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Abstract

Several recent works have studied the societal effects of AI; these include issues
such as fairness, robustness, and safety. In many of these objectives, a learner seeks
to minimize its worst-case loss over a set of predefined distributions (known as
uncertainty sets), with usual examples being perturbed versions of the empirical
distribution. In other words, aforementioned problems can be written as min-max
problems over these uncertainty sets. In this work, we provide a general framework
for studying these problems, which we refer to as Responsible AI (RAI) games. We
provide two classes of algorithms for solving these games: (a) game-play based
algorithms, and (b) greedy stagewise estimation algorithms. The former class is
motivated by online learning and game theory, whereas the latter class is motivated
by the classical statistical literature on boosting, and regression. We empirically
demonstrate the applicability and competitive performance of our techniques for
solving several RAI problems, particularly around subpopulation shift.

1 Introduction

In recent years, AI is increasingly being used in high-stakes decision-making contexts such as hiring,
criminal justice, and healthcare. Given the impact these decisions can have on people’s lives, it is
important to ensure these AI systems have beneficial social effects. An emerging line of work has
attempted to formalize such desiderata ranging over ethics, fairness, train-time robustness, test-time
or adversarial robustness, and safety, among others. Each of these forms rich sub-fields with disparate
desiderata, which are sometimes collated under the umbrella of “responsible AI”. Many organizations
are increasingly advocating the use of responsible AI models [Microsoft, 2021, Google, 2020].

But how do we do so when the majority of recent work around these problems is fragmented and
usually focuses on optimizing one of these aspects at a time (DRO [Namkoong and Duchi, 2017,
Duchi and Namkoong, 2018], GDRO [Sagawa et al., 2019], CVaR [Zhai et al., 2021a], Distribution
Shift [Hashimoto et al., 2018, Zhai et al., 2021b])? Indeed optimizing for just one of these aspects
has even been shown to exhibit adverse effects on the other aspects [Roh et al., 2020]. To address
this, we study a general framework that is broadly applicable across many of the settings above, and
which we refer to as Responsible AI (RAI) games. Our starting point is the recent understanding of a
unifying theme in many of these disparate problems, that a learner seeks to minimize its worst-case
loss over a set of predefined distributions. For example, in fairness, we seek to perform well on all
sub-groups in the data. In robustness, we aim to design models that are robust to perturbations of the
training data or the test distribution. This allows us to set up a zero-sum game between a learner that
aims to learn a responsible model and an adversary that aims to prevent the learner from doing so. In
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the general RAI game setting, this is a computationally intractable game that need not even have a
Nash equilibrium. To address this computational issue, we study a relaxation of the single predictor
RAI game, which we term the ensemble RAI game, which can also be motivated as a linearization of
the original RAI game.

We note that our framework encompasses not only the responsible AI settings but also the setting of
classical boosting. Drawing upon the insights from boosting, we provide boosting-based algorithms
for solving responsible AI games. We provide convergence guarantees of our algorithms by relying
on the connections between boosting and online convex optimization, two-player gameplay [Arora
et al., 2012, McMahan, 2011, Bubeck, 2011]. We also conduct empirical analyses to demonstrate the
convergence and utility of our proposed algorithms. Interestingly, the algorithms allow for plug-and-
play convenience, with changes in the RAI settings requiring only simple changes to the algorithms.
More importantly, we could consider intersections of different responsible AI considerations, which
in turn can simply be incorporated into our algorithms. Finally, we also study the population risks of
our algorithms in certain important settings. We show a surprising result that for the case of binary
classification with the 0/1 loss, the optimal predictor for a large class of RAI games is the same as the
Bayes optimal predictor, thus generalizing an emerging line of results demonstrating this for certain
specific games [Hu et al., 2018]. Under such settings, solving the RAI game could nonetheless be
helpful in finite sample settings (as also demonstrated in our experiments) since the RAI game serves
to encode desiderata satisfied by the Bayes optimal classifier.

2 Problem Setup and Background

We consider the standard supervised prediction setting, with input random variable X ∈ X ⊆ Rd,
output random variable Y ∈ Y , and samples S = {(xi, yi)}ni=1 drawn from a distribution Pdata

over X × Y . Let P̂data denote the empirical distribution over the samples. We also have a set
H of hypothesis functions h : X 7→ Y from which we wish to learn the best predictor. We
evaluate the goodness of a predictor via a loss function ℓ : Y × Y 7→ R, which yields the empirical
risk: R̂(h) = EP̂data

ℓ(h(x), y) where EP̂data
(f(x, y)) = 1

n

∑n
i=1 f(xi, yi). Apart from having

low expected risk, most settings require h to have certain properties, for example, robustness to
distribution shift, fairness w.r.t subpopulations, superior tail performance, resistance to adversarial
attacks, robustness in the presence of outliers, etc. We cast all these subproblems into an umbrella
term “Responsible AI”. Each of these properties has been studied extensively in recent works, albeit
individually. In this work, we attempt to provide a general framework to study these problems.

2.1 Related Work

We draw our unified framework from seminal works over the past decade by responsible AI re-
searchers on devising non-expected risk objectives, particularly min-max problems, to ensure ML
models are responsible. These have resulted in a multitude of different objectives (even for a single
responsible AI desideratum such as fairness), and also multiple different sub-communities (so that
fairness and multiple disparate robustness communities are relatively fractured), many (if not all)
of which we combine within a single umbrella. There is emerging work on relating worst-case
performance to invariance [Bühlmann, 2018]; in other words, we might be able to get approximate
group invariance via minimizing an appropriately constructed worst-group risk and vice-versa.

RAI aspects as constraints. Many prior works have enforced robustness as a constrained opti-
mization [Shafieezadeh-Abadeh et al., 2015, Gao and Kleywegt, 2022, Namkoong and Duchi, 2016,
Ben-Tal et al., 2011]. There have also been few prior works enforcing fairness constraints [Mandal
et al., 2020]. To the best of our knowledge, there exists minimal prior work focusing on multiple
desiderata at once in this regard.

Multi Objective Optimization. Several works have considered a multi-objective view of ensuring
fairness in classifiers [Martinez et al., 2020, Oneto et al., 2018]. If used for multiple RAI objectives,
there is usually overhead in choosing a model that achieves a good trade-off between various losses.
Also, it is difficult to guarantee that the solution is robust to any of the involved aspects. Our
framework guarantees a certain level of performance on each of the RAI aspects under consideration.

Distribution shift. [Koh et al., 2021] classifies distribution shift problems into two categories:
Domain generalization, and subpopulation shift. In this work, we focus on the subpopulation shift
problem, where the target distribution is absolutely continuous to the source distribution. It has two
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main applications: fairness [Hashimoto et al., 2018, Hu et al., 2018, Sagawa et al., 2019, Zhai et al.,
2021b] and long-tail learning (i.e. learning on class-imbalanced datasets) [Cao et al., 2019, Menon
et al., 2021, Kini et al., 2021].

Distributionally Robust Optimization (DRO). In DRO one aims to study classifiers that are robust
to deviations of the data distribution. DRO has been studied under various uncertainty sets including
f -divergence based uncertainty sets [Namkoong and Duchi, 2017, Duchi and Namkoong, 2018,
Sagawa et al., 2019], Wasserstein uncertainty sets [Sinha et al., 2017, Gao et al., 2022], Maximum
Mean Discrepancy uncertainty sets [Staib and Jegelka, 2019], more general uncertainty sets in the
RKHS space [Zhu et al., 2020]. [Li et al., 2021a] evaluate model performance under worst-case
subpopulations. Owing to its importance, several recent works have provided efficient algorithms
for solving the DRO objective [Namkoong and Duchi, 2016, Qi et al., 2020, Kumar et al., 2023, Jin
et al., 2021]. However, a lot of these techniques are specific to particular perturbation sets and are
not directly applicable to the more general framework we consider in our work. Furthermore, in our
work, we aim to learn an ensemble of models instead of a single model.

Boosting. Classical boosting aims to improve the performance of a weak learner by combining
multiple weak classifiers to produce a strong classifier [Breiman, 1999, Friedman et al., 2000,
Friedman, 2001, Freund and Schapire, 1995, Freund et al., 1996, Mason et al., 2000]. Over the years,
a number of practical algorithms have been introduced such as AdaBoost [Schapire, 1999], LPBoost
[Demiriz et al., 2002], gradient boosting [Mason et al., 1999], XGBoost [Chen and Guestrin, 2016],
boosting for adversarial robustness [Zhang et al., 2022], [Meunier et al., 2021], [Balcan et al., 2023],
and holistic robustness [Bennouna and Parys, 2022]. The algorithms we develop for RAI games are
inspired by these algorithms.

Fairness. There are a number of fairness notions for algorithmic fairness, ranging from individual
fairness [Dwork et al., 2012, Zemel et al., 2013], group fairness [Hardt et al., 2016a, Zafar et al., 2017],
counterfactual fairness [Kusner et al., 2017], Rawlsian max-min fairness [Rawls, 2020, Hashimoto
et al., 2018] and others [Barocas et al., 2017, Chouldechova and Roth, 2018, Mehrabi et al., 2021].
Our framework includes the popular notion of minimax group fairness. It doesn’t capture other
notions of group fairness such as Demographic Parity, Equality of Odds, Equality of Opportunity.

Population RAI Risks. Several recent works have studied properties of the population risks arising
in various responsible AI scenarios. Hu et al. [2018] showed that the minimizer of population DRO
risk (under general f -divergences) is the classical Bayes optimal classifier. Li et al. [2021b], Duchi
and Namkoong [2018], Sinha et al. [2017] provided generalization guarantees for DRO risk under
various divergence families ranging from f -divergences to Wasserstein perturbations.

3 RAI Games

In many cases, we do not wish to compute an unweighted average over training samples; due to
reasons of noise, tail risk, robustness, and fairness, among many other “responsible AI” considerations.
Definition 1 (RAI Risks) Given a set of samples {(xi, yi)}ni=1, we define the class of empirical RAI
risks (for Responsible AI risks) as: R̂Wn(h) = supw∈Wn

Ew(h(x), y), where Wn ⊆ ∆n, is some set
of sample weights (a.k.a uncertainty set), and Ew(f(x, y)) =

∑n
i=1 wif(xi, yi).

Various choices of Wn give rise to various RAI risks. Table 1 presents examples of RAI risks that are
popular in ML. Interestingly, classical problems such as boosting are special cases of RAI risks. In
this work, we rely on this connection to design boosting-inspired algorithms for minimizing RAI
risks. More choices for Wn can be obtained by combining the one’s specified in Table 1 using union,
intersection, convex-combination operations. For example, if one wants models that are fair to certain
pre-specified groups, and at the same-time achieve good tail-risk, then one could choose Wn to be
the intersection of Group-DRO and α-CVaR uncertainty sets.

Given the empirical RAI risk R̂Wn(h) of a hypothesis, and set of hypotheses H , we naturally wish to
obtain the hypothesis that minimizes the empirical RAI risk: minh∈H R̂Wn

(h). This can be seen as
solving a zero-sum game.
Definition 2 (RAI Games) Given a set of hypothesis H , and a RAI sample weight set Wn, the class
of RAI games is given as: minh∈H maxw∈Wn Ew(h(x), y).

We thus study RAI Games for the special cases above and for an arbitrary constraint set Wn.
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Name Wn Description

Empirical Risk Minimization {P̂data} object of focus in most of ML/AI

Worst Case Margin ∆n,
entire probability simplex

used for designing
margin-boosting algorithms

[Warmuth et al., 2006, Bartlett et al., 1998]

Soft Margin {w : KL(w||P̂data) ≤ ρn}
used in the design of

AdaBoost [Freund and Schapire, 1995]
α-Conditional Value

at Risk (CVaR) {w : w ∈ ∆n, w ⪯ 1
αn}

used in fairness
[Zhai et al., 2021a, Sagawa et al., 2019]

Distributionally Robust
Optimization (DRO) {w : D(w||P̂data) ≤ ρn}

various choices for D
have been studied

f -divergence [Duchi and Namkoong, 2018]

Group DRO {P̂data(G1), P̂data(G2), . . . P̂data(GK)}
P̂data(Gi) is dist. of ith group

used in group fairness, agnostic
federated learning [Mohri et al., 2019]

Table 1: Various ML/AI problems that fall under the umbrella of RAI risks.

4 Ensemble RAI Games

In this section, we begin our discussion about ensembles. In general, a statistical caveat with
Definition 2 is that good worst-case performance over the sample weight set Wn is generally harder,
and for a simpler set of hypotheses H , there may not exist h ∈ H that can achieve such good
worst-case performance. Thus it is natural to consider deterministic ensemble models over H , which
effectively gives us more powerful hypothesis classes. Let us first define RAI risk for such classifiers.
Definition 3 (Deterministic Ensemble) Consider the problem of classification, where Y is a discrete
set. Given a hypothesis class H , a deterministic ensemble is specified by some distribution Q ∈ ∆H ,
and is given by: hdet;Q(x) = argmaxy∈Y Eh∼QI[h(x) = y]. Correspondingly, we can write the
deterministic ensemble RAI risk as R̂Wn

(hdet;Q(x)) = maxw∈Wn
Ewℓ(hdet;Q(x), y).

We discuss alternative definitions of deterministic ensembles in the Appendix. This admits a class of
deterministic RAI games:
Definition 4 (Deterministic Ensemble RAI Games) Given a set of hypothesis H , a RAI sample
weight set Wn, the class of RAI games for deterministic ensembles over H is given as:

min
Q∈∆H

max
w∈Wn

Ewℓ(hdet;Q(x), y).

However, the aforementioned game is computationally less amenable because of the non-smooth
nature of de-randomized predictions. Moreover, there are some broader challenges with RAI games
given by Definitions 2 and 4. Firstly, they need not have a Nash Equilibrium (NE), and in general,
their min-max and max-min game values need not coincide. This poses challenges in solving the
games efficiently. Next, in some cases, directly optimizing over the worst-case performance might
not even be useful. For instance, [Hu et al., 2016, Zhai et al., 2021a] show the pessimistic result that
for classification tasks where when models are evaluated by the zero-one loss, ERM achieves the
lowest possible DRO loss defined by some f -divergence or the α-CVaR loss, given that the model is
deterministic. To this end, we consider the following randomized ensemble:
Definition 5 (Randomized Ensemble) Given a hypothesis class H , a randomized ensemble is
specified by some distribution Q ∈ ∆H , and is given by: P[hrand;Q(x) = y] = Eh∼QI[h(x) =

y]. Similarly, we can define its corresponding randomized ensemble RAI risk: R̂rand;Wn(Q) =
maxw∈Wn Eh∼QEwℓ(h(x), y).

We can then also define the class of ensemble RAI games:
Definition 6 (Randomized Ensemble RAI Games) Given a set of hypothesis H , a RAI sample
weight set Wn, the class of mixed RAI games is given as:

min
Q∈∆H

max
w∈Wn

Eh∼QEwℓ(h(x), y). (1)

This is a much better class of zero-sum games: it is linear in both the hypothesis distribution P , as
well as the sample weights w, and if the sample weight set Wn is convex, is a convex-concave game.
As shown below, under some mild conditions, this game has a Nash equilibrium which can be well
approximated via efficient algorithms.
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Proposition 1 Let H be parameterized by θ ∈ Θ ⊆ Rp, for convex, compact set Θ
and let Wn be a convex, compact set. Then minQ∈∆H

maxw∈Wn Eh∼QEwℓ(h(x), y) =
maxw∈Wn minQ∈∆H

Eh∼QEwℓ(h(x), y)

The proposition follows as a direct consequence of well known minimax theorems (Appendix D.3).

4.1 Going from Deterministic to Randomized Ensembles

To begin, we point out that what we want is a deterministic ensemble rather than a randomized
ensemble. In fact, it can be seen that the deterministic ensemble in Definition 3 is a specific de-
randomization of the randomized ensemble. It is such deterministic ensembles that we usually simply
refer to as ensemble predictors. But the RAI risk for the ensemble predictor is NOT equal to the
ensemble RAI risk minimized by our desired game in Equation 1 above for randomized ensembles.
Thus, the ensemble RAI game might not in general capture the ideal deterministic ensemble. In this
section, we study why and when might solving for a random ensemble is meaningful.

Binary Classification. Interestingly, for the very specific case of binary classification, we can provide
simple relationships between the risks of the randomized and deterministic ensemble.
Proposition 2 Consider the setting with Y = {−1, 1}, the zero-one loss ℓ, and Wn = ∆n. Then,

R̂Wn
(hdet;Q) = I[R̂Wn

(hrand;Q) ≥ 1/2].

See Appendix E.2 for a simple proof. In this case, we can also relate the existence of a perfect
deterministic ensemble (“boostability”) to a weak learning condition on the set of hypotheses.
Specifically, suppose H is boostable iff there exists Q ∈ ∆H s.t. R̂Wn

(hdet;Q) = 0. From the above
proposition this is equivalent to requiring that R̂Wn

(hrand;Q) < 1/2. We thus obtain:
inf

Q∈∆H

sup
w∈Wn

Ew,Qℓ(h(x), y) < 1/2 ⇐⇒ sup
w∈Wn

inf
h∈H

Ewℓ(h(x), y) < 1/2

where the equivalence follows from the min-max theorem and the linearity of the objective in P .
The last statement says that for any sample weights w ∈Wn, there exists a hypothesis h ∈ H that
has w-weighted loss at most 1/2. We can state this as a “weak-learning” condition on individual
hypotheses in H . The above thus shows that for the specific case of Y = {−1, 1}, the zero-one loss
ℓ(y, y′) = I[y ̸= y′], and Wn = ∆n, we can relate boostability of H to a weak learning condition on
hypothesis within H .

General Classification But in general, we do not have simple connections between R̂Wn(hdet;Q)

and R̂Wn
(hrand;Q). All we can guarantee is the following upper bound:

Proposition 3 Let γQ = 1/mini∈[n] maxy∈Y PQ[h(xi) = y]. Then,

R̂Wn(hdet;Q) ≤ γQR̂Wn(hrand;Q).

See Appendix E.2 for a simple proof.
Corollary 4 For binary classification, we have γP ≤ 2 and thus, we recover the well known bound
R̂Wn(hdet;Q) ≤ 2R̂Wn(hrand;Q)

Remark 5 These bounds might be loose in practice. Specifically, for the binary case, if
R̂Wn

(hrand;Q) ≤ 1
2 then we have R̂Wn

(hdet;Q) = 0. To this end, prior work [Lacasse et al., 2006,
Germain et al., 2015, Masegosa et al., 2020] have developed tighter bounds using second-order
inequalities. We leave the analyses of these second-order RAI games to future work.

As such, we can cast minimizing randomized RAI risk as minimizing an upper bound on the
deterministic ensemble RAI risk. Thus, the corresponding randomized RAI game can be cast as a
relaxation of the deterministic RAI game. In the sequel, we thus focus on this randomized ensemble
RAI game, which we will then use to obtain a deterministic ensemble. Following the bounds above,
the corresponding deterministic ensemble risk will be bounded by the randomized ensemble RAI risk

5 Algorithms

In this section, we present two algorithms for solving the RAI game in Equation (1). Our first
algorithm is motivated from online learning algorithms and the second algorithm is motivated from
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greedy stepwise algorithms that have been popular for solving many statistical problems such as
regression. For simplicity of presentation, we assume H is a finite set. However, our results in the
section extend to uncountable sets.

5.1 Methods

Game-play. In game play based algorithms, both the min and the max players are engaged in a
repeated game against each other. Both players rely on no-regret algorithms to decide their next
action. It is well known that such a procedure converges to a mixed NE of the game Cesa-Bianchi
and Lugosi [2006]. In this work, we follow a similar strategy to solve the game in Equation (1)
(see Algorithm 1 for the pseudocode). In the tth round of our algorithm, the following distribution
wt ∈W is computed over the training data points

wt ← argmax
w∈Wn

t−1∑
s=1

Ewℓ(h
s(x), y) + ηt−1Reg(w) (2)

This update is called the Follow-The-Regularized-Leader (FTRL) update. Here, Reg(·) is a strongly
concave regularizer and ηt−1 is the regularization strength. One popular choice for Reg(·) is the
negative entropy which is given by−

∑
i wi logwi. This regularizer is also used by AdaBoost, which

is a popular boosting algorithm. In Appendix F.2, we provide analytical expressions for wt for
various choices of Wn,Reg(·). We note that the regularizer in the FTRL update ensures the stability
of the updates; i.e., it ensures consecutive iterates do not vary too much. This stability is naturally
guaranteed when Wn is a strongly convex set (an example of a strongly convex set is the level set of
a strongly convex function. See Appendix for a formal definition and more details). Consequently,
the regularization strength ηt−1 could be set to 0 in this case, and the algorithm still converges to a
NE [Huang et al., 2017].

Once we have wt, a new classifier ht is computed to minimize the weighted loss relative to wt, and
added to the ensemble. This update is called the Best Response (BR) update. Learning ht in this way
helps us fix past classifiers’ mistakes, eventually leading to an ensemble with good performance.

Algorithm 1 Game play algorithm for solving Equation (1)
Input: Training data {(xi, yi)}ni=1, loss function ℓ, constraint set Wn, hypothesis set H , strongly
concave regularizer R over Wn, learning rates {ηt}Tt=1

1: for t← 1 to T do
2: FTRL: wt ← argmaxw∈Wn

∑t−1
s=1 Ewℓ(h

s(x), y) + ηt−1Reg(w)
3: BR: ht ← argminh∈H Ewtℓ(h(x), y)
4: end for
5: return PT = 1

T

∑T
t=1 w

t, QT = Unif{h1, . . . hT }

Greedy. We now take an optimization theoretic viewpoint to design algorithms for Equation (1).
Let L(Q) denote the inner maximization problem of (1): L(Q) := maxw∈Wn

Eh∼QEwℓ(h(x), y).
When L(Q) is smooth (this is the case when Wn is a strongly convex set), one could use Frank-Wolfe
(FW) to minimize it. The updates of this algorithm are given by

Qt ← (1− αt)Qt−1 + αtG, where G = argmin
Q

〈
Q,∇QL(Q

t−1)
〉
.

Here, ∇QL(Q
t−1) = argmaxw∈Wn

Eh∼Qt−1Ewℓ(h(x), y). This algorithm is known to converge
to a minimizer of L(Q) at O(1/t) rate [Jaggi, 2013]. When L(Q) is non-smooth, we first need to
smooth the objective before performing FW. In this work we perform Moreau smoothing [Parikh
et al., 2014], which is given by

Lη(Q) = max
w∈Wn

Eh∼QEwℓ(h(x), y) + ηReg(w). (3)

Here Reg(·) is a strongly concave regularizer. If Reg(·) is 1-strongly concave, it is well known that
Lη(Q) is O(1/η) smooth. Once we have the smoothed objective, we perform FW to find its optimizer
(see Algorithm 2 for pseudocode).
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Relaxing the simplex constraint. We now derive a slightly different algorithm by relaxing the
simplex constraint on Q. Using Lagrangian duality we can rewrite minQ∈∆H

Lη(Q) as the following
problem for some λ ∈ R

min
Q⪰0

Lη(Q) + λ
∑
h∈H

Q(h).

One interesting observation is that when Wn is the entire simplex and when λ = −1/2, we recover
the AdaBoost algorithm. Given the practical success of AdaBoost, we extend it to general Wn. In
particular, we set λ = −1/2 and solve the resulting objective using greedy coordinate-descent. The
updates of this algorithm are given in Algorithm 2.
Remark 6 Algorithm 2 takes the step sizes {αt}Tt=1 as input. In practice, one could use line search
to figure out the optimal step-sizes, for better performance.

Algorithm 2 Greedy algorithms for solving Equation (1)
Input: Training data {(xi, yi)}ni=1, loss function ℓ, constraint set Wn, hypothesis set H , strongly
concave regularizer R over Wn, regularization strength η, step sizes {αt}Tt=1

1: for t← 1 to T do
2: Gt = argminQ

〈
Q,∇QLη(Q

t−1)
〉

3: FW: Qt ← (1− αt)Qt−1 + αtGt / Gen-AdaBoost: Qt ← Qt−1 + αtGt

4: end for
5: return QT

We provide convergence rates for the algorithms below:
Proposition 7 (Convergence Rates) Let l(h(x), y) ∈ [0, 1] ∀h ∈ H, (x, y) ∈ D and Reg : ∆n → R
be a 1-strongly concave function w.r.t norm ∥.∥1. Let QT be the output returned from running
Algorithm 1 or 2 for T iterations. Let DR be a constant S.T. D2

R = maxx,y∈Wn |Reg(x)− Reg(y)|.

1. (Gameplay) If ηt = η, then QT satisfies L(QT ) ≤ minQ L(Q) +
ηD2

R

T +O( 1η ).

2. (Greedy) If line-search is performed for αt, then QT (FW or the Gen-AdaBoost update)
satisfies L(QT ) ≤ minQ L(Q) + ηD2

R +O( 1
ηT ).

We refer the reader to Appendix F.1 for a simple proof using existing theory on online convex
optimization [McMahan, 2011, Jaggi, 2013]. Another useful insight is that Algorithms 1 and 2 are
related to each other under special settings as shown by Appendix H.1.
Corollary 8 Consider Reg(w) = −

∑n
i=1 wi logwi and l as the zero-one loss. Then, Algorithm 1

and Algorithm 2 (line-search) achieve ϵ−approximate NE with ϵ as O
(√

log(n)
T

)
.

Weak Learning Conditions It might not be practical for H-player to play BR (Step 3: Algorithm
1) or correspondingly, to find the best possible classifier at every round (Step 2: Algorithm 2). Under
weak learning conditions, we can indeed achieve (approximate) convergence when we only solve
these problems approximately. See Appendix H.2 for more details.

6 Generalization Guarantees

In this section, we study the population RAI risk and present generalization bounds which quantify
the rates at which empirical RAI risk converges to its population counterpart.

6.1 Population RAI Games

Recall, the empirical RAI risk optimizes over all sample re-weightings w ∈Wn that lie within the
probability simplex ∆n. Thus it’s population counterpart optimizes over distributions P that are
absolutely continuous with respect to the data distribution Pdata:

RW (h) = sup
P :P≪Pdata,

dP
dPdata

∈W

EP [ℓ(h(x), y)].
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Following [Shapiro et al., 2021], we can rewrite this as follows. Suppose we use Z = (X,Y ) ∈ Z :=
X × Y , so that P, Pdata are distributions over Z. We then define ℓh : Z 7→ R as ℓh(z) = ℓ(h(x), y).
We can then write the population RAI risk as (see Appendix G for a proof):

RW (h) = sup
r:Z7→R+,

∫
r(z)dPdata(z)=1,r∈W

EPdata [r(z)ℓh(z)]. (4)

For classification, we define the RAI-Bayes optimal classifier as: Q∗
W = argminQ RW (Q). Here,

the minimum is w.r.t the set of all measurable classifiers (both deterministic and random). This is the
“target” classifier we wish to learn given finite samples. Note that this might not be the same as the
vanilla Bayes optimal classifier: Q∗ = argminQ E[R̂(Q)], which only minimizes the expected loss,
and hence may not satisfactorily address RAI considerations.

We now try to characterize the RAI-Bayes optimal classifier. However, doing this requires a bit more
structure on W . So, in the sequel, we consider constraint sets of the following form:

W =

{
r : Z 7→ R+ :

∫
gi(r(z))dPdata(z) ≤ ci, i ∈ [m]

}
, (5)

where we assume that gi : R+ 7→ R, i ∈ [m] are convex. Note that this choice of W encompasses a
broad range of RAI games including DRO with f -divergence, CVaR, soft-margin uncertainty sets.
Perhaps surprisingly, the following proposition shows that the minimizer of population RAI risk is
nothing but the vanilla Bayes optimal classifier.
Proposition 9 (Bayes optimal classifier) Consider the problem of binary classification where
Y = {−1,+1}. Suppose ℓ(h(x), y) = ϕ(yh(x)) for some ϕ : R → [0,∞) which is either the 0/1
loss, or a convex loss function that is differentiable at 0 with ϕ′(0) < 0. Suppose the uncertainty
set W is as specified in Equation (5). Moreover, suppose {gi}i=1...m are convex and differentiable
functions. Then, the vanilla Bayes optimal classifier is also a RAI-Bayes optimal classifier.

Remark 10 In the special case of m = 1 in Equation (5), we recover the result of [Hu et al., 2018].
However, our proof is much more elegant than the proof of [Hu et al., 2018], and relies on the dual
representation of the population RAI risk.

One perspective of the above result is that the vanilla Bayes optimal classifier is also “responsible”
as specified by the RAI game. This is actually reasonable in many practical prediction problems
where the label annotations are actually derived from humans, who presumably are also responsible.
Why then might we be interested in the RAI risk? One advantage of the RAI risks is in finite sample
settings where the equivalence no longer holds, and the RAI risk could be construed as encoding prior
knowledge about properties of the Bayes optimal classifier. We also note that the above equivalence
is specific for binary classification.

6.2 Generalization Guarantees

Our generalization bounds rely on the following dual characterization of the RAI population risk.
Proposition 11 Suppose the uncertainty set W is as specified in Equation (5). Then for any hypothesis
h, the population RAI risk can be equivalently written as

RW (h) = inf
λ≥0,τ

EPdataG
∗
λ(ℓh(z)− τ) +

m∑
i=1

λici + τ, (6)

where G∗
λ is the Fenchel conjugate of Gλ(t) =

∑m
i=1 λigi(t).

We utilize the above expression for RW (h) to derive the following deviation bound for R̂Wn
(h).

Theorem 12 Consider the setting of Proposition 11. Suppose {gi}i=1...m are convex and differen-
tiable functions. Suppose ℓh(z) ∈ [0, B] for all h ∈ H , z ∈ Z . Suppose, for any distribution Pdata, the
minimizers (λ∗, τ∗) of Equation (6) lie in the following set: E = {(λ, τ) : ∥λ∗∥∞ ≤ Λ̄, |τ∗| ≤ T}.
Moreover, let’s suppose the optimal λ∗ for Pdata is bounded away from 0 and satisfies mini λ

∗
i ≥ Λ

¯
.

Let G,L, be the range and Lipschitz constants of G∗
λ:

G := sup
(λ,τ)∈E

G∗
λ(B − τ)−G∗

λ(−τ), L := sup
x∈[0,B],(λ,τ)∈E,λ:mini λi≥Λ

¯

∣∣∣∣∣∣∂G∗
λ(x− τ)

∂(λ, τ)

∣∣∣∣∣∣
2
.
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For any fixed h ∈ H , with probability at least 1− 2e−t

|RW (h)− R̂Wn
(h)| ≤ 10n−1/2G(

√
t+m log(nL)).

Given Theorem 12, one can take a union bound over the hypothesis class H to derive the following
uniform convergence bounds.
Corollary 13 Let N(H, ϵ, ∥ · ∥L∞(Z)) be the covering number of H in the sup-norm which is
defined as ∥h∥L∞(Z) = supz∈Z |h(z)|. Then with probability at least 1−N(H, ϵn, ∥ · ∥L∞(Z))e

−t,
the following holds for any h ∈ H: |RW (h) − R̂Wn

(h)| ≤ 30n−1/2G(
√

t+m log(nL)). Here
ϵn = n−1/2G

√
t+m log(nL).

The above bound depends on parameters (λ∗, τ∗, G, L) which specific to the constraint set W . To
instantiate it for any W one needs to bound these parameters. We note that our generalization
guarantees become sub-optimal as Λ

¯
→ 0. This is because the Lipschitz constant L could potentially

get larger as λ approaches the boundary. Improving these bounds is an interesting future direction.
Remark 14 We note that aforementioned results results follow from relatively stringent assumptions.
Exploring the impact of relaxing these assumptions is an interesting direction for future works.

7 Experiments

In this section, we demonstrate the generality of proposed RAI methods by studying one of the most
well-studied problems in RAI i.e. the case of subpopulation shift. Given a large number of possible
W , we acknowledge that this is not a complete analysis, even with respect to the problems that live
within the minimax framework. Instead, we aim to display convergence, plug-and-play generality,
and superior performance over some seminal baselines of this task. We conduct experiments on both
synthetic and real-world datasets. Please refer to Appendix for details on synthetic experiments. We
consider a number of responsible AI settings, including subpopulation shift, in the domain-oblivious
(DO) setting where we do not know the sub-populations [Hashimoto et al., 2018, Lahoti et al., 2020,
Zhai et al., 2021a], the domain-aware (DA) setting where we do [Sagawa et al., 2019], and the
partially domain-aware (PDA) setting where only some might be known.

Datasets & Domain Definition. We use the following datasets: COMPAS [Angwin et al., 2016],
CIFAR-10 (original, and with a class imbalanced split [Jin et al., 2021, Qi et al., 2021]) and CIFAR-
100. See the Appendix for more details on our datasets. For COMPAS, we consider race (White vs
Other) and biological gender (Male vs Female) as our sensitive attributes. This forms four disjoint
subgroups defined by these attributes. In the PDA setting, we partition only across the attribute race
while training, but still run tests for all four subgroups. On CIFAR-10, class labels define our 10
subpopulations. Similarly as above, for the PDA setting, we make 5 super-groups of two classes
each. On CIFAR-100, class labels define our 100 subpopulations. For the PDA setting, we make 20
super-groups, each consisting of five classes.

Baselines. We compare our method against the following baselines: (a) Deterministic classifiers
trained on empirical risk (ERM) and DRO risks, particularly the quasi-online algorithm for Group
DRO [Sagawa et al., 2019] (Online GDRO), and an ITLM-inspired SGD algorithm [Zhai et al.,
2021b, Shen and Sanghavi, 2018] for χ2 DRO (SGD (χ2)) (b) Ensemble models AdaBoost [Schapire,
1999]. Note that the purpose of our experiments is to show that we can match baselines for a specific
single desideratum (e.g. worst-case sub-population) while allowing for learning models that can solve
multiple responsible AI desiderata at the same time, for which we have no existing baselines.

Proposed Methods. We focus on Algorithm 2 and refer to FW and Gen-AdaBoost updates as
RAI-FW and RAI-GA, respectively. Moreover, our implementations include the following alterations:
• We track the unregularized objective value from Equation 1 for the validation set, and whenever it
increases we double the regularization factor η, which we find can improve generalization. • We also
use this objective w.r.t the normalized Qt to perform a line search for the step size α. For the FW
update, our search space is a ball around 1

t at round t, while for GA, we search within (0, 1).

Base Learners & Training. Training time scales linearly with the number of base learners. Inference,
though, can be parallelized if need be. We usually find training on 3-5 learners is good enough on all
scenarios explored in the paper. We defer further details of our base learners and hyperparameter
choices to the Appendix.
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Constraint sets Wn. For RAI algorithms, we use the following constraint sets: • Domain Oblivious
(DO): We use the χ2-DRO constraint set to control for worst-case subpopulations. • Domain Aware
(DA): We use the Group DRO constraint set as the domain definitions are known. • Partially
Domain-Aware (PDA): We use a novel set Wn which is the intersection over Group DRO constraints
over the known domains and χ2 constraints to control for unknown group performance. For baselines,
we use AdaBoost and SGD(χ2) for the DO setting. Online GDRO serves as our baseline for both DA
and PDA settings, where the algorithm uses whatever domain definitions are available.

Table 2: (Table 1 in the paper) Mean and worst-case expected loss for baselines, RAI-GA and RAI-FW.
(Complex) indicates the use of larger models. Constraint sets Wn are indicated in (.). Each experiment is carried
out over three random seeds and confidence intervals are reported.

Setting Algorithm COMPAS CIFAR-10 (Imbalanced) CIFAR10 CIFAR100

Average Worst Group Average Worst Class Average Worst Class Average Worst Class

DO ERM 31.3 ±0.2 31.7 ±0.1 12.1 ±0.3 30.4 ±0.2 8.3 ±0.2 21.3 ±0.5 25.2 ±0.2 64.0 ±0.7

(Complex) RAI-GA (χ2) 31.3 ±0.2 31.2 ±0.2 11.7 ±0.4 29.0 ±0.3 8.2 ±0.1 19.0 ±0.1 25.6 ±0.4 56.8 ±0.8
RAI-FW (χ2) 31.2 ±0.1 31.4 ±0.3 11.9 ±0.1 29.1 ±0.2 8.0 ±0.3 15.4 ±0.4 25.4 ±0.2 58.0 ±1.1

DO

ERM 32.1 ±0.3 34.6 ±0.4 14.2 ±0.1 33.6 ±0.3 11.4 ±0.4 27.0 ±0.1 27.1 ±0.3 66.0 ±1.1
AdaBoost 31.8 ±0.4 32.6 ±0.3 15.2 ±0.2 40.6 ±0.2 12.0 ±0.1 28.7 ±0.3 28.1 ±0.2 72.2 ±1.2
SGD (χ2) 32.0 ±0.2 33.7 ±0.2 13.3 ±0.3 31.7 ±0.4 11.3 ±0.3 24.7 ±0.1 27.4 ±0.1 65.9 ±1.2

RAI-GA (χ2) 31.5 ±0.2 33.2 ±0.3 14.0 ±0.1 32.2 ±0.2 10.8 ±0.4 25.0 ±0.2 27.4 ±0.4 65.0 ±0.8
RAI-FW (χ2) 31.6 ±0.1 32.5 ±0.5 13.9 ±0.1 32.6 ±0.3 10.9 ±0.4 23.4 ±0.2 27.5 ±0.1 63.8 ±0.6

DA Online GDRO 31.7 ±0.2 32.2 ±0.3 13.1 ±0.2 26.6 ±0.2 11.2 ±0.1 21.7 ±0.3 27.3 ±0.1 57.0 ±0.5
RAI-GA (Group) 32.0 ±0.1 32.7 ±0.1 13.0 ±0.3 27.3 ±0.4 11.5 ±0.1 22.4 ±0.2 27.4 ±0.2 56.6 ±1.1
RAI-FW (Group) 32.1 ±0.2 32.3 ±0.2 13.0 ±0.2 26.0 ±0.1 11.4 ±0.3 20.3 ±0.1 27.9 ±0.2 52.9 ±0.9

PDA Online GDRO 31.5 ±0.1 32.7 ±0.2 13.4 ±0.1 32.2 ±0.2 11.3 ±0.2 25.2 ±0.1 27.7 ±0.2 64.0 ±0.8
RAI-GA (Group ∩ χ2) 31.4 ±0.4 32.9 ±0.2 13.0 ±0.3 30.1 ±0.1 10.8 ±0.2 23.7 ±0.2 27.5 ±0.1 62.5 ±0.6
RAI-FW (Group ∩ χ2) 31.8 ±0.2 32.3 ±0.1 13.5 ±0.3 29.4 ±0.3 11.2 ±0.4 24.0 ±0.2 27.9 ±0.3 58.9 ±0.7

Results and Discussion. We run our methods and baselines under the settings described above and
report the results in Table 2. As such, we can make the following observations:

1. RAI-FW and RAI-GA methods significantly improve the worst-case performance with only a few
base learners across all datasets in all three settings, while maintaining average case performance.
Moreover, For seemingly harder tasks i.e. a large gap between average and worst-case performance,
the algorithms are able to improve significantly over the baselines. For example, we observe a 5%
improvement in performance in the case of CIFAR-100.

2. The plug-and-play framework allows for several different Wn to enhance various responsible AI
qualities at once. We demonstrate this with the partial domain aware setting (PDA), where the
performance lead widens, indicating that RAI is able to jointly optimize effectively for both known
and unknown subpopulations while Online GDRO suffers from some of the group information
being unknown. In practice, one can construct many more novel sets Wn.

3. Although bigger (complex) models exhibit stronger performance than RAI ensembles, there are
several caveats to this observation. Firstly, these models are ∼10-15 times larger than our base
models. This limits their use w.r.t both training & inference compute required. However, RAI
ensembles utilize a small number of much smaller models which can be individually trained quite
easily. Even with these large models as base learners, constructing ensembles exhibits a perfor-
mance boost, indicating that our framework is able to “boost” models of varying complexities.

8 Conclusion

Under the umbrella of “responsible AI”, an emerging line of work has attempted to formalize
desiderata ranging over ethics, fairness, robustness, and safety, among others. Many of these settings
(Table 1) can be written as min-max problems involving optimizing some worst-case loss under a set
of predefined distributions. For all the problems that can be framed as above, we introduce and study
a general framework, which we refer to as Responsible AI (RAI) games. Our framework extends to
classical boosting scenarios, offering boosting-based algorithms for RAI games alongside proven
convergence guarantees. We propose practical algorithms to solve these games, as well as statistical
analyses of solutions of these games. We find that RAI can guarantee multiple responsible AI aspects
under appropriate choices of uncertainty sets.
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A Broader Impact

Responsible AI has become an important topic as ML/AI systems increase in scale, and are being
deployed in a variety of scenarios. Models not optimized for responsible facets can have disastrous
consequences [Kalra and Paddock, 2016, Angwin et al., 2016, Fuster et al., 2018].

Our research promotes the principles of Responsible AI (RAI), encompassing ethics, fairness, and
safety considerations. By providing a framework to consider these simultaneously, this research
could help prevent scenarios where optimizing for one aspect unintentionally compromises another
[Ma et al., 2022], mitigating the risk of creating biases or vulnerabilities in AI systems.

We also address the fragmentation in recent work around Responsible AI. The ’plug-and-play’
nature of our approach allows for the easy adaptation of algorithms for different Responsible AI
considerations. This adaptability could lead to more practical and user-friendly tools for implementing
RAI across different applications.

Numerous ML models like Large language models, (GPT-3, GPT-4), are rapidly transforming
numerous domains, including natural language processing, data analysis, content creation, and more.
Given their remarkable ability to generate human-like text, they can be used to construct narratives,
answer queries, or even automate customer service. However, with such capabilities come significant
responsibilities, as these models can inadvertently perpetuate biases, misinformation, or harmful
content if not correctly regulated. Therefore, ensuring the responsible behavior of these models is
crucial [Chan, 2023, Bender et al., 2021]. Our research presents a general framework that can be
pivotal in the responsible design of such large language models.

B Limitations

We now identify some limitations of our current work, along with corresponding future directions.

• To more concretely establish the empirical superiority of our optimization techniques, more
experiments involving large over-parametrized models need to be conducted.

• The proposed generalization bounds are not tight for all risks. A more careful analysis would be
needed for such a generalization.

• Our framework only handles uncertainty sets that are supported on the training data. It’d be inter-
esting to generalize our framework further to support other uncertainty sets based on Wasserstein
divergences that are not necessarily supported on the training data.

• Finally, the presence of outliers can often destabilize training of large models[Zhai et al., 2021b].
However, our current framework assumes the training data is un-corrupted. In future, we aim to
extend our framework to support corruptions in the training data.

• We note that our framework can also be extended to the problem of adversarial test-time robustness
where there is an adversary corrupting the inputs sent to the model during inference. Let A(x)
be the set of perturbations that the adversary can add to input x. The uncertainty set in this case
contains distributions supported on {(x′, y′) : ∃(x, y) ∈ P̂data such that x′ ∈ x+A(x), y′ = y}.

Our framework primarily covers RAI aspects which can written as minmax problems. Here we
provide some other notions of RAI which our framework does not directly cover.

Fairness: Various notions of fairness have been studied by the ML community. While our frame-
work captures minimax group fairness, it doesn’t capture other notions of group fairness such as
Demographic Parity [Louizos et al., 2015], Equality of Odds, Equality of Opportunity [Hardt et al.,
2016b]. Our framework doesn’t capture individual fairness notions.

Robustness: While our framework covers group robustness and certain forms of distributional
robustness, it doesn’t cover robustness to Wasserstein perturbations and other (un)structured distribu-
tion shifts often studied in the domain generalization community [Wang et al., 2018, Addepalli et al.,
2022, Cha et al., 2022].
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C Terminology and Notation

C.1 Terminology

Strongly Convex Sets A set A is λ-strongly convex w.r.t a norm ∥·∥, if, for any x, y ∈ A, γ ∈ [0, 1],
the ∥ · ∥ norm ball with origin γx+ (1− γ)y and radius γ(1− γ)λ∥x− y∥2/2 lies in A.

f -divergence For any two probability distributions P,Q, f -divergence between P and Q is defined
as Df (Q||P ) = EP [f(dQ/dP )]. Here f : R+ → R is a convex function such that f(1) = 0.

C.2 Notation

Table 3: Notation

Symbol Description
X Input Random Variable
X Input Domain
Y Output Random Variable
Y Output Domain
Z Sample Random Variable (X,Y )
Z Sample Domain X × Y
S Sample Set

Pdata Data Generating Distribution
P̂data Empirical Distribution (Uniform) over S
H Set of Hypothesis
Q Distribution over Hypothesis from H
h Any given hypothesis

hrand;Q Randomized Ensemble given by Q
hdet;Q De-randomized/Deterministic Classifier corresponding to hrand;Q

l Loss Function
R̂(h) Empirical Risk of h
Wn Set of allowed sample weights (aka Uncertainty Set)

R̂Wn(h) Empirical RAI Risk of h
RW (h) Population RAI Risk of h

R̂rand;Wn
(Q) Randomized Ensemble RAI Risk

KL(p||q) KL-divergence Metric between p and q
Gi Subpopulation/Domain i
Reg Any given regularizer function

D Background

D.1 Two Player Zero-sum Games

Consider the following game between two players. One so-called “row player” playing actions
h ∈ H , and the other “column player” playing actions z ∈ Z. Suppose that when the two players
play actions h, z respectively, the row player incurs a loss of l(h, z) ∈ R, while the column player
incurs a loss of −l(h, z). The sum of the losses for the two players can be seen to be equal to zero so
such a game is known as a two-player zero-sum game. It is common in such settings to refer to the
gain l(h, z) of the column player, rather than its loss of −l(h, z). Both players try to maximize their
gain/minimize their loss.

It is common in game theory to consider a linearized game in the space of probability measures,
which is in general better behaved. To set up some notation, for any probability distributions Ph over
H , and Pz over Z, define:

l(Ph, Pz) = EPh,Pz
l(h, z)
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Nash Equilibrium A Nash Equilibrium (NE) is a stable state of a game where no player can gain
by unilaterally changing their strategy while the other players keep theirs unchanged. In a two-player
zero-sum game, a Nash Equilibrium is a pair of mixed strategies (h∗, z∗) satisfying

sup
z∈Z

l(h∗, z) ≤ l(h∗, z∗) ≤ inf
h∈H

l(h, z∗)

Note that whenever a pure strategy NE exists, the minimax and maximin values of the game are equal
to each other:

inf
h∈H

sup
z∈Z

l(h, z) = l(h∗, z∗) = sup
z∈Z

inf
h∈H

l(h, z)

What often exists is a mixed strategy NE, which is precisely a pure strategy NE of the linearized
game. That is, (P ∗

h , P
∗
z ) is called a mixed strategy NE of the zero-sum game, if

sup
Pz∈PZ

l(P ∗
h , Pz) ≤ l(P ∗

h , P
∗
z ) ≤ inf

Ph∈PH

l(Ph, P
∗
z )

For this paper, Q ≡ Ph, w ≡ Pz , ∆H ≡ PH and Wn ≡ PZ .

ϵ-Approximate Nash Equilibrium An ϵ-approximate Nash Equilibrium is a relaxation of the Nash
Equilibrium, where each player’s strategy may not be the best response but is still within ϵ of the best
response. Formally, a pair of mixed strategies (Ph, Pz) is an ϵ-approximate Nash Equilibrium if

inf
Ph∈PH

l(Ph, Pz) + ϵ ≥ l(Ph, Pz) ≥ sup
Pz∈PZ

l(Ph, Pz)− ϵ (7)

No Regret Algorithms No-regret algorithms are a class of online algorithms used in repeated
games. The regret of a player is defined as the difference between their cumulative payoff and the
best cumulative payoff they could have achieved by consistently playing a single strategy. A no-regret
algorithm guarantees that the average regret of a player goes to zero as the number of iterations
(or rounds) tends to infinity. In the context of two-player zero-sum games, if both players follow
no-regret algorithms, their average strategy profiles converge to the set of Nash Equilibria.

D.2 Online Learning

A popular and widely used approach for solving min-max games is to rely on online learning
algorithms [Hazan, 2016, Cesa-Bianchi and Lugosi, 2006]. In this approach, the row (minimization)
player and the column (maximization) player play a repeated game against each other. Both players
rely on online learning algorithms to choose their actions in each round of the game, with the objective
of minimizing their respective regret. The following proposition shows that this repeated gameplay
converges to a NE.
Proposition 15 ([Gupta et al., 2020]) Consider a repeated game between the minimization and
maximization players in the linearized game. Let (P t

h, P
t
z) be the actions chosen by the players in

iteration t. Suppose the actions are such that the regret of each player satisfies:
T∑

t=1

l(P t
h, P

t
z)− inf

h∈H

T∑
t=1

l(h, P t
z) ≤ ϵ1(T )

sup
z∈Z

T∑
t=1

l(P t
h, z)−

T∑
t=1

l(P t
h, P

t
z) ≤ ϵ2(T )

Let PhAV G, PzAV G denote the mixture distributions 1
T

∑T
i=1 P

i
h and 1

T

∑T
i=1 P

i
z . Then

(PhAV G, PzAV G) is an ϵ-approximate mixed NE of the game with:

ϵ =
ϵ1(T ) + ϵ2(T )

T

There exist several algorithms such as FTRL, FTPL, and Best Response (BR), which guarantee
sub-linear regret. It is important to choose these algorithms appropriately, given the domains H,Z as
our choices impact the rate of convergence to a NE and also the computational complexity of the
resulting algorithm.
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D.3 General Minimax Theorems (Proof of Proposition 1)

We first state the following convenient generalization of the original Von Neumann’s minimax
theorem.
Proposition 16 (Von Neumann-Fan minimax theorem, [Borwein, 2016]) Let X and Y be Banach
spaces. Let C ⊂ X be nonempty and convex, and let D ⊂ Y be nonempty, weakly compact, and
convex. Let g : X ×Y → R be convex with respect to x ∈ C and concave and upper-semicontinuous
with respect to y ∈ D, and weakly continuous in y when restricted to D. Then,

sup
y∈D

inf
x∈C

g(x, y) = inf
x∈C

sup
y∈D

g(x, y)

We now proceed to the proof of Proposition 1. Observe that a convex, compact Wn satisfies the
conditions for D in the above proposition. Moreover, we have C = ∆H i.e. the set of probability
measures on Θ. It is indeed nonempty and convex. Also, our g is bilinear in Q and w, and thus is
convex-concave. Thus, Proposition 1 directly follows from the above result.

Relaxations We can relax the assumption that h is parameterized by a finite dimensional vector θ.
For simpler H , the minimax result directly holds with mild assumptions.

• If H = {h1, h2, ...hn} i.e. H is finite. Then the original minimax theorem by Neumann
holds for arbitrary functions l.

• If H = {h1, h1, ...} i.e. H is denumerable. We further assume l is a bounded loss function.
Then from Theorem 3.1 from [Wald, 1945] to compact and convex W over n (finite)
datapoints, we can conclude the relation holds.

Hoever, minimax theorems for more general H require other conditions like the continuity of loss,
compactness in function space, etc. See [Simons, 1995] and [Raghavan, 1994].

E Ensemble RAI Games

E.1 Alternative Definitions: Deterministic Ensembles

Alternative definitions for deterministic ensembles could be considered. For example, one could
consider hdet;Q(x) = argminy∈Y Eh∼Qℓ(h(x), y). [Cotter et al., 2019, Wu et al., 2022] designed
other more sophisticated strategies, but these are largely domain dependent. For reasons that will be
explained later, we stick with Definition 3 in this work. For regression, a popular de-randomization
strategy is to compute the expected prediction: hdet;Q(x) = Eh∼Q[h(x)].

E.2 Proofs

E.2.1 Proposition 2

Proof.

sup
w∈∆n

ÊwI[hdet;Q(x) ̸= y] = sup
i∈[n]

I[yi ̸= argmax
y∈Y

EQ[h(xi) = y]]

= I[ sup
w∈∆n

EwEQI[h(x) ̸= y] ≥ 1/2]

= I[R̂Wn
(hrand;Q) ≥ 1/2]

as required.
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E.2.2 Proposition 3

Proof. Denote yQ(x) = argmaxy∈Y EQ(h(x) = y). Then,

R̂Wn
(hdet;Q) = sup

w∈Wn

Ewℓ(yQ(x), y)

≤ sup
w∈Wn

Ewℓ(yQ(x), y)
PQ(h(x) = yQ(x))

1/γQ

≤ γQ sup
w∈Wn

Ew

∑
y′∈Y

ℓ(y′, y)PQ(h(x) = y′)

= γQ sup
w∈Wn

EwEQ

∑
y′∈Y

ℓ(y′, y)I[h(x) = y′]

= γQ sup
w∈Wn

EwEQℓ(h(x), y)

= γQR̂Wn
(hrand;Q),

as required.

F Algorithms

F.1 Convergence Rates

F.1.1 Gameplay

We begin with the following lemma adapted from [McMahan, 2017] (Theorem-1)
Lemma 17 Consider the setting of Algorithm 1, and further assume that ηt ≥ ηt−1 > 0, Reg(w) ≥ 0,
ηtReg(w) is 1-strongly concave w.r.t. some norm ∥.∥(t). Then for any w∗ ∈Wn and any T > 0, we
have:

RegretD,T ≤ ηT−1Reg(w∗) +
1

2

T∑
t=1

∥lt∥2(t−1),∗ (where lti = l(ht(xi), yi))

Consider ηt = η and ∥.∥(t) =
√
η∥.∥1, then

RegretD,T ≤ ηReg(w∗) +
1

2η

T∑
t=1

∥lt∥2∗ ≤ ηD2
R +

T

2η

Moreover, as H-player plays BR,
RegretH,T ≤ 0

Using Proposition 15, we achieve ϵ-approximate NE with:

ϵ = ϵT ≤
RegretH,T +RegretD,T

T
=

ηD2
R

T
+O

(
1

η

)
Using definition in Equation 7 gives us the required result.

F.1.2 Greedy

FW Update Note that we are trying to minimize the objective Lη(Q) w.r.t Q by the FW update.
Using properties of Fenchel conjugates, it is well known that Lη(Q) is 1

η smooth w.r.t. ∥.∥1. Also,
the diameter of the simplex ∆H w.r.t. ∥.∥1 is ≤ 1. By [Jaggi, 2013] (Lemma 7), we have Cf ≤ 1

η ,
and thus by [Jaggi, 2013] Theorem 1, we have:

Lη(Q
T )−min

Q
Lη(Q) ≤ 2

η(T + 2)
= O

(
1

ηT

)
Using the definition of Lη(Q),

L(QT )−min
Q

L(Q) ≤ ηD2
R +O

(
1

ηT

)
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Gen-AdaBoost Update This update boils down to a standard coordinate descent update on convex
and 1

η smooth Lη(Q) (w.r.t ∥.∥1). Following along the lines of analysis in [Boyd and Vandenberghe,
2004] (Section 9.4.3),

Lη(Q
t) ≤ Lη(Q

t−1)− η

2
∥∇QLη(Q

t−1)∥2∞

Using this decent equation, we can follow standard gradient descent analysis to get:

Lη(Q
T )−min

Q
Lη(Q) ≤ O

(
1

ηT

)
The rest of the argument will go through as above.

F.2 Closed Form Updates for different uncertainty sets

In this section, we derive closed-form updates for Equation 2 for the entropic regularizer (also
mentioned below). We consider common settings mentioned in Table 1.

wt ← argmax
w∈Wn

t−1∑
s=1

Ewℓ(h
s(x), y)− ηt−1

∑
w log(w)

• Wn = {P̂data} (Empirical Risk Minimization)

wt ← P̂data

• Wn = ∆n (Worst Case Margin)

wt ← ut

∥ut∥1
where ut

i ← exp

(
−
∑t−1

s=1 l(h
s(xi), yi)

ηt−1

)

• Wn = {w : w ∈ ∆n, w ⪯ 1
αn} (α-CVaR)

wt
i ← min

(
1

αn
, exp

(
−
∑t−1

s=1 l(h
s(xi), yi)

ηt−1
− λ

))
for λ S.T.

∑
i

wt
i = 1

Algorithm 3 describes a projection procedure to find such λ in O(n log n) time.

Algorithm 3 Projection for α-CVaR set
Input: l, η, α

1: yi ← exp
(
−

∑t−1
s=1 l(hs(xi),yi)

ηt−1

)
2: v ← 1

αn
3: if yi

∥yi∥1
≤ v ∀i then

4: wi ← yi

∥yi∥1

5: return w
6: else
7: y(i) ← sort{yi} S.T. y(i) ≥ y(j) ∀ i ≤ j
8: function CANDIDATE(m)
9: cm ← v

y(m)

10: Sm ←
∑

i v1cmy(i)≥v + cmy(i)1cmy(i)<v

11: return Sm

12: end function
13: Let m∗ ← binary search for the smallest m such that CANDIDATE(m) ≤ 1

14: cm∗ ← 1−
∑

i≤m∗ v∑
i>m∗ y(i)

15: wi ← min(cm∗yi, v)
16: return w
17: end if

23



• Wn = {w : D(w||P̂data) ≤ ρn} (DRO) For general f -divergences, there do not exist closed form
updates for wt. However, they can still be empirically solved using FW-like updates.

• Wn = {P̂data(G1), P̂data(G2), . . . P̂data(GK)} (Group DRO)

wt ← ut

∥ut∥1
where ut

i ← exp

(
−
∑t−1

s=1

∑
i∈Gk

l(hs(xi), yi)

ηt−1sk

)
for i ∈ Gk, sk = |Gk|

F.3 Proof of Corollary 8

Proof. Note that Reg is 1-strongly concave w.r.t ∥.∥1 and ∥.∥2. A conservative upper bound for
D2

R ≤ log(n) for all Wn(⊆ ∆n). Thus, we can thus take appropriate values of η to get:

L(QT ) ≤ min
Q

L(Q) +O

(√
log(n)

T

)

Thus, we have ϵ ∼ O
(√

log(n)
T

)
from Proposition 15.

G Generalization

G.1 Population Risk

We first present a proposition which gives an equivalent characterization of the RAI population risk
Proposition 18 The following are equivalent characterizations of the population RAI risk

1.

RW (h) = sup
P :P≪Pdata,

dP
dPdata

∈W

EP [ℓ(h(x), y)].

2.

RW (h) = sup
r:Z7→R+,

∫
r(z)dPdata(z)=1,r∈W

EPdata [r(z)ℓh(z)].

Proof. The equivalence between (1) and (2) follows by reparameterizing P in (1) as follows

dP (z) = r(z)dPdata(z),

for some r(z) ≥ 0

Now suppose the uncertainty set W is as defined in Equation (5). The next proposition uses duality
to derive an equivalent characterization of the RAI risk in this setting.
Proposition 19 Suppose the uncertainty set W is as specified in Equation (5). Then for any hypothesis
h, the population RAI risk can be equivalently written as

RW (h) = inf
λ≥0,τ

EPdataG
∗
λ(ℓh(z)− τ) +

m∑
i=1

λici + τ, (8)

where G∗
λ is the Fenchel conjugate of Gλ(t) =

∑m
i=1 λigi(t).

Proof. We rely on duality to prove the proposition. First observe that the population RAI risk can be
rewritten as

RW (h) = sup
r:Z7→R+,

∫
r(z)dPdata(z)=1,r∈W

EPdata [r(z)ℓh(z)]

(a)
= sup

r:Z7→R+

inf
λ≥0,τ

EPdata [r(z)ℓh(z)] + τ

(
1−

∫
r(z)dPdata(z)

)
+

m∑
i=1

λi

(
ci −

∫
gi(r(z))dPdata(z)

)
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Since the above objective is concave in r and linear in λ, τ , we rely on Lagrangian duality to rewrite
it as

RW (h) = inf
λ≥0,τ

sup
r:Z7→R+

L(r, λ, τ),

where L(r, λ, τ) is defined as:

L(r, λ, τ) = EPdata

[
r(z)(ℓh(z)− τ)−

m∑
i=1

λigi(r(z))

]
+

m∑
i=1

λici + τ.

Recall the interchangeability theorem:

inf
r∈H

∫
F (r(z), z)p(z)dz =

∫ (
inf
t∈R

F (t, z)

)
p(z)dz,

so long as the spaceH is decomposable. Since in our case we are working with the set L1(Z, P ) =
{r : Z 7→ R :

∫
r(z)p(z)dz = 1}, which is decomposable, we can apply the interchangeability

theorem to get:

sup
r:Z7→R+

EPdata

[
r(z)(ℓh(z)− τ)−

m∑
i=1

λigi(r(z))

]
= EPdata sup

t≥0

[
t(ℓh(z)− τ)−

m∑
i=1

λigi(t)

]
= EPdataG

∗
λ(ℓh(z)− τ),

where Gλ(t) =
∑m

i=1 λigi(t), and G∗
λ is its Fenchel conjugate. so that:

R(ℓh) = inf
λ≥0,τ

m∑
i=1

λici + τ + EPdataG
∗
λ(ℓh(z)− τ).

We have the following properties of the Fenchel conjugate G∗
λ(t). These follow from the properties

of Fenchel conjugates described in Rockafellar [1970].
Lemma 20 Consider the setting of Proposition 19. The Fenchel conjugate G∗

λ is convex, differentiable
and an increasing function that satisfies

dG∗
λ(x)

dx
≥ 0, ∀x ∈ R.

Proof of Proposition 9 For the sake of clarity, we first state Proposition 9 below.
Proposition 21 (Bayes optimal classifier) Consider the problem of binary classification where
Y = {−1,+1}. Suppose ℓ(h(x), y) = ϕ(yh(x)) for some ϕ : R → [0,∞) which is either the 0/1
loss, or a convex loss function that is differentiable at 0 with ϕ′(0) < 0. Suppose the uncertainty
set W is as specified in Equation (5). Moreover, suppose {gi}i=1...m are convex and differentiable
functions. Then, the vanilla Bayes optimal classifier is also a RAI-Bayes optimal classifier.

Proof. Following Proposition 19 it is easy to see that the RAI Bayes optimal classifier is the minimizer
of the following problem

inf
h

inf
λ≥0,τ

m∑
i=1

λici + τ + EPdataG
∗
λ(ϕ(yh(x))− τ),

where the minimization over h is over the set of all classifiers. For any fixed (λ, τ), we now show that
the classifier h that minimizes the above optimization problem is a vanilla Bayes optimal classifier.
First note that the above optimization problem, for a fixed (λ, τ), can be rewritten as

inf
h

EPdataG
∗
λ(ϕ(yh(x))− τ).

Using the interchangeability theorem, we can further rewrite this as

EPx
data

[
inf

u∈{−1,+1}
EPdata(·|x) [G

∗
λ(ϕ(uy)− τ)]

∣∣∣x] .
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Here, P x
data is the marginal distribution of Pdata over x, and Pdata(·|x) is the distribution of y condi-

tioned on x.

Now suppose ϕ is the 0/1 loss

ϕ(x) =

{
0, if x > 0

1, otherwise
.

Recall, G∗
λ is an increasing function (see Lemma 20). So G∗

λ(−τ) ≤ G∗
λ(1 − τ). Using this, it is

easy to see that for any x, the following is a minimizer of infu∈{−1,1} EPdata(·|x) [G
∗
λ(ϕ(uy)− τ)]

u∗ =

{
1, if Pdata(y = 1|x) ≥ 1

2

−1, otherwise
.

This shows that the vanilla Bayes optimal classifier is a minimizer of the population RAI risk.

Now suppose ϕ : R → [0,∞) is convex, differentiable at 0 with ϕ′(0) < 0. Moreover, suppose
h : X → R is a real valued classifier. In this case, the RAI Bayes optimal classifier is a minimizer of
the following objective

EPx
data

[
inf
u∈R

EPdata(·|x) [G
∗
λ(ϕ(uy)− τ)]

∣∣∣x] .
Let ι(x) = G∗

λ(ϕ(x)− τ). It is easy to see that ι(x) is convex. This is because ι′(x) = (G∗
λ)

′(ϕ(x)−
τ)ϕ′(x) is an increasing function; this follows from the fact that G∗

λ is convex with non-negative
gradients. Moreover, ι′(0) = (G∗

λ)
′(ϕ(0) − τ)ϕ′(0) ≤ 0. Then, Bartlett et al. [2006], Tewari and

Bartlett [2007] show that for any x, the following u∗ is a minimizer of the inner optimizatin problem:
u∗ > 0 if Pdata(y = 1|x) ≥ 1

2 , u∗ < 0 otherwise. This shows that vanilla Bayes optimal classifier is
minimizer of the population RAI risk.

G.2 Generalization Guarantees

G.2.1 Proof of Proposition 11

Proposition 11 directly follows from Proposition 19.

G.2.2 Proof of Theorem 12

We first present a key concentration result we use in the proof.
Lemma 22 (Hoeffding bound [Wainwright, 2019]) Suppose that the random variables {Xi}ni=1
are independent with mean µi, and bounded between [a, b]. Then for any t ≥ 0, we have

P

(
|

n∑
i=1

Xi − µi| ≥ t

)
≤ 2 exp

(
− 2t2

n(b− a)2

)
.

We now proceed to the proof of the Theorem. Following Proposition 11, we know that the population
and empirical RAI risk of a classifier h can be written as

RW (h) = inf
λ≥0,τ

m∑
i=1

λici + τ + EPdataG
∗
λ(ℓh(z)− τ)

R̂Wn(h) = inf
λ≥0,τ

m∑
i=1

λici + τ + EP̂data
G∗

λ(ℓh(z)− τ)

Our goal here is to bound the following quantity for any given h:

|RW (h)− R̂Wn(h)| ≤ sup
(λ,τ)∈E,λ:mini λi≥Λ

¯

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣.
The rest of the proof focuses on bounding the RHS of the above equation. The overall idea is to first
provide a high probability bound of the RHS for any given λ, τ . Next, we take a union bound over all
feasible (λ, τ)’s by constructing an appropriate ϵ-net.
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Fixed λ, τ . Observe that G∗
λ(ℓh(z)− τ) is bounded and satisfies

G∗
λ(−τ) ≤ G∗

λ(ℓh(z)− τ) ≤ G∗
λ(B − τ).

This follows from the fact that G∗
λ is an increasing function (see Proposition 20), and ℓh is bounded

between 0 and B. From Heoffding bound we know that for any fixed h ∈ H , the following holds
with probability at least 1− 2e−t∣∣∣EPdataG

∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣ ≤ G

√
t

n
.

Union bound over λ, τ . Define set E ′ as

E ′ := {(λ, τ) : λ ≥ 0,min
i

λi ≥ Λ} ∩ E . (9)

Let N(E ′, ϵ, ∥ · ∥2) be the ϵ-net over E ′ in ∥ · ∥2 norm. It is well known that there exists such a set
whose size is upper bounded by [Wainwright, 2019]

|N(E ′, ϵ, ∥ · ∥2)| ≤ O

(
Λ̄ + T

ϵ

)m+1

. For any (λ, τ) ∈ E ′, let (λϵ, τϵ) be an element in N(E ′, ϵ, ∥ · ∥2) that is ϵ-close to (λ, τ). Now
consider the following

sup
(λ,τ)∈E′

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣
≤ sup

(λ,τ)∈N(E′,ϵ,∥·∥2)

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣
+ sup

(λ,τ)∈E′

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EPdataG

∗
λϵ
(ℓh(z)− τϵ)

∣∣∣
+ sup

(λ,τ)∈E′

∣∣∣EP̂data
G∗

λ(ℓh(z)− τ)− EP̂data
G∗

λϵ
(ℓh(z)− τϵ)

∣∣∣
Since G∗

λ is L-Lipschitz, the last two terms in the RHS above can be upper bounded by Lϵ. Substitut-
ing this in the above equation, we get

sup
(λ,τ)∈E′

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣
≤ sup

(λ,τ)∈N(E′,ϵ,∥·∥2)

∣∣∣EPdataG
∗
λ(ℓh(z)− τ)− EP̂data

G∗
λ(ℓh(z)− τ)

∣∣∣+ 2Lϵ

(a)

≤ G

√
t

n
+ 2Lϵ,

where (a) follows from Equation (9), and holds with probability at least 1 −
(

Λ̄+T
ϵ

)m+1

e−t.

Choosing ϵ = G
L

√
t
n , we get the desired result.

G.3 Proof of Corollary 13

The proof follows from a standard covering number argument. For any h ∈ H , let hϵ be the point in
the ϵ-net that is closest to h. Then we have

sup
h∈H
|RW (h)− R̂Wn

(h)| ≤ sup
h∈N(H,ϵn,∥·∥L∞(Z))

|RW (h)− R̂Wn
(h)|

+ sup
h∈H
|RW (h)−RW (hϵ)|+ sup

h∈H
|R̂Wn

(h)− R̂Wn
(hϵ)|

Observe that the last two terms above are bounded by ϵn. Also observe that the first term in the RHS
can be upper bounded by 10n−1/2G(

√
t+m log(nL)) with probability at least 1− 2N(H, ϵn, ∥ ·

∥L∞(Z))e
−t. Combining these two and substituting the value of ϵn gives us the required result.
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H Algorithms: Further Discussion

H.1 Equivalence Conditions for RAI Algorithms (1 and 2)

Proposition 23 Assume that we set αt =
1
t and perform coordinate descent update in Algorithm 2

(FW) i.e. Gt = argminh∈H

〈
h,∇QLη(Q

t−1)
〉
, then the update is equivalent to the update given by

Algorithm 1 with ηt = ηt.

Proof. From Equation 3, and using the fact that Lη(Q) can be written as a fenchel conjugate, we
know that

∇QLη(Q
t−1) = argmax

w∈Wn

Eh∼Qt−1Ewℓ(h(x), y) + ηReg(w)

= argmax
w∈Wn

t−1∑
s=1

Ewℓ(h
s(x), y) + ηtReg(w)

(
as αt =

1

t

)
This matches Equation 2 with ηt−1 = ηt. Moreover,

Gt = argmin
h∈H

Eh∈HEwt l(h(x), y) where wt = ∇QLη(Q
t−1)

This corresponds to the update for ht in Algorithm 1. Thus, we have our equivalence.

H.2 Weak Learning Conditions

For the well-known scenario of binary classification and zero-one loss, we recover the quasi-AdaBoost
weak learning condition:
Proposition 24 Consider the scenario of binary classification and l as the zero-one loss. If the
H-player only plays an approximate best response strategy i.e. ht satisfies Ewtℓ(ht(x), y) ≤ 1/2− γ

for some γ > 0, then R̂Wn(hdet:QT ) = 0 for T > T0 for some large enough T0.

Proof. Since the D-player uses regret optimal strategy, we have that:

1

T

T∑
t=1

Ewtℓ(ht(x), y) ≥ max
w∈Wn

1

T

T∑
t=1

Ewℓ(h
t(x), y)− ϵT ,

while from the approximate-BR condition we have that:

1

T

T∑
t=1

Ewtℓ(ht(x), y) ≤ 1/2− γ,

so that we have:

max
w∈Wn

1

T

T∑
t=1

Ewℓ(h
t(x), y) ≤ 1/2− γ + ϵT ,

so that for T > T0 large enough so that ϵT < γ/2, we have that:

max
w∈Wn

1

T

T∑
t=1

Ewℓ(h
t(x), y) < 1/2− γ/2.

As QT assigns mass 1/T to each of {ht}Tt=1, we have:

R̂Wn
(hrand;QT ) = max

w∈Wn

EQTEwℓ(h
t(x), y) < 1/2− γ/2

=⇒ R̂Wn
(hdet:QT ) = 0 (from Proposition 2)

Hence, we see that hdet;QT incurs zero error.

For the general setting, we have a slightly stronger weak learning condition, which follows from the
analysis of Frank-Wolfe update [Freund and Grigas, 2014, Jaggi, 2013].
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Proposition 25 Consider Algorithm 2 with the FW update and Reg(.) as a 1-strongly concave
regularize w.r.t. ∥.∥1. If Gt satisfies Gt ≤ minQ

〈
Q,∇QLη(Q

t−1)
〉
+ δt, where {δk} is the

sequence of approximation errors with δt ≥ 0, then:

1. If δt ≤ ϵ
η(t+2) i.e. decaying errors, then Lη(Q

T ) ≤ minQ Lη(Q) + 2(1+ϵ)
η(T+2)

2. If δt ≤ ϵ
η i.e. constant errors, then Lη(Q

T ) ≤ minQ Lη(Q) + 2
η(T+2) +

ϵ
η

Proof. Note that we are trying to minimize the objective Lη(Q) w.r.t Q by the FW update. Using
properties of Fenchel conjugates, it is well known that Lη(Q) is 1

η smooth w.r.t. ∥.∥1. Also, the
diameter of the simplex ∆H w.r.t. ∥.∥1 is ≤ 1.

1. By [Jaggi, 2013] (Lemma 7, Theorem 1), we have Cf ≤ 1
η , and thus, we have:

Lη(Q
T )−min

Q
Lη(Q) ≤ 2(1 + ϵ)

η(T + 2)

2. By [Freund and Grigas, 2014] (Theorem 5.1), in case of approximation errors, the FW/optimality
gap converges as before along with a convex combination of errors at each time step i.e. if we
are able to solve the linear optimization problem within constant error ϵ

η , then these errors do not
accumulate. Moreover, the convex combination can be bound by the maximum error possible and
we get,

Lη(Q
T )−min

Q
Lη(Q) ≤ 2

η(T + 2)
+

ϵ

η

I Experiments

RAI games constitute an optimization paradigm that goes beyond traditional approaches such as
distributionally robust optimization, fairness, and worst-case performance. We have seen that for
specific uncertainty sets W , RAI Games optimize over well-established robust optimization objectives.
As such, the purpose of our experiments is to demonstrate the practicality and generality of our
proposed strategies, rather than establishing state-of-the-art over baselines. Given a large number
of possible W , we do not attempt an exhaustive empirical analysis. Instead, we underscore the
plug-and-play nature of RAI Games.

I.1 Setup

Subpopulation Shift A prevalent scenario in machine learning involves subpopulation shift, neces-
sitating a model that performs effectively on the data distribution of each subpopulation (or domain).
We explore the following variations of this setting:

• Domain Oblivious (DO). Recent work [Hashimoto et al., 2018], [Lahoti et al., 2020], [Zhai
et al., 2021a] studies the domain-oblivious setting, where the training algorithm lacks knowledge
of the domain definition. In this case, approaches like α-CVaR and χ2-DRO aim to maximize
performance over a general notion of the worst-off subpopulation.

• Domain Aware (DA). Several prior works [Sagawa et al., 2019] have investigated the domain-aware
setting, in which all domain definitions and memberships are known during training.

• Partially Domain-Aware (PDA). More realistically, in real-world applications, there usually
exist multiple domain definitions. Moreover, some of these domain definitions may be known
during training, while others remain unknown. The model must then perform well on instances
from all domains, regardless of whether their definition is known. This setting is challenging
as it necessitates the model to learn both domain-invariant and domain-specific features and to
generalize well to new instances from unknown domains.

29



I.2 Further Details for Section 7

Base Learners We use linear classifiers, WRN-28-1, and WRN-28-5 [Zagoruyko and Komodakis,
2016] as base classifiers for COMPAS, CIFAR-10 and CIFAR-100 respectively. To get a sense of
performance improvements, we also benchmark performance with larger models, namely a three-
hidden-layer neural network for COMPAS and WRN-34-10 for CIFAR-10/100.

Proposed Methods This paper introduces two categories of algorithms. We elect not to present
results for Algorithm 1, which we notice has similar performance to Algorithm 2. Conversely,
we provide in-depth experimental analyses for both updates of Algorithm 2, which warrant some
special attention due to due to their relation to AdaBoost. In this section, we refer to the FW and
Gen-AdaBoost updates as RAI-FW and RAI-GA, respectively. Our implemented versions incorporate
a few alterations: 1. We track the un-regularized objective value from Equation 1 for the validation set.
If it increases at any round t, we increase the regularization factor η by a fixed multiple (specifically,
2). We notice that it leads to better generalization performance over the test set. 2. The same
un-regularized objective w.r.t normalized Qt is also used to perform a line search for the step size
α. For the FW update, our search space is a ball around 1

t at round t, while for the GA update, we
search within the range (0, 1).

Training. We use SGD with momentum = 0.9 for optimization. We first warm up the model
with some predefined epochs of ERM (3 for COMPAS and 20 for CIFAR-10/100), followed by a
maximum of T = 5 base models trained from the warm-up model with sample weights provided by
our algorithms. Each base model is trained for 500 iterations on COMPAS and 2000 iterations on
CIFAR-10/100. Each experiment is run three times with different random seeds. For evaluation, we
report the averaged expected and worst-case test loss from Equation 1.

Datasets We conduct our experiments on three real-world datasets:

• COMPAS [Angwin et al., 2016] pertains to recidivism prediction, with the target being whether an
individual will re-offend within two years. This dataset is extensively used in fairness research. We
randomly sample 70% of the instances for the training data (with a fixed random seed), and the
remainder is used for validation/testing.

• CIFAR-10 and CIFAR-100 are widely used image datasets. For CIFAR-10, we consider two
settings: the original set and an imbalanced split [Jin et al., 2021, Qi et al., 2021]. In the imbalanced
split, we make worst-case performance more challenging by randomly sampling each category
at different ratios. To be precise, we sample the ith class with a sampling ratio ρi where ρ =
{0.804, 0.543, 0.997, 0.593, 0.390, 0.285, 0.959, 0.806, 0.967, 0.660}. For these datasets, we use
the standard training and testing splits, reserving 10% of the training samples as validation data.

Hyperparameters For COMPAS, we warm up for 3 epochs and then train every base classifier for
500 iterations. For CIFAR-10 and CIFAR-100, we warm up the models for 20 epochs and train base
classifiers for 2000 iterations. The mini-batch size is set to 128. It should be noted that the primary
aim of our experiments is not hyperparameter tuning. The experiments in this paper are designed to
demonstrate use cases and compare different algorithms. Hence, while we maintain consistency of
hyperparameters across all experiments, we do not extensively tune them for optimal performance.

I.3 Interesting Observation: Boosting Robust Learners

Table 4: Mean and worst-case expected loss for RAI-FW + robust optimization algorithms.

Algorithm COMPAS CIFAR-10 (Imbalanced) CIFAR10 CIFAR100

Average Worst Group Average Worst Class Average Worst Class Average Worst Class

SGD (χ2) 32.0 33.7 13.3 31.7 11.3 24.7 27.4 65.9
RAI-FW + SGD (χ2) 30.9 32.2 13.6 31.0 11.2 23.8 27.6 63.8

Online GDRO 31.7 32.2 13.1 26.6 11.2 21.7 27.3 57.0
RAI-FW + Online GDRO 31.6 33.3 12.9 24.4 11.4 19.5 27.8 51.2

Boosting Robust Base Learners We conclude our results with one interesting observation. Until
now, we have been comparing our ensembles with deterministic models. As such, we acknowledge

30



that given the inherent differences between the two, making a fair comparison is challenging. However,
we find that our setup can "boost" not only ERM but also other robust base learners i.e. if we use
these robust optimization methods to find our base learners under analogous RAI constraints, we are
able to further enhance the robust performance of these algorithms. The results are shown in Table 4.
We hypothesize that individually robust base learners are able to help the ensemble generalize well,
allowing our approach to further optimize through ensembles.

I.4 Synthetic Datasets

In this section, we use synthetic datasets to illustrate how our RAI algorithms converge, and how
different constraints on W translate into performance across various responsible metrics. We use the
following distributions to construct the datasets, and use class labels as the group labels.

• Dataset-I: P (X|Y = 0) = N ((0, 0), I), P (X|Y = 1) = 1
3N ((−3, 1), I)) + 1

3N ((3, 0), I)) +
1
3N ((0,−3), I)), P (Y = 0) = 0.7, P (Y = 1) = 0.3.

• Dataset-II: P (X|Y = 0) = 5
12N ((−2,−2), 0.5I)+ 2

12N ((−2,−2), 0.5I)+ 5
12N ((2, 2), 0.5I),

P (X|Y = 1) = 2
5N ((−3, 0), 0.3I)) + 3

5N ((3, 0), 0.3I)), P (Y = 0) = 0.7, P (Y = 1) = 0.3

We sample 1000 points each for both training and testing from both distributions. Note that these
datasets deliberately exhibit: 1. Class imbalance (particularly in Dataset-I) 2. Multiple minority
sub-populations (within and between classes) 3. Varying noise levels in the sub-populations (predom-
inantly in Dataset-II). Such characteristics are frequently encountered in real-world scenarios and
demand responsible classifiers.

Models For base learners, we use linear classifiers for Dataset-I and neural network classifiers with
a single hidden layer of size 4 and ReLU activations for Dataset-II. We find that base learners can be
models with varying complexity.

Hyperparameters Due to the limited size of the datasets, we forgo the warm-up stage. At every
round, we run 1000 iterations with a mini-batch size of 32. We run α-LPBoost with the default value
η = 1. For α-CVaR experiments, we take α = 0.7 across all experiments. For lower values of α,
we observe similar results and comparisons, albeit with a substantial reduction in average metrics.
Consequently, we opt for conservative values to standardize average performance across all models
and subsequently compare worst-case performance in responsible settings.

I.4.1 Results and Discussion

• Domain Oblivious (DO) To begin, we run ERM, AdaBoost, α-LPBoost, and RAI games on
Dataset-I. For RAI-GA and RAI-FW games, we use α-CVaR uncertainty set as W . Given the class
imbalance, Y = 0 and Y = 1 represent good candidates for subpopulations of interest. The results
are reported in Figure 1. We immediately observe the following:

• Both proposed methods RAI-FW and RAI-GA effectively decrease the objective value and achieve
lower worst-class classification loss, as compared to both ERM and AdaBoost.

• They closely follow the α−LPBoost iterates. Intuitively, our quasi-boosting updates resemble
α−LPBoost for the CVaR objective, and that is reflected in similar objective values.

• Domain Aware (DA) For this setting, we run ERM, AdaBoost, Online GDRO, RAI-GA, and
RAI-FW on Dataset-II. We use Group DRO over the five gaussian groups as the uncertainty set W .
Although Dataset-II was selected due to the presence of more pronounced subpopulation behavior,
we get similar results for Dataset-I as well. The results are reported in Figure 2 and Table 5.

• Partially Domain-Aware (PDA) For this setting, we run our algorithms for Dataset-II. Similar to
gaussian memberships, the class labels Y provide another secondary definition of implicit grouping
in the dataset. We report the results in Table 5. A critical observation from the DA setting results
is that Online GDRO, and RAI (Group) all exhibit inferior performance according to the secondary
class definition i.e. although they optimize for the known groups (gaussian), they fail to optimize for
unknown groups (class labels). Thus, a natural solution is to run RAI updates over the intersection
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Algorithm Synthetic Datset-I

Average Loss Worst Class Loss

ERM 27.3 82.6
AdaBoost 26.5 27.7
α-LPBoost 23.5 23.7
RAI-GA 23.9 24.4
RAI-FW 23.9 24.2
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Figure 1: Results for Dataset-I. Left: Average and worst class losses for baselines and proposed RAI updates.
Right: α-CVaR objective values vs number of rounds for train and test splits
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Figure 2: Results for Dataset-II. Left: Visualization of classifiers learned. For ensembles, we derandomized
them using Definition 3. RAI methods (and Online GDRO) effectively prioritize minority and noisy instances
(orange). Right: Testing Group DRO objective values vs the number of rounds (train values are similar and
omitted to improve figure clarity). Quantitative results are reported in Table 5

of χ2 (for unknown groups) and Group (for known groups) constraints. As seen in the Table, we
see that both RAI-GA and RAI-FW achieve a middle ground by significantly improving worst-case
performance for both known and unknown groups.

Algorithm Synthetic Datset-II

Group 1 Group 2 Group 3 Group 4 Group 5 Worst Group Average Worst Class

ERM 0.0 3.1 15.2 22.9 1.6 22.9 5.5 5.7
RAI-GA (χ2) 3.1 5.6 10.1 13.3 2.5 13.3 5.3 5.9
RAI-FW (χ2) 2.1 4.7 8.9 13.4 2.9 13.4 4.9 5.1

Online GDRO 5.1 3.7 5.8 10.2 5.6 10.2 6.1 6.2
RAI-GA (Group) 5.0 4.2 7.4 10.3 3.2 10.3 5.4 5.7
RAI-FW (Group) 10.0 4.7 6.5 9.5 5.5 10.0 6.9 7.5

RAI-GA (χ2 ∩ Group) 3.4 4.0 7.3 10.3 3.4 10.3 5.1 5.5
RAI-FW (χ2 ∩ Group) 4.7 4.9 9.2 10.6 2.6 10.6 5.2 6.1

Table 5: Average, worst group, and worst class losses for Synthetic Dataset-II. All the algorithms listed after
Online GDRO have access to group information.
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