
A Appendix Overview

First, we present the details of the various proofs of Section 4 in Appendix B. Next, in Appendix C,
we describe the network layers for the building GrCNF, and the detailed model architectures, hyper-
parameters, and implementation on the experiments. Finally, in Appendix D, we provide a summary
of the fundamentals of a Grassmann manifold, which is the core concept of this study.

B Proofs

B.1 Proposition 1

First, we invoked the following two corollaries.

Corollary 1 (Diffeomorphism Invariance of Flows). Let F : M → N be a diffeomorphism. If X is
a smooth vector field over M and θ is the flow of X , then the flow of F∗X

4 is ηt = F ◦ θt ◦ F−1,
with domain Nt = F (Mt) for each t ∈ R.

Proof. See Lee (2003, Corollary 9.14).

Corollary 2 (Homogeneity Property). The horizontal lift ξ
h

Y at representative Y ∈ St(k,D) relative
to ξ[Y ] ∈ T[Y ] Gr(k,D) satisfies the following homogeneity (equivariance) property (4) with regard
to ∀Q ∈ O(k).

ξ
h

Y Q = ξ
h

Y Q.

Proof. π (Y ) = π (Y Q) is true for ∀Y ∈ St(k,D) ,Q ∈ O(k). Therefore, π (Y ) = (π ◦ q) (Y )
is true when defined as q (Y ) = Y Q. When the derivative dπ (·) [·] of both sides is applied to the
horizontal lift ξ

h

Y of ξ[Y ], the following is obtained:

dπ (Y )
[
ξ
h

Y

]
= d (π ◦ q) (Y )

[
ξ
h

Y

]
= dπ (q (Y ))

[
dq (Y )

[
ξ
h

Y

]]
= dπ (Y Q)

[
ξ
h

Y Q
]
. (10)

Moreover, from (98) which is definition of horizontal lift, the following equation is true.

ξ[Y ] = dπ (Y )
[
ξ
h

Y

]
= dπ (Y Q)

[
ξ
h

Y Q

]
. (11)

Subsequently, we obtain the following equation.

ξ[Y ] = dπ (Y Q)
[
ξ
h

Y Q

]
= dπ (Y Q)

[
ξ
h

Y Q
]
. (12)

Finally, the uniqueness of the horizontal lift yields ξ
h

Y Q = ξ
h

Y Q.

Proposition 1. Let Gr(k,D) be a Grassmann manifold, X be any time-dependent vector field on
Gr(k,D), and FX,T be a flow on a X. Let X be any time-dependent horizontal lift and FX,T be a flow
of X. X is a vector field on St(k,D) if and only if FX,T is a flow on St(k,D) and satisfies invariance

condition X ∼ X
′

for all FX,T ∼ FX
′
,T . Therefore, X is a vector field on Gr(k,D) if and only if

FX,T :=
[
FX,T

]
is a flow on Gr(k,D), and vice versa.

Proof. Flow FX,T on Gr(k,D) ⇒ Vector Field X on Gr(k,D). Let θ : St(k,D) × O(k) →
St(k,D) , (Y ,Q) 7→ Y Q be a map representing the right action of the orthogonal group. In
addition, let FX,T be a flow on Gr(k,D) and FX,T be a flow on St(k,D). These satisfy FXQ,T ∼

4F∗ denotes the pushforward, that is, another notation for the differential of F .
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FX,T , FXQ,T ∈ FX,T , FX,T ∈ FX,T .

X
(
t, FXQ,t (Y Q)

)
= X

(
t, FX,t (Y )Q

)
(13)

=
d

dt

{
FX,t (Y )Q

}
(14)

=
d

dt

(
θ ◦ FX,t

)
(Y ) (15)

= d(θ)Y

{
d

dt
FX,t (Y )

}
(16)

= d(θ)Y

{
X
(
t, FX,t (Y )

)}
(17)

= X
(
t, FX,t (Y )

)
Q. (18)

Thus, X ∼ XQ is true. Therefore, X is the horizontal lift of the vector field X on Gr(k,D) and is
unique for X.

Flow FX,T on Gr(k,D) ⇐ Vector Field X on Gr(k,D). Let θ : St(k,D) × O(k) →
St(k,D) , (Y ,Q) 7→ Y Q be a map representing the right action of the orthogonal group. In
addition, let X be a vector field over a horizontal bundle T h St(k,D) on St(k,D) and FX,T be its
flow. From the Corollary 1,

F θ∗◦X,T = θ ◦ FX,T ◦ θ−1 (19)

F θ∗◦X,T ◦ θ = θ ◦ FX,T (20)

F d(θ)Y X,T ◦ θ = θ ◦ FX,T (21)

FXQ,T (Y Q) = FX,T (Y )Q. (22)

Note that d(θ)Y X = XQ is derived from the Corollary 2 and (4) in Zhu & Sato (2021). This indicates
that FX,T ∼ FX

′
,T is true for any X,X

′ ∈ T h St(k,D) that satisfies X ∼ X
′
. Thus, a new flow

can be defined as FX,T :=
[
FX,T

]
. This is a flow on a Gr(k,D). Because X is a vector field in a

horizontal bundle T h St(k,D) on St(k,D), it is a horizontal lift of the vector field X on Gr(k,D)
and is therefore unique for X.

Thus, the proof is complete.

B.2 Proposition 2

Proposition 2. Let Gr(k,D) be a Grassmann manifold. Let p be the probability density on Gr(k,D)
and F be the flow on Gr(k,D). Suppose p is a density on St(k,D) and F is a flow on St(k,D).
Then, the distribution pF after transformations by F is also a density on St(k,D). Further, the
invariance condition pF ∼ pF ′ is satisfied for all F ∼ F

′
. Therefore, pF := [pF ] is a distribution on

Gr(k,D).
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Proof. Let θ : St(k,D) × O(k) → St(k,D) : (Y ,Q) 7→ Y Q be a map representing the right
action of the orthogonal group.

pF (θ ◦ Y ) = pF (θ ◦ Y )
|det {Jθ (Y )}|
|det {Jθ (Y )}|

=
pθ−1◦F (Y )

|det {Jθ (Y )}|
(23)

= p
((
F−1 ◦ θ

)
(Y )

) |det {JF−1◦θ (Y )}|
|det {Jθ (Y )}|

(24)

=
(
p ◦ F−1

)
◦ θ (Y )

|det {Jθ◦F−1 (Y )}|
|det {Jθ (Y )}|

(25)

= θ ◦
(
p ◦ F−1

)
(Y )

∣∣det{Jθ (F−1 (Y )
)
JF−1 (Y )

}∣∣
|det {Jθ (Y )}|

(26)

= θ ◦
(
p ◦ F−1

)
(Y )

∣∣det{Jθ (F−1 (Y )
)}∣∣ |det {JF−1 (Y )}|

|det {Jθ (Y )}|
(27)

= θ ◦ p
(
F−1

)
(Y ) |det {JF−1 (Y )}|

∣∣det{Jθ (F−1 (Y )
)}∣∣

|det {Jθ (Y )}|
(28)

= θ ◦ pF (Y )

∣∣det{Jθ (F−1 (Y )
)}∣∣

|det {Jθ (Y )}|
(29)

= θ ◦ pF (Y ) , (30)

where |det {Jθ (X)}| = 1 is true because θ is the action of the orthogonal group. Therefore, as
pF (θ ◦ Y ) = θ ◦ pF (Y ) is true, pF ∼ pFQ ∈ pF is true. Based on this, it can be concluded that
the subject is satisfied.

B.3 Proposition 3

Proposition 3. The distribution pGr(k,D) on a Grassmann manifold Gr(k,D) based on the matrix-
variate Gaussian distribution MN can be expressed as follows.

pGr(k,D) ([X]; [M ],U ,V ) = VGr(k,D)MN
(
ξ
h

M ;0,U ,V
) ∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ , (31)

where M is an orthonormal basis matrix denoting the mean of the distribution, U is a positive
definite matrix denoting the row directional variance, V is a positive definite matrix denoting the
column directional variance, and ξ

h

M is a random sample from MN in an (D − k)× k-dimensional
horizontal space T h

M St(k,D). VGr(k,D) denotes the total volume of Gr(k,D) defined by (113), RM

denotes the horizontal retraction at M , and
∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ denotes the Jacobian.

Proof. Let pGr ([X]) be a probability density function on a Gr(k,D). From (101), let (dX) be the
invariant measure on Gr(k,D) and dξ

h

M be the Lebesgue measure on T h
M St(k,D). Subsequently,

a change of variables was performed according to the following:

pGr(k,D) ([X]) (dX) = pGr(k,D)

([
RM

(
ξ
h

M

)])
dξ

h

M (32)

pGr(k,D) ([X]) = pGr(k,D)

([
RM

(
ξ
h

M

)]) ∣∣∣∣∣det
(
dξ

h

M

dRM

)∣∣∣∣∣ (33)

pGr(k,D) ([X]) = pGr(k,D)

([
RM

(
ξ
h

M

)]) ∣∣∣det(∇
ξ
h
M
RM

)∣∣∣−1

. (34)
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Suppose pGr ([X]) is integrable with the probability measure [dX] on Gr(k,D) defined by (114).
Then, we obtain the following relation.∫

Gr(k,D)

pGr(k,D) ([X]) [dX] (35)

=
1

VGr(k,D)

∫
Gr(k,D)

pGr(k,D) ([X]) (dX) (36)

=
1

VGr(k,D)

∫
Th
M St(k,D)

pGr(k,D)

([
RM

(
ξ
h

M

)]) ∣∣∣det(∇
ξ
h
M
RM

)∣∣∣−1

dξ
h

M . (37)

In addition, we obtain the following equation based on [dX].∫
Gr(k,D)

pGr(k,D) ([X]) [dX] =

∫
Th
M St(k,D)

MN
(
ξ
h

M

)
dξ

h

M = 1, (38)

where MN
(
ξ
h

M

)
denotes the matrix-variate Gaussian distribution (Mathai et al. (2022)). Thus, the

probability density function on Gr(k,D) can be expressed as follows:

pGr(k,D)

([
RM

(
ξ
h

M

)])
= VGr(k,D)MN

(
ξ
h

M

) ∣∣∣det(∇
ξ
h
M
RM

)∣∣∣ . (39)

The Jacobian can be represented as
∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ = ∣∣∣det{(∂RM

)⊤ (
∂RM

)}∣∣∣ 12 from Evans

& Ronald (2015), where ∂RM = ∂RM

∂ξ
h
M

. Further, ∂RM can be computed as follows. First, we define

the horizontal retraction RY : T h
Y St(k,D) → St(k,D) based on the Cayley transform from Zhu &

Sato (2021).

X = RM

(
ξ
h

M

)
= M + ξ

h

M −
(
1

2
M +

1

4
ξ
h

M

)(
Ik +

1

4
ξ
h

M

⊤
ξ
h

M

)−1

ξ
h

M

⊤
ξ
h

M . (40)

This is a fixed time (t = 1) version of (122). Next, for improved visibility in subsequent calculations,
let E = ξ

h

M , F = 1
2M + 1

4E, G =
(
Ik +

1
4H

)−1
, H = E⊤E. In addition, let D be defined as

the operator for the derivative of a matrix by a matrix. Then, the derivative ∇
ξ
h
M
RM = DX by E is

as follows:
∇

ξ
h
M
RM = DX = DM + DE − D (FGH) . (41)

Finally, each derivative can be calculated as follows:
DM =0, (42)
DE =IDk, (43)

D (FGH) =D (F (GH)) (44)

=
{
(GH)

⊤ ⊗ ID

}
DF + (Ik ⊗ F )D (GH) (45)

=
{
(GH)

⊤ ⊗ ID

}
DF + (Ik ⊗ F )

{(
H⊤ ⊗ Ik

)
DG+ (Ik ⊗G)DH

}
(46)

=
{
(GH)

⊤ ⊗ ID

}
DF

+ (Ik ⊗ F )
(
H⊤ ⊗ Ik

)
DG+ (Ik ⊗ F ) (Ik ⊗G)DH (47)

=
(
G⊤H⊤ ⊗ ID

)
DF +

(
H⊤ ⊗ F

)
DG+ (Ik ⊗ FG)DH, (48)

DF =D

(
1

2
M

)
+ D

(
1

4
E

)
=

1

4
DE, (49)

DG =−
(
G⊤ ⊗G

)
DH, (50)

DH =(Ik2 +Kk,k)
(
Ik ⊗E⊤)DE, (51)

where ⊗ denotes the Kronecker product. KD,k is a Dk × Dk matrix KD,k =∑m
i=1

∑n
j=1

(
Li,j ⊗L⊤

i,j

)
referred to as the commutation matrix, which denotes the transposi-

tion operation of D × k. Further, Li,j is a D × k matrix whose (i, j) component is 1 whereas all
other components are 0.
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Figure 6: pGr(1,3) ([X]) with M = (1.0, 0.0, 0.0)
⊤
,U = σ2I3,V = I1, σ

2 = 0.5. Each sphere in
the figure indicates Gr(1, 3), with brighter spheres representing higher densities.

For details on the formulae for matrix derivatives used in this proof, please refer to Magnus &
Neudecker (2019).

pGr(k,D) ([X]) = pGr(k,D) ([X]; [M ],U ,V ) is a probability distribution following mean [M ]
and matrix variance U ,V . Using Gr(1, 3) as an example, we qualitatively confirmed through
visualization that pGr(1,3) ([X]) is a density on Gr(1, 3). Gr(1, 3) is a 1-dimensional subspace
in a 3-dimensional space; that is, a space whose elements are lines passing through the origin in
3-dimensional space. For the visualization, we expressed Gr(1, 3) by mapping a 1-dimensional
subspace to two points on a sphere (one point on the sphere and its antipodal point) of radius 1
centered at the origin.

Figure 6 shows the density of pGr(1,3) ([X]) with M = (1.0, 0.0, 0.0)
⊤
,U = σ2I3,V = I1, σ

2 =
0.5. Each sphere in the figure indicates Gr(1, 3), with brighter spheres representing higher densities.
The leftmost figure shows M as viewed from the front diagonally above, and the other figures present
the views when the viewpoint is rotated clockwise around the z-axis by 30◦ to 150◦ with movement
to the right. In the leftmost figure, the density is highly spread around M . In the other figures
(particularly the rightmost one), the antipodal point (−M = (−1.0, 0.0, 0.0)

⊤) is densely spread
out. This implies that when only one M is specified as the representative of the equivalence class
[M ], the density around the other elements in the equivalence class [M ] is as high as that around the
representative. Thus, we can confirm that pGr(k,D) ([X]) has a density of Gr(1, 3).
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C Experimental Details for Learning GrCNF

C.1 Details on ODE Solver with Orthogonal Integration

We explain in detail an ordinary differential equation (ODE) solver on Gr(k,D). Several studies
on ODE solvers employed on a manifold M have been reported (Munthe-Kaas (1999); Iserles et al.
(2000); Hairer (2006)). Hairer (2006) proposed a simple projection method that projected onto
the manifold at each step and the symmetric projection method suitable for long-time integration.
However, this method requires M to be a submanifold in Euclidean space, and thus cannot be applied
on Gr(k,D). In contrast, Celledoni & Owren (2002) proposed an intrinsic ODE solver that was
applicable to a Stiefel manifold and did not assume an outer Euclidean space. This solver works
on a Stiefel manifold, thus it must be reformulated into a solver suitable for Gr(k,D), which is our
problem setting. We introduce below a solver on Gr(k,D) via ODE operating on the horizontal space
T h
Y St(k,D), based on results from Celledoni & Owren (2002) and Section 4. This is an intrinsic

approach regardless of whether M has been embedded in a larger space with a corresponding
extension of the vector field.

First, consider an ODE expressed using a vector field Xθ on a curve γ (t) : [0,∞) → St(k,D) such
that for each time t.

dγ (t)

dt
= Xθ (t, γ (t)) , γ (0) = Y , (52)

where Xθ is constructed by a neural network with parameter θ, as described in Section 5.3. Horizontal
retraction RY which is defined as (122) and is described in Appendix D.6, defines local coordinates
of Gr(k,D) in a neighborhood of the point [Y ]. Thus, the solution of ODE can be expressed as:

γ (t) = RY (ϵ (t)) , (53)

where ϵ : [0,∞) → T h
Y St(k,D) is the curve on T h

Y St(k,D). By differentiating (53) with t, the
following equation is obtained:

dγ (t)

dt
=

d

dt
RY (ϵ (t)) = Xθ (t, γ (t)) . (54)

Therefore, the ODE defined on T h
Y St(k,D) is obtained as (8):

dVec (ϵ (t))

dt
=
(
∇ϵRY

)−1
Vec

(
Xθ
(
t, RY (ϵ (t))

))
= ∇γR

−1

Y Vec
(
Xθ
(
t, RY (ϵ (t))

))
,

where Vec denotes the map of vertically concatenating matrices and converting them into a single
vector. ∇γR

−1

Y can be calculated using the derivative of (123):

∇γR
−1

Y = 2
(
N−⊤ ⊗ ID

)
∇M + 2 (Ik ⊗M)∇N−1, (55)

where X = γ (t), M = Y − XX⊤Y , N = Ik + X⊤Y , ∇M = IDk −
(
Ik ⊗XX⊤) and

∇N−1 = −
(
N−⊤ ⊗N−1

) (
Ik ⊗X⊤). Because (8) is an ODE on T h

Y St(k,D) ∼= R(D−k)×k

from Absil et al. (2008), it can be solved using an ODE solver such as Runge-Kutta methods that
operate on Euclidean space. This study used Algorithm 5.1 presented in Celledoni & Owren (2002).
In each step, first, (8) was solved using the Runge-Kutta method of order 5 as in Dormand & Prince
(1980). Subsequently, the solution of ODE (52) was obtained by applying the solution ϵ to (53).

C.2 Loss Function based on Variational Inference

In the setting in Section 6.3, we used orthonormalized data Y as in PP⊤ ≃ Y ΛY ⊤, where Λ is
diagonal (Huang et al. (2015)), such that the k-dimensional point cloud data P of N points N × k
matrix is a matrix with k orthonormal basis vectors. Thus, generating a complete point cloud requires
the estimation of the scale parameters

√
Λ to be P = Y

√
Λ and a loss function that incorporates this.

In this study, we approximated by maximizing the evidence lower bound (ELBO), which is the lower
bound of the overall log-likelihood log pψ(P ) of pψ(P ), using a variational inference framework.
The loss function is the variational energy −ELBO(P ) with negative ELBO.

NLL = − log pψ(P ) ≤ −ELBO(P ) = Loss . (56)
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(a) (b)

Figure 7: The proposed ODE solver on the Grassmann manifold and the ODE solver on the Stiefel
manifold (Celledoni & Owren (2002)). (a) The proposed ODE solver working on a Grassmann
manifold. The ξ

h

Y obtained by the proposed neural architecture NN is the horizontal lift (98), that is,
dπ (Y )

[
ξ
h

Y

]
= ξ[Y ], of the tangent vector ξ[Y ] at the point [Y ] on the Grassmann manifold. The

proposed ODE solver maps and updates the tangent vector ξ[Y ] at the point [Y ] onto the Grassmann
manifold at each step using horizontal retraction (121). On the other hand, (b) the solver of Celledoni
& Owren (2002), working on Stiefel manifolds, updates in each step by mapping the tangent vector
ξY at the point Y onto the Stiefel manifold. In other words, the difference between the proposed
ODE solver and the ODE solver on Stiefel manifolds is that the ODE solver on Stiefel manifolds
works only on Stiefel manifolds, while the proposed ODE solver always updates in each step with
the Stiefel manifold and Grassmann manifolds linked together.

ELBO(P ) can be decomposed as follows.

ELBO(P ) = log pψ(P )−DKL (qϕ(Y |P )||pψ(Y |P )) (57)
= Eqϕ(Y |P ) [log pψ(P |Y )]−DKL (qϕ(Y |P )||pθ(Y )) , (58)

where qϕ(Y |P ) is the inference model with parameter ϕ, pψ(P |Y ) is the decoder model with
parameter ψ, pψ(Y |P ) is the posterior distribution with parameter ψ, and pθ(Y ) is the prior
distribution with parameter θ. Further, DKL (qϕ(Y |P )||pθ(Y )) can be formulated using differential
entropy as follows.

DKL (qϕ(Y |P )||pθ(Y )) = −Eqϕ(Y |P ) [pθ(Y )]−H [qϕ(Y |P )] . (59)

Thus, the final loss function is as follows.

Loss = −ELBO(P ) (60)
= −Eqϕ(Y |P ) [log pψ(P |Y )]− Eqϕ(Y |P ) [pθ(Y )]−H [qϕ(Y |P )] . (61)

Each term of the loss function can be calculated as follows.

Expectation of log-likelihood Eqϕ(Y |P ) [log pψ(P |Y )] is the reconstruction log-likelihood of P .
The expectation is estimated by Monte Carlo sampling.

Differential entropy In the decomposition of a point cloud P , there exists arbitrariness in the
choice of Y and Λ, as in PP⊤ ≃ Y ΛY ⊤. In this study, we assumed that the diagonal components
of Λ are in descending order, and we restricted the decomposition arbitrariness to be an action
Q ∈ O(k). If we suppose that the action Q follows a uniform distribution when Y = XQ holds,
then Y also follows a uniform distribution in the k-dimensional subspace span(Y ). Although
this is a uniform distribution on St(k, k), we can consider a uniform distribution on O(k) because
St(k, k) = O(k). The probability density function of Q is represented by UO(k) (Q) in (111).
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Therefore, the differential entropy of the decoder model can be calculated as follows.

H [qϕ(Y |P )] = E [− log qϕ(Y |P )] (62)

= −
∫
O(k)

UO(k) (Q) logUO(k) (Q)[dQ] (63)

= −
∫
O(k)

1

VO(k)
log

1

VO(k)
[dQ] (64)

=
log VO(k)

VO(k)

∫
O(k)

[dQ] (65)

=
log VO(k)

VO(k)
. (66)

Expectation of prior distribution We used (9) for the prior distribution pθ(Y ). Further, re-
parameterization was used to enable differentiable Monte Carlo estimation of expectations.

Eqϕ(Y |P ) [pθ(Y )] =
1

L

L∑
l=1

pθ(XQl) s.t. X ∼ Y , Ql ∈ O(k) , (67)

where it was assumed that Q is sampled from a uniform distribution, which follows Haar measure on
O(k). L is set L = 1.

C.3 Implementation Details and Experimental setting

The following sections present more details about the network architectures, training hyperparameters,
and experimental conditions for each of the experiments in Section 6.

C.3.1 Artificial Textures

Network Architecture The vector field was constructed with the specific input, intermediate, and
output layers described in Section 5.3. The GrCNF architecture is shown on top in Table 3. Layers
are denoted as Layer in the table, and were processed from top to bottom. Norm. and Act. denote the
normalization and activation functions to be applied immediately after the Layer, and the Norm. and
Act. were applied in that order. Further, Out Size denotes the output size after Act. Vec denotes the
map of vertically concatenating matrices and converting them into a single vector. Moreover, only
row Input denotes the size of the input data, not the input layer (HorP). (9) was used for the loss
function.

Hyper-parameters The mean M and covariances U and V in the prior distribution on the
Grassmann manifold were set to M = (1.0, 0.0, 0.0)

⊤, U = σ2I3, and V = I1, σ = 0.3,
respectively. Other hyperparameters used during the training of GrCNF are shown in Table 4.

Implementation We used PyTorch (Paszke et al. (2019)) to implement the model and run the
experiments. The CNF is based on the implementation5 in Chen et al. (2018) and the framework of
the RCNF (Mathieu & Nickel (2020)). Thus, the ODE was solved using the explicit and adaptive
Runge–Kutta method (Dormand & Prince (1980)) of order 5, and worked by projecting each step onto
a manifold (Hairer (2006)). The autograd in (7) was calculated with torch.autograd.grad (Paszke
et al. (2017)) in PyTorch. The experimental hardware was built with an Intel Core i7-9700 CPU and
a single NVIDIA GTX 1060 GPU with 6 GB of RAM.

The code used in the experiment to generate the data distributions on Gr(1, 3) is shown in Listing 1.
This implementation of the data distributions is based on the codes in Kim et al. (2020) and Grathwohl
et al. (2019)6.

5We used the authors’ implementation: https://github.com/rtqichen/torchdiffeq.git.
6We used the authors’ implementations: https://github.com/ANLGBOY/SoftFlow.git and https:

//github.com/rtqichen/ffjord.git.
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Listing 1: Code for the data distributions.
import numpy as np

def get_data_batch(batch_size , dist):
rng = np.random.RandomState ()

if dist == "2spirals":
n = np.sqrt(np.random.rand(batch_size // 2, 1)) * 540 * (2 * np.pi) / 360
d1x = -np.cos(n) * n + np.random.rand(batch_size // 2, 1) * 0.1
d1y = np.sin(n) * n + np.random.rand(batch_size // 2, 1) * 0.1
x = np.vstack ((np.hstack ((d1x , d1y)), np.hstack((-d1x , -d1y)))) / 3
sample_2d = x + np.random.randn(*x.shape) * 0.1

elif dist == "swissroll":
data = sklearn.datasets.make_swiss_roll(n_samples=batch_size , noise =.3) [0]
data = data.astype("float32")[:, [0, 2]]
sample_2d = data / 5

elif dist == "2circles":
data = sklearn.datasets.make_circles(n_samples=batch_size , \

factor =.5, noise =0.05) [0]
data = data.astype("float32")
sample_2d = data * 3

elif dist == "2sines":
x = (rng.rand(batch_size) - 0.5) * 2 * np.pi
u = (rng.binomial(1, 0.5, batch_size) - 0.5) * 2
y = u * np.sin(x) * 2.5
x += np.random.randn(*x.shape) * 0.1
y += np.random.randn(*y.shape) * 0.1
sample_2d = np.stack((x, y), 1)

elif dist == "target":
shapes = np.random.randint(7, size=batch_size)
mask = []
for i in range (7):

mask.append (( shapes == i) * 1.)

theta = np.linspace(0, 2 * np.pi, batch_size , endpoint=False)
x = (mask [0] + mask [1] + mask [2]) * (rng.rand(batch_size) - 0.5) * 4 + \

(-mask [3] + mask [4] * 0.0 + mask [5]) * 2 * np.ones(batch_size) + \
mask [6] * np.cos(theta)

y = (mask [3] + mask [4] + mask [5]) * (rng.rand(batch_size) - 0.5) * 4 + \
(-mask [0] + mask [1] * 0.0 + mask [2]) * 2 * np.ones(batch_size) + \
mask [6] * np.sin(theta)

x += np.random.randn(*x.shape) * 0.1
y += np.random.randn(*y.shape) * 0.1
sample_2d = np.stack((x, y), 1)

norm = sample_2d / np.max(np.linalg.norm(sample_2d , axis =1))
sample_3d = np.concatenate ((np.ones((batch_size , 1)), norm), axis =1)
return sample_3d / np.linalg.norm(sample_3d , axis =1)[:, np.newaxis]

C.3.2 DW4 and LJ13

Network Architecture As in Appendix C.3.1, the vector field was constructed with the specific
input, intermediate, and output layers described in Section 5.3. The GrCNF architecture is shown on
the bottom left and right in Table 3. The bottom left and right were used for experiments on the DW4
and LJ13 datasets, respectively. The views presented in the table is the same as in Appendix C.3.1.
(9) was used for the loss function. In addition, for architectures in methods other than GrCNF, please
refer to Garcia Satorras et al. (2021).

Hyperparameters The mean M and covariances U and V in the prior distribution on the Grass-
mann manifold were set to M = I4×2, U = σ2I4, and V = σ2I2, σ = 0.3 for DW4 and
M = I13×3, U = σ2I13, and V = σ2I3, σ = 0.3 for LJ13, respectively. Other hyperparameters
used during the training of GrCNF are shown in Table 4. In addition, for the hyperparameters in
methods other than GrCNF, please refer to Garcia Satorras et al. (2021).

Implementation The experimental hardware was built using a single NVIDIA Quadro RTX 8000
GPU with 48 GB of GDDR6 RAM. The other environments were the same as in Appendix C.3.1.
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Table 3: Network architectures for each experiment; (left) for the Simple Texture dataset, (middle)
for the DW4 dataset, (right) for the LJ13 dataset.

GrCNF for Textures

Layer Out Size Norm./Act.

Input 3×1 -
HorP 3×1 -/Tanh
Vec 3 -/-
CS 64 -/Tanh
CS 64 -/Tanh
CS 1 -/Tanh
Grad 3×1 -

GrCNF for DW4

Layer Out Size Norm./Act.

Input 4×2 -
HorP 4×2 -/Tanh
Vec 8 -/-
CS 64 -/Tanh
CS 64 -/Tanh
CS 64 -/Tanh
CS 1 -/Tanh
Grad 4×2 -

GrCNF for LJ13

Layer Out Size Norm./Act.

Input 13×3 -
HorP 13×3 -/Tanh
Vec 39 -/-
CS 32 -/Tanh
CS 32 -/Tanh
CS 32 -/Tanh
CS 1 -/Tanh
Grad 13×3 -

Full results In Tables 5 and 6, the same DW4 and LJ13 averaged results from Section 6.2 were
reported; however, they included the standard deviations over the three runs.

C.3.3 QM9 Positional

Network Architecture On the QM9 Positional, we addressed the task of generating the molecular
P by estimating the scale parameter

√
Λ = diag

({√
λi
}3
i=1

)
, in addition to the generation of

the orthonormal basis matrix Y with GrCNF. Because the molecular generation task requires a
specialized loss function based on variational inference, we used (56), as explained in Appendix C.2.
We designed two networks to achieve this. The first is the same GrCNF architecture as in previous
experiments, and the second is a scale estimator. Table 7 shows the architectures. The left side of the
table shows the GrCNF architecture and the right side shows the scale estimator. The scale estimator
estimated one scale parameter from each of the three orthonormal basis vectors Y =

{
yi ∈ R19

}3
i=1

,

for a total of three parameters
{√

λi ∈ R
}3
i=1

. With the orthonormal orthogonal basis matrix Y and
the estimated scale parameter

√
Λ, we generated a point cloud P = Y

√
Λ. In this study, the overall

architecture that generates P is also named GrCNF.

Hyperparameters The mean M and covariances U and V in the prior distribution on the Grass-
mann manifold were set to M = I19×3, U = σ2I19, and V = σ2I3, σ = 0.3, respectively. In
addition, for the hyperparameters in methods other than GrCNF, please refer to Garcia Satorras et al.
(2021).

Implementation The experimental hardware was built using a single NVIDIA A100 GPU with
80GB PCIe of GDDR6 RAM.
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Table 4: List of hyperparameters used in various experiments. A “-” indicates that the hyperparameter
is unused.

Textures DW4 LJ13 QM9

# of Data
Train ∞ 102/103/104/105 10/102/103/104 13, 831
Validation 500 1000 1000 2,501
Test 500 1000 1000 1,813

Optimizer

Name Adam Adam Adam Adam
beta1 0.9 0.9 0.9 0.9
beta2 0.999 0.999 0.999 0.999
Weight Decay - 1.0e-12 1.0e-12 1.0e-12
Learning Rate 1.0e-3 1.0e-4 1.0e-4 5.0e-4

Schedule
Epoch 72000 1000/300/50/6 500/1000/300/50 160
LR Step with 0.1 20000 - - -
Batch Size 500 100 10/100/100/100 128

NeuralODE

Integration Time Training Training Training 0.1
atol 1.0e-5 1.0e-5 1.0e-5 1.0e-5
rtol 1.0e-5 1.0e-5 1.0e-5 1.0e-5
Adjoint ✗ ✓ ✓ ✓

Table 5: Negative log-likelihood comparison on the test partition of DW4 dataset for different amounts
of training samples; averaged over 3 runs and including standard deviations.

DW4
# of Samples 102 103 104 105

GNF -2.30 ± 1.59 -7.04 ± 0.64 -7.19 ± 0.99 -7.93 ± 1.10
GNF-att -2.02 ± 1.34 -4.13 ± 1.20 -5.25 ± 0.89 -6.74 ± 0.89
GNF-att-aug -3.11 ± 2.15 -4.04 ± 3.40 -6.51 ± 0.49 -9.42 ± 1.15
Simple dynamics -1.22 ± 0.05 -1.28 ± 0.01 -1.36 ± 0.02 -1.39 ± 0.04
E-NF -0.54 ± 0.45 -9.89 ± 2.30 -12.15 ± 1.16 -15.29 ± 0.53
GrCNF -12.53 ± 0.92 -13.74 ± 0.30 -14.09 ± 0.44 -16.07 ± 0.46

Table 6: Negative log-likelihood comparison on the test partition of LJ13 dataset for different amounts
of training samples; averaged over 3 runs and including standard deviations.

LJ13
# Samples 10 102 103 104

GNF 6.77 ± 0.39 -0.76 ± 1.12 -4.26 ± 2.76 -12.43 ± 1.21
GNF-att 6.91 ± 0.17 1.40 ± 0.79 -6.81 ± 2.09 -12.05 ± 2.28
GNF-att-aug 2.95 ± 0.55 -6.11 ± 1.12 -13.94 ± 0.95 -15.74 ± 0.58
Simple dynamics -1.10 ± 2.55 -3.87 ± 0.25 -3.72 ± 0.08 -3.59 ± 0.52
E-NF -12.86 ± 3.67 -15.75 ± 5.02 -31.51 ± 1.19 -32.83 ± 1.98
GrCNF -23.64 ± 2.23 -44.24 ± 4.26 -58.02 ± 5.43 -58.71 ± 4.71
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Table 7: Network architectures for QM9 Positional. (Left) GrCNF architecture, (Right) scale es-
timation architecture. The scale estimator estimates one scale parameter from each of the three
orthonormal basis vectors Y =

{
yi ∈ R19

}3
i=1

, for
√
Λ = diag

({√
λi
}3
i=1

)
with three param-

eters
{√

λi ∈ R
}3
i=1

. Using the orthonormal orthogonal basis matrix Y and the estimated scale
parameter

√
Λ, we generate a point cloud P = Y

√
Λ. SiLU is an activation function proposed in

(Ramachandran et al. (2017)) and BatchNorm. is a batch normalization layer in (Ioffe & Szegedy
(2015)).

GrCNF for QM9 Positional

Layer Out Size Norm./Act.

Input 19×3 -
HorP 19×3 -/Tanh
Vec 57 -/-
CS 32 -/Tanh
CS 32 -/Tanh
CS 32 -/Tanh
CS 1 -/Tanh
Grad 19×3 -

Scale Estimator for QM9 Positional

Layer Out Size Norm./Act.

Input 19×3 -
FC 128 BatchNorm./SiLU
FC 256 BatchNorm./SiLU
FC 256 BatchNorm./SiLU
FC 128 BatchNorm./SiLU
FC 3 -/ReLU
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D Fundamentals of Concepts Associated with Grassmann Manifold

D.1 Definition of Stiefel Manifold

Definition 2. An (orthogonal or compact) Stiefel manifold St(k,D) is defined as the set of orthonor-
mal bases of k-dimensional subspaces in the Euclidean space RD as in (68).

St(k,D) :=
{
Y ∈ RD×k ∣∣ Y ⊤Y = Ik

}
. (68)

For Y ∈ St(k,D), the space span(Y ) spanned by its column vectors is the element of Gr(k,D).

f : St(k,D) → Gr(k,D) : Y 7→ span(Y ) . (69)

St(k,D) is a Dk − k(k+1)
2 -dimensional compact manifold (Absil et al. (2008)).

D.2 Equivalence Relation

To define the equivalence relation ∼ 7 on a Stiefel manifold St(k,D), we introduce the following
two lemmas.
Lemma 1. The necessary and sufficient conditions for span(Y1) = span(Y2) to hold for Y1,Y2 ∈
St(k,D) are as follows.

∃Q ∈ O(k) s.t. Y2 = Y1Q. (70)

Proof. span(Y1) = span(Y2) ⇐ Y2 = Y1Q. From the definition, Y ⊤
1 Y1 = Y ⊤

2 Y2 = Ik, the
following is obtained:

Ik = Y ⊤
1 Y1 = Q⊤Y ⊤

2 Y2Q = Q⊤Q. (71)
Thus, there exists a k-dimensional orthogonal matrix Q ∈ O(k). As the subspace span(Y ) is
invariant to coordinate transformations by orthogonal matrices, span(Y1) = span(Y2) is true.

span(Y1) = span(Y2) ⇒ Y2 = Y1Q. From the assumption, we immediately concluded that
Y2 = Y1Q for Q ∈ O(k).

Lemma 2. We define the equivalence relation ∼ on St(k,D) to be Y1 ∼ Y2 whenever (70) is
satisfied with respect to Y1,Y2 ∈ St(k,D). The fact that a binary relation is an equivalence relation
∼ implies that the following three statements hold for ∀Y1,Y2,Y3 ∈ St(k,D).

Reflexivity Y1 ∼ Y1.

Symmetry Y1 ∼ Y2 ⇒ Y2 ∼ Y1.

Transitivity Y1 ∼ Y2 ∧ Y2 ∼ Y3 ⇒ Y1 ∼ Y3.

Proof. With Lemma 1, we can confirm that it is valid as follows:

Reflexivity From Y1 = Y1I, I ∈ O, we obtain Y1 ∼ Y1.

Symmetry As Y2 = Y1Q is obtained from Y1 ∼ Y2, and Y2Q
⊤ = Y1, Q⊤ ∈ O is true, then

Y2 ∼ Y1 is obtained.

Transitivity Y3 = Y1Q1Q2 with Y2 = Y1Q1 and Y3 = Y2Q2. Q1Q2 is (Q1Q2)
⊤
(Q1Q2) =

Q⊤
2 Q

⊤
1 Q1Q2 = Q⊤

2 Q2 = I . Moreover, as (Q1Q2) (Q1Q2)
⊤

= Q1Q2Q
⊤
2 Q

⊤
1 = I holds,

Q1Q2 ∈ O is true. Therefore, we concluded Y1 ∼ Y3.

The equivalence class of Y ∈ St(k,D) is denoted by [Y ]. In other words, [Y ] is the set of all elements
of St(k,D) that are equivalent to Y , and the equivalence relation on St(k,D) divides St(k,D) into
equivalence classes with no intersection. Thus, Y is then referred to as the representative of the
equivalence class [Y ]. The set of equivalence classes is denoted St(k,D)/∼ and is referred to as the

7Reflexive, symmetric and transitive binary relations. As a consequence of these properties, in a given set,
one equivalence relation divides (classifies) the set into equivalence classes. Note that R is a binary relation in
the set X if for any x, y ∈ X , only either x is related to y by the relation R, or x is not related to y based on the
relation that R occurs. We write x is related to y by relation R" as xRy.
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quotient of St(k,D) by the equivalence relation ∼. In addition, π :→ St(k,D) → St(k,D)/∼ is
the natural projection that maps Y ∈ St(k,D) onto its equivalence class [Y ]. This projection π is
surjection.

D.3 Quotient Manifold

Definition 3. Let M be a manifold with equivalence relation ∼. The quotient space M/∼ with ∼ of
M is the set of all equivalence classes. Thus, M/∼:= {π (x) | x ∈ M}, where π : M → M/∼ is
the natural projection and π (x) :=

{
y ∈ M | y ∼ x

}
. Then, M is referred to as the total space or

the total manifold. Moreover, M/∼ is referred to as a quotient manifold of M if M/∼ admits a
differentiable structure.

Let M = M/∼ be a quotient manifold. Further, suppose that M is endowed with a Riemann metric
g, and let x = π (x). The horizontal space T h

xM is the orthogonal complement of the vertical space
T v
xM := Txπ

−1 (x) in the tangent space TxM and is defined as the follows:

T h
xM :=

(
T v
xM

)⊥
=
{
ηx ∈ TxM

∣∣ gx (ξx,ηx

)
= 0,∀ ξx ∈ T v

xM
}
. (72)

The horizontal lift ξ
h

x ∈ T h
xM of the tangent vector ξx ∈ TxM at point x ∈ π−1 (x) is a tangent

vector that is uniquely determined as dπx
(
ξ
h

x

)
= ξx (Absil et al. (2008)).

D.4 Grassmann Manifold Exploiting the Quotient Structure

D.4.1 Tangent Space on a Stiefel Manifold

We describe the relationship between tangent space T[Y ]Gr(k,D) on Gr(k,D) and tangent space
TY St(k,D) on St(k,D) to relate the tangent vectors of a Grassmann manifold Gr(k,D) to the
tangent vectors of a Stiefel manifold St(k,D) in a matrix representation. We take the derivative on
both sides of Y (t)

⊤
Y (t) = Ip in (68) by t and solve for t = 0.

d

dt

{
Y (t)

⊤
Y (t)

}
=

d

dt
Ip (73)

d

dt
Y (t)

⊤
Y (t) + Y (t)

⊤ d

dt
Y (t) = 0 (74)

d

dt
Y (0)

⊤
Y (0) + Y (0)

⊤ d

dt
Y (0) = 0 (75)

ξ
⊤
Y Y + Y ⊤ξY = 0, (76)

where ξY = d
dtY (0) is the tangent vector at Y 8.

Definition 4. Define the tangent space TY St(k,D) at Y on the Stiefel manifold as follows:

TY St(k,D) =
{
ξY ∈ RD×k

∣∣∣ ξ⊤Y Y + Y ⊤ξY = 0k

}
. (77)

Let matrix Y⊥ ∈ RD×(D−k) be a matrix satisfying the following:

Y ⊤
⊥ Y⊥ = ID−k, Y ⊤Y⊥ = 0, Y Y ⊤ + Y⊥Y

⊤
⊥ = ID. (78)

As [ Y Y⊥ ] is an orthogonal matrix 9 , the column vectors of Y and Y⊥ form an orthonormal
basis in RD. Thus, any D × k matrix can be written in terms of the C ∈ Rk×k and B ∈ R(D−k)×k

coefficient matrices as follows:
Y C + Y⊥B, (79)

8The tangent space is defined independently for each point of the manifold; hence, the subscript Y , as in ξY ,
is clearly stated to emphasize that it is a tangent vector at Y .

9[ Y Y⊥
]−1 [

Y Y⊥
]
=

[
Y Y⊥

]⊤ [
Y Y⊥

]
=

[
Y Y⊥

] [
Y Y⊥

]⊤
= ID .
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where ξY = Y C + Y⊥B is inserted. The following equation is obtained.

ξ
⊤
Y Y + Y ⊤ξY = (Y C + Y⊥B)

⊤
Y + Y ⊤ (Y C + Y⊥B) (80)

= B⊤Y ⊤
⊥ Y +C⊤Y ⊤Y + Y ⊤Y C + Y ⊤Y⊥B (81)

= B⊤Y ⊤Y⊥ +C⊤ +C (82)

= C⊤ +C (83)
= 0k. (84)

Thus, the following equation is derived.

C⊤ +C = 0k. (85)

Thus, C is a k × k skew-symmetric matrix Skew (k). Therefore, we obtain the following as another
representation of the tangent space on St(k,D).

TY St(k,D) =
{
Y C + Y⊥B

∣∣∣ C ∈ Skew (k) ,B ∈ R(D−k)×k
}
. (86)

D.4.2 Riemannian Metric on a Stiefel Manifold

In the tangent space TxM defined at each point x ∈ M on the manifold M, the inner product h
is endowed as a bilinear map. This h is referred to as a Riemannian metric on a manifold, and the
manifold M on which the Riemannian metric h is endowed is referred to as a Riemannian manifold
(M, h). We define the Riemannian metric g on St(k,D) as follows.

gY
(
ξY ,ηY

)
:= tr

(
ξ
⊤
Y ηY

)
s.t. ξY ,ηY ∈ TY St(k,D), Y ∈ St(k,D) . (87)

This is the standard inner product of RD×k induced by TY St(k,D), with TY St(k,D) ⊂ RD×k 1011.

D.4.3 Tangent Space on a Grassmann Manifold

We describe the relation between tangent spaces T[Y ]Gr(k,D) and TY St(k,D) to relate tangent
vectors in tangent spaces T[Y ]Gr(k,D) on Gr(k,D) to tangent vectors ξY ∈ TY St(k,D).

First, we define the vertical space T v
Y St(k,D) as a subspace of TY St(k,D) as follows.

T v
Y St(k,D) := TY π

−1 ([Y ]), (88)

where π : St(k,D) → Gr(k,D) is the natural projection defined by π (Y ) = [Y ] 12. Thus, π
converges all Y ′ ∈ St(k,D) such that Y ∼ Y ′ to a point [Y ] on Gr(k,D). Therefore, using (1),
(88) can be transformed as follows.

T v
Y St(k,D) = TY {Y Q | Q ∈ O(k)} . (89)

However, ξ
v

Y ∈ T v
Y St(k,D) can be written as ξ

v

Y = Y S with S ∈ TIkO(k).

TIkO(k) = TIkSt(k, k) (90)

=
{
IkC + (Ik⊥B = 0k)

∣∣∣ C ∈ Skew (k) ,B ∈ R(k−k=0)×k
}

(91)

= Skew (k) . (92)

10The inner product A ·C = A⊤C of a vector is typically referred to as the standard inner product. Further,
matrices are similarly defined with a standard inner product, defined as A ·C = tr

(
A⊤C

)
. A space RD×k

such that the D × k matrix A is an element is referred to as a matrix space. The standard basis of the matrix
space can be constructed by a matrix wherein only one element in the matrix is 1 and the remaining are 0. The
matrix space is a linear space because it satisfies the linearity that is similar to that in case of a linear vector
space.

11When N is a submanifold of a Riemannian manifold (M, g), we define the Riemannian metric g of N to
be:

gx (ξ,η) := gx (ξ,η) , x ∈ N ⊂ M, ξ,η ∈ TxN ⊂ TxM.

g is an induced metric and (N , g) is a Riemannian submanifold of (M, g). As St(k,D) is a submanifold of
RD×k, we can define the standard inner product A ·C = tr

(
A⊤C

)
of RD×k as the induced metric g. Thus,

St(k,D) is a Riemannian submanifold of RD×k.
12Suppose a set is given a suitable equivalence relation. A natural projection is a map that sends each element

of a set to the equivalence class to which it belongs.
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Thus, we obtain the following formula.

T v
Y St(k,D) = {Y C | C ∈ Skew (k)} . (93)

Next, we define the horizontal space T h
Y St(k,D) as the orthogonal complement of T v

Y St(k,D) in
TY St(k,D) endowed with the inner product (87).

T h
Y St(k,D) : = (T v

Y St(k,D))
⊥ (94)

=
{
ξ
h

Y ∈ TY St(k,D)
∣∣∣ tr(ξh⊤Y ηv

Y

)
= 0,ηv

Y ∈ T v
Y St(k,D)

}
. (95)

Based on the fact that T v
Y St(k,D) is a subspace of TY St(k,D) and T h

Y St(k,D) is defined as its
orthogonal complement, the direct sum decomposition is as follows.

TY St(k,D) = T v
Y St(k,D)⊕ T h

Y St(k,D) , (96)

where ⊕ denotes direct sum. Moreover, the tangent space is a linear space (Absil et al. (2008)). From
(86), element Y C of T v

Y St(k,D) corresponds to the first term of (93); thus, (96) is formulated as
follows:

T h
Y St(k,D) =

{
ξ
h

Y = Y⊥B
∣∣∣ B ∈ R(D−k)×k

}
. (97)

Note that the horizontal vector ξ
h

Y is not necessarily an orthogonal matrix.

Finally, define the element ξ
h

Y ∈ T h
Y St(k,D) of the horizontal space at Y ∈ St(k,D) for the

tangent vector ξ[Y ] ∈ T[Y ] Gr(k,D) at [Y ] ∈ Gr(k,D) as satisfying the following formula.

dπ (Y )
[
ξ
h

Y

]
= ξ[Y ], (98)

where dπ (Y ) : TY St(k,D) → T[Y ] Gr(k,D) is the derivative dπ(Y )
dY of π : St(k,D) → Gr(k,D)

at Y ∈ St(k,D). The ξ
h

Y ∈ T h
Y St(k,D) is referred to as the horizontal lift at Y ∈ St(k,D) of

[Y ] ∈ Gr(k,D).

We describe the tangent space of Gr(k,D) with the concept of horizontal lift.

Definition 5. Let T h
Y St(k,D) be a horizontal space on St(k,D). Then, we define the tangent space

T[Y ] Gr(k,D) of the Gr(k,D) as follows.

T[Y ] Gr(k,D) =
{
ξ[Y ]

∣∣∣ dπ (Y )
[
ξ
h

Y

]
= ξ[Y ], ξ

h

Y ∈ T h
Y St(k,D)

}
. (99)

From the above, ξ[Y ] ∈ T[Y ] Gr(k,D) is obtained from the map dπ (Y )
[
ξ
h

Y

]
when ξ

h

Y is obtained.
The ξ[Y ] is defined by an equivalence class and cannot be treated numerically in matrix form; however,

it is sufficient to obtain the ξ
h

Y for actual numerical calculations. For ξ[Y ] ∈ T[Y ] Gr(k,D), there

exists a ξ
h

Y ∈ T h
Y St(k,D) that uniquely satisfies (98). In other words, we can handle it in matrix

form by using elements of the horizontal space of Stiefel manifolds through the concept of horizontal
lifting. Figure 1 is a conceptual diagram of the tangent space representation of a Grassmann manifold
by horizontal lift.

D.4.4 Riemannian Metric on a Grassmann Manifold

We define the Riemannian metric g of Gr(k,D) through the concept of horizontal lift.

Definition 6. Let ξ
h

Y and ηh
Y be the horizontal lifts that become dπ (Y )

[
ξ
h

Y

]
= ξ[Y ] and

dπ (Y )
[
ηh
Y

]
= η[Y ], respectively. Then, we define the Riemannian metric on Gr(k,D) as fol-

lows:

g[Y ]

(
ξ[Y ],η[Y ]

)
:= gY

(
ξ
h

Y ,η
h
Y

)
= tr

(
B⊤D

)
, (100)

where B and D are matrices that are ξ
h

Y = Y⊥B and ηh
Y = Y⊥D, respectively.
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D.5 Invariant Measures

Let the column vectors of matrix Y = {y1, · · · ,yk} ∈ RD×k be the orthonormal basis that span
the subspace span(Y ) ∈ Gr(k,D) in RD, and the column vectors of Y⊥ = {yk+1, · · · ,yD} ∈
RD×D−k be the orthogonal complementary space span(Y⊥) of span(Y ), respectively. Then, the
following differential form can be defined.

(dY ) =

D−k∧
j=1

k∧
i=1

y⊤
k+jdyi (101)

=
(
y⊤
k+1dy1 ∧ · · · ∧ y⊤

k+1dyk
)
∧ · · · ∧

(
y⊤
Ddy1 ∧ · · · ∧ y⊤

Ddyk
)
, (102)

where ∧ is the wedge product and the relation satisfies ωi∧ωi = ωj∧ωj = 0 and ωi∧ωj = −ωj∧ωi.
The above equation is in k (D − k)-order differential form, which is an invariant measure on Gr(k,D)
(Chikuse (2003)).

If we define the matrix X⊥ to be [ X X⊥ ] for any point X = {x1, · · · ,xk} ∈ St(k,D), the
differential form for an invariant measure on St(k,D) is defined as follows.

(dX) =

D−k∧
j=1

k∧
i=1

x⊤
k+jdxi

∧
i<j

k
1x

⊤
j dxi = (dY ) (dQ) , (103)

where (dQ) is the invariant measure of O(k). The integral of (103), that is, the volume of St(k,D),
can be evaluated as follows:

VSt(k,D) =

∫
St(k,D)

(dX). (104)

(104) can be computed as follows. First, the surface SD of the D-dimensional unit sphere can be
defined as follows:

SD =
d

dr

∣∣∣∣
r=1

VD = DVD =
Dπ

D
2

Γ
(
D
2 + 1

) =
2π

D
2

Γ
(
D
2

) , (105)

where VD is the volume of a D-dimensional sphere π
D
2

Γ(D
2 +1)

rD and Γ
(
D
2

)
is the gamma function.

Then, the following equation is obtained.∫
St(k,D)

(dX) = SD

∫
St(k−1,D−1)

(dX1), (106)

where (dX1) is the differential form of St(k − 1, D − 1). Thus, (104) can be transformed as follows.

VSt(k,D) =

∫
St(k,D)

(dX) =

k∏
i=1

SD =
2kπ

Dk
2

Γk
(
D
2

) , (107)

where Γk
(
D
2

)
is the multidimensional gamma function. The invariant measure (dX) is an un-

normalized measure. A measure normalized to be a probability measure can be formulated as
follows:

[dX] =
1

VSt(k,D)
(dX) . (108)

This is a uniform distribution on St(k,D). As St(k, k) = O(k), the volume VO(k) of O(k) can be
represented using (dQ) as follows.

VO(k) = VSt(k,k) =
2kπ

k2

2

Γk
(
k
2

) . (109)

Furthermore, a measure normalized to be a probability measure can be represented by the following:

[dQ] =
1

VO(k)
(dQ) . (110)
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From the above, the probability density function UO(k) (Q) of the uniform distribution on O(k) is as
follows:

UO(k) (Q) =
1

VO(k)
s.t. Q ∈ O(k) , (111)∫

O(k)

UO(k) (Q) (dQ) =

∫
O(k)

1

VO(k)
(dQ) =

∫
O(k)

[dQ] = 1. (112)

As Gr(k,D) is defined as a quotient manifold St(k,D) /O(k) as in (2), the volume VGr(k,D) of
Gr(k,D) can be defined as follows.

VGr(k,D) =

∫
Gr(k,D)

(dY ) =
VSt(k,D)

VO(k)
=
VSt(k,D)

VSt(k,k)
=
π

k(D−k)
2 Γk

(
k
2

)
Γk
(
D
2

) . (113)

The measure normalized to be a probability measure is expressed as:

[dY ] =
1

VGr(k,D)
(dY ) . (114)

D.6 Retraction

In general, the points except the origin (p (0) = x) of the tangent space TxM at x on the manifold M
are not elements on M (p (t) ∈ TxM, t ̸= 0). Therefore, if the result of the operation on the tangent
space is to be used at another point on the manifold M, it is necessary to map p (t) to the manifold
M. The map from a tangent space to a manifold is referred to as an exponential map. However,
because the exponential map is computationally expensive, retraction based on numerical linear
algebra is often used as an alternative (Zhu & Sato (2021)). Retraction is a method for approximating
an exponential map to first order while maintaining global convergence in optimization algorithms
on Riemannian manifolds. The most commonly used retractions on Gr(k,D) are methods based on
QR decomposition or singular-value decomposition (SVD) (Absil et al. (2008); Zhu & Sato (2021)).
In addition, a retraction based on the Cayley transform is introduced in Zhu & Sato (2021). This
retraction is closely related to the Cayley transform on St(k,D) (Wen & Yin (2013); Xiaojing (2017);
Zhu & Duan (2019)) and the Projected polynomial retraction (Gawlik & Leok (2018a)).

D.6.1 Exponential Map and Retraction

Geodesics on Gr(k,D) can be expressed as the equivalence class
[
expGr

Y

(
tξY

)]
, where

expGr
Y

(
tξY

)
= [ Y Y⊥ ] exp (tB) ID×k. (115)

Here, exp on the right-hand side is the matrix exponential, and B =

[
0k −B⊤

B 0D−k

]
∈ skew (D),

where B satisfies ξY = Y⊥B. We can use a following exponential map that is mathematically
equivalent to (115) (Edelman et al. (1998)):

expGr
Y

(
tξY

)
:= {Y V cos (Σt) +U sin (Σt)}V ⊤, (116)

where U ,Σ,V ⊤ = SVD
(
ξY
)
.

Further, we can use the Padé approximation to approximate geodesics on Grassmann manifolds as
follows:

Y (t) = [ Y Y⊥ ] rm(tB)ID×k ≈ expGr
Y

(
tξY

)
, (117)

where rm (X) is the mth-order diagonal Padé approximation to the matrix exponential exp (X). See
the expression of rm (X) in Moler & Loan (2003). The simplest member of this class is surely the
first-order Padé approximation

RY

(
tξY

)
:= [ Y Y⊥ ] r1 (tB) ID×k (118)

= [ Y Y⊥ ]

(
In − t

2
B

)−1(
ID +

t

2
B

)
ID×k, (119)

which is also known as the Cayley transform. From the error expression exp (Y ) = rm (Y ) +
O
(
∥Y ∥2m+1

)
of the Padé approximation, we have

RY

(
tξY

)
= expGr

Y

(
tξY

)
+O

(
t2m+1

∥∥ξY ∥∥2m+1
)
, (120)

which is also given by Theorem 3 in Gawlik & Leok (2018b).
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D.6.2 Horizontal Retraction

From Definition 3 in Zhu & Sato (2021), (119) is a horizontal retraction, and

R[Y ]

(
tξ[Y ]

)
:=
[
RY

(
tξ

h

Y

)]
(121)

is a retraction on Gr(k,D) as a quotient manifold defined by (2). This is because R satisfies the
invariance condition that RY

(
tξ

h

Y

)
∼ RY ′

(
tξ

h

Y ′

)
for all Y ∈ St(k,D) ,Y ′ ∈ St(k,D) , ξY ∈

T h
Y St(k,D) and ξY ′ ∈ T h

Y ′ St(k,D) such that Y ∼ Y ′ and ξY and ξY ′ are horizontal lifts of
ξ[Y ] ∈ T[Y ] Gr(k,D) at Y and Y ′, respectively.

In low-rank cases, we can obtain an economical version of (119) as follows (Zhu & Sato (2021)).

RY

(
tξ

h

Y

)
= Y + tξ

h

Y −
(
t2

2
Y +

t3

4
ξ
h

Y

)(
Ik +

t2

4
ξ
h⊤
Y ξ

h

Y

)−1

ξ
h⊤
Y ξ

h

Y . (122)

The inverse retraction
(
R−1

[Y ]

)h
Y

: St(k,D) → T h
Y St(k,D) of RY

(
ξ
h

Y

)
is the following:(

R−1
[Y ] ([X])

)h
Y

= R
−1

Y (X) (123)

= 2Y⊥Y
⊤
⊥ X

(
Ik + Y ⊤X

)−1
(124)

= 2
(
X − Y Y ⊤X

) (
Ik + Y ⊤X

)−1
. (125)
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