity index (SSIM), the spectral angle mapper (SAM) [48],
and the relative dimensionless global error in synthesis (ERGAS) [49].

5.2 Implementation details

Baseline variant. Besides our MFRFC operator, we also validate a baseline variant called Spatial-
Frequency Convolution (SFC). Specifically, SFC has two order paths, a spatial path (order=0) and a
frequency path (order=0). Our MFRFC has an additional fractional path than SFC and is supposed to
perform better than SFC.

Three configurations. We re-implement the baseline methods following the settings in the corre-
sponding paper. In this paper, we denote baseline models as "Original", baseline models equipped
with SFC as "SFC", and baseline models provided with MFRFC as "MFRFC". We present an example
usage of SFC and MFRFC in the supplementary material.

5.3 Analysis and visualization

Quantitative Comparison. We compare model performance over different configurations, as
described in implementation details. The quantitative results are reported in Table 3, 4, 5, 6, 7, 8,
and 9. It is evident that, by integrating with our proposed MFRFC operator, all "MFRFC" obtain
performance gain over the "Original" and "SFC" baselines on all the datasets in the evaluated task,
which fully validates the effectiveness of our method.

Qualitative Comparison. Due to the page limits 3, we only show the visual results over the
representative tasks of guided image super-resolution, image deraining, and image dehazing in Fig. 4,
5, and 6, respectively, to better illustrate the effectiveness of MFRFC. It can be easily figured out

3More visual comparison results are reported in the supplementary materials.
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that "MFRFC" generates the highest-fidelity results that also look perceptually close to the reference
ground-truths. For example, zooming in the red box region in Figure 4, the "MFRFC" model can
better recover the texture details. Similar conclusions also apply to Fig. 6.

Table 3: Quantitative comparison over object de-
tection.

Model Methods AP50 mAP

Faster RCNN
Original 77.30 77.26

SFC 77.90 77.89
MFRFC 78.00 77.96

Table 4: Quantitative comparison on image classi-
fication.

Model Methods Acc

ResNet
Original 95.23

SFC 95.34
MFRFC 95.43

Table 5: Quantitative comparison on image denois-
ing.

Model Methods PSNR SSIM

DnCNN
Original 37.1992 0.8904

SFC 37.3454 0.8866
MFRFC 37.6084 0.8915

Table 6: Quantitative comparison on image derain-
ing.

Model Methods PSNR SSIM

PReNet
Original 29.041 0.891

SFC 29.498 0.901
MFRFC 29.735 0.906

Table 7: Comparison of quantitative results over guided image super-resolution.

Model Methods WorldView-II GaoFen2
PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

PanNet
Original 40.817 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577
SFC 41.2118 0.9663 0.0236 0.9901 44.4965 0.9801 0.0161 0.7761
MFRFC 41.3428 0.9667 0.0233 0.9898 44.6245 0.9804 0.0146 0.6551

FusionNet
Original 41.0708 0.9651 0.0248 0.9978 44.8852 0.9810 0.0140 0.6661
SFC 41.3941 0.9674 0.0232 0.9898 45.1071 0.9810 0.0138 0.6413
MFRFC 41.5829 0.9676 0.0229 0.9766 45.2534 0.9876 0.0137 0.6377

Table 8: Quantitative comparison over image de-
hazing.

Model Methods PSNR SSIM

GridNet
Original 32.56 0.9847

SFC 32.97 0.9856
MFRFC 33.39 0.9887

MSBDN
Original 32.19 0.9813

SFC 32.26 0.9825
MFRFC 32.45 0.9838

Table 9: Quantitative comparison on low-light im-
age enhancement.

Model Methods PSNR SSIM

SID
Original 20.1062 0.7895

SFC 21.9222 0.7988
MFRFC 22.3666 0.7998

DRBN
Original 19.7931 0.8361

SFC 21.8372 0.8356
MFRFC 21.9916 0.8426

(a) Input (b) Original (c) SFC (d) MFRFC (e) GT

Figure 4: The visual comparison of PANNET over WorldView-II. The bottom row is error map.
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(a) Input_rainy (c) SFC (d) MFRFC (e) GT(b) Original

Figure 5: The visual comparison of PReNet over the Rain200H.

(a) Input_hazy (b) Original (c) SFC (e) GT(d) MFRFC

Figure 6: The visual comparison of GridNet over SOTS.

6 Limitations and Discussions
We evaluate the effectiveness of the proposed method over several computer vision tasks, and we will
conduct more extensive experiments on other computer vision tasks (e.g., image segmentation and
video processing). Furthermore, we recognize that the optimal fractional order may vary depending
on the specific task and may be critical for the further understanding and application of FRFT in
specific task. To emphasize, the critical contribution of this work is that we clear the way to the
popularization of FRFT, and make the first attempt to integrate FRFT into a basic operator.

7 Conclusion

In this paper, we introduce a new spatial-frequency analysis tool, FRFT, to generalize existing FT
and provide comprehensive perspectives for vision tasks. The FRFT is a unified spatial-frequency
transform, simultaneously reflecting an image’s spatial and frequency representations. Notably, we
explore the properties of FRFT for image processing and achieve the fast implementation of 2D
FRFT. Besides, we devise the convolutional operator MFRFC, which has the impressive merits
of processing an image from more perspectives in the spatial-frequency plane. The MFRFC is a
general convolutional operator and thus can be easily integrated into existing methods to improve
their performance further. Extensive experiments have demonstrated the effectiveness of our method.

Broader Impact

The past decades have witnessed the development of computer vision driven by convolution neural
networks. However, vanilla spatial convolution is only one common perspective of signal processing.
Some spatial-frequency combination methods have already exhibited the potential of two-perspective
signal processing. As a general version of FT, FRFT is quite promising for image processing but is
less explored largely due to the missing fast discrete implementation algorithm and unclear properties
in image processing. In this paper, we have cleared all these obstacles to the popularization of
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FRFT and made the first attempt to integrate FRFT into a novel convolutional operator, which has
demonstrated its effectiveness in various computer vision tasks. Besides, we hold the belief that there
is much more space for the further exploration of FRFT in deep learning. Additionally, our work may
inspire the rethinking of neural networks from more diverse perspectives.
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