Supplementary material

Shivani Bathla
Department of Electrical Engineering
Indian Institute of Technology Madras
India, 600036
ee13s064@ee.iitm.ac.in

Vinita Vasudevan
Department of Electrical Engineering
Indian Institute of Technology Madras India, 600036
vinita@ee.iitm.ac.in

A Results

A. 1 Evaluation setup

For loopy belief propagation (LBP) [Murphy et al., 1999], we use the implementation provided in LibDAI [Mooij, 2010, 2012]. We set the tolerance limit to 10^{-3} when time limit is 2 min and 10^{-9} for 20 min . For iterative join graph propagation (IJGP) [Mateescu et al. 2010], we used the implementation available on the author's webpage [Gogate, 2010]. The maximum cluster size in IJGP is set using the parameter ibound. This solver starts with the minimal value of ibound and increases it until the runtime and memory constraints are satisfied. A solution is obtained for each ibound. The results reported are those obtained for the largest ibound possible for the given time and memory constraints. For WMB, we used the implementation made available by the authors in the Merlin tool [Marinescu, 2016]. Since this implementation uses a fixed ibound value, we wrote a script to run it in anytime fashion similar to IJGP. We report results obtained with the largest value of ibound possible. For sample search with IJGP-based proposal and cutset sampling (ISSwc) [Gogate and Dechter, 2011], we used the implementation provided by the authors on Github [Gogate, 2020]. For ISSwc, appropriate values of ibound and w-cutset bound are set by the tool based on the given runtime limit.

A. 2 Additional results

For a fair comparison with IBIA using $m c s_{p}$ of 20 (referred to as 'IBIA20'), we also obtained the results for ISSwc after fixing both ibound and w-cutset bound to 20 (referred to as 'ISSwc20'). Table 1 compares the results obtained using IBIA20, ISSwc20 and ISSwc (in which the optimal ibound is determined by the solver). The runtime limit was set to 2 min and 20 min , and the memory limit was set to 8 GB . The error obtained using IBIA20 is either smaller than or comparable to ISSwc20 and ISSwc for both time limits in all testcases except DBN. For DBN, in 2 min, the average $H D_{\max }$ obtained with IBIA20 is significantly smaller than both variants of sample search, and the average $H D_{a v g}$ obtained with IBIA20 is comparable. However, in 20 min , both variants reduce to exact inference in many DBN instances and the average error obtained is close to zero.

Table 2 compares the maximum Hellinger distance obtained using IBIA ($m c s_{p}=15,20$) with published results for adaptive Rao Blackwellisation (ARB) and iterative join graph propagation in Kelly et al. [2019]. The minimum error obtained is shown in bold. IBIA with $m c s_{p}=20$ gives the least error in all cases. The error obtained with $m c s_{p}=15$ is smaller than ARB and IJGP in all testcases except Grids_11, Grids_13 and Promedas_12.

Table 1: Comparison of average $H D_{\text {avg }}$ and average $H D_{\max }$ (shown in gray background) obtained using IBIA with $m c s_{p}=20$ (IBIA20), ISSwc with clique size bounds determined by the solver [Gogate, 2020] (ISSwc) and ISSwc with ibound and w-cutset bound fixed to 20 (ISSwc20). Results are shown for two runtime limits, 2 min and 20 min . Entries are marked with ' - ' if the solution for all testcases could not be obtained within the given time and memory limits. The minimum error obtained for a benchmark is highlighted in bold. The number of instances solved by each solver is shown in the last row. $e v_{a}$: average number of evidence variables, v_{a} : average number of variables, f_{a} : average number of factors, w_{a} : average induced width and $d m_{a}$: average of the maximum variable domain size.

	Total \#Inst	$\left(e v_{a}, v_{a}, f_{a}, w_{a}, d m_{a}\right)$	2 min			20 min		
			$\overline{\text { ISSwc }}$	ISSwc20	IBIA20	ISSwe	ISSwc20	IBIA20
BN	97	$(76,637,637,28,10)$	-	0.037	0	-	0.033	0
GridBN				0.145	0		0.085	0
	29	(0,595,595,37,2)	0.003	0.005	0	0.001	0.005	0
			0.051	0.065	0	0.015	0.046	0
Bnlearn	26	(0,256,256,7,16)	0.012	0.036	0	0.006	0.036	0
			0.064	0.094	0.002	0.028	0.093	0.002
Pedigree	24	(154,853,853,24,5)	0.033	0.028	0.009	0.021	0.021	0.009
			0.292	0.245	0.204	0.234	0.195	0.204
Promedas	64	(7,618,618,21,2)	0.030	0.042	0.013	0.021	0.033	0.013
			0.139	0.207	0.086	0.096	0.153	0.086
DBN	36	(653,719,14205,29,2)	0.016	0.011	0.020	0	0	0.020
ObjDetect			0.766	0.833	0.261	0	0	0.261
	79	(0,60,210,6,16)	0.018	0.039	0.002	0.009	0.004	0.002
			0.189	0.233	0.020	0.061	0.021	0.020
Grids	8	(0,250,728,22,2)	-	-	0.088	0.056		0.088
			-	-	0.300	0.209	-	0.300
CSP	12	(0,73,369,12,4)	-	-	0.002	0.054	0.069	0.002
			-	-	0.011	0.093	0.081	0.011
Segment	50	(0,229,851, 17,2)	0	0.002	0	0	0	0
			0	0.036	0.001	0	0	0.001
Protein	68	(0,59,176,6,77)	0.003	0.003	0	0.001	0.001	0
			0.049	0.030	0.039	0.015	0.011	0.039
\#Inst	493		485	488	493	487	489	493

Table 2: Comparison of maximum Hellinger distance $\left(H D_{\max }\right)$ obtained using IBIA with published results for Gibbs sampling with adaptive Rao Blackwellisation (ARB) and iterative join graph propagation in Kelly et al. [2019]. Results obtained with $m c s_{p}=15$ and $m c s_{p}=20$ are shown in columns marked as IBIA15 and IBIA20 respectively. Runtimes (in seconds) for IBIA15 and IBIA20 are also shown. Estimates for ARB were obtained within 600 seconds ${ }^{+}$[Kelly et al., 2019] and runtime for IJGP is not reported in Kelly et al. [2019]. The minimum error obtained for each benchmark is marked in bold. w : induced width, $d m$: maximum domain size

	w	$d m$	$H D_{\text {max }}$				Runtime (s)	
			Merlin (IJGP)*	ARB*	IBIA15	IBIA20	IBIA15	IBIA20
Alchemy_11	19	2	0.777	0.062	0.004	1E-7	3.3	2.9
CSP_11	16	4	0.513	0.274	0.100	0.034	0.5	3.4
CSP_12	11	4	0.515	0.275	0.028	6E-7	0.1	0.1
CSP_13	19	4	0.503	0.290	0.085	0.051	0.9	2.9
Grids_11	21	2	0.543	0.420	0.590	0.166	1.1	3.5
Grids_12	12	2	0.645	0.432	3E-7	3E-7	0.0	0.0
Grids_13	21	2	0.500	0.544	0.962	0.246	1.1	3.6
Pedigree_11	19	3	0.532	0.576	0.016	5E-7	0.5	0.1
Pedigree_12	19	3	0.562	0.506	0.023	4E-7	0.3	0.1
Pedigree_13	19	3	0.577	0.611	$5 \mathrm{E}-7$	5E-7	0.1	0.1
Promedus_11	18	2	1.000	0.373	0.049	5E-7	1.4	0.5
Promedus_12	20	2	1.000	0.358	0.657	0.242	2.8	4.1
Promedus_13	10	2	1.000	0.432	5E-7	5E-7	0.4	0.4

* The results tabulated in Kelly et al. 2019 report $-\log _{2} H D_{\max }$. The table above has the corresponding values of $H D_{\max }$.
+ System used: Ubuntu 18.04, with 16 GB of RAM, 6 CPUs and 2 hardware threads per CPU Kelly et al. 2019.

B Pseudo-code

Algorithm 1 shows the steps in the proposed algorithm for the inference of marginals. We first convert the PGM into a sequence of linked CTFs ($S L C T F$) that contains a sequence of calibrated CTFs $\left(S C T F=\left\{C T F_{k}\right\}\right)$ and a list of links between adjacent CTFs $\left(S L=\left\{L_{k}\right\}\right)$. Functions BuildCTF and ApproximateCTF are used for incremental construction of CTFs and approximation of CTFs respectively. The steps in these functions are explained in detail in Algorithms 1 and 2 in Bathla and Vasudevan [2023]. Links between adjacent CTFs are found using the function FindLinks and belief update in the SLCTF is performed using the function BeliefUpdate. Following this, the marginal of a variable v is inferred from clique beliefs in the last CTF that contains v (line 23).

C Proofs

Notations

Φ_{k}	Set of factors added to construct $C T F_{k}$
X_{k}	Set of all non-evidence variables in $C T F_{k}$
$X_{k, a}$	Set of all non-evidence variables in $C T F_{k, a}$
Y_{k}	Set of variables in $C T F_{k}$ but not in $C T F_{1}, \ldots, C T F_{k-1}$
$P a_{Y_{k}}$	Parents of variables in Y_{k} in the BN
E_{k}	Set of evidence variables in Y_{k}
e_{k}	Evidence state corresponding to variables in E_{k}
C	A clique in $C T F_{k}$
C^{\prime}	A clique in $C T F_{k, a}$
$S P$	Sepset associated with an edge in $C T F_{k}$
$S P^{\prime}$	Sepset associated with an edge in $C T F_{k, a}$
$\beta(C)$	Unnormalized clique belief of clique C
$\beta_{N}(C)$	Normalized clique belief of clique $C, \beta_{N}(C)=\frac{\beta(C)}{\sum_{v \in C} \beta(C)}$
Z_{k}	Normalization constant of the distribution encoded by calibrated beliefs in $C T F_{k}$
$Q_{k}\left(X_{k}\right)$	Probability distribution corresponding to $C T F_{k}$
$Q_{k, a}\left(X_{k, a}\right)$ Probability distribution corresponding to $C T F_{k, a}$	

Propositions related to inference of marginals: Let $C T F_{k}$ be a CTF in the SCTF generated by the IBIA framework and $C T F_{k, a}$ be the corresponding approximate CTF.
Proposition 1. The joint belief of variables contained within any clique in the approximate CTF $C T F_{k, a}$ is the same as that in $C T F_{k}$.

Proof. The approximation algorithm has two steps, exact marginalization and local marginalization. Exact marginalization involves finding the joint belief by collapsing all cliques containing a variable and then marginalizing the belief by summing over the states of the variable. This does not change the belief of the remaining variables. Local marginalization involves marginalizing a variable from individual cliques and sepsets by summing over its states. Let C^{\prime} denote the clique obtained after local marginalization of variable v from clique C. The updated clique belief $\left(\beta\left(C^{\prime}\right)\right.$) is computed as shown below.

$$
\beta\left(C^{\prime}\right)=\sum_{v} \beta(C)
$$

Once again, summing over the states of a variable does not alter the joint belief of the remaining variables in the clique.

```
Algorithm 1 InferMarginals ( \(\Phi, m c s_{p}, m c s_{i m}\) )
Input: \(\Phi\) : Set of factors in the PGM
        \(m c s_{p}\) : Maximum clique size bound for each CTF in the sequence
        \(m^{\prime \prime} s_{i m}\) : Maximum clique size bound for the approximate CTF
Output: MAR: Map containing marginals \(<\) variable : margProb \(>\)
    1: Initialize: \(M A R=<>\)
        \(\triangleright\) Map < variable : margProb >
                \(S_{v}=\cup_{\phi \in \Phi} \operatorname{Scope}(\phi) \quad \triangleright\) Set of all variables in the PGM
                \(S C T F=[] \quad \triangleright\) Sequence of calibrated CTFs
                \(S L=[] \quad \triangleright\) List of list of links between all adjacent CTFs
                \(k=1\)
                    \(\triangleright\) Index of CTF in \(S C T F\)
    while \(\Phi . i s N o t E m p t y()\) do \(\triangleright\) Convert PGM \(\Phi\) to \(S L C T F=\{S C T F, S L\}\)
        if \(k==1\) then
            \(C T F_{0} \leftarrow\) Disjoint cliques corresponding to factors in \(\Phi\) with disjoint scopes
            \(\triangleright\) Add factors to \(C T F_{0}\) using BuildCTF (Algorithm 1 in Bathla and Vasudevan |2023|)
            \(C T F_{1}, \Phi_{1} \leftarrow\) BuildCTF \(\left(C T F_{0}, \Phi, m c s_{p}\right) \quad \triangleright \Phi_{1}\) : Subset of factors in \(\Phi\) added to \(C T F_{1}\)
            \(\Phi \leftarrow \Phi \backslash \Phi_{1} \quad \triangleright\) Remove factors added to \(C T F_{1}\) from \(\Phi\)
        else
            \(\triangleright\) Add factors to \(C T F_{k-1, a}\) using BuildCTF (Algorithm 1 in Bathla and Vasudevan 2023 )
            \(C T F_{k}, \Phi_{k} \leftarrow \operatorname{BuildCTF}\left(C T F_{k-1, a}, \Phi, m c s_{p}\right) \quad \triangleright \Phi_{k}\) : Subset of factors in \(\Phi\) added to \(C T F_{k}\)
            \(\Phi \leftarrow \Phi \backslash \Phi_{k} \quad \triangleright\) Remove factors added to \(C T F_{k}\) from \(\Phi\)
            \(L_{k-1} \leftarrow\) FindLinks \(\left(C T F_{k-1}, C T F_{k-1, a}, C T F_{k}\right) \triangleright L_{k-1}\) : List of links between \(C T F_{k-1}, C T F_{k}\)
            \(S L . a p p e n d\left(L_{k-1}\right) \quad \triangleright\) Add \(L_{k-1}\) to the sequence of links \(S L\)
    end if
    Calibrate \(C T F_{k}\) using belief propagation
    \(S C T F . a p p e n d\left(C T F_{k}\right) \quad \triangleright\) Add \(C T F_{k}\) to the sequence \(S C T F\)
    \(\triangleright\) Reduce clique sizes to \(m_{c s i m}\) using ApproximateCTF (Algorithm 2 in Bathla and Vasudevan |2023])
    \(C T F_{k, a} \leftarrow\) ApproximateCTF \(\left(C T F_{k}, \Phi, m c s_{i m}\right)\)
    \(k \leftarrow k+1\)
    end while
    \(S L C T F=\{S C T F, S L\} \quad \triangleright\) Sequence of linked CTFs
    BeliefUpdate \((S L C T F) \quad \triangleright\) Re-calibrate CTFs so that beliefs in all CTFs account for all factors
    \(M A R[v] \leftarrow\) Find marginal of \(v\) from \(C T F_{j}\) s.t. \(v \in C T F_{k}, v \notin C T F_{k+1} \quad \forall v \in S_{v} \triangleright\) Infer marginals
    procedure \(\operatorname{FindLinks}\left(C T F_{k-1}, C T F_{k-1, a}, C T F_{k}\right)\)
    \(\triangleright\) Each link is a triplet consisting of \(C \in C T F_{k-1}, C^{\prime} \in C T F_{k-1, a}\) and \(\tilde{C} \in C T F_{k}\)
    for \(C^{\prime} \in C T F_{k-1, a}\) do \(\quad \triangleright\) Find links corresponding to each clique \(C^{\prime}\) in \(C T F_{k-1, a}\)
            \(\triangle\) Find list of corresponding cliques in \(C T F_{k-1}, L_{c}\)
            if \(C^{\prime}\).isCollapsedClique then \(\quad \triangleright C^{\prime}\) is obtained after exact marginalization
                \(L_{c} \leftarrow\) List of cliques in \(C T F_{k-1}\) that were collapsed to form \(C^{\prime}\)
            else \(\quad \triangleright C^{\prime}\) is either obtained after local marginalization or it is present as is in \(C T F_{k}\)
            \(C \leftarrow\) Clique in \(C T F_{k-1}\) s.t. \(C^{\prime} \subseteq C ; L_{c}=[C]\)
            end if
            Find clique \(\tilde{C}\) in \(C T F_{k}\) s.t. \(C^{\prime} \subseteq \tilde{C}\)
            \(\triangleright\) Add all links corresponding to \(C^{\prime}\)
            for \(C \in L_{c}\) do \(L_{k-1}\).append \(\left(\left(C, C^{\prime}, \tilde{C}\right)\right)\) end for
    end for
    return \(L_{k-1}\)
    end procedure
    procedure BeliefUpdate (SLCTF)
        \(S C T F, S L=S L C T F\)
        for \(k \in \operatorname{len}(S C T F)\) down to 2 do \(\quad \triangleright\) Update beliefs in \(\left\{C T F_{k}, k<\operatorname{len}(S C T F)\right\}\)
            \(C T F_{k-1} \leftarrow S C T F[k-1] ; C T F_{k}=S C T F[k] ; L_{k-1}=S L[k-1]\)
            \(L_{s} \leftarrow\) Priority queue with subset of links in \(L_{k-1}\) chosen using heuristics described in Section 3.2
            for \(\left(C, C^{\prime}, \tilde{C}\right) \in L_{s}\) do \(\triangleright\) Back-propagate beliefs from \(C T F_{k}\) to \(C T F_{k-1}\) via all selected links
                \(\beta(C)=\frac{\sum_{C \backslash(C)} \sum_{\left.C \cap C^{\prime}\right\}} \beta(C)}{\sum_{\tilde{C} \backslash\left\{C \cap C^{\prime}\right\}} \beta(\tilde{C}) \triangleright \text { Update } \beta(C) \in C T F_{k-1} \text { based on } \beta(\tilde{C}) \in C T F_{k}, ~}\)
                Update belief of all other cliques in \(C T F_{k-1}\) using single pass message passing with \(C\) as root
        end for
    end for
end procedure
```

Proposition 2. The clique beliefs in $C T F_{k}$ account for all factors added to $\left\{C T F_{1}, \ldots, C T F_{k}\right\}$.

Proof. $C T F_{1}$ is constructed by adding factors to an initial CTF that contains a set of disjoint cliques corresponding to a subset of factors with disjoint scopes. Let Φ_{1} be the set of all factors present in $C T F_{1}$ and Z_{1} be the corresponding normalization constant. After calibration, the normalized clique belief $\left(\beta_{N}(C)\right)$ of any clique C in $C T F_{1}$ can be computed as follows.

$$
\beta_{N}(C)=\frac{1}{Z_{1}} \sum_{X_{1} \backslash C} \frac{\prod_{C_{i} \in C T F_{1}} \beta\left(C_{i}\right)}{\prod_{S P \in C T F_{1}} \mu(S P)}=\frac{1}{Z_{1}} \sum_{X_{1} \backslash C} \prod_{\phi \in \Phi_{1}} \phi
$$

Therefore, clique beliefs in $C T F_{1}$ account for all factors in Φ_{1}.
$C T F_{1, a}$ is a calibrated CTF (refer Proposition 6, Bathla and Vasudevan [2023]) that is obtained after approximate marginalization of the variables in $X_{1} \backslash X_{1, a}$. Therefore, the joint distribution of variables in $C T F_{1, a}$ also accounts for all factors in $\Phi_{1} . C T F_{2}$ is constructed by adding factors in Φ_{2} to $C T F_{1, a}$. Therefore, after calibration, the normalized clique belief ($\beta_{N}(C)$) of any clique C in $C T F_{2}$ can be computed as follows.

$$
\begin{equation*}
\beta_{N}(C)=\frac{1}{Z_{2}} \sum_{X_{2} \backslash C} \frac{\prod_{C^{\prime} \in C T F_{1, a}} \beta\left(C^{\prime}\right)}{\prod_{S P^{\prime} \in C T F_{1, a}} \mu\left(S P^{\prime}\right)} \prod_{\phi \in \Phi_{2}} \phi \tag{1}
\end{equation*}
$$

where, Z_{2} is the normalization constant of the distribution in $C T F_{2}$. Using equation 1 , the clique beliefs in $C T F_{2}$ accounts for all factors in Φ_{1} and Φ_{2}.
A similar procedure can be repeated for subsequent CTFs to show that the proposition holds true for all CTFs in the sequence.

Propositions related inference in BNs:

The following propositions hold true for Bayesian networks when each CTF in the SCTF is constructed by adding factors or conditional probability distributions (CPD) of variables in the topological order. Y_{k} denotes the set of variables whose CPDs are added during construction of $C T F_{k}$ and e_{k} denotes the evidence states of all evidence variables in Y_{k}.
Proposition 3. The product offactors added in CTFs, $\left\{C T F_{1}, \ldots, C T F_{k}\right\}$ is a valid joint probability distribution whose normalization constant is the probability of evidence states e_{1}, \ldots, e_{k}.

Proof. Let $\mathcal{Y}_{k}=\left\{Y_{1}, \ldots, Y_{k}\right\}$ and $\varepsilon_{k}=\left\{e_{1}, \ldots, e_{k}\right\}$. Since CTFs are constructed by adding CPDs of variables in the topological order, the CPDs of parents $P a_{Y_{k}}$ are present in $\left\{C T F_{1}, \ldots, C T F_{k}\right\}$. Therefore, the product of the CPDs is the unnormalized joint probability distribution $P\left(\mathcal{Y}_{k}, \varepsilon_{k}\right)$. Since the CPDs of all non-evidence variables are normalized to one, the normalization constant is $P\left(\varepsilon_{k}\right)$.

Proposition 4. The normalization constant of the distribution encoded by the calibrated beliefs in $C T F_{k}$ is the estimate of probability of evidence states e_{1}, \ldots, e_{k}.

Proof. The initial factors assigned to $C T F_{1}$ are CPDs of variables in Y_{1}. Therefore, using Proposition 3 , the NC obtained after calibration is $Z_{1}=P\left(e_{1}\right)$.
$C T F_{1, a}$ is obtained after approximation of $C T F_{1}$. All CTs in $C T F_{1, a}$ are calibrated CTs and the normalization constant of the distribution in $C T F_{1, a}$ is same as that of $C T F_{1}$ (refer Propositions 6 and 9 in Bathla and Vasudevan 2023]. However, due to local marginalization, the overall distribution represented by $C T F_{1, a}$ is approximate. The probability distribution corresponding to $C T F_{1, a}$ can be written as follows.

$$
\begin{align*}
Q_{1, a}\left(X_{1, a} \mid e_{1}\right) & =\frac{1}{Z_{1}} \frac{\prod_{C^{\prime} \in C T F_{1, a}} \beta\left(C^{\prime}\right)}{\prod_{S P^{\prime} \in C T F_{k, a}} \mu\left(S P^{\prime}\right)} \\
\Longrightarrow Z_{1} Q_{1, a}\left(X_{1, a} \mid e_{1}\right) & =Q_{1, a}\left(X_{1, a}, e_{1}\right) \tag{2}
\end{align*}
$$

where $X_{1, a}$ is the set of variables in $C T F_{1, a}$.
$C T F_{2}$ is obtained after adding a new set of CPDs of variables in Y_{2} to $C T F_{1, a}$. Let $X_{2}=X_{1, a} \cup$ $\left\{Y_{2} \backslash E_{2}\right\}$ denote the set of non-evidence variables in $C T F_{2}$ and $P a_{Y_{2}}$ denote the parents of variables in Y_{2}. The NC of the distribution encoded by $C T F_{2}\left(Z_{2}\right)$ can be computed as follows.

$$
\begin{align*}
Z_{2} & =\sum_{X_{2}} \frac{\prod_{C^{\prime} \in C T F_{1, a}} \beta\left(C^{\prime}\right)}{\prod_{S P^{\prime} \in C T F_{1, a}} \mu\left(S P^{\prime}\right)} \prod_{y \in Y_{2}} P\left(y \mid P a_{y}\right) \\
& =\sum_{X_{2}} Q_{1, a}\left(X_{1, a}, e_{1}\right) P\left(Y_{2}, e_{2} \mid P a_{Y_{2}}\right) \quad \text { (using Equation 2) } \tag{3}
\end{align*}
$$

where e_{2} are evidence states in Y_{2}. Since $X_{2}=X_{1, a} \cup\left\{Y_{2} \backslash E_{2}\right\}$ and parent variables in $P a_{Y_{2}}$ are present either in $X_{1, a}$ or Y_{2}, the above equation can be re-written as follows.

$$
Z_{2}=\sum_{X_{2}} Q_{2}\left(X_{2}, e_{1}, e_{2}\right)=Q\left(e_{1}, e_{2}\right)
$$

Therefore, the NC of $C T F_{2}$ is an estimate of probability of evidence states e_{1} and e_{2}.
A similar procedure can be repeated for subsequent CTFs to show that the property holds true for all CTFs in the sequence.

Theorem 1. Let I_{E} denote the index of the last CTF in the sequence where the factor corresponding to an evidence variable is added. The posterior marginals of variables present in CTFs $\left\{C T F_{k}, k \geq\right.$ $\left.I_{E}\right\}$ are preserved and can be computed from any of these CTFs.

Proof. Let $\varepsilon_{I_{E}}=\left\{e_{1}, \ldots, e_{I_{E}}\right\}$ be the set of all evidence states. Let v be a variable present in cliques $C_{v} \in C T F_{I_{E}}, C_{v}^{\prime} \in C T F_{I_{E}, a}$ and $\tilde{C}_{v} \in C T F_{I_{E}+1}$ and let $\beta_{N}\left(C_{v}\right), \beta_{N}\left(C_{v}^{\prime}\right)$ and $\beta_{N}\left(\tilde{C}_{v}\right)$ be the corresponding normalized clique beliefs. From Proposition 1, the unnormalized belief of variable v in C_{v} is same as that in C_{v}^{\prime}. Therefore, the normalized posterior marginal of v obtained from $C_{v}\left(\right.$ denoted as $\left.Q_{I_{E}}\left(v \mid \varepsilon_{I_{E}}\right)\right)$) is the same as that obtained from C_{v}^{\prime}, as given below.

$$
\begin{equation*}
Q_{I_{E}}\left(v \mid \varepsilon_{I_{E}}\right)=\sum_{C_{v} \backslash v} \beta_{N}\left(C_{v}\right)=\sum_{C_{v}^{\prime} \backslash v} \beta_{N}\left(C_{v}^{\prime}\right) \tag{4}
\end{equation*}
$$

Since $C T F_{I_{E}, a}$ is calibrated (Proposition 6 in Bathla and Vasudevan [2023]) and $C T F_{I_{E}+1}$ is obtained by adding CPDs of variables in $Y_{I_{E}+1}$ to $C T F_{I_{E}, a}$, the NC of $C T F_{I_{E}+1}$ can be computed by summing over all non-evidence variables as follows.

$$
\begin{aligned}
Z_{I_{E}+1} & =\sum_{X_{I_{E}, a}} \frac{\prod_{C^{\prime} \in C T F_{I_{E}, a}} \beta\left(C^{\prime}\right)}{\prod_{S P^{\prime} \in C T F_{I_{E}, a}} \mu\left(S P^{\prime}\right)} \sum_{Y_{I_{E}+1} \backslash E_{I_{E}+1}} P\left(Y_{I_{E}+1}, e_{I_{E}+1} \mid P a_{Y_{I_{E}+1}}\right) \\
& =\sum_{X_{I_{E}, a}} \frac{\prod_{C^{\prime} \in C T F_{I_{E}, a}} \beta\left(C^{\prime}\right)}{\prod_{S P^{\prime} \in C T F_{I_{E}, a}} \mu\left(S P^{\prime}\right)} \quad\left(\because E_{I_{E}+1}=\varnothing, \sum_{Y_{I_{E}+1}} P\left(Y_{I_{E}+1} \mid P a_{Y_{I_{E}+1}}\right)=1\right) \\
& =Z_{I_{E}} \quad \text { (using Proposition 9 in Bathla and Vasudevan }
\end{aligned}
$$

Therefore, the posterior marginal of v in $C T F_{I_{E}+1}$ (denoted as $Q_{I_{E}+1}\left(v \mid \varepsilon_{I_{E}}\right)$) can be computed from the clique belief of \tilde{C}_{v} as follows.

$$
\begin{aligned}
Q_{I_{E}+1}\left(v \mid \varepsilon_{I_{E}}\right) & =\sum_{\tilde{C}_{v} \backslash v} \beta_{N}\left(\tilde{C}_{v}\right) \\
& =\sum_{X_{I_{E}, a} \backslash v} \frac{1}{Z_{I_{E}}} \frac{\prod_{C^{\prime} \in C T F_{I_{E}, a}} \beta\left(C^{\prime}\right)}{\prod_{S P^{\prime} \in C T F_{I_{E}, a}} \mu\left(S P^{\prime}\right)} \sum_{Y_{I_{E}+1} \backslash E_{I_{E}+1}} P\left(Y_{I_{E}+1}, e_{I_{E}+1} \mid P a_{Y_{I_{E}+1}}\right) \\
& =\sum_{C_{v}^{\prime} \backslash v} \beta_{N}\left(C_{v}^{\prime}\right) \quad\left(\because C_{v}^{\prime} \in C T F_{I_{E}, a} \text { and } E_{I_{E}+1}=\varnothing\right) \\
& =Q_{I_{E}}\left(v \mid \varepsilon_{I_{E}}\right) \quad \quad \text { (using Equation4) }
\end{aligned}
$$

The above procedure can be repeated to show that the posterior marginal of v is also consistent in all subsequent CTFs that contain v.

References

Shivani Bathla and Vinita Vasudevan. IBIA: An incremental build-infer-approximate framework for approximate inference of partition function. Transactions on Machine Learning Research, 2023. ISSN 2835-8856.

Vibhav Gogate. Iterative join graph propagation. https://personal.utdallas.edu/~vibhav gogate/ijgp.html, 2010. Accessed: 2023-04-15.

Vibhav Gogate. IJGP-sampling and samplesearch (PR and MAR tasks). https://github.com/ dechterlab/ijgp-samplesearch, 2020. Accessed: 2023-01-15.

Vibhav Gogate and Rina Dechter. Samplesearch: Importance sampling in presence of determinism. Artificial Intelligence, 175(2):694-729, 2011.

Craig Kelly, Somdeb Sarkhel, and Deepak Venugopal. Adaptive Rao-Blackwellisation in Gibbs sampling for probabilistic graphical models. In Artificial Intelligence and Statistics, pages 29072915. PMLR, 2019.

Radu Marinescu. Merlin. https://github.com/radum2275/merlin/, 2016. Accessed: 2021-10-15.

Robert Mateescu, Kalev Kask, Vibhav Gogate, and Rina Dechter. Join-graph propagation algorithms. Journal of Artificial Intelligence Research, 37:279-328, 2010.

Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in graphical models. Journal of Machine Learning Research, 11:2169-2173, August 2010.

Joris M. Mooij. libDAI - A free/open source C++ library for discrete approximate inference. https://github.com/dbtsai/libDAI/, 2012. Accessed: 2021-10-15.

Kevin P. Murphy, Yair Weiss, and Michael I. Jordan. Loopy belief propagation for approximate inference: An empirical study. In Uncertainty in Artificial Intelligence, pages 467-475, 1999.

