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Abstract

This work studies the evaluation of explaining graph neural networks (GNNs),
which is crucial to the credibility of post-hoc explainability in practical usage.
Conventional evaluation metrics, and even explanation methods — which mainly
follow the paradigm of feeding the explanatory subgraph to the model and mea-
suring output difference — mostly suffer from the notorious out-of-distribution
(OOD) issue. Hence, in this work, we endeavor to confront this issue by intro-
ducing a novel evaluation metric, termed OOD-resistant Adversarial Robustness
(OAR). Specifically, we draw inspiration from adversarial robustness and eval-
uate post-hoc explanation subgraphs by calculating their robustness under at-
tack. On top of that, an elaborate OOD reweighting block is inserted into the
pipeline to confine the evaluation process to the original data distribution. For
applications involving large datasets, we further devise a Simplified version of
OAR (SimOAR), which achieves a significant improvement in computational
efficiency at the cost of a small amount of performance. Extensive empirical
studies validate the effectiveness of our OAR and SimOAR. Code is available at
https://github.com/MangoKiller/SimOAR_OAR.

1 Introduction
Post-hoc explainability has manifested its extraordinary power to explain graph neural networks
(GNNs) [1, 2, 3, 4]. Given a GNN-generated prediction for a graph, it aims to identify an explanatory
subgraph, which is expected to best support the prediction and make the decision-making process
more credible, fair, and understandable [5, 6, 7]. However, the reliable evaluation of explanation
quality remains a key challenge. As a primary solution, Human supervision seeks to justify whether
the explanations align with human knowledge [8, 9], but it is often too subjective, thus hardly
providing quantifiable assessments. Another straightforward solution is quantitatively measuring
the agreement between the generated and ground-truth explanations, such as Precision and Recall
[10, 11]. Unfortunately, access to the ground truth is usually unavailable and labor-extensive, thereby
limiting the scope of evaluations based on this method.

Recently, a compromised paradigm — Feature Removal [12, 13] — has been prevailing to quantita-
tively evaluate the explanation’s predictive power as compared to the full graph, without exploiting
the human supervision and ground truth. The basic idea is to first remove the unimportant features
and feed the remaining part (i.e., explanatory subgraph) into the GNN, and then observe how the
prediction changes. The prediction discrepancy instantiates Accuracy [8] and Fidelity [9] of the
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Figure 1: Pipelines and flaws of different evaluation methods. In the “Input” graph, −NH2 is
considered as the ground truth explanation for its mutagenicity. Best viewed in color.

explanation, reflecting “how accurate and faithful the explanation is to recover the prediction of the
input graph”. Despite the prevalence, these removal-based metrics usually come with the caveat of
the out-of-distribution (OOD) issue [14, 13]. Specifically, as the after-removal subgraphs are likely
to lie off the distribution of full graphs [15, 16], the GNN is forced to handle these off-manifold
inputs and easily gets erroneous predictions [17, 18]. Take Figure 1 (a) as an example. For the full
molecular graph, the GNN classifies it as “mutagenic”, which is reasonable due to the presence
of mutagenic −NH2 group; whereas, when taking the subgraph, i.e., non-mutagenic C-Cl group
solely as the input, the GNN surprisingly maintains its output “mutagenic”. Clearly, the prediction
on the explanatory subgraph might be skeptical, which easily deteriorates the faithfulness of the
removal-based evaluations.

In sight of this, recent efforts [18, 17] are beginning to mitigate the OOD issue via the Generation-
based metrics. Instead of directly feeding the to-be-evaluated subgraph into the target GNN, they use
a generative model [19, 20] to imagine and generate a new full graph conditioned on the subgraph.
These methods believe that the generation process could infill the subgraph and pull it closer to the
original graph distribution. As Figure 1 (b) shows, comparing the predictions on this new graph
and the original graph could be the surrogate evaluation. While intuitively appealing, the generative
models easily inherit the data bias and inject it into the infilling part. Considering Figure 1 (b) again,
since molecules in the Mutagenicity dataset comprising non-mutagenic chloride (−Cl) always carry
amino (−NH2), a generative model is prone to capture this occurrence bias and tend to infill −NH2

with the −Cl-involved subgraphs. This bias not only exerts on the generations but also makes the
evaluation inconsistent with the GNN behavior: in the generative model, −Cl is assigned with more
“mutagenic” scores as it usually accompanies the mutagenic partner −NH2; in contrast, the GNN
finds no “mutagenic” clues in −Cl. In a nutshell, the generation-based metrics show respect to the
data distribution somehow but could be inconsistent with GNNs’ behavior and lose control of the
infilling part.

Scrutinizing these removal- and generation-based metrics (as summarized in Figure 1), we naturally
raise a question: “Can we design a metric that respects the data distribution and GNN behavior
simultaneously?” To this end, we draw inspiration from adversarial robustness [21, 22] and propose a
new evaluation framework, OAR (OOD-resistant Adversarial Robustness), to help reliably assess the
explanations. As shown in Figure 1 (c), OAR encapsulates two components: constrained attack and
OOD reweighting, which respect the GNN behavior and data distribution, respectively. Specifically:

• Intuitively, perturbations on label-irrelevant features should be ineffective to the GNN prediction,
while those on label-relevant features are supposed to be impactful and destructive to the prediction
[22, 21]. Hence, for the original input graph, the attack model performs perturbations constrained
on the complementary part of its explanation. This perturbing game aims to naturally take control
of the "infilling" process, making the explanatory subgraph less influenced by its infilling.

• Having obtained a set of perturbed graphs, the reweighting component estimates the OOD score
of each perturbed graph, which reflects the degree of distribution shift from the original data
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distribution. Then, we feed these graphs into GNN and reweight their predictions with OOD scores.
The sum of weighted predictions can quantitatively evaluate the importance of the target subgraph.

We validate the effectiveness of OAR in evaluation tasks across various start-of-the-art explanation
methods, datasets, and backbone GNN models. OAR has manifested surprising consistency with the
metrics like Precision, Recall and Human Supervision. Furthermore, to better generalize to the large
datasets, we also provide a Simplified version of OAR (SimOAR) achieving significant improvements
in computational efficiency at the expense of a small amount of performance degradation. Our main
contributions can be summarized as follows:

• We propose a novel metric, OAR for evaluating GNNs’ explainability, which tries to resolve the
limitation of current removal- and generative-based evaluations by taking both data distribution
and GNN behavior into account (Section 2.2).

• We provide a simplified version of OAR, SimOAR for better generalization to the evaluation tasks
involving large datasets, which greatly shortens the execution time while only sacrificing a small
amount of performance (Section 2.3).

• Experimental results demonstrate that our OAR/SimOAR outperforms the current evaluation
metrics by a large margin, and further validate the high efficiency of SimOAR (Section 3).

2 Methodology
In this section, we propose an evaluation method for the explainability of GNNs from the perspective
of adversarial robustness. We start with the notation of GNNs and its explainability in Section 2.1.
After that, we detail our evaluation metric, OAR via three progressive steps (Section 2.2). In Section
2.3, we provide a simplified version of OAR called SimOAR for applications demanding more
efficient execution.

2.1 Problem Formulation
Graph neural networks (GNNs). GNNs have achieved remarkable success due to their powerful
representation ability. Without loss of generality, we focus on the graph classification task in this
work: a well-trained GNN model f takes a graph G as the input and outputs its probabilities y over
classes {1, ..., C}, i.e., y = f(G) ∈ RC . Typically, G is an undirected graph involving the node set V
and the edge set E . We first introduce the feature of node vi ∈ V as a d-dimensional vector and collect
the features of all nodes into X ∈ R|V|×d. Then we define an adjacency matrix A ∈ R|V|×|V| to
describe graph topology, where Auv = 1 if the edge connecting nodes u and v exists, i.e., (u, v) ∈ E ,
otherwise Auv = 0. Based on these, G can be alternatively represented as G = (A,X).

Explainability for GNNs. Upon the GNN model f , explanation techniques of GNNs generally study
the underlying relationships between their outputs y and inputs G. They focus on explainability
w.r.t. input features, aiming to answer “Which parts of the input graph contribute most to the model
prediction?”. Towards this end, explainers typically assign an importance score to each input feature
(i.e., node vi or edge (vi, vj)) to trace their contributions. Then they select the salient part (e.g.,
a subset of nodes or edges with top contributions) as the explanatory subgraph Gs and delete the
complementary part Gs̄ = G\Gs. We formulate the explanation method as h and yield the above
process as Gs = h(G, f).

2.2 OOD-Resistant Adversarial Robustness
Retrospecting the removal- and generation-based evaluations, we emphasize that both these classes
come with inherent limitations. Specifically, Removal-based metrics pay less heed to the data
distribution thus forcing GNNs to handle off-manifold instances, while generation-based metrics are
inconsistent with GNN behavior and lose control of the infilling part. Fortunately, in this section, we
claim that it is possible to get the best of and avoid the pitfalls of both worlds — removal-based and
generation-based metrics — by taking both GNN behavior and data distribution into account.

To meet these challenges, we elaborate our evaluation metric, OOD-resistant adversarial robustness
(OAR) via three progressive steps: in the first step, we formulate the adversarial robustness tailored
for GNNs explanations, which naturally conforms to the GNN behavior; in the second step, we
introduce a tractable and easy-to-implement objective of above adversarial robustness; in the third
step, we introduce an elaborate OOD reweighting block which confines the overall evaluation process
to the original data distribution.

STEP 1: Formulation of Adversarial Robustness. We prioritize the introduction of adversarial
robustness in machine learning [21, 22, 23] that motivates our method. Concretely, given a machine
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Figure 2: The pipeline of OAR, which takes both model behavior and data distribution into account.

learning model, an input x and a subset of the input xs ⊆ x, the adversarial robustness of xs denotes
the minimum perturbation leading to the wrong prediction, on the condition that perturbation is only
imposed on xs [22]. Inspired by this idea, we define the adversarial robustness of GNN explanation
Gs, and formulate it as the minimum adversarial perturbation δ on the structure of complementary
subgraph Gs̄. More formally,
Definition 1. Given a GNN model f , an input graph G = (A,X) with prediction y and explanation
Gs, suppose that G′ = (A′,X ′) is the graph generated by adding and deleting edges in G, the
adversarial robustness δ of explanation Gs is defined as:

δGs = min
A′

∑
u∈V

∑
v∈V\u

|Auv −A′
uv|

s.t. argmax
i

f(G′)i ̸= argmax
i

yi,
∑
u∈Vs

∑
v∈Vs\u

|Auv −A′
uv| = 0,

(1)

where V and Vs are the node sets of G and Gs, respectively.

Definition 1 identifies the quality of explanation Gs as the difficulty of reversing the prediction by
perturbing features not belonging to Gs solely. That is, when Gs is fixed, the more difficult it is to
fool the model by perturbing its complementary, the more important Gs is. The key intuition behind
this inference is: if an explanation comprises most of the label-relevant features, it is conceivably
hard to change the prediction by manipulating the remaining features that are label-irrelevant. Thus,
according to Definition 1, we can find that: a good explanation would yield high adversarial robustness
δ and vice versa, which naturally conforms to the GNN behavior.

It seems that adversarial robustness is the feasible metric to evaluate the GNNs’ explanations.
However, there are still two matters standing in the way of its adoption: 1) Is its objective (i.e.,
Equation (1)) tractable and easy to implement? 2) Does it respect the data distribution?

STEP 2: Finding a Tractable Objective. To answer the first question, we argue that Equation (1) is
hard to realize and sometimes even intractable owing to two possible reasons:

• The primary reason is that adversarial attacks may fail to find any adversarial example, since a
solution satisfying two conditions in Equation (1) simultaneously may not exist. In other words,
if the explanation Gs is precise enough, it is almost impossible to reverse the prediction via
manipulating features in the complementary part Gs̄ which are mainly label-irrelevant.

• It is notoriously hard to search for the minimum adversarial perturbation δ in most cases. Current
attack methods [24, 25] typically turn to find an alternative sub-optimal solution. Thus, leveraging
these methods could introduce additional bias and threaten the fairness of evaluation.

To address these issues and make the evaluation objective tractable and easy to implement, we first
formulate the inference derived from Definition 1 :
Proposition 1. When the high quality explanation Gs is anchored (fixed), perturbations restricted to
the complementary part Gs̄ have a weak influence on the model prediction.

While Definition 1 evaluates the explanations via the adversarial robustness δ, Proposition 1 indicates
a more straightforward way to the tractable evaluation objective from its dual perspective. To be
more specific, Definition 1 quantifies perturbation on Gs̄ causing change of prediction; conversely,
Proposition 1 quantifies change of prediction caused by perturbation on Gs̄. More formally,
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Definition 2. Given a GNN model f , an input graph G = (A,X) with prediction y and explanation
Gs, suppose that G′ = (A′,X ′) is the graph generated by adding and deleting edges in G, the
approximate adversarial robustness δ∗ of Gs is defined as:

δ∗Gs
= EG′ (f(G′)c − yc)

s.t. c =argmax
i

yi,
∑
u∈Vs

∑
v∈Vs\u

|Auv −A′
uv| = 0, (2)

where Vs refers to the node set of Gs; c denotes the predicted class of G by model f ; f(G′)c represents
the probability value of f(G′) for the given class c.

Stemmed from Definition 2, the evaluation method to quantify the adversarial robustness of GNN
explanations is more explicit and computationally convenient. As shown in Figure 2, for the to-be-
evaluated subgraph Gs (i.e., C-Cl in red dotted box), we anchor it and randomly perturb the remain
part Gs̄ to get graphs G′ (i.e., molecules in green dotted box). Then we compare the expectation of
the prediction of G′ with the prediction of the original graph G. If they are close, most features in Gs̄
must be label-irrelevant. Hence, we can assign high quality for the explanation Gs.

So far, there is only one question left: how to ensure that the aforementioned evaluation process
respects the data distribution?

STEP 3: OOD Reweighting Block Tailored for GNNs. Before elaborating our OOD block, we first
retrospect that in most scenarios, a tiny perturbation would not induce large distribution shifts along
the input space, thanks to the approximate continuity of input features (e.g., image pixels in computer
vision). Unfortunately, the structural features of GNNs’ inputs — adjacency matrix comprising of 0s
and 1s — are discrete thus only one perturbation (e.g., adding or deleting an edge) could induce large
distribution shifts, and further violate the underlying properties, such as node degree distribution [26],
graph size distribution [27] and domain-specific constraints [28].

Thus, it is pivotal to construct an OOD reweighting block for assessing whether the generated graph
G′ deviates from the data manifold. This block is expected to assign an “OOD score” — the degree of
distribution shift between G′ and original graph G — to each G′. However, it is non-trivial to quantify
the degree of OOD [29]. Inspired by the great success of graph anomaly detection [30, 31, 32, 33, 34],
we treat the OOD instance as the “anomaly” since it is isolated from the original data distribution, and
naturally employ the common usage module of anomaly detection — variational graph auto-encoder
(VGAE) [19] containing an encoder and a decoder — to instantiate our OOD reweighting block.
Additionally, the great success of diffusion generative models has been recognized recently [35, 36],
and thus this domain is deferred for future investigation.

Concretely, as shown in Figure 2, the preparation for evaluations is training the VGAE model on
the dataset D where input graph G is sampled. After that, we can leverage the reconstruction loss to
approximate the degree of OOD for any generated instance G′. To be more specific:

• Given G′ = (A′,X ′), the encoder first learns a latent matrix Z according to A′ and X ′, where
row zi corresponds to the node v′i in G′. Note that zi is assumed to follow the independent normal
distributions with expectation µi and variance σ2

i . Formally:

q(Z|A′,X ′) =

|V′|∏
i=1

q(zi|A′,X ′) =

|V′|∏
i=1

N (zi | µi,diag(σ
2
i )), (3)

where µ and σ are parameterized by two two-layer GCNs [37] called GCNµ and GCNσ .
• Then, the decoder recovers the adjacency matrix A′ based on Z:

p(A′|Z) =

|V′|∏
i=1

|V′|∏
j=1

p(A′
ij | zi, zj),

with p(A′
ij = 1 | zi, zj) = σ(zi

⊤zj),

(4)

where σ(·) is the logistic sigmoid function.
• The OOD score of G′ is given by the normalized reciprocal of the reconstruction loss Lrecon(G′),

Lrecon(G′) = − log p(A′ | Z), with Z = µ = GCNµ(A
′,X ′). (5)
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Since VGAE is trained on the dataset D, G′ straying far from the data distribution of D would get
the high reconstruction loss Lrecon. Thus, as the reciprocal of Lrecon, the OOD score of G′ must
be low. Conversely, if G′ is in distribution, it would gain a high OOD score because it is easy to be
reconstructed. Based on this, our OOD block can mitigate the impact of OOD instances. Specifically,
the OOD score is utilized as the weight of each prediction when calculating the expectation of the
generated graph’s prediction. This allows for the marginalization of instances with low OOD scores,
as shown in the gray dotted box of Figure 2.

Overall evaluation process. As the last piece of the OAR puzzle, i.e., OOD reweighting block has
been instantiated, let’s revisit Figure 2 and summarize the overall process of OAR:

1. Before we evaluate the explanatory subgraph Gs, the OOD reweighting block (i.e., VGAE) is
trained on the dataset D where input graph G is sampled.

2. Then, we fix the Gs and randomly perturb the structure of the complementary part Gs̄ to get G′.
3. Each G′ is fed into GNN f and VGAE simultaneously to audit prediction and OOD score. Both

GNN’s behavior and data distribution are taken into consideration in this step.
4. At last, according to the predictions and their weights (i.e., OOD scores), we calculate the weighted

average of the generated graphs’ predictions. The closer this average is to the original prediction
of G, the higher the quality of the explanation Gs is.

The pseudocode and the tricks to expedite computations are detailed in Appendix A.

2.3 A simplified version of OAR
To better generalize to large datasets and reduce the computational complexity, we provide a simplified
version of OAR called SimOAR in this section. Compared with OAR, SimOAR achieves a significant
improvement in computational efficiency at the expense of a small amount of performance degradation.
Concretely, SimOAR is mainly motivated by three empirical inferences after executing OAR:

• The most time-consuming part of OAR is its preparatory work, i.e., training OOD reweighting
block, especially for large datasets. For example, on the dataset MNIST superpixels [38] containing
70,000 graphs, the converged process of VGAE occupies 93.7% of OAR’s execution time.

• In the course of generating G′, the number of perturbation operations is roughly proportional to the
degree of distribution shift given by the OOD block. For example, the graph G′1 created via deleting
one edge typically gets a higher OOD score than the graph G′2 created via deleting five edges.

• For two generated graphs generated via the same perturbation times, they generally get similar
reconstruction losses and are assigned similar OOD scores.

Based on these, to expedite computations and simplify the OAR, we deactivate the OOD reweighting
block (i.e., deleting all the sketches in gray dotted boxes in Figure 2) in OAR. As compensation
for data distribution, we restrict the ratio of the number of perturbations to the number of edges
in the original graph G to a pre-defined minor value R. Since the generated graphs typically share
similar reconstruction losses and OOD scores while R is fixed, we directly calculate their average
prediction to approximate their excepted prediction. The pseudocode and more implementation
details of SimOAR are provided in Appendix A.

It is worth noting that despite the potential existence of a few generated graphs G′ in SimOAR
that fall outside the distribution, the performance of SimOAR still significantly surpasses that of
current evaluation methods w.r.t consistency with both metrics based on ground truth and human
supervision. Hence, in light of the efficiency of the SimOAR, we strongly advocate for its adoption
as a predominant alternative to prevalent removal-based evaluation metrics. At the heart of SimOAR –
and a central thesis of this paper – is the perspective that, during evaluation, rather than deleting
all non-explanatory nodes and then gauging the resultant output variations, it is more insightful to
randomly delete a portion of the non-explanatory nodes multiple times and then gauge the
average output variations.

3 Experiments
We present empirical results to demonstrate the effectiveness of our proposed methods OAR and
SimOAR. The experiments aim to investigate the following research questions:

• RQ1: How is the evaluation quality of OAR and SimOAR compared to that of existing metrics?
• RQ2: How is the generalization of OAR and SimOAR compared to that of existing metrics?
• RQ3: What is the impact of the designs (e.g., the OOD reweighting block) on the evaluations?
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Table 1: Overall evaluation scores and rankings of explainers under different evaluation methods.
Symbol (·) indicates the rank of explainers. Our methods, i.e., OAR and SimOAR are bold and the
best-performing methods are denoted with the superscript asterisk.

SA GradCAM GNNExplainer PGExplainer CXPlain ReFine τ ↑

BA3

Recall 88.12±0.00(1) 84.53±0.00(2) 76.83±4.64(3) 65.32±5.21(5) 54.77±4.42(6) 72.90±3.72(4) -
RM 35.39±0.00(3) 37.67±0.00(4) 43.32±1.97(1) 29.25±2.26(5) 27.78±0.96(6) 41.24±1.55(2) 0.73
DSE 43.08±2.31(1) 41.38±1.75(2) 22.25±2.14(6) 37.92±2.52(3) 24.60±3.57(5) 29.31±2.96(4) 0.73
OAR 93.12±4.60(1) 86.20±3.76(2) 80.19±1.68(3) 65.48±3.75(5) 59.69±2.98(6) 71.02±4.45(4) 1.00*

SimOAR 84.39±5.70(1) 83.44±4.81(2) 62.52±2.25(3) 50.02±2.87(6) 55.49±4.22(5) 60.42±3.32(4) 0.93

TR3

Recall 82.08±0.00(1) 77.00±0.00(2) 60.09±4.97(4) 55.85±4.70(5) 44.39±5.57(6) 74.19±3.30(3) -
RM 55.08±0.00(3) 51.15±0.00(4) 79.08±4.31(1) 50.45±2.04(5) 47.72±3.82(6) 64.60±2.27(2) 0.67
DSE 48.51±1.00(1) 37.32±2.35(4) 44.82±2.90(2) 33.71±3.72(6) 35.65±1.92(5) 39.49±3.31(3) 0.73
OAR 95.23±3.75(1) 87.51±6.65(2) 72.63±5.89(3) 59.06±4.83(5) 51.61±3.14(6) 63.82±5.43(4) 0.93*

SimOAR 88.45±6.04(1) 76.37±4.54(2) 53.54±4.46(6) 68.58±5.80(4) 62.98±4.00(5) 75.59±4.27(3) 0.86

MNIST-sp

Recall 43.98±0.00(3) 44.39±0.00(4) 54.63±0.96(1) 30.13±1.42(6) 38.96±2.62(5) 47.88±1.60(2) -
RM 21.34±0.00(4) 19.10±0.00(5) 22.23±1.02(3) 25.04±0.35(2) 27.15±0.69(1) 17.58±0.50(6) 0.33
DSE 30.37±4.06(2) 29.19±2.19(3) 14.03±1.77(6) 28.45±2.65(1) 22.95±2.44(4) 21.32±1.29(5) 0.20
OAR 66.28±2.46(3) 64.18±5.25(4) 82.22±4.13(1) 63.88±3.45(5) 51.37±1.76(6) 75.43±4.84(2) 0.93*

SimOAR 54.72±3.84(4) 69.86±2.80(3) 79.69±3.53(1) 33.27±2.04(6) 52.93±3.26(5) 76.40±2.24(2) 0.93*

MUTAG

Recall 41.12±0.00(6) 44.44±0.00(5) 55.95±4.94(4) 71.22±2.54(2) 64.65±1.50(3) 77.73±3.67(1) -
RM 75.60±0.00(5) 77.39±0.00(6) 82.32±4.37(2) 87.11±2.59(1) 76.49±3.51(4) 81.76±2.64(3) 0.73
DSE 38.03±3.90(4) 32.36±2.40(5) 40.28±1.32(3) 49.18±2.57(1) 29.06±1.44(6) 43.19±2.14(2) 0.67
OAR 52.10±3.58(6) 53.19±3.87(5) 63.35±2.50(4) 88.46±2.43(2) 67.19±2.08(3) 92.81±5.24(1) 1.00*

SimOAR 75.45±2.51(5) 71.07±5.40(6) 85.65±4.00(2) 81.48±2.98(3) 76.32±3.88(4) 89.40±5.06(1) 0.80

3.1 Experimental settings
To evaluate the effectiveness of our method, we utilize four benchmark datasets: BA3 [39], TR3
[17], Mutagenicity [40, 41], and MNIST-sp [38], which are publicly accessible and vary in terms of
domain and size. Moreover, to generate the explanations of the graphs in the datasets mentioned
above, we adopt several state-of-the-art post-hoc explanation methods, i.e., SA [10], GradCAM [42],
GNNExplainer [11], PGExplainer [43], CXPlain [44] and ReFine [39]. The prevailing metrics —
removal-based evaluation (RM for short) and generation-based evaluation, i.e., DSE [17] — are
selected as the baselines. Detailed experimental details can be found in Appendix B.

3.2 Measurement metric
We elaborate on the measurement metric of existing evaluation methods in this part since how to
fairly define the quality of an evaluation method is critical to our research.

Ground-truth explanations. We first follow the prior studies [11, 45, 43] and treat the subgraphs
coherent to data generation procedure or human knowledge as ground truth. Although ground
truth might not conform to the decision-making process exactly, it contains sufficient discriminative
information to help justify the quality of explanations. Moreover, it’s worth emphasizing again that
our method does not depend on ground truth, and gathering ground truth is only for fair comparison.

Consistency with metric based on ground-truth explanations. Specifically, given a to-be-evaluated
subgraph Gs and its corresponding ground-truth explanation GGT

s , we use Recall as the gold evalua-
tion metric defined as Recall(Gs) =

∣∣Es ⋂ EGT
s

∣∣ / ∣∣EGT
s

∣∣, where Es and EGT
s are the edge set of Gs

and GGT
s ; | · | denotes the cardinal function of set. Hence, for any evaluation method, we can calculate

its consistency with Recall to quantify its performance via Kendall correlation τ [46] defined as:

τ
({

ri
}n

i=1
,
{
si
}n

i=1

)
=

2

n(n+ 1)

∑
i<j

I
(
sgn

(
ri − rj

)
= sgn

(
si − sj

))
, (6)

where
{
ri
}n

i=1
and

{
si
}n

i=1
are a pair of Recall values and evaluation scores; sgn(·) is the sign

function and I(·) is the indicator function. The bigger τ is, the higher the evaluation scores are
consistent with Recall values, and thus the better the evaluation method is.

Consistency with human intuition. The consistency between evaluation results and human intuition
is also an important reference. In view of the high subjectivity of human intuition, we organized a
large-scale user study engaging 100 volunteers. Results are shown in Appendix C.
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Figure 3: The performance of various evaluation metrics. (a) Correlation between metrics and
Recall across various backbone explainers, where the vertical axis represents the normalized Kendall
rank correlation. (b) Consistency between Recall and the scores provided by metrics. The more
monotonously increasing the curve is, the better the evaluation metric is. Best viewed in color.

Limited by space, we further exhibit and discuss more detailed implementations and results in
Appendix B, including but not limited to the generalization of OAR involving the evaluation of the
post-hoc explanations for node classification task and the inherent explanations.

3.3 Study of explanation evaluation (RQ1)
As a preparation for the experiments, we first collect the explanatory subgraphs {Gis} for a set
of graphs {Gi}Ni=1 and the corresponding well-trained GNN model f . We denote the evaluation
score on Gis based on RM, DSE and our OAR and SimOAR by siRM, siDSE, siOAR and siSimOAR,
respectively. For more faithful comparison, we present both the explainer-level correlation defined

as τ∗ = τ

({
1
N

∑N
i=1 Recall

(
Gi,hs

)}
h∈H

,
{

1
N

∑N
i=1 s

i,h
∗

}
h∈H

)
and the instance-level correlation

defined as τ∗ = τ
({

Recall
(
Gis

)}N

i=1
,
{
si∗
}N

i=1

)
, where ∗ can be RM, DSE, OAR, and SimOAR;

Gi,hs means the subgraph Gis is extracted by explainer h,H is the set of explainers. The explainer-level
results, under all evaluation methods, on all datasets, are presented in Table 1. Moreover, considering
the instance-level results share a similar tendency, we presented the representative results on BA3
and MNIST-sp in Figure 3 (a). According to Table 1 and Figure 3 (a) we can find that:

• Observation 1: OAR outperforms other methods in all cases. Substantially, Kendall rank corre-
lation greatly improves after leveraging the paradigm of adversarial robustness. The most notable
case is the explainers’ rank on BA3 and MUTAG, where τ∗ = 1.00 achieves a tremendous increase
from the RM and the DSE. It demonstrates the effectiveness and universality of OAR/SimOAR and
verifies that OAR/SimOAR can be leveraged to boost the quality of evaluations.

• Observation 2: SimOAR performs a little worse than OAR, but still significantly improves
over the strongest baselines. To be more specific, the average score of SimOAR is 7.83% less
than that of OAR, but still, 42.62% higher than RM and 37.45% higher than DSE. It demonstrates
that SimOAR is adequate for the task of explanation evaluations in most cases.

Further analysis of the results presented in Table 1 reveals that:

• Observation 3: OAR/SimOAR presents a more fair and faithful comparison among explainers.
The rankings provided by the OAR and SimOAR are highly consistent (i.e., τ∗ = 0.928 on average)
with the references, while the removal- and generation-based rankings unsurprisingly pale by
comparison. These empirical results give us the courage to leverage OAR and SimOAR to evaluate
emerging explanation methods in the future.

3.4 Study of generalization (RQ2)
Although the experiment provided in 3.3 is detailed and fair, we contend that the generalization of
OAR and SimOAR is still unexamined. Specifically, a specific explainer always has a preference
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for certain patterns, and thus the explanatory subgraphs extracted by it often have similar structures.
Therefore, the experimental results based on limited explainers may not generalize well to other
existing or future explainers, especially those based on different lines of thought.

As it is impractical for us to cover all these explainers, we resort to directly generalizing the to-
be-evaluated subgraphs. That is, we make use of fake explanatory subgraphs which are randomly
sampled from the full graph. The detailed sampling algorithm and settings can be found in Appendix
C. In these settings, the best case is that the evaluation score is monotonically increasing w.r.t.
the Recall level, which indeed reaches the best consistency. Average normalized scores under all
evaluation methods are shown in Figure 3 (b), which indicate that:

• Observation 4: OAR/SimOAR greatly improves the consistency between evaluation scores
and Recalls, which indicates that our method has tremendous potential to perform well on
other explainers. Conversely, removal- and generation-based methods are negatively correlated
with the importance involving the set of to-be-evaluated subgraphs which get high Recalls.

3.5 Study of designs (RQ3)

Figure 4: Case studies for OOD reweighting block
with the graphs randomly selected from datasets
MNIST-sp, MUTAG, and BA3 arranged from top
to bottom. Best viewed in color.

Effectiveness of OOD block. We first focus on
the effectiveness of the OOD block. The most
immediate impact of OOD block on OAR can
be estimated by comparing the performance of
OAR and SimOAR, which can be also deemed
as the ablation experiments. Hence, we turn to
qualitatively analyze the OOD block via some
case studies shown in Figure 4, where all the
OOD scores belonging to the same datasets are
normalized to the range of 0 to 1. Based on the
information conveyed in Figure 4, the following
observation can be made:

• Observation 5: OOD block can assign the
lower weights to the subgraph which vio-
lent the underlying properties of the full
graph. For example, graph properties of
chemical molecules, such as the valency rules,
impose some constraints on syntactically valid
molecules. Hence, the invalid molecular subgraphs, which destroy the integrity of the carbon ring
by simply removing some bonds (edges) or atoms (nodes) are assigned low scores by the OOD
block.

Table 2: Per-graph time consumption. (ms)
BA3 TR3 MNIST-sp MUTAG

RM 0.11±0.02 0.10±0.01 0.15±0.03 0.13±0.01

DSE 1.73±0.27 1.60±0.14 2.12±0.39 1.88±0.25

OAR 1.16±0.05 1.32±0.06 1.77±0.10 1.78±0.03

SimOAR 0.84±0.07 0.65±0.08 1.03±0.07 0.96±0.06

Time complexity. To further explore the ef-
ficiency of our evaluation method and the de-
signed module in it, we count the running time
of the evaluation process on every single graph
and average the time over the entire test set to
obtain per-graph time consumption. The com-
parison is provided in Table 2. According to
Table 2 we can find that:

• Observation 6: SimOAR greatly reduces the execution time. Concretely, the execution speed has
nearly doubled after leveraging the metric of SimOAR. This significant improvement in efficiency
corresponds to the original intention of SimOAR and verifies the success of SimOAR’s design.

4 Related Work & Further Discussion

OAR & Contemporary Evaluation Metrics. Apart from the qualitative evaluation methods based
on human intuition, recent literature categorizes quantitative metrics into four primary categories:
accuracy, faithfulness, stability, and fairness [47, 48, 49, 50, 51, 52]. Notably, Precision and Recall
metrics align with the accuracy category, while our proposed OAR and SimOAR fall under the
faithfulness category. Among these methods, the most recently proposed faithfulness metric is GEF
[49], which however omits quantification of the distribution shift in subgraphs. Nevertheless, we

9



have exhibited the experimental comparison between GEF and our metrics w.r.t the latest dataset
SHAPEGGEN [49] in Appendix B.

OOD & GNNs Explainability The OOD issue is one of the most critical challenges in the post-hoc
explainability domain currently [16, 53]. To sidestep this challenge, many studies have pivoted
towards the development of inherently explainable GNNs [15, 54]. Notwithstanding the complexity
of the task, efforts such as FIDO [55] are making significant successes in addressing the OOD
problem within post-hoc explanations. Concurrently, CGE [56] leverages the lottery ticket hypothesis
[57, 58, 59, 60, 61] to craft the cooperative explanation for both GNNs and graphs, wherein the OOD
challenge is potentially mitigated through the EM algorithm. GIBE [62] delves into the intersection
of the OOD issue and regularization, viewing it through the lens of information theory. Furthermore,
MixupExplainer [63] and CoGE [64] navigate the OOD problem from the generation and recognition
stances, respectively.

Simultaneously, the evaluation of inherent explanations encounters the same hurdles as post-hoc ex-
planations: it’s challenging to quantify in the absence of the ground truth. Fortunately, by introducing
an additionally well-trained GNN, OAR can be employed to evaluate inherent explanations in a
similar way to evaluate post-hoc explanations. The experimental results are shown in Appendix B.

Limitations & Concerns. While we acknowledge the effectiveness of our methods, we also
recognize their limitations. Concretely, despite utilizing SimOAR to expedite the evaluation process,
our paradigm remains more time-intensive compared to the conventional removal-based metric. To
overcome this constraint, a probable solution is summarizing the optimal number of perturbations
and implementing a self-adaptive extraction module to select the perturbed features.

Furthermore, we recognize potential apprehensions regarding the migration of trust issues from the
black-box GNN to the equally non-transparent VGAE. Nevertheless, we posit that the repercussions
of this are substantially mitigated in our streamlined method. Specifically, SimOAR bypasses VGAE
in favor of employing transparent heuristics for perturbation generation, effectively addressing the
aforementioned trust concerns. It’s noteworthy that, while SimOAR’s performance may be marginally
below or comparable to OAR’s, it consistently exceeds other benchmarks. This emphasizes VGAE’s
restrained impact and reaffirms our recommendation of SimOAR over OAR.

5 Conclusion
In this paper, we explored the evaluation process of GNN explanations and proposed a novel
evaluation metric, OOD-resistant adversarial robustness (OAR). OAR gets inspiration from the notion
of adversarial robustness and evaluates the quality of explanations by calculating their robustness
under attack. It addresses the inherent limitations of current removal- and generation-based evaluation
metrics by taking both data distribution and GNN behavior into account. For applications involving
large datasets, we introduce a simplified version of OAR (SimOAR), which achieves a significant
increase in computational efficiency at the cost of a small amount of performance degradation. This
work represents an initial attempt to exploit evaluation metrics for post-hoc GNN explainability from
the perspective of adversarial robustness and resistance to OOD.
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This work is primarily foundational in GNN explainability, focusing on the development of a more
reliable evaluation algorithm. Its primary aim is to contribute to the academic community by
enhancing the understanding and implementation of the evaluation process. We do not foresee any
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A Algorithms

Algorithm 1 presents the pseudocode of the evaluation process of our proposed method OAR. The
pseudocode of SimOAR can be obtained by removing the line 1, 6, and 8 and simply modifying
line 9 into “s← 1

Nadv

∑
i y

(i)”. For clarity, we put the step of feeding adversarial graph G′(i) into
the target GNN and the VGAE under the for-loop. However, when implementing in real code, we
can batch all those Nadv adversarial graphs and feed them at one time, after the sampling process is
finished, to expedite computation. Meanwhile, Algorithm 2 presents the sampling process of fake
explanatory subgraphs for general evaluation.

Algorithm 1 Evaluation Process of OAR
Input: Trained GNN f ; To-be-evaluated subgraph Gs and its corresponding original graph G and

dataset D; Perturbation ratio R; Number of adversarial graphs Nadv

Output: Evaluation score s
1: Train a standard VGAE on D according to [19].
2: c← argmaxi f(G)i.
3: for i = 1, 2, . . . , Nadv do
4: G′(i) ← randomly deleting ⌊R · |EG |⌉ edges from G while fixing Gs.
5: y(i) ← f(G′(i))c.
6: L(i)

recon ← calculated according to Equation 5 using the trained VGAE.
7: end for
8: w

(i)
OOD ←

1/L(i)
recon∑

j 1/L(j)
recon

, i = 1, 2, . . . , Nadv .

9: s←
∑

i w
(i)
OOD · y(i).

Algorithm 2 Sampling Fake Explanatory Subgraphs for General Evaluation
Input: DatasetD = {G1,G2, . . . ,GN}; Number of Recall levels NL; Number of sampled subgraphs

per graph Nsub; Size of sampled subgraph Ksub

Output: Pairs of Recall level and corresponding subgraphs (Lk, {Gi,j
s,k | i = 1, 2, . . . , N ; j =

1, 2, . . . , Nsub}), k = 1, 2 . . . , NL

1: for k = 1, 2, . . . , NL do
2: Lk ← k−1

NL−1

3: for i = 1, 2, . . . , N do
4: KGT ← the number of edges in the ground-truth explanation of Gi
5: Kpos ← ⌊Lk ×KGT ⌉
6: Kneg ← Ksub −Kpos

7: for j = 1, 2, . . . , Nsub do
8: Gi,js,k ← a connected subgraph, randomly sampled from G, with Kpos edges in the

ground truth explanation and Kneg edges not in it.
9: end for

10: end for
11: end for

B Experimentals

B.1 Experimental Details

All experiments are conducted on a Linux machine with 8 NVIDIA GeForce RTX 3090 (24 GB)
GPUs. CUDA version is 11.6 and Driver Version is 510.39.01. All codes are written under Python
3.9.13 with PyTorch 1.13.0 and PyTorch Geometric (PyG)[65] 2.2.0. We adopt the Adam optimizer
throughout all experiments.

Overall, for each dataset, a target GNN classification model is well-trained first. Then the explainers
are built on the GNN and generate explanations for its prediction on the dataset. After that, the
explanation evaluation methods evaluate how well the explanations are. Our work stands at the last
level.
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Figure 5: Study cases. For each row, the explanations are ranked based on average rankings given by
volunteers. Highlighted evaluation method below each explanation means that the method has given
the explanation the highest score compared to other explanations in that row. Best viewed in color.

Target GNNs. GNNs have garnered significant recognition for their prowess in encoding graph
data [37, 66, 67, 34, 58]. Amidst the vast landscape of GNNs, GIN [67] distinguishes itself with
its superior encoding aptitude. In sight of this, the target GNNs for BA3, TR3, and Mutagenicity
have the same structure, which is a two-layered GIN followed by a two-layered MLP with 32 hidden
channels. They are trained with max epochs equal to 20, 200, and 200 respectively, batch size equal
to 128, and learning rate equal to 0.001. The target GNN for MNIST-sp is adapted from an example
code1 provided by PyG, trained with the number of epochs equal to 20, batch size equal to 64, and
initial learning rate equal to 0.01. Before training, we randomly split BA3, TR3, and Mutagenicity
into train and test sets with ratios of 90% and 10%, respectively, while adopting the split provided by
PyG for MNIST-sp. During training, we reserve data of the same size as the test set from the train
set as the validation set and save the model which reaches the highest classification accuracy on the
validation set for later use.

Explainers. We have implemented six state-of-the-art post-hoc explainers, namely, SA, GradCAM,
GNNExplainer, PGExplainer, CXPlain, and ReFine, as claimed in Section 3.1, to generate explanatory
subgraphs. Here we give a brief introduction to them:

• SA [10] captures the gradients w.r.t. adjacency matrix of the input features in the process of
backpropagation and directly treats them as the importance scores.

• GradCAM [42] takes one step further over SA via improving the gradients w.r.t. the input features
like edges by using context within the graph convolutional layers.

• GNNExplainer [11] directly learns an adjacency matrix mask by maximizing the mutual informa-
tion between a GNN’s prediction and distribution of possible subgraph structures.

• PGExplainer [43] adopts a deep neural network to parameterize the generation process of explana-
tions, which makes it a natural approach to explaining multiple instances collectively.

1Reference code for the target GNN of MNIST-sp: https://github.com/pyg-team/pytorch_
geometric/blob/89a54d9454d3832f814f9a574ed421c58f1fce10/examples/mnist_voxel_grid.py
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Table 3: Average consistency scores of different evaluation metrics (corresponding to Table 1 in the
main paper).

SHAPEGGEN TR3 MUTAG MNIST BA3
GEF 0.800 0.734 0.800 0.934 0.734

SimOAR 0.800 0.867 0.800 0.934 0.934
OAR 0.867 0.934 1.000 0.934 1.000

Table 4: Correlation between metrics and Recall across explanatory subgraphs in four node classifica-
tion datasets in [11] (corresponding to Figure 3 (a) in the main paper).

BA-Shapes BA-Community Tree-Cycles Tree-Grid
RM 0.312 0.321 0.295 0.411
DSE 0.406 0.377 0.343 0.384
OAR 0.542 0.560 0.489 0.440

SimOAR 0.527 0.535 0.471 0.431

• CXPlain [44] treats the explanations as a causal learning task and trains causal explanation models
that learn to estimate to what degree certain inputs cause outputs in the to-be-explained model.

• ReFine [39] leverages the pre-training explanations to exhibit global explanations and the fine-
tuning explanations to adapt the global explanations in the local context.

The default hyper-parameters suggested by those papers are adopted, as whether the explainers
are at their optimal state is secondary to our work. Among these explainers, SA, GradCAM, and
GNNExplainer directly take the to-be-explained graph as input, while the rest three need to be trained
on a set of graphs, i.e., the train set in our case, in advance. We only use the explanations extracted
from graphs in the test set for evaluation.

Evaluation Methods. Finally, we arrive at the explanation evaluation level. There are four evaluation
methods, i.e., removal-based evaluation, DSE, OAR, and SimOAR, to be considered. Removal-based
evaluation directly feeds the explanatory subgraph into the target GNN and gets its prediction, on the
predicted class of the original graph, as the evaluation score, which does not involve any details. For
DSE, we make use of its public source code2 and follow its paper to set hyper-parameters. As for our
method OAR/SimOAR, we have summarized the entire process of OAR in Algorithm 1. Here we
present more details on how the VGAE is trained. The encoder involves two two-layered GCNs for
obtaining µ and σ, each of which is realized with hidden channels equal to 256 and output channels
equal to 128, while the two GCNs share the first layer. The dataset split process is the same as the
training of the target GNNs. We train the VGAE model on the train set with the number of epochs
equal to 100, batch size equal to 256, and learning rate equal to 0.001. The model that reaches the
lowest loss on the validation set is saved for later OOD reweighting.

B.2 More Quantitative Results

Here, we sequentially present the experimental results of 1) comparison between GEF [49] and our
metrics w.r.t the latest dataset SHAPEGGEN and the other datasets (Table 3), 2) correlation between
metrics and Recall across explanatory subgraphs in four node classification dataset (Table 4), and 3)
correlation between metrics and Recall while evaluating the explanations generated by the inherent
explainable GNN, GSAT [15] via introducing an additionally well-trained GIN [67] as the model f
in Algorithm 1 (Table 5).

Note that while evaluating explanations in node classification tasks, for each node in the input
graph, we construct an ego graph for it based on the number of layers in the baseline GNN. Then,
the explanation task for node classification can be transferred to the explanation task for graph
classification. Furthermore, the remaining hyperparameters and methods in our OAR/SimOAR
remain unchanged.

2Source code of DSE: https://anonymous.4open.science/r/DSE-24BC/
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Table 5: Correlation between metrics and Recall while evaluating the explanations generated by the
inherent explainable GNN, GSAT (corresponding to Figure 3 (a) in the main paper).

BA3 MUTAG TR3 MINST
RM 0.376 0.381 0.402 0.337
DSE 0.411 0.425 0.417 0.319
OAR 0.613 0.590 0.585 0.606

SimOAR 0.598 0.572 0.552 0.581

C User Study

In order to measure the consistency between evaluation results and human intuition, we organized
a large-scale user study engaging 100 volunteers. Each volunteer was asked to check 5 groups of
graphs, which contain an instance from MNIST-sp, its predicted class, and 5 randomly sampled
subgraphs from this instance, and try to rank these 5 subgraphs according to how well they serve as
explanations of the prediction based on intuition. We exhibit partial results in Figure 5. According
to these results we can find that our evaluation methods i.e. OAR and SimOAR show the highest
consistency with human intuition.
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