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Abstract

Spectral clustering has gained popularity for clustering non-convex data due to its
simplicity and effectiveness. It is essential to construct a similarity graph using a
high-quality affinity measure that models the local neighborhood relations among
the data samples. However, incomplete data can lead to inaccurate affinity measures,
resulting in degraded clustering performance. To address these issues, we propose
an imputation-free framework with two novel approaches to improve spectral
clustering on incomplete data. Firstly, we introduce a new kernel correction method
that enhances the quality of the kernel matrix estimated on incomplete data with a
theoretical guarantee, benefiting classical spectral clustering on pre-defined kernels.
Secondly, we develop a series of affinity learning methods that equip the self-
expressive framework with ℓp-norm to construct an intrinsic affinity matrix with an
adaptive extension. Our methods outperform existing data imputation and distance
calibration techniques on benchmark datasets, offering a promising solution to
spectral clustering on incomplete data in various real-world applications.

1 Introduction

Spectral clustering [1, 2, 3] has become a widely used and effective method for clustering non-convex
data and finds diverse applications in computer vision [4, 5], natural language processing [6, 7], and
bioinformatics [8, 9]. Generally, the first step in spectral clustering involves constructing an affinity
matrix that captures the similarity between data points, followed by performing normalized cut [4]
on the corresponding graph to partition the data into clusters. The quality of the affinity matrix is
a critical factor that determines the effectiveness of the clustering performance [2, 3]. However,
incomplete data is commonly seen in practice, leading to inaccurate affinities and degraded clustering
performance [10, 11, 12]. As such, obtaining a high-quality affinity matrix with missing data is a
challenging task that requires specialized techniques. In this paper, we aim to improve the quality of
affinity matrices, which naturally enhance the performance of spectral clustering on incomplete data.

In recent years, the development of methods to construct affinity matrices with full information for
spectral clustering has garnered significant attention. Two types of affinity matrices are typically
utilized, namely pre-defined similarity matrices [1, 2, 13, 14] and self-expressive affinity matrices
[3, 15, 16, 17, 18, 19, 20]. Pre-defined similarity matrices are easy to compute and encompass
well-known kernels, including the Gaussian kernel, Exponential kernel, and Polynomial kernel. The
Gaussian kernel is the most widely used due to its simplicity and effectiveness [2]. Differently,
self-expressive affinity matrices learn the affinity matrix C by representing each data point as a
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linear combination of other data points, i.e., minC
1
2∥X − XC∥2F + λR(C), where the columns

of X ∈ Rd×n are data points, R(C) denotes a regularization term, and λ is a hyperparameter,
as exemplified by Sparse Subspace Clustering (SSC) [15], Low-Rank Representation (LRR) [16],
and Least-Squares Representation (LSR) [17, 18]. Moreover, self-expressive methods have been
expanded by integrating kernel functions into the framework, such as kernel SSC (KSSC) [19], kernel
LRR (KLRR) [20], and kernel LSR (KLSR) [3], through minC

1
2∥ϕ(X) − ϕ(X)C∥2F + λR(C),

where ϕ(X) is a mapping function and K := ϕ(X)⊤ϕ(X) denotes a kernel matrix. Despite the
varying techniques on affinity matrices, the kernel matrix remains a cornerstone of spectral clustering
for pre-defined similarities and self-expressive affinities. Nevertheless, constructing a high-quality
kernel/affinity matrix is an ongoing challenge when facing incomplete data. The primary obstacle is
the inability to directly calculate a kernel matrix or learn an affinity matrix due to missing values.

To address the challenge of incomplete data, data imputation techniques [21, 22, 23] such as statistical
imputation and matrix completion, are conventional approaches to fill in the missing entries of the
data matrix before clustering. Statistical imputation methods [24, 25], such as zero, mean, and
k-nearest neighbors (kNN) imputation [26], are fast and easy to implement and can flexibly handle
missing data. However, these methods may introduce bias and fail to capture the true underlying data
structure, hindering the accurate affinity measures. Matrix completion methods [27, 28, 29, 30], on
the other hand, aim to accurately recover the underlying structure of the data by finding a low-rank or
high-rank approximation of the data matrix. Although they can handle missing data in a principled
way, their performance heavily depends on the consistency of data structure and the assumptions
being made, easily affected by the data distribution. Most importantly, almost all imputation methods
do not offer a guarantee for the quality of the affinity matrix calculated on the imputed data [31].

Distance calibration techniques [32, 33] have emerged as an alternative solution by obtaining a
high-quality distance matrix for incomplete data. These techniques calibrate an initial non-metric
distance matrix estimated on incomplete data to a distance metric. Several methods have been
proposed, such as the metric nearness model [34, 35, 36], which finds the nearest approximation
that satisfies all triangle inequalities [37]. The double-centering algorithm [38] converts the initial
non-metric distance matrix into a Euclidean distance matrix, while the Euclidean embedding method
[39, 40, 41] ensures the Euclidean embeddable property is satisfied through convex optimization.
Although some of these methods guarantee the quality of the calibrated distance [39], they only apply
to distance-based affinities like the Gaussian kernel. Moreover, these methods may not generate
high-quality affinity matrices based on calibrated distance, making it necessary to develop dedicated
methods that can apply to a family of kernels and affinities with theoretical guarantees.

To address the above issues, we propose an imputation-free framework to directly learn high-quality
affinity matrices via two main techniques, i.e., kernel correction and affinity learning, aiming to
improve the spectral clustering performance on incomplete data, with contributions as follows.

• We propose an imputation-free framework based on kernel correction and affinity learning
with improved clustering performance, providing convenient tools to deal with incomplete
data. To our best knowledge, this is the first systematical work to discuss spectral clustering
on incomplete data, which is a commonly seen problem in practice.

• We introduce a novel kernel correction method that directly focuses on the kernel matrix
estimated from the incomplete data, and corrects it to satisfy specific mathematical properties
such as positive semi-definiteness (PSD). We show that the corrected kernel matrix becomes
closer to the unknown ground-truth with a theoretical guarantee, which is beneficial to
spectral clustering algorithms and cannot be assured by imputation and calibration methods.

• We develop a series of new affinity learning methods to equip the self-expressive framework
with the ℓp-norm to capture the underlying structure of data samples better. Additionally,
we combine kernel correction and affinity learning to arrive at an adaptive learning method
that simultaneously learns the high-quality kernel and the self-expressive affinity matrix.

• We conduct extensive experiments that demonstrate the effectiveness of proposed methods
on various benchmark datasets, showing superior results in terms of kernel estimation,
spectral clustering, and affinity learning on incomplete data, compared to existing data
imputation and distance calibration approaches.
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2 Related Work

2.1 Spectral Clustering and Affinity Learning

Standard Spectral Clustering involves three steps [2]: first, a Gaussian kernel matrix K ∈ Rn×n

is calculated to measure the similarity between n data points with Kij = exp(−∥xi − xj∥2/σ2)
where σ is a hyperparameter. Then, an affinity graph A ∈ Rn×n is constructed using the kernel
matrix, which can take the form of an ϵ-neighborhood graph, a fully connected graph, or a k-nearest
neighbors (kNN) graph. An ϵ-neighborhood graph connects pairwise points with a threshold value
ϵ, while a fully connected graph connects all points. Empirically, a kNN graph is the most popular
one that connects each point to its k-nearest neighbors, resulting in sparse local relationships and
relatively high clustering accuracy [3]. Finally, the normalized cut algorithm [1] is applied to the
affinity graph A to partition the data into clusters based on the normalized Laplacian matrix.

Self-expressive Affinity Learning is a framework to learn affinity matrices by modeling the relation-
ships between data points, i.e., minC

1
2∥X −XC∥2F + λR(C), with different types of regularization

terms R(C). Sparse Subspace Clustering (SSC) [15] assumes that the data points lie in a low-
dimensional subspace and seeks to find a sparse affinity matrix withR(C) = ∥C∥1 =

∑n
i,j=1 |cij |

under a constraint diag(C) = 0. Low-Rank Representation (LRR) [16] is another approach that
seeks a low-rank affinity matrix with R(C) = ∥C∥∗ (nuclear norm of C). Least-Squares Repre-
sentation (LSR) [17, 18] involves solving a least-squares problem to find the representation matrix
withR(C) = 1

2∥C∥
2
F . Their kernel variants, i.e., KSSC [19], KLRR [20], and KLSR [3] are used to

extend their applicability to non-linearly separable data by applying a kernel function to data points
with minC

1
2∥ϕ(X)− ϕ(X)C∥2F + λR(C), showing promising performance in spectral clustering.

2.2 Missing Data Processing Techniques

Data Imputation is a popular technique [21, 22, 23] for dealing with incomplete data by filling
in missing values. Statistical imputation methods, such as zero, mean imputation, and k-nearest
neighbors (kNN) approach [26], have been widely used in practice. These methods replace the
missing value with a zero, mean, or k-weighted value of non-missing elements in the corresponding
feature. Additionally, matrix completion [27, 28, 29, 30] is a machine learning-based technique that
fills missing values by solving a matrix factorization problem under assumptions on data structures
such as low-rank or high-rank. However, correctly estimating missing values based on observed data
is difficult, especially for a large missing ratio, and there is no guarantee on the quality of the affinity
matrix on imputed data. This motivates us to design imputation-free approaches in Sections 3 and 4.

Distance Calibration is a specialized approach to obtaining a valid distance metric from an initial
non-metric distance matrix, which can be applied to incomplete data. For any two incomplete data
samples xi, xj ∈ Rd, a new vector xi(I) ∈ R|I| is formed by selecting the observed values of xi on
the set I , where I is an index set of all features observed in both samples. The pairwise Euclidean
distance between xi and xj can then be heuristically estimated by [39, 41]

d0ij = ∥xi(I)− xj(I)∥2 ·

√
d

|I|
. (1)

However, the initial Euclidean distance matrix D0 = [d0ij ] ∈ Rn×n estimated on incomplete data is
usually not a distance metric due to missing values. Distance calibration methods [34, 35, 38, 39] can
correct D0 to a distance metric by making different assumptions and leveraging various properties.
More details of these methods are discussed in Section 3.1.

3 Methodology-I. Kernel Correction

3.1 Revisiting Distance Calibration Methods

We begin with the definition of a distance metric [42], then delve into distance calibration methods,
discussing the assumptions and properties underlying each method, as well as their limitations.
Definition 1. A distance metric is defined as a n× n real symmetric matrix D that satisfies

dij = dji ≥ 0, dii = 0, dik ≤ dij + djk, for all 1 ≤ i, j, k ≤ n.
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The properties of non-negativity, reflexivity, symmetry, and triangle inequality ensure that the distance
metric produces meaningful and valuable distance measurements.

• The Triangle Fixing (TRF) Algorithm [35] to obtain a distance metric is based on the metric
nearness model [34, 36], which finds the nearest approximation of a non-metric D0 by solving:

minimize
D∈Rn×n

∥D−D0∥2F , subject to dij = dji ≥ 0, dii = 0, dik ≤ dij+djk, ∀ 1 ≤ i, j, k ≤ n. (2)

However, there are two significant limitations. First, the scalability of the algorithm is severely
limited by the matrix size n. Since the number of O(n3) constraints grows rapidly as n increases, the
optimization time can become lengthy, taking several hours for a few thousand samples. Second, the
performance of the algorithm depends on the extent of violation of the triangle inequalities in the
initial distance matrix D0. With a small missing ratio of features, D0 already satisfies most triangle
inequalities, i.e., d0ik ≤ d0ij + d0jk, then the algorithm typically yields only marginal improvement.

• The Double-Centering (DC) Algorithm [38] starts with the Euclidean Distance Matrix (EDM)
[43] and utilizes Property 1 [44], a well-known result in classical Multi-Dimensional Scaling (cMDS)
[45], to build the connection between the similarity matrix and the EDM.
Definition 2. A n× n real symmetric matrix D is called an EDM if there exists x1, x2, . . . , xn ∈ Rd

such that dij = ∥xi − xj∥2 for i, j = 1, 2, . . . , n. (Note that it uses squared Euclidean distance.)

Property 1. A n×n real symmetric matrix D is EDM if and only if diag(D) = 0, S := − 1
2JDJ ⪰

0, J := I − ee⊤/n, where I is the identity matrix and e is the n-dimension vector of all ones.

The DC algorithm first finds the nearest positive semi-definite Ŝ by solving

minimize
S∈Rn×n

∥S − (−1

2
J(D0 ◦D0)J)∥2F , subject to S ⪰ 0, (3)

where D0 is the initial Euclidean distance matrix and ◦ denotes the Hadamard product. The algorithm
then transforms Ŝ into an EDM D̂ using d̂ij = ŝii + ŝjj − 2ŝij , and obtain the calibrated (non-
squared) distance matrix by D̂ ← [d̂

1/2
ij ], but unfortunately, the quality of D̂ cannot be guaranteed,

and important information may be lost during the transformation [38].

• The Euclidean Embedding (EE) Algorithm [39, 40, 41] leverages Euclidean embeddable
property [39, 46] to obtain a calibrated embeddable distance matrix by solving

minimize
D∈Rn×n

∥D −D0∥2F , subject to exp(−γD) ⪰ 0, dii = 0, dij = dji ≥ 0, ∀ 1 ≤ i, j ≤ n. (4)

Definition 3. A n×n real symmetric matrix D is said Euclidean embeddable if there exists x1, . . . , xn

in Euclidean space and a distance function ρ such that dij = ρ(xi, xj) ≥ 0 for i, j = 1, . . . , n.
Property 2. [Theorem 2, [39]] If a n× n real symmetric matrix D is Euclidean embeddable, then
the kernel K := exp(−γD) is positive semi-definite for any γ > 0.

It is important to note that these methods can only provide a calibrated distance matrix with benefits
for distance-based kernels and are not a universal solution for dealing with incomplete data in spectral
clustering tasks, which motivates us to further design a kernel-specialized method in Section 3.2.

3.2 Kernel Correction Algorithm

To overcome the limitations of distance calibration, we propose a new kernel correction algorithm that
directly focuses on the construction of a high-quality kernel with a theoretical guarantee. We consider
an incomplete data matrix X ∈ Rd×n with missing values and an initial kernel matrix K0 ∈ Rn×n

estimated from X . Inspired by our previous work [31, 47, 48], our goal is to correct the initial kernel
K0 to an improved estimate K̂ that satisfies the PSD property based on the Lemma 1 [49].
Lemma 1. A valid kernel matrix is a n× n real symmetric matrix that satisfies the PSD property.

Naturally, we recover the PSD property with the minimum cost by solving the following model:

minimize
K∈Rn×n

∥K −K0∥2F , subject to K ⪰ 0, kij = kji ∈ [l, u], ∀ 1 ≤ i, j ≤ n, (5)

where l, u denote the lower bound and upper bound, respectively.
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It is worth noting that the solution K̂ to Eq. (5) provides an improved estimate of the unknown
ground-truth K∗ compared to K0, as illustrated in Theorem 1. The proof comes from Kolmogorov’s
criterion [50, 31, 47, 48], which characterizes the best estimation in an inner product space, provided
in Appendix A.

Theorem 1. ∥K∗ − K̂∥F ≤ ∥K∗ −K0∥F . The equality holds if and only if K0 ⪰ 0, i.e., K0 = K̂.

Regarding the kernel type, Gaussian kernel is a widely-used non-linear kernel that has elements in the
range [0, 1]. In this case, the feasible region in Eq. (5) is defined as F = {K ∈ Rn×n |K ⪰ 0, kii =
1, kij = kji ∈ [0, 1], ∀ 1 ≤ i, j ≤ n}, which is a closed convex set. The solution to Eq. (5) is the
projection of K0 onto F , denoted by K̂. However, finding the direct projection is complex, and no
closed form of K̂ exists. Thus, we break down F into two simpler, closed convex subsets F1 and F2:
F1 = {K ∈ Rn×n | K ⪰ 0}, F2 = {K ∈ Rn×n | kii = 1, kij = kji ∈ [0, 1], ∀ 1 ≤ i, j ≤ n},
with F = F1 ∩ F2. Then K̂ can be efficiently solved by iteratively projecting K0 onto F1 and F2

[31, 40, 47]. Denote P1,P2 as the projection onto F1,F2, respectively, in the form of{
P1(K) = U Σ̂U⊤ where K = UΣU⊤, Σ̂ij = max{Σij , 0},
P2(K) = [P2(kij)] where P2(kij) = median{0, kij , 1}, P2(kii) = 1,

(6)

where UΣU⊤ gives the spectral decomposition (SD) of K.

We use Dykstra’s projection algorithm [51] to find the optimal projection, summarized in Algorithm 1:

Algorithm 1 Kernel Correction (KC)
Input: K0 ∈ Rn×n: an initial (non-PSD) kernel matrix; P1,P2: the projection onto F1 and F2;

maxiter: maximum iterations (default 100); tol: tolerence (default 10−5).
Output: K̂ ∈ Rn×n: the optimal corrected kernel matrix.
1: ▷ Dykstra’s Projection: Y, P,Q are auxiliary variables.
2: Initialize X0 = K0 and P0 = Q0 = 0n×n.
3: for t = 0, 1, . . . ,maxiter do
4: Yt = P2(Xt + Pt),
5: Pt+1 = Xt + Pt − Yt,
6: Xt+1 = P1(Yt +Qt),
7: Qt+1 = Yt +Qt −Xt+1.
8: if ∥Xt+1 −Xt∥F < tol then
9: break

10: end if
11: end for
12: Set K̂ = Xt.

The convergence guarantee of Algorithm 1 relies on the Boyle-Dykstra’s result [52]:

Lemma 2. Given a real symmetric matrix K0 ∈ Rn×n, the sequence {Xt} generated in Algorithm 1
converges to K̂ = minK∈F=F1∩F2 ∥K −K0∥2F as t→∞.

3.3 Limitation and Complexity Analysis

The potential limitation primarily stems from the time complexity of Algorithm 1. The pre-iteration
time complexity of the KC algorithm is currently at O(n3), which mainly arises from the spectral
decomposition (SD) in the projection operation P1 and poses challenges when dealing with large-
scale datasets. To address this issue, a possible solution is to replace the spectral decomposition
with a randomized singular value decomposition (rSVD) [53]. The rSVD approach seeks top-k
singular values and effectively reduces the time complexity to O(n2 · log(k)+ 2n · k2). However, the
trade-off between efficiency and efficacy necessitates further investigation. Besides, we can transform
Dykstra’s projection into a parallel version with cyclic projection [54] to achieve better scalability.
The storage complexity is O(n2) to store the dense kernel matrix in memory.
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3.4 Discussion on Kernel Correction

The proposed kernel correction approach provides an imputation-free method with several benefits to
spectral clustering, compared to data imputation and distance calibration methods.

Differences with Previous Kernel Methods Some literature in kernel learning [55, 56] has studied
missing data in a supervised manner. However, our work focuses on unsupervised learning and
addresses complete but inaccurate (noisy) kernels due to the presence of incomplete observations,
which is fundamentally different from previous work [57] primarily dealing with incomplete kernels.

Advantages over Data Imputation Our approach eliminates the need for domain knowledge in
handling incomplete data by bypassing the imputation step. This enables us to generate a kernel matrix
that is theoretically guaranteed, offering potential advantages for various kernel-based applications.
Notably, our approach demonstrates significant improvements over imputation methods for spectral
clustering when dealing with a high proportion of missing data. Additionally, the high-quality kernel
produced by our approach can serve as a valuable reference for improving the accuracy of missing
value estimation in kernel-based imputation methods [58, 59], which is worth further investigation.

Advantages over Distance Calibration Firstly, our approach can be applied to a wide range
of kernels and yields an improved kernel matrix. In contrast, distance calibration methods only
benefit distance-based kernels and lack quality guarantees. Moreover, our algorithm, which corrects
the Gaussian kernel, can generate a high-quality distance matrix via dij =

√
−σ2 log(kij). By

incorporating the second-order term of d0ij in k0ij = exp(−(d0ij)2/σ2), our algorithm becomes
more sensitive to changes in distance values, while the Euclidean embedding algorithm relies on
K0 = exp(−γD0) using the first-order term of d0ij . Empirical evidence suggests that the corrected
distance obtained from our corrected Gaussian kernel is more accurate than the calibrated distance
derived from the Euclidean embedding method, benefiting to the distance-based spectral clustering.

Benefits to Spectral Clustering Our approach is tailored to improve the kernel quality, making
it highly advantageous for spectral clustering. This improvement benefits both standard spectral
clustering using the Gaussian kernel and affinity learning based on the self-expressive framework. In
the case of X-based self-expressive affinity, we can apply the corrected linear kernel K := X⊤X to
the optimization, i.e., minC

1
2∥X−XC∥2F +λR(C) = minC

1
2Tr(K−2KC+C⊤KC)+λR(C).

Similarly, for K-based self-expressive affinity, which involves using the Gaussian kernel or other
kernels, our approach can be applied to K := ϕ(X)⊤ϕ(X) on minC

1
2∥ϕ(X)−ϕ(X)C∥2F +λR(C).

4 Methodology-II. Affinity Learning

Taking advantage of the corrected kernel matrix, we have further designed a series of kernel-based
affinity learning algorithms to acquire high-quality affinity matrices with an adaptive extension.

4.1 Kernel Self-expressive Learning with ℓp-norm

We utilize the kernel self-expressive framework, i.e., minC
1
2∥ϕ(X) − ϕ(X)C∥2F + λR(C), and

propose new affinity learning methods by enhancing the sparsity of the affinity matrix C using the ℓp
norm [60]. Specifically, our approach diverges from previous work [19, 20, 3] by incorporating two
forms of ℓp-norm, i.e., proximal p-norm and Schatten p-norm (0 < p < 1), as regularization terms.
Definition 4 (Kernel Self-expressive Learning with Proximal p-norm).

minimize
C∈Rn×n

1

2
∥ϕ(X)− ϕ(X)C∥2F +

λ

2
∥C∥pp, subject to 0 ≤ cij ≤ 1, ∀ 1 ≤ i, j ≤ n, (7)

where the proximal p-norm is expressed as ∥C∥pp :=
∑n

i,j=1 |cij |p.

We construct an augmented Lagrangian function Lp(C,Z,U) in Eq. (8), and solve it by using the
Alternating Direction Method of Multipliers (ADMM) approach [61] summarized in Algorithm 2.

Lp = ∥ϕ(X)−ϕ(X)C∥2F +λ∥Z∥pp+γ
∑
i,j

max(zij−1, 0)2+Tr(U⊤(Z−C))+
1

2ρ
∥Z−C∥2F . (8)

However, the KSL-Pp algorithm involves numerous hyper-parameters and entails a non-convex
optimization process during the Z-update step (Line 5 in Algorithm 2), making it difficult to effectively
utilize. Computation speedup needs further investigations. Thus, we focus on the Schatten p-norm.
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Algorithm 2 Kernel Self-expressive Learning with Proximal p-norm (KSL-Pp)
Input: K: a kernel; λ, p, ρ, γ, α: hyperparameters; maxiter: maximum iterations; tol: tolerance.
Output: Ĉ ∈ Rn×n: the optimal affinity matrix of Eq. (7).
1: Initialize C0, Z0, U0. ▷ Refer to Appendix B.1 for formula derivations.
2: for t = 0, 1, . . . ,maxiter do
3: C-update: Ct+1 ← (2K + 1

ρI)
−1(2K + Ut +

1
ρZt);

4: Z-update: Zt+1 ← ∂Lp

∂zij
= λpzp−1

ij + γI(zij>1) +
1
ρ (zij − cij) + uij = 0;

5: U -update: Ut+1 ← Ut + ρ(Zt+1 − Ct+1).
6: if (primal) ∥Ct+1 − zt+1∥F ≤ tol and (dual) ∥Zt+1 − Zt∥F ≤ tol then; break; end if.
7: end for
8: Set Ĉ = (|Ct|+ |C⊤

t |)/2.

Definition 5 (Kernel Self-expressive Learning with Schatten p-norm).

minimize
C∈Rn×n

1

2
∥ϕ(X)− ϕ(X)C∥2F +

λ

2
∥C∥Sp

, subject to 0 ≤ cij ≤ 1, ∀ 1 ≤ i, j ≤ n, (9)

where Schatten p-norm ∥C∥Sp := (
∑n

i=1 σ
p
i (C))1/p and σi(C) denotes the i-th singular value of C.

Drawing from prior research [62], for 1
2 < p < 1 and k ≥ rank(C), the following always holds true:

∥C∥Sp = minimize
U∈Rn×k,V ∈Rn×k,C=UV ⊤

||U ||2F + ||V ||2F
2

.

Thus, for 1
2 < p < 1, we define LSp

(U, V ) = ∥ϕ(X) − ϕ(X)UV ⊤∥2F + λ
2 ∥U∥

2
F + λ

2 ∥V ∥
2
F as

a relaxation of the optimization problem in Eq. (9) without loss of generality. By employing the
ADMM approach [61] and the gradient descent method [63] in the U -update step (i.e., Line 4 in
Algorithm 3), we design the KSL-Sp algorithm as follows with details in the Appendix B.2.

Algorithm 3 Kernel Self-expressive Learning with Schatten p-norm (KSL-Sp)
Input: K: a kernel matrix; λ: a hyperparameter; maxiter: maximum iterations; tol: tolerance.
Output: Ĉ ∈ Rn×n: the optimal affinity matrix of Eq. (9).
1: Initialize U0, V0. ▷ Refer to Appendix B.2 for formula derivations.
2: for t = 0, 1, . . . ,maxiter do
3: U -update: Ut+1 ← ∂ULSp = 2K(UV ⊤

t − I)Vt + λU = 0;
4: V -update: Vt+1 ← 2KUt+1(2U

⊤
t+1KUt+1 + λI)−1 by ∂V LSp

= 0.
5: if ∥Ut+1 − Ut∥F < tol then; break; end if.
6: end for
7: Set Ct = UtV

⊤
t and Ĉ = (|Ct|+ |C⊤

t |)/2.

4.2 Adaptive Kernel Self-expressive Learning

To achieve adaptive affinity learning on incomplete data, we formulate a new joint optimization
problem by incorporating KLSR [3] and kernel correction to learn kernel and affinity matrices
iteratively with the PSD constraint of K:

minimize
K⪰0,C∈Rn×n

∥K −K0∥2F + Tr(K − 2KC + C⊤KC) + λ∥C∥2F . (10)

Firstly, we introduce an auxiliary variable A ∈ Rn×n into

minimize
K⪰0,A,C∈Rn×n

∥K −K0∥2F + Tr(A− 2AC + C⊤AC) + λ∥C∥2F , subject to K = A, (11)

and then we derive the augmented Lagrange function L(K,A,C,U) in preparation for ADMM:

L = ∥K −K0∥2F + Tr(A− 2AC +C⊤AC) + λ∥C∥2F + Tr(U⊤(K −A)) +
ρ

2
∥K −A∥2F , (12)

where U is a Lagrange multiplier and ρ is the updating step size, finally arriving at the Algorithm 4.
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Our adaptive learning framework could be combined with other kernel self-expressive learning algo-
rithms; however, due to space constraints, further research is required to explore these possibilities:

minimize
K⪰0,C∈Rn×n

∥K −K0∥2F + λ1∥ϕ(X)− ϕ(X)C∥2F + λ2R(C), where K := ϕ(X)⊤ϕ(X). (13)

Algorithm 4 Adaptive Kernel Least-Squares Representation (AKLSR)
Input: K0: an initial kernel; λ, ρ: hyperparameters; maxiter: maximum iterations; tol: tolerance.
Output: Ĉ ∈ Rn×n: the optimal affinity matrix of Eq. (10).
1: Initialize K0, A0, C0, U0. ▷ Refer to Appendix B.3 for formula derivations.
2: for t = 0, 1, . . . ,maxiter do
3: K-update: K ← 1

ρ+2 (2K
0 − Ut + ρAt) by ∂L

∂K = 0;
4: K-PSD: Kt+1 ← P1(K) by projecting K onto the PSD set via Eq. (6);
5: A-update: At+1 ← 1

ρ (ρKt+1 + Ut + 2C⊤
t − CtC

⊤
t − I) by ∂L

∂A = 0;
6: C-update: Ct+1 ← 2(2λI +At+1 +A⊤

t+1)
−1A⊤

t+1 by ∂L
∂C = 0;

7: U -update: Ut+1 ← Ut + ρ(Kt+1 −At+1).
8: if ∥Ct+1 − Ct∥F < tol then; break; end if.
9: end for

10: Set Ĉ = (|Ct|+ |C⊤
t |)/2.

5 Experiments

We evaluate the performance on four benchmark datasets, including two face image datasets Yale64
[64] and Umist [65], a handwritten digit image dataset USPS [66], and a speech dataset Isolet [67].
We use a subset of USPS with 1,000 randomly selected samples. All experiments 2 are conducted
five times in MATLAB on a ThinkStation with a 2.1 GHz Intel i7-12700 Core and 32GB RAM.

Various methods dealing with incomplete data are considered for comparison: 1) statistical imputation:
ZERO, MEAN, k-nearest neighbors (kNN) [26], Expectation Maximization (EM) [68]; 2) matrix
completion: Singular Value Thresholding (SVT) [27], Grassmanian Rank-one Update Subspace
Estimation (GR) [28], Kernelized Factorization Matrix Completion (KFMC) [29]; 3) distance
calibration: Double-Centering (DC) [38], Triangle Fixing (TRF) [35], Euclidean Embedding (EE)
[39]. Our KC method uses the spectral decomposition (SD). Details are provided in Appendix C.

5.1 Validation of Kernel Correction on Gaussian Kernel and Euclidean Distance

When handling incomplete data that is missing completely at random, the quality of the estimated
Gaussian kernel matrix and Euclidean distance matrix is measured using the relative-mean-square
error (RMSE =

∥Â−A∗∥2
F

∥A0−A∗∥2
F

) and the relative error (RE = ∥Â−A∗∥F

∥A∗∥F
), where A0 is the naive ker-

nel/distance matrix obtained by Eq. (1), Â is the estimated one using different methods, and A∗ as the
ground-truth. All Gaussian kernels are calculated by kij = exp(−d2ij/σ2), where σ = median{dij}.
Our KC algorithm yields Gaussian kernel and Euclidean distance matrices with the lowest RMSEs
and REs, validating the theoretical guarantee of kernel matrices in Theorem 1, as demonstrated in
Table 1. Furthermore, the accuracy of the top-10 nearest neighbors is evaluated using Recall values
[69]. The KC algorithm achieves the highest Recalls with improved local relationships, which in turn
benefits spectral clustering, particularly for kNN graphs. More numerical results are in Appendix D.

Table 1: Quality comparisons of Gaussian kernel and Euclidean distance under a missing ratio 80%.

Dataset Metric Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

Umist

RMSE-K↓ 1.000 2.849 1.535 2.451 1.527 2.849 1.797 3.818 1.748 0.923 0.438 0.382
RMSE-D↓ 1.000 20.80 27.64 21.20 27.62 20.80 8.397 14.05 110.4 0.916 0.440 0.431
RE-K↓ 0.189 0.319 0.234 0.295 0.233 0.319 0.253 0.369 0.250 0.181 0.125 0.117
RE-D↓ 0.107 0.487 0.561 0.492 0.561 0.487 0.309 0.400 1.122 0.102 0.071 0.070
Recall↑ 0.726 0.092 0.171 0.119 0.172 0.092 0.596 0.248 0.226 0.740 0.771 0.785

2Codes are available at https://github.com/SciYu/Spectral-Clustering-on-Incomplete-Data.
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5.2 Comparative Studies on Standard Spectral Clustering

We adopt the Gaussian kernel for standard spectral clustering and obtain its kNN graph (k = 10), as
the input for clustering via the normalized cut algorithm [1]. We evaluate the clustering performance
using Accuracy (ACC), Normalized Mutual Information (NMI), Purity (PUR), and Adjusted Rand
Index (ARI). Table 2 shows that our KC algorithm, which corrects the Gaussian kernel, achieves the
best clustering performance under a large missing ratio 80% (i.e., missing completely at random).

Table 2: Performance of standard spectral clustering on incomplete data under a missing ratio 80%.

Dataset Metric Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

Yale64

ACC 0.561 0.218 0.365 0.227 0.374 0.224 0.218 0.259 0.513 0.562 0.573 0.578
NMI 0.588 0.246 0.429 0.257 0.428 0.269 0.264 0.297 0.551 0.587 0.593 0.596
PUR 0.572 0.233 0.390 0.241 0.396 0.241 0.232 0.273 0.525 0.570 0.581 0.584
ARI 0.353 0.010 0.137 0.015 0.145 0.017 0.012 0.035 0.293 0.350 0.357 0.366

Umist

ACC 0.462 0.220 0.351 0.230 0.349 0.218 0.410 0.314 0.350 0.462 0.461 0.463
NMI 0.669 0.282 0.478 0.314 0.479 0.286 0.597 0.423 0.488 0.667 0.669 0.673
PUR 0.549 0.245 0.415 0.261 0.419 0.247 0.502 0.366 0.408 0.546 0.551 0.553
ARI 0.373 0.070 0.206 0.082 0.207 0.067 0.304 0.140 0.216 0.370 0.371 0.377

USPS

ACC 0.343 0.350 0.362 0.360 0.222 0.353 0.375 0.351 0.418 0.464 0.511 0.523
NMI 0.222 0.228 0.278 0.265 0.104 0.236 0.319 0.358 0.312 0.393 0.457 0.472
PUR 0.395 0.400 0.434 0.427 0.260 0.402 0.440 0.460 0.473 0.535 0.594 0.609
ARI 0.168 0.164 0.180 0.175 0.051 0.167 0.206 0.178 0.231 0.304 0.344 0.360

Isolet

ACC 0.495 0.260 0.245 0.297 0.172 0.263 0.357 0.324 0.243 0.515 0.560 0.561
NMI 0.613 0.339 0.330 0.383 0.228 0.342 0.492 0.465 0.323 0.643 0.660 0.672
PUR 0.520 0.278 0.261 0.318 0.183 0.277 0.377 0.354 0.260 0.542 0.584 0.593
ARI 0.364 0.126 0.108 0.159 0.055 0.131 0.210 0.177 0.105 0.387 0.429 0.432

We also examine robustness across varying missing ratios. Fig. 1 shows the KC method’s advantage
over imputation, especially at large missingness. Numerical results are in Appendix E.

• The KC method consistently surpasses others in kernel estimation, evidenced by reduced relative
errors (RE-K) and enhanced neighborhood ties in the kNN graph, seen through higher Recall values.

• At small missing ratios, the KC method offers incremental improvements over imputation. However,
at large missing ratios, imputation methods falter due to scant observed data, leading to increased
errors and compromised clustering. Conversely, the KC method maintains stable clustering outcomes.
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Figure 1: Robustness analysis of kernel estimation, neighborhood relationship, and standard spectral
clustering on the Yale64 and Umist datasets under a wide range of missing ratios, i.e., r ∈ [20%, 80%].
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5.3 Comparative Studies on Self-expressive Affinity Learning

We delve deeper into the advantages of the corrected Gaussian kernel in kernel self-expressive affinity
learning, encompassing methods like KSSC [19], KLSR [3], KSL-Sp, and AKLSR, with KSL-Pp
excluded due to its impracticality. As Table 3 illustrates, our KC method excels over baselines in the
NMI. Notably, both KSL-Sp and AKLSR algorithms employ corrected kernels to yield dependable
affinity matrices, thereby elevating performance. Furthermore, our imputation-free framework could
augment spectral clustering using other kernels, such as the Exponential kernel. A comprehensive
comparison and in-depth analysis are available in Appendix F. Collectively, our study presents a
holistic approach to clustering incomplete data, paving the way for subsequent research.

Table 3: NMI performance of self-expressive affinity on incomplete data under a missing ratio 80%.

Method Dataset Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

KSSC

Yale64 0.219 0.215 0.167 0.173 0.177 0.218 0.208 0.259 0.588 0.210 0.209 0.616
Umist 0.101 0.151 0.198 0.154 0.178 0.141 0.639 0.254 0.123 0.121 0.139 0.714
USPS 0.017 0.196 0.396 0.271 0.222 0.200 0.360 0.359 0.077 0.018 0.025 0.410
Isolet 0.065 0.024 0.153 0.384 0.382 0.022 0.454 0.292 0.171 0.064 0.062 0.582

KLSR

Yale64 0.606 0.311 0.604 0.320 0.609 0.321 0.327 0.318 0.597 0.603 0.604 0.616
Umist 0.676 0.579 0.640 0.538 0.638 0.576 0.630 0.548 0.647 0.671 0.687 0.696
USPS 0.019 0.225 0.417 0.317 0.235 0.231 0.356 0.360 0.418 0.019 0.420 0.485
Isolet 0.215 0.398 0.548 0.463 0.400 0.400 0.551 0.512 0.522 0.306 0.628 0.659

KSL-Sp

Yale64 0.370 0.315 0.581 0.303 0.579 0.305 0.304 0.295 0.555 0.364 0.599 0.619
Umist 0.144 0.453 0.595 0.485 0.592 0.454 0.672 0.443 0.616 0.152 0.680 0.690
USPS 0.073 0.288 0.360 0.342 0.196 0.285 0.331 0.439 0.238 0.055 0.517 0.524
Isolet 0.266 0.410 0.556 0.487 0.364 0.410 0.485 0.557 0.383 0.246 0.624 0.634

AKLSR

Yale64 0.452 0.327 0.606 0.338 0.605 0.308 0.338 0.312 0.570 0.464 0.575 0.614
Umist 0.379 0.490 0.624 0.498 0.620 0.484 0.691 0.456 0.611 0.350 0.626 0.691
USPS 0.021 0.114 0.336 0.235 0.236 0.115 0.098 0.017 0.327 0.031 0.259 0.365
Isolet 0.100 0.246 0.448 0.381 0.370 0.246 0.069 0.072 0.453 0.119 0.411 0.496

5.4 Spectral Clustering on Block-missing Data: A Case Study

Beyond the experiments addressing data missing completely at random, we generate a block of appro-
priate sizes located randomly in images and values in the block are missing where the missingness is
systematically related to locations. As illustrated in Table 4, under this block-missing paradigm [70],
our KC method persistently outperforms existing data imputation and distance calibration techniques.

Table 4: NMI performance of self-expressive affinity on block-missing data under a missing ratio
80%. Bold font indicates the best, and underline indicates the second-best.

Dataset Method Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

Yale64

KSSC 0.217 0.340 0.526 0.379 0.530 0.376 0.342 0.496 0.482 0.207 0.212 0.562
KLSR 0.592 0.336 0.544 0.365 0.534 0.365 0.338 0.533 0.484 0.596 0.585 0.592
KSL-Sp 0.488 0.335 0.540 0.367 0.544 0.366 0.343 0.543 0.481 0.484 0.584 0.591
AKLSR 0.548 0.342 0.544 0.367 0.539 0.378 0.342 0.540 0.467 0.546 0.578 0.605

6 Conclusion and Future Work

In this paper, we propose an imputation-free framework for spectral clustering on incomplete data.
Our framework directly learns high-quality affinity matrices via kernel correction and affinity learning,
improving clustering performance. We introduce a novel kernel correction method with a theoretical
guarantee, new affinity learning methods, and an adaptive extension that simultaneously learns
high-quality kernel and affinity matrices. Extensive experiments demonstrate the effectiveness of
our proposed methods on various benchmark datasets, showing superior performance compared to
existing data imputation and distance calibration approaches. Our work provides a systematic solution
to clustering incomplete data, with future work focused on integrating with deep clustering methods
for various types of incomplete data and enhancing the speed and scalability of the algorithms.
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Supplementary Material
Boosting Spectral Clustering on Incomplete Data via

Kernel Correction and Affinity Learning

This document serves as supplementary material for the paper entitled “Boosting Spectral Clustering
on Incomplete Data via Kernel Correction and Affinity Learning”. It contains a theoretical analysis
with proofs and formula derivation of theorems and algorithms presented in the main paper, a detailed
description of experimental settings, and additional numerical results. Specifically,

Sec. A and B provide the proof of Theorem 1 and the formula derivations of Kernel Self-
expressive Learning (KSL) algorithms with an adaptive extension, respectively;

Sec. C illustrates experimental settings and implementation details;

Sec. D validates the benefits of the kernel correction algorithm on kernel and distance estimation;

Sec. E and F present comprehensive results and in-depth analysis on clustering performance.

A Theoretical Property of Kernel Correction

Theorem 1. ∥K∗ − K̂∥F ≤ ∥K∗ −K0∥F . The equality holds if and only if K0 ⪰ 0, i.e., K0 = K̂.

Proof. Denote the feasible region as F , which is a closed convex set. Let K0 be the initial kernel
matrix. Let K̂ be the projection of K0 onto F (K̂ = minK∈F ∥K−K0∥2F ). Let K∗ be the unknown
ground-truth with positive semi-definiteness (PSD) in the feasible region F . By definition, we have:

∥K̂ −K0∥2F ≤ ∥K∗ −K0∥2F .

Adding and subtracting K̂ in the right-hand side, we get:

∥K∗ −K0∥2F = ∥K∗ − K̂ + K̂ −K0∥2F .

By the Pythagorean theorem [71], we have:

∥K∗ − K̂ + K̂ −K0∥2F = ∥K∗ − K̂∥2F + ∥K̂ −K0∥2F − 2⟨K∗ − K̂,K0 − K̂⟩F ,

where ⟨·, ·⟩F denotes the Frobenius inner product. Since K̂ is the projection of K0 onto the feasible
region F , we have ⟨K − K̂,K0 − K̂⟩F ≤ 0 for all PSD matrices K in F [72]. Therefore, we have:

∥K∗ −K0∥2F = ∥K∗ − K̂ + K̂ −K0∥2F ≥ ∥K∗ − K̂∥2F + ∥K̂ −K0∥2F .

If K0 is already a PSD matrix in F , we have:

K̂ = K0 and ∥K∗ −K0∥2F = ∥K∗ − K̂∥2F .

Otherwise, we obtain:
∥K̂ −K0∥2F ≥ 0,

which implies:
∥K∗ −K0∥2F ≥ ∥K∗ − K̂∥2F . (14)

Thus, we have ∥K∗ − K̂∥F ≤ ∥K∗ −K0∥F , which provides an improved estimate K̂ to K∗.

15



B Formula Derivations of Kernel Self-expressive Learning

B.1 Formula Derivations of Kernel Self-expressive Learning with Proximal p-norm

Due to the non-convex nature of the ∥Z∥pp term and the penalty term, finding a closed-form solution
for the Z-update is not straightforward. However, we can relax the matrix optimization to an element-
wise optimization without loss of generality, thanks to the format of our chosen objective function.
Below, we present the deriving process:

L = λ∥Z∥pp + γ
∑
i,j

max(zij − 1, 0) + Tr(U⊤(Z − C)) +
1

2ρ
∥Z − C∥2F

= λ
∑
i,j

(zij)
p + γ

∑
i,j

max(zij − 1, 0) +
∑
i,j

1

2ρ
(zij − cij)

2 + uij(zij − cij)

=
∑
i,j

(λzpij + γI(zij>1) · (zij − 1) +
1

2ρ
(zij − cij)

2 + uij(zij − cij)),

where I(zij>1) =

{
1, if zij > 1,

0, otherwise.
is an indicator function and Lp = L+ ∥ϕ(X)− ϕ(X)C∥2F .

We can use a solver to find out the Z-update via

∂Lp

∂zij
= λpzp−1

ij + γI(zij>1) +
1

ρ
(zij − cij) + uij = 0.

Using the Alternating Direction Method of Multipliers (ADMM) approach [61], we can update the
variables as follows.

• C-update: Update C by minimizing the augmented Lagrangian with respect to C:

Ct+1 = argmin
C

Lp(C,Zt, Ut)

= (2K +
1

ρ
In)

−1(2K + Ut +
1

ρ
Zt),

where K := ϕ(X)⊤ϕ(X) and In is the identity matrix of size n× n.
• Z-update: Update Z via solving

∂Lp

∂zij
= λpzp−1

ij + γI(zij>1) +
1

ρ
(zij − cij) + uij = 0.

• U -update: Update U via
Ut+1 = Ut + ρ(Zt+1 − Ct+1).

We employ the ADMM process to solve the problem using the augmented Lagrangian function.
However, despite the existence of a derivation method for this process, the computation proves to be
excessively slow due to the following factors:

• Matrix inversion: Inverting (2K + 1
ρIn)

−1 has a computational complexity of O(n3).

• Solver for Z-update: The golden-section solver is chosen to update zij , resulting in an
approximate computational complexity of log( 1ϵ ) for each entry [73], which is relatively
high.

Additionally, some potential complex solutions may arise when performing the element-wise update.
As a result, we provide the algorithm for future researchers to further investigate and optimize.
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B.2 Formula Derivations of Kernel Self-expressive Learning with Schatten p-norm

For 1
2 < p < 1, we can define a relaxation of the optimization problem as:

LSp
= ∥ϕ(X)− ϕ(X)UV ⊤∥2F +

λ

2
∥U∥2F +

λ

2
∥V ∥2F .

With this definition, we can employ gradient descent to update the variables iteratively. The main
steps of the algorithm are as follows:

• U -update: Compute the gradient of LSp
with respect to U :

∂LSp

∂U
= 2K(UV ⊤ − I)V + λU,

where K := ϕ(X)⊤ϕ(X). Update U according to the gradient:

Unew = Uold − α∇ULSp ,

where α is the learning rate.
• V -update: Use the closed-form solution

V = 2KU(2U⊤KU + λI)−1.

• Convergence condition:
If the difference between the updated U and the old U is less than a pre-defined tolerance
(∥U − Uold∥2F < tol), the algorithm is considered as converged, and we can terminate the
loop. Otherwise, continue iterating with the new U and V values.

Upon convergence, the affinity matrix can be computed as A = (|C|+ |C|⊤)/2, where C = UV ⊤.
This algorithm provides an efficient way to update the Schatten p-norm in the proposed KSL-Sp
model, enhancing its robustness and clustering accuracy.

B.3 Formula Derivations of Adaptive Kernel Least-Squares Representation

The problem that we are doing with is:

min
K⪰0,C

∥K −K0∥2F + Tr(K − 2KC + C⊤KC) + λ∥C∥2F .

Then we derive the augmented Lagrange equation in preparation for ADMM.

• By introducing an auxiliary variable A, we have:

min
K⪰0,A,C

∥K −K0∥2F + Tr(A− 2AC + C⊤AC) + λ∥C∥2F

s.t. K = A.

• Augmented Lagrange equation is calculated by

L(K,A,C,U) = ∥K −K0∥2F + Tr(A− 2AC + C⊤AC) + λ∥C∥2F
+ Tr(U⊤(K −A)) +

ρ

2
∥K −A∥2F ,

where U is Lagrange multiplier, ρ is the updating step size.

ADMM consists of iteratively updating K, A, C, and U as follows:

1. K-update: K = argminK L(K,At, Ct, Ut). By First-Order Necessary Condition (FONC),
we have

∂L
∂K

= 0⇒ K =
2K0 − U + ρA

ρ+ 2
.

2. K-PSD: Kt+1 ← P1(K) by projecting K onto the PSD set via Eq. (6).
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3. A-update: At+1 = argminA L(Kt+1, A,Ct, Ut). By FONC, we have

∂L
∂A

= ρA+ (I − 2C⊤ + CC⊤ − U − ρK) = 0

⇒ A =
ρK + U + 2C⊤ − CC⊤ − I

ρ
.

4. C-update: Ct+1 = argminC L(Kt+1, At+1, C, Ut). By FONC, we have

∂L
∂C

= (2λI +A+A⊤)C − 2A⊤ = 0

⇒ C = 2(2λI +A+A⊤)−1A⊤.

5. U -update:
Ut+1 = Ut + ρ(Kt+1 −At+1).

C Experimental Settings

C.1 Datasets

To evaluate the performance of our proposed approaches, we select four benchmark datasets com-
monly used in machine learning and computer vision, including:

• Yale64 [64] 3: The Yale64 dataset consists of face images of 15 different individuals, each
with different facial expressions, lighting conditions, and facial details. It contains a total of
165 images of size 64× 64 pixels in 4,096-dimensional vectors.

• Umist [65] 4: The Umist dataset consists of face images of 20 different individuals, each
with different facial expressions, lighting conditions, and facial details. It contains a total of
575 images of size 32× 32 pixels in 1,024-dimensional vectors.

• USPS [66] 5: The USPS dataset consists of handwritten digit images of size 16× 16 pixels
in 10 classes. For the five repeated experiments in this paper, we use five different random
seeds to randomly select 1,000 images with 256-dimensional vectors as a subset.

• Isolet [67] 6: The Isolet dataset is a speech dataset that contains recordings of 26 different
speakers pronouncing the names of the English alphabet. It contains 1,560 recordings and
each recording is of 617-dimensional vectors.

C.2 Baselines

The proposed approaches are evaluated against a range of baseline methods, including

• ZERO: This statistical imputation method replaces missing values with zeros.

• MEAN: This statistical imputation method replaces missing values with the mean value of
all observed values in the corresponding features.

• kNN [26]: This statistical imputation method predicts missing values based on the values of
the k-nearest neighbors in the available data. (default value k = 10)

• EM [68]: This statistical imputation method estimates the missing values based on the
Expectation Maximization algorithm.

• SVT [27]: This matrix completion method uses a singular value thresholding algorithm to
find the low-rank matrix that best fits the available data.

• GR [28]: This matrix completion method uses an online algorithm to estimate the low-rank
subspace of the data and then updates the subspace with new data points.

3https://www.kaggle.com/datasets/olgabelitskaya/yale-face-database
4https://cs.nyu.edu/ roweis/data/umist_cropped.mat
5https://cs.nyu.edu/ roweis/data/usps_all.mat
6http://archive.ics.uci.edu/ml/datasets/ISOLET
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• KFMC [29]: This matrix completion method uses a kernelized factorization approach to
estimate the high-rank matrix that best fits the available data. (default: polynomial kernel)

• DC [38]: This distance calibration method calibrates an initial distance matrix through
double centering algorithm and transformation between similarity and distance.

• TRF [35]: This distance calibration method calibrates an initial distance matrix to satisfy
all the triangle inequalities by solving a convex optimization problem.

• EE [39]: This distance calibration method calibrates an initial distance matrix to a Euclidean
embeddable matrix by solving a convex optimization problem. (default value γ = 0.02

max{d0
ij}

)

C.3 Implementation Details

Data Preprocessing. To obtain better clustering performance, we conduct different preprocessing
strategies. In the Yale64 and USPS datasets, we use the original data without preprocessing; in the
Umist and Isolet datasets, we perform the normalization to normalize all data samples into [−1, 1].
Generation of Incomplete Data. For experiments in Sections 5.1, 5.2 and 5.3, we generate an
incomplete data matrix X0 by randomly replacing each value in the data matrix X ∈ Rd×n with an
NA value with a given probability r (missing completely at random). We repeat this process five
times and report the average performance of the baseline methods using X0 as input.

Data Imputation Methods. We first impute the missing values in X0 and then calculate the kernel
matrix based on the imputed matrix X̂ . We then perform spectral clustering on the kernel matrix.

Distance Calibration Methods. We first estimate an initial distance matrix D0 on the incomplete
data matrix X0 via Eq. (1). We then calibrate D0 to D̂ and calculate the kernel matrix based on D̂.
We finally perform spectral clustering on the resulting kernel matrix.

D Validation of Kernel Correction on Kernel and Distance Estimation

Two errors, relative-mean-square error (RMSE =
∥Â−A∗∥2

F

∥A0−A∗∥2
F

) and relative error (RE = ∥Â−A∗∥F

∥A∗∥F
),

are used to evaluate the estimation accuracy, where A0 is the naive kernel/distance matrix obtained by
Eq. (1), Â is the estimated one using different methods, and A∗ as the ground-truth. Besides, Recall
measures the search accuracy of local relationships, which is defined as the overlapping ratio of two
sets of top-10 similar items obtained by Â and A∗, respectively.

Table 5: Quality comparisons of Gaussian kernel and Euclidean distance under a missing ratio 80%.

Dataset Metric Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

Yale64

RMSE-K↓ 1.000 11.52 3.009 11.46 3.009 11.39 11.13 8.838 2.564 0.994 0.741 0.624
RMSE-D↓ 1.000 12.45 76.82 14.26 76.82 12.52 12.27 11.62 37.97 0.995 0.755 0.674
RE-K↓ 0.113 0.382 0.195 0.381 0.195 0.380 0.376 0.335 0.180 0.112 0.097 0.089
RE-D↓ 0.064 0.227 0.564 0.243 0.564 0.228 0.225 0.219 0.396 0.064 0.056 0.053
Recall↑ 0.721 0.063 0.275 0.063 0.275 0.066 0.070 0.183 0.571 0.722 0.751 0.767

Umist

RMSE-K↓ 1.000 2.849 1.535 2.451 1.527 2.849 1.797 3.818 1.748 0.923 0.438 0.382
RMSE-D↓ 1.000 20.80 27.64 21.20 27.62 20.80 8.397 14.05 110.4 0.916 0.440 0.431
RE-K↓ 0.189 0.319 0.234 0.295 0.233 0.319 0.253 0.369 0.250 0.181 0.125 0.117
RE-D↓ 0.107 0.487 0.561 0.492 0.561 0.487 0.309 0.400 1.122 0.102 0.071 0.070
Recall↑ 0.726 0.092 0.171 0.119 0.172 0.092 0.596 0.248 0.226 0.740 0.771 0.785

USPS

RMSE-K↓ 1.000 0.471 0.292 0.411 0.393 0.469 0.389 0.475 0.386 0.547 0.262 0.223
RMSE-D↓ 1.000 2.820 4.378 2.936 2.850 2.825 2.003 2.100 67.82 0.501 0.252 0.240
RE-K↓ 0.460 0.316 0.248 0.295 0.287 0.315 0.287 0.317 0.286 0.340 0.235 0.217
RE-D↓ 0.268 0.451 0.562 0.460 0.445 0.451 0.380 0.389 2.210 0.190 0.135 0.132
Recall↑ 0.071 0.054 0.065 0.069 0.036 0.054 0.122 0.196 0.056 0.161 0.186 0.197

Isolet

RMSE-K↓ 1.000 1.188 0.796 0.966 0.993 1.188 1.001 1.390 0.956 0.817 0.339 0.291
RMSE-D↓ 1.000 7.210 12.35 7.620 9.538 7.210 4.595 4.365 153.5 0.809 0.332 0.309
RE-K↓ 0.282 0.307 0.251 0.277 0.280 0.307 0.282 0.332 0.275 0.255 0.164 0.152
RE-D↓ 0.160 0.429 0.561 0.441 0.490 0.429 0.342 0.334 1.978 0.144 0.092 0.089
Recall↑ 0.254 0.045 0.050 0.059 0.034 0.045 0.187 0.225 0.041 0.299 0.270 0.300
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E Comprehensive Experiments on Standard Spectral Clustering

The robustness analysis is depicted in Fig. 1 in the main text, with accompanying numerical results
in Table 6. Further, Fig. 2 displays clustering performance using ACC, NMI, and PUR metrics,
underscoring the KC method’s superiority over imputation baselines, particularly at large missing
ratios. Notably, as the missing ratio escalates, imputation methods’ accuracy and clustering efficacy
decline sharply. Specifically, at missing ratios above 50%, their reliability wanes due to the paucity of
data for imputation. In contrast, our KC method maintains consistent, and often superior, performance
even with large missingness, exemplified by the results on the Yale64 and Umist datasets.

Table 6: Robustness analysis of kernel and distance estimation, neighborhood relationship, and
standard spectral clustering on Umist. Bold font indicates best, and underline indicates second-best.

Metric Missing Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

RE-K↓
20% 0.028 0.116 0.072 0.023 0.108 0.106 0.043 0.025 0.072 0.028 0.029 0.028
50% 0.066 0.232 0.157 0.115 0.180 0.232 0.111 0.076 0.162 0.065 0.062 0.057
80% 0.189 0.319 0.234 0.295 0.233 0.319 0.253 0.369 0.250 0.181 0.125 0.117

RE-D↓
20% 0.016 0.087 0.112 0.055 0.138 0.088 0.055 0.029 0.110 0.016 0.017 0.016
50% 0.037 0.237 0.302 0.222 0.281 0.237 0.144 0.090 0.372 0.037 0.035 0.033
80% 0.107 0.487 0.561 0.492 0.561 0.487 0.309 0.400 1.122 0.102 0.071 0.070

Recall↑
20% 0.954 0.887 0.912 0.952 0.870 0.887 0.944 0.964 0.932 0.954 0.950 0.956
50% 0.899 0.558 0.672 0.778 0.630 0.558 0.856 0.910 0.783 0.899 0.907 0.914
80% 0.726 0.092 0.171 0.119 0.172 0.092 0.596 0.248 0.226 0.740 0.771 0.785

ARI↑
20% 0.455 0.370 0.405 0.451 0.388 0.380 0.436 0.439 0.427 0.456 0.466 0.460
50% 0.443 0.258 0.332 0.326 0.325 0.256 0.398 0.448 0.361 0.434 0.450 0.451
80% 0.373 0.070 0.206 0.082 0.207 0.067 0.304 0.140 0.216 0.370 0.371 0.377

ZERO MEAN kNN EM SVT GR KFMC KC
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Figure 2: Robustness analysis of standard spectral clustering using the Gaussian kernel on the Yale64
and Umist datasets under a wide range of missing ratios, i.e., r ∈ [20%, 80%].

F Comprehensive Experiments on Self-expressive Affinity Learning

Hyperparameters of Affinity Learning Algorithms. All kernel self-expressive affinity learning
algorithms in this study adhere to a unified framework, i.e., minC

1
2∥ϕ(X)− ϕ(X)C∥2F + λR(C),

where λ is a regularization hyperparameter. Empirically, we choose λ from the interval [0, 30] to
roughly achieve better clustering performance, as detailed in Table 7. Note that the optimal λ may
vary across algorithm implementations under different settings.

20



Table 7: Values of the hyperparameter λ in all experiments in Section 5.3.

Method Yale64 Umist USPS Isolet
KSSC 0.08 0.1 0.07 0.06
KLSR 8 25 8 25
KSL-Sp 0.6 1 10 10
AKLSR 0.5 0.4 0.3 0.5

Clustering Performance on the Exponential Kernel. We investigate the benefits of the corrected
Exponential kernel for kernel self-expressive affinity learning, including KSSC [19] and KLSR
[3]. Tables 8 shows that our KC algorithm outperforms baselines regarding the NMI metric on the
Exponential kernel based clustering, offering a systematic solution to clustering incomplete data.

Table 8: NMI Performance of self-expressive affinity on Exponential kernel with 80% missing.

Method Dataset (λ) Naive ZERO MEAN kNN EM SVT GR KFMC DC TRF EE KC

KSSC

Yale64 (0.03) 0.209 0.366 0.632 0.371 0.635 0.354 0.362 0.283 0.596 0.203 0.624 0.638
Umist (0.03) 0.115 0.614 0.665 0.583 0.662 0.613 0.669 0.326 0.657 0.110 0.676 0.684
USPS (0.05) 0.020 0.039 0.368 0.250 0.227 0.039 0.356 0.348 0.022 0.017 0.479 0.472
Isolet (0.06) 0.064 0.069 0.123 0.085 0.094 0.069 0.120 0.132 0.071 0.060 0.634 0.661

KLSR

Yale64 (20) 0.614 0.304 0.573 0.309 0.565 0.295 0.312 0.328 0.586 0.618 0.625 0.634
Umist (0.7) 0.127 0.570 0.655 0.557 0.653 0.566 0.682 0.487 0.642 0.130 0.688 0.693
USPS (25) 0.083 0.309 0.433 0.354 0.217 0.310 0.341 0.381 0.440 0.217 0.513 0.515
Isolet (20) 0.453 0.413 0.571 0.468 0.417 0.417 0.543 0.510 0.530 0.517 0.659 0.676

Trade-off between Efficiency and Performance of the KC Algorithm. To enhance the efficiency
of the KC algorithm, we explore the use of randomized singular value decomposition (rSVD) [53] -
a method that focuses on identifying the top-k singular values (refer to Section 3.3). We compare
the performance of the KC method with SD or rSVD on the USPS dataset. The results, presented in
Table 9, reveal that rSVD greatly enhances the operational efficiency of the KC algorithm. However,
it is crucial to choose an appropriate value for k (number of top singular values), as it heavily impacts
the quality of clustering. Smaller k values (e.g., 10 or 20) result in poorer clustering due to the loss
of important singular value information. On the other hand, selecting a suitable k value (e.g., 50
or 100) significantly reduces running time while maintaining clustering performance comparable
to SD, particularly for the standard spectral clustering algorithm (SC). Striking a trade-off between
efficiency and performance remains an intriguing avenue for future research.

Table 9: Comparisons of rSVD and SD in the KC algorithm on the USPS with 80% missing.

Method rSVD
SD

Metric k = 10 k = 20 k = 50 k = 100

RE-K 0.695 0.419 0.262 0.291 0.217
NMI-SC 0.026 0.164 0.431 0.439 0.472
NMI-KSSC 0.021 0.019 0.018 0.019 0.360
NMI-KLSR 0.021 0.122 0.210 0.018 0.485
Time (sec) 1.96 2.12 3.10 5.76 72.97

Comparisons of KSL-Sp and AKLSR. AKLSR outpaces KSL-Sp in execution speed. Algorithm 4
delineates each AKLSR update step explicitly, ensuring quicker convergence, whereas KSL-Sp
in Algorithm 3 relies on gradient descent for U updates, leading to extended convergence times.
Moreover, AKLSR’s performance can vary with the presence or absence of a PSD constraint. Table 10
showcases the efficiency of AKLSR without PSD and its effectiveness with PSD on the Umist dataset.

Table 10: Comparisons of KSL-Sp and AKLSR on Umist using the Gaussian kernel obtained by KC.

Metric SC KSL-Sp AKLSR w/o PSD AKLSR w/ PSD
ARI 0.377 0.395 0.398 0.403
Time (sec) - 12.57 0.04 0.23
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