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Abstract

Recently, studies on machine learning have focused on methods that use symmetry
implicit in a specific manifold as an inductive bias. Grassmann manifolds provide
the ability to handle fundamental shapes represented as shape spaces, enabling
stable shape analysis. In this paper, we present a novel approach in which we
establish the theoretical foundations for learning distributions on the Grassmann
manifold via continuous normalization flows, with the explicit goal of generating
stable shapes. Our approach facilitates more robust generation by effectively
eliminating the influence of extraneous transformations, such as rotations and
inversions, through learning and generating within a Grassmann manifold designed
to accommodate the essential shape information of the object. The experimental
results indicated that the proposed method could generate high-quality samples
by capturing the data structure. Furthermore, the proposed method significantly
outperformed state-of-the-art methods in terms of the log-likelihood or evidence
lower bound. The results obtained are expected to stimulate further research in this
field, leading to advances for stable shape generation and analysis.

1 Introduction

Many machine learning algorithms are designed to automatically learn and extract latent factors
that explain a specific dataset. Symmetry is known to be an inductive bias (that is, prior knowledge
other than training data that can contribute significantly to learning results) for learning latent factors
(Cohen & Welling (2016, 2017); Weiler & Cesa (2019); Satorras et al. (2021); Bronstein et al. (2021);
Puny et al. (2022)). Moreover, they exist in many phenomena in the natural sciences. If a target M is
invariant1 when the operation g ∈ S designated by S applied to M , M has symmetry S. For example,
a sphere remains a sphere even if a rotation R is applied; a symmetric shape remains symmetric even
if a left–right reversal is applied.

Recent studies have focused on methods incorporating symmetry into models based on equivariance
and invariance, when the data space forms a non-Euclidean space (a sphere Sn or a special unitary
group SU(n)) (Cohen et al. (2018, 2019b); Graham et al. (2020); Haan et al. (2021); Boyda et al.
(2021a)). Among them, discriminative and generative models for subspace data (e.g., shape matrices
of point cloud data such as three-dimensional molecules and general object shapes) have been
proposed as viable approaches using Grassmann manifolds, which are quotient manifolds obtained
by introducing a function that induces invariance with respect to orthogonal transformations into

1Invariance implies the transformation π satisfies π (x) = π (x′) = π (g(x)) for x′ = g (x) obtained by
applying the operation g to the input x. Transformation π is considered invariant with respect to operation g.
A transformation π is considered equivariant with respect to an operation p if π satisfies g (π (x)) = π (g(x)).
Invariance is a special case of equivariance where π (g) is an identity transformation.
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a set of orthonormal basis matrices namely Stiefel Manifold. Numerous studies have confirmed
their effectiveness (Liu et al. (2003); Hamm & Lee (2008); Turaga et al. (2008); Harandi et al.
(2011); Fan et al. (2011); Lui (2012); Huang et al. (2015, 2018); Souza et al. (2020); Haitman et al.
(2021); Doronina et al. (2022); Souza et al. (2022)). Shape theory studies the equivalent class of all
configurations that can be obtained by a specific class of transformation (e.g. linear, affine, projective)
on a single basis shape (Patrangenaru & Mardia (2003); Sepiashvili et al. (2003); Begelfor & Werman
(2006)), and it can be shown that affine and linear shape spaces for specific configurations can
be identified by points on the Grassmann manifold. By applying this model to inverse molecular
design for stable shape generation to discover new molecular structures, they can contribute to the
development of drug discovery, computational anatomy, and materials science (Sanchez-Lengeling &
Aspuru-Guzik (2018); Bilodeau et al. (2022)).

Continuous normalizing flows (CNFs; Chen et al. (2018); Grathwohl et al. (2019); Lou et al. (2020);
Kim et al. (2020); Mathieu & Nickel (2020)) are generative models that have attracted attention in
recent years along with the variational auto-encoders (VAE; Kingma & Welling (2014)), generative
adversarial networks (GAN; Goodfellow et al. (2014)), autoregressive models (Germain et al. (2015);
Oord et al. (2016)), and diffusion models (Sohl-Dickstein et al. (2015); Ho et al. (2020); Song et al.
(2021); Huang et al. (2022); De Bortoli et al. (2022)). The CNF is a method with theoretically
superior properties that allow rigorous inference and evaluation of the log-likelihood. It can be trained
by maximum likelihood using the change of variables formula, which allows to specify a complex
normalized distribution implicitly by warping a normalized base distribution through an integral
of continuous-time dynamics. In this paper, we present a novel approach with the explicit goal of
generating stable shapes. We employ the CNF to achieve stable shape generation on a Grassmann
manifold; however, previous studies have lacked the theoretical foundation to handle the CNF on
the Grassmann manifold. To construct this, we focused on the quotient structure of a Grassmann
manifold and translated the problem of flow learning on a Grassmann manifold into that of preserving
equivariance for orthogonal groups on a Stiefel manifold, which is its total space. The contributions
of this study are as follows.

• A theory and general framework for learning flows on a Grassmann manifold are proposed.
In our setting, we can train flows on a Grassmann manifold of arbitrary dimension. To the
best of our knowledge, this is the first study in which a CNF was constructed on a Grassmann
manifold via a unified approach, focusing on the quotient structure.

• The validity of the proposed approach was demonstrated by learning densities on a Grass-
mann manifold using multiple artificial datasets with complex data distributions. In par-
ticular, orthogonally transformed data were proven to be correctly learned without data
augmentations by showing that untrained transformed (i.e., rotated or mirrored) data can be
generated from the trained model. The model was evaluated on multiple patterns of training
data and performed well with a small amount of training data.

• The effectiveness of our approach was confirmed by its state-of-the-art performance in a
molecular positional generation task.

2 Related Works

Symmetry-based Learning The concept of equivariance has been studied in recent years to
leverage the symmetries inherent in data (Cohen & Welling (2017); Kondor & Trivedi (2018); Cohen
et al. (2018, 2019b,a); Finzi et al. (2020); Haan et al. (2021)). Early work by Cohen & Welling
(2017) indicated that when data are equivariant, they can be processed with a lower computational
cost and fewer parameters. In the context of CNFs (Rezende & Mohamed (2015); Chen et al. (2018);
Grathwohl et al. (2019)), which are generative models, Rezende et al. (2019), Köhler et al. (2020)
and Garcia Satorras et al. (2021) proposed equivariant normalizing flows to learn symmetric densities
on Euclidean spaces. Furthermore, the symmetries that appear in learning densities on a manifold
were introduced by Boyda et al. (2021b) and Katsman et al. (2021) as a conjugate equivariant flow on
SU(n), which is a quotient manifold, for use in lattice gauge theory. However, a normalizing flow on
a Grassmann manifold capable of handling subspace data has not yet been established.

Shape Data Analysis and Other Applications with Subspace on the Grassmann Manifold k-
dimensional shape data (Begelfor & Werman (2006); Yoshinuma et al. (2016); Haitman et al. (2021);
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Doronina et al. (2022)) such as point clouds are essentially represented as subspace (shape space
(Sepiashvili et al. (2003); Srivastava et al. (2005); Begelfor & Werman (2006); Yataka & Fukui
(2017)) data on a Grassmann manifold. Furthermore, subspace data can be obtained on many types of
data and can provide advantages such as practicability and noise robustness. For example, multiview
image sets or video data (Fan et al. (2011); Turaga et al. (2011); Lui (2012); Alashkar et al. (2016)),
signal data (Srivastava & Klassen (2004); Gatto et al. (2017); Souza et al. (2019); Yataka et al. (2019)),
and text data (Shimomoto et al. (2021)) are often provided as a set of feature vectors. Such raw
data in matrix form is not very useful owing to its considerable size and noise. The analysis of its
eigenspace, or column subspace, is important because alternatively, the raw data matrix can be well
approximated by a low-dimensional subspace with basis vectors corresponding to the maximum
eigenvalues of the matrix. Therefore, they inevitably give rise to the necessity of analyzing them on a
Grassmann manifold.

3 Mathematical Preliminaries

In this section, the basic mathematical concepts covered in this paper are described. Further details
on the fundamentals of a Grassmann manifold are summarized in the Appendix D.

3.1 Grassmann Manifold Defined as Quotient Manifold

Definition of a Grassmann Manifold A Grassmann manifold Gr(k,D) is a set of k-
dimensional subspaces span(Y ) (Y is a matrix of k basis vectors and the function span(·)
is onto Gr(k,D)) in the D-dimensional Euclidean space RD, and is defined as Gr(k,D) ={
span(Y ) ⊂ RD

∣∣ dim (span(Y )) = k
}

(Absil et al. (2008)). The span(Y ) is the same subspace
regardless of a k-dimensional rotation or k-dimensional reflection applied to Y on which it is spanned.
With respect to the compact Stiefel manifold St(k,D) :=

{
Y ∈ RD×k

∣∣ Y ⊤Y = Ik
}

defined as the
set of D × k-orthonormal basis matrices Y , the equivalence class of Y ∈ St(k,D) determined from
the equivalence relation ∼ 2 is defined by [Y ] := π (Y ) = {Y Q ∈ St(k,D) | Q ∈ O(k)}, where
π (Y ) is a continuous surjection referred to as a quotient map. The equivalence class corresponds
one-to-one with the k-dimensional subspace:

[Y ] = [X] ⇐⇒ span(Y ) = span(X) , (1)

where Y ∈ St(k,D) is the representative of [Y ]. span(Y ) is termed invariant under ∼. The quotient
set composed of such [Y ] as a whole can introduce the structure of a manifold (Sato & Iwai (2014)).
Definition 1. A Grassmann manifold as a quotient manifold is defined as follows:

Gr(k,D) := St(k,D) /O(k) = {[Y ] = π (Y ) | Y ∈ St(k,D)} , (2)

where St(k,D) /O(k) is the quotient manifold by the k-dimensional orthogonal group O(k) with
the total space St(k,D), and π (Y ) is the quotient map π : St(k,D) → St(k,D) /O(k).

Tangent Space and Vector Field Let T[Y ] Gr(k,D) be the tangent space of [Y ] ∈
Gr(k,D). As the point [Y ] is not a matrix, T[Y ] Gr(k,D) cannot be represented by a matrix.

Figure 1: Conceptual diagram of spaces
with horizontal lift.

Therefore, treating these directly in numerical calcula-
tions is challenging. To solve this problem, we can
use the representative Y ∈ St(k,D) for [Y ] and
the tangent vector ξ

h

Y ∈ T h
Y St(k,D), which is re-

ferred to as the horizontal lift of ξ[Y ] ∈ T[Y ] Gr(k,D),
for ξ[Y ]. These facilitate computation with matri-
ces (Absil et al. (2008)). T h

Y St(k,D) is a sub-
space of the tangent space TY St(k,D) at Y , which
is referred to as a horizontal space, and ξ

h

Y is re-
ferred to as a horizontal vector. The tangent bundle
TGr(k,D) =

⋃
[Y ]∈Gr(k,D) T[Y ]Gr(k,D) that sums

up the tangent spaces T[Y ] Gr(k,D) form vector fields

2When there exists some Q ∈ O(k) such that X = Y Q, then X and Y are defined to be equivalences
X ∼ Y . Appendix D.2 provides further details.
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X : Gr(k,D) → TGr(k,D). A conceptual diagram of the various spaces is shown in Figure 1.
Further details on these concepts can be found in Appendix D.4.

3.2 Manifold Normalizing Flow

Let (M, h) be a Riemannian manifold. We consider the time evolution of a base point x =
γ (0) , γ : [0,∞) → M, whose velocity is expressed by a vector field X (t, γ (t)). Intuitively,
X (t, γ (t)) represents the direction and speed at which x moves on the curve γ (t). Let TxM be
the tangent space at x and TM =

⋃
x∈M TxM be the tangent bundle. The time evolution of a

point according to a vector field X : M × R → TM is expressed by the differential equation
dγ(t)
dt = X (t, γ (t)) , γ (0) = x. Let FX,T : M → M be defined as the map from ∀x ∈ M to

the evaluated value at time T on the curve γ (t) starting at x. This map FX,T is known as the flow
of X (Lee (2003)). Recently, Mathieu & Nickel (2020) introduced the Riemann CNF (RCNF),
wherein the random variable z (t) ∈ M is assumed to be time-dependent and the change in its
log-likelihood follows the instantaneous change formula for the variable. This is an extension of
the CNF (Chen et al. (2018); Grathwohl et al. (2019)) to a Riemannian manifold. Specifically,
when pθ is the density parameterized by θ, the derivative of the log-likelihood is expressed as
dlog pθ(z(t))

dt = −div (Xθ (t, z (t))), where Xθ is the vector field parameterized by θ and div (·) is
the divergence. By integrating this over time, the sum of the changes in the log-likelihood with flow
FX,t1θ can be computed:

log pθ (z (t1)) = log p
(
F−1
X,t1θ

(z (t1))
)
−
∫ t1

t0

div (Xθ (t, z (t)))dt. (3)

4 Invariant Densities from Grassmann Manifold Flow

This section provides a tractable and efficient method for learning densities on a Grassmann manifold
Gr(k,D). The method for preserving the flow on Gr(k,D) is non-trivial. Therefore, we derive the
following implications.

1. Vector field on Gr(k,D) ⇔ Flow on Gr(k,D) (Proposition 1).

2. Flow on Gr(k,D) ⇔ Probability density on Gr(k,D) (Proposition 2).

3. Construction of a prior probability density for an efficient sampling (Proposition 3).

The essence of the proofs is to show that Corollary 2 (Homogeneity Property (4) with regard to
∀Q ∈ O(k), which is equivariance in the horizontal space) is satisfied.

ξ
h

Y Q = ξ
h

Y Q, (4)

where ξ
h

Y is a horizontal lift at representative Y relative to ξ[Y ] ∈ T[Y ] Gr(k,D). We defer the
proofs of all propositions to Appendix B. These series of propositions show that by using a prior
distribution on Gr(k,D) that can be easily sampled, a flow that generates a complex probability
density distribution on Gr(k,D) can be obtained.

4.1 Construction of Flow from Vector Field

To construct flows on Gr(k,D), we use tools in the theory of manifold differential equations. In
particular, there is a natural correspondence between the vector fields on Gr(k,D) and the flows on
Gr(k,D). This is formalized in the following proposition.

Proposition 1. Let Gr(k,D) be a Grassmann manifold, X be any time-dependent vector field on
Gr(k,D), and FX,T be a flow on a X. Let X be any time-dependent horizontal lift and FX,T be a flow
of X. X is a vector field on St(k,D) if and only if FX,T is a flow on St(k,D) and satisfies invariance

condition X ∼ X
′

for all FX,T ∼ FX
′
,T . Therefore, X is a vector field on Gr(k,D) if and only if

FX,T :=
[
FX,T

]
is a flow on Gr(k,D), and vice versa.
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Algorithm 1 Random Sampling from pGr(k,D) ([X]; [M ],U ,V )

Require: A mean matrix M ∈ St(k,D), a rows covariance matrix U ∈ RD×D and a columns covariance
matrix V ∈ Rk×k.

1: Sample a Vec (Z) ∈ RDk from Gaussian Distribution NDk (0,V ⊗U) and reshape to Z ∈ RD×k.
2: Compute a projected horizontal vector ξ

h

M = Z −M
(
M⊤Z

)
∈ T h

M St(k,D).

3: Compute a representative Y = RM

(
ξ
h

M

)
= M+ξ

h

M −
(

1
2
M + 1

4
ξ
h

M

)(
Ik + 1

4
ξ
h⊤
M ξ

h

M

)−1

ξ
h⊤
M ξ

h

M

of the equivalence class [Y ] ∈ Gr(k,D).

4.2 Construction of Probability Densities with Flow

We show that the flow on Gr(k,D) induces density on Gr(k,D).
Proposition 2. Let Gr(k,D) be a Grassmann manifold. Let p be the probability density on Gr(k,D)
and F be the flow on Gr(k,D). Suppose p is a density on St(k,D) and F is a flow on St(k,D).
Then, the distribution pF after transformations by F is also a density on St(k,D). Further, the
invariance condition pF ∼ pF ′ is satisfied for all F ∼ F

′
. Therefore, pF := [pF ] is a distribution on

Gr(k,D).

In the context of the RCNF, Proposition 2 implies that the application of a flow on Gr(k,D) to a
prior distribution on Gr(k,D) results in a probability density on Gr(k,D). Thus, the problem of
constructing a probability density on Gr(k,D) is reduced to that of constructing a vector field.

4.3 Prior Probability Density Function

To construct a flow on Gr(k,D), a prior distribution that is easy to sample as a basis for the
transformation is required, although the method for constructing such a distribution is non-trivial. In
this study, a distribution based on the matrix-variate Gaussian distribution is introduced as a prior on
Gr(k,D) that is easy to sample, and a flow on Gr(k,D) is constructed.
Proposition 3. The distribution pGr(k,D) on a Grassmann manifold Gr(k,D) based on the matrix-
variate Gaussian distribution MN can be expressed as follows.

pGr(k,D) ([X]; [M ],U ,V ) = VGr(k,D)MN
(
ξ
h

M ;0,U ,V
) ∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ , (5)

where M is an orthonormal basis matrix denoting the mean of the distribution, U is a positive
definite matrix denoting the row directional variance, V is a positive definite matrix denoting the
column directional variance, and ξ

h

M is a random sample from MN in an (D − k)× k-dimensional
horizontal space T h

M St(k,D). VGr(k,D) denotes the total volume of Gr(k,D) defined by (113), RM

denotes the horizontal retraction at M , and
∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ denotes the Jacobian.

A retraction is a map for communicating data between a manifold and its tangent bundles and is a
first-order approximation of an exponential map (Zhu & Sato (2021)). Various methods of retraction
have been proposed at (Absil et al. (2008); Fiori et al. (2015); Zhu & Sato (2021)); in particular,
the one based on the Cayley transform is differentiable and does not require matrix decomposition.
We use (40) as a Cayley transform based horizontal retraction. Further details are provided in
Appendix D.6.

5 Learning Probability Densities with Flow

5.1 Training Paradigms

Using the results of Section 4, a flow model on a Grassmann manifold Gr(k,D) is constructed.
Herein, the flow model on Gr(k,D) is expressed as GrCNF. In the proposed GrCNF, the probability
density function in Section 4.3 is first constructed as a prior distribution. Subsequently, the vector
field Xθ : Gr(k,D)× R → TGr(k,D) that generates the flow model FXθ,T is constructed using a
neural network, wherein stepwise integration on the manifold occurs in accordance with (3). The
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HorP

MILs

Grad

Vec

Horizontal Vector ∈ Vector Field

Figure 2: Conceptual diagram of the vector field calculation procedure. HorP denotes the horizontal
projection layer, MILs denotes the multiple intermediate layers, and Grad denotes the horizontal lift
layer. The sequence of procedure represents that, given an input of Y ∈ [Y ], a horizontal vector ξ

h

Y ,
which is equivalent to determining ξ[Y ] since ξ

h

Y corresponds one-to-one with ξ[Y ], is obtained as a
result.

RCNF (Mathieu & Nickel (2020)) framework is used for loss function, integration and divergence
calculations. In the integration steps, the ordinary differential equation (ODE) is solved using the
ODE solver with orthogonal integration. The learnable parameters are updated using backpropagation
to maximize the sum of the computed log-likelihood. In order to efficiently compute gradients, we
introduce an adjoint method to calculate analytically the derivative of a manifold ODE, based on the
results of Lou et al. (2020).

5.2 Sampling Algorithm from Prior

We propose a sampling algorithm on Gr(k,D) derived from the Cayley transform, according to the
results of Section 4.3. The algorithm of sampling from a distribution on pGr(k,D) is described in
Algorithm 1. Vec denotes the map of vertically concatenating matrices and converting them into a
vector and ID is a D ×D identity matrix.

5.3 Construction of Vector Field

We describe the method for constructing the vector field Xθ. The learnable parameters θ are feedfor-
ward neural networks, which accept the representative Y ∈ St(k,D) of [Y ] ∈ Gr(k,D) inputs and
output a horizontal lift ξ

h

Y ∈ T h
Y St(k,D) of ξ[Y ] ∈ T[Y ] Gr(k,D) that satisfies (4). The structure

of Xθ is important because it directly determines the ability of the distribution to be represented. To
address these geometric properties, the following specific input and intermediate layers are used to
obtain a O(k)-invariant function value vout. Figure 2 shows a conceptual diagram.

Input Layer The input layer maps the input representative Y to a point ζ
h

Y ∈ T h
Y St(k,D). A

horizontal projection HorP : St(k,D) → T h
Y St(k,D) ∼= R(D−k)×k is constructed as an input layer:

HorP (Y ) = W − Y Y ⊤W , (6)
where W is the output of NN obtained with Y Y ⊤ as input. HorP is well-defined because it is
uniquely determined regardless of how the representative Y ∈ [Y ] is chosen.

Intermediate Layer To model the dynamics over the horizontal space, intermediate layers based
on neural networks are constructed. The layers are particularly important for the ability to represent
the distribution, and various configurations are possible such as concatsquash (CS) layer (Grathwohl
et al. (2019)). The layer can be stacked multiply, and the overall power of expression increases
with the number of layers. The input x of the first intermediate layer is x = Vec ◦ HorP. The last
intermediate layer (one layer before the output layer) must be constructed such that it exhibits a
potential function value. This is to obtain the gradient for the potential function in the output layer.

Output Layer We construct a gradient Grad : (R,St(k,D)) → T h
Y St(k,D) as an output layer.

In Grad, ξ
h

Y ∈ T h
Y St(k,D) is obtained by taking the gradient of the potential function vout:

Grad (vout,Y ) = P t
Y (autograd (vout,Y )) s.t. P t

Y (Z) = Z − Y sym
(
Y ⊤Z

)
, (7)
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where autograd (vout,Y ) denotes automatic differentiation (Paszke et al. (2017)) ∂vout
∂Y , P t

Y (Z)

denotes the projection of Z onto TY St(k,D) and sym (B) =
(
B +B⊤) /2 is a symmetric part of

B. Grad is well-defined on Gr(k,D) by the horizontal lift (Absil et al. (2008)).

5.4 ODE Solver with Orthogonal Integration

We present an ordinary differential equation (ODE) solver on Gr(k,D). Celledoni & Owren (2002)
proposed an intrinsic ODE solver that was applicable to St(k,D) and did not assume an outer
Euclidean space. This solver works on St(k,D), thus it must be reformulated into a solver suitable
for Gr(k,D). We introduce a solver on Gr(k,D) via ODE operating on T h

Y St(k,D), based on
results from Section 4. This is an intrinsic approach regardless of whether the manifold has been
embedded in a bigger space with a corresponding extension of the vector field. The ODE defined on
T h
Y St(k,D) is obtained as:

dVec (ϵ (t))

dt
= ∇γR

−1

Y Vec (Xθ (t, γ (t))) s.t. γ (t) = RY (ϵ (t)) , (8)

where ϵ : [0,∞) → T h
Y St(k,D) is the curve on T h

Y St(k,D), RY denotes the horizontal retraction,
∇γR

−1

Y can be calculated using (55) and Vec denotes the map of vertically concatenating matrices
and converting them into a single vector. Further details on our ODE can be found in Appendix C.1.

5.5 Loss Function

The total change in log-likelihood using GrCNF can be calculated using the following equation.

log pθ (Y (t1)) = log pGr(k,D)

(
F−1
X,t1θ

(Y (t1))
)
−
∫ t1

t0

div (Xθ (t,Y (t)))dt, (9)

where FX,t1θ is a flow. In this study, we defined the loss function Loss for maximizing the log-
likelihood: Loss = NLL = − log pθ (Y (t1)) where NLL denotes negative log-likelihood.

6 Experimental Results

In this section, we discuss the results of several experiments for validating GrCNF. Further details
regarding each experimental condition, such as the architectures and hyperparameters used in training,
can be found in Appendix C.3.

6.1 Generation and Density Estimation on Artificial Textures

We first trained GrCNF on five different Gr(1, 3) (1-dimensional subspace in R3, that is, a line
through the origin) data to visualize the model and the trained dynamics. The five datasets3 were 2
spirals, a swissroll, 2 circles, 2 sines, and Target. We represented Gr(1, 3) with a sphere of radius 1
centered at the origin by mapping a 1-dimensional subspace to two points on the sphere (a point on
the sphere and its antipodal point) for visualization.

Result The five types of probability densities transformed by GrCNF and the results of data
generation are shown in Figure 3. The top, middle, and bottom rows in the figure present the
correct data, the generated data with GrCNF when the left-most column is the prior distribution, and
the probability density on a Gr(1, 3) obtained by training when the leftmost column was the prior
distribution, respectively. Regarding the probability density, a brighter region corresponds to a higher
probability. As shown in the figure, GrCNF can generate high-quality samples that are sufficiently
accurate to the distribution of the correct data. To investigate whether GrCNF learns the distribution
on Gr(1, 3), we generated antipodal points in Figure 3 with the trained GrCNF used in Figure 3. As
shown in Figure 4, GrCNF generated exactly the same high quality samples as the original for the
untrained antipodal points. This experimental result implies that the proposed flow accurately learns
the distribution on a Gr(k,D) and that all the orthogonal transformed samples can be obtained with
equal quality by only training with arbitrary representatives.

3The code for the data distributions is presented in Appendix C.3.1
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Figure 3: Generated samples and probability densities using the GrCNF trained on each of the five
distributions. (top) Ground truth data, (middle) Generated data with the GrCNF when the leftmost
column represents the prior distribution, and (bottom) densities obtained via training.

Figure 4: Results of the GrCNF transformation for the antipodal point of the prior in the middle panel
of the Figure 3. The antipodal points are those that pass through the origin of the sphere and appear in
the southern hemisphere (leftmost). It is evident that the antipodal points are generated with exactly
the same quality as in the Figure 3 for the un-trained antipodal points.

6.2 Comparison with Conventional Methods for DW4 and LJ13

Comparative experiments were performed using DW4 and LJ13—the two systems presented by
Köhler et al. (2020). These datasets were generated synthetically by sampling from their respective
energy functions using Markov chain Monte Carlo (MCMC) methods. Both energy functions (DW4
and LJ13) are ideal for analyzing the advantages of various methods when they exist on data that
are equivariant for rotation and reflection, respectively. We used the datasets generated by MCMC
that were employed in Köhler et al. (2020). The orthonormalized data Y were used for this study by
applying Gram-Schmidt’s orthogonalization to each column of P such that the D-dimensional data
was a matrix with k orthonormal basis vectors (DW4: D = 4, k = 2; LJ13: D = 13, k = 3).

To match the experiment conducted in Garcia Satorras et al. (2021), 1, 000 validation and testing
samples each were used for both datasets. For DW4 and LJ13, different numbers of training samples,
i.e.,

{
102, 103, 104, 105

}
and

{
10, 102, 103, 104

}
, respectively, were selected, and their performance

for each amount of data was examined. The proposed approach was compared with the state-of-the-
art E(n) equivariant flow (E-NF) presented by Garcia Satorras et al. (2021) and simple dynamics
presented by Köhler et al. (2020). In addition, comparisons with graph normalizing flow (GNF),
GNF with attention (GNF-att), and GNF with attention and data augmentation (GNF-att-aug) (data
augmentation by rotation), which are non-equivariant variants of E-NF, were performed. All the
reported values are averages of cross-validations (three runs). Otherwise, the network structures of
all these conventional methods were the same as that used in Garcia Satorras et al. (2021).

Result Table 1 presents the results of the cross-validated experiments (negative log-likelihood;
NLL) for the test samples. The proposed GrCNF outperformed both the conventional non-equivariant
models (GNF, GNF-att, and GNF-att-aug) and the conventional equivariant models (Simple dynamics,
E-NF) in all data domains.
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Table 1: Negative log-likelihood comparison on the test partition of different methods for DW4 and
LJ13 datasets for different amount of training samples averaged over 3 runs.

DW4 LJ13

# of Samples 102 103 104 105 10 102 103 104

GNF -2.30 -7.04 -7.19 -7.93 6.77 -0.76 -4.26 -12.43
GNF-att -2.02 -4.13 -5.25 -6.74 6.91 1.40 -6.81 -12.05
GNF-att-aug -3.11 -4.04 -6.51 -9.42 2.95 -6.11 -13.94 -15.74
Simple dynamics -1.22 -1.28 -1.36 -1.39 -1.10 -3.87 -3.72 -3.59
E-NF -0.54 -9.89 -12.15 -15.29 -12.86 -15.75 -31.51 -32.83
GrCNF -12.53 -13.74 -14.09 -16.07 -23.64 -44.24 -58.02 -58.71

Table 2: Results for the QM9 Positional dataset. (Left) Negative log-likelihood, −ELBO and JSD for
the QM9 Positional dataset on the test data, and (Right) normalized histogram of relative distances
between atoms for QM9 Positional and generated samples with GrCNF.

NLL −ELBO JSD

Simple dynamics 73.0 - 0.086
Kernel dynamics 38.6 - 0.029
GNF -00.9 - 0.011
GNF-att -26.6 - 0.007
GNF-att-aug -33.5 - 0.006
E-NF -70.2 - 0.006
GrCNF NLL ≤ -85.3 -85.3 0.005

6.3 Comparison with Conventional Methods for QM9 Positional

A comparative experiment was performed using the QM9 Positional—a subset of the QM9 molecular
dataset that considers only positional information. The purpose of this experiment was to evaluate
the feasibility of generating a practical point cloud. The QM9 Positional comprises only molecules
with 19 atoms/nodes, and each node has a 3-dimensional position vector associated with it. However,
the likelihood of the molecules must be invariant to translation and rotation in 3-dimensional space;
thus, the proposed model is suitable for this type of data. The dataset consisted of 13,831, 2501, and
1813 training, validation, and testing samples, respectively. In this experiment, we used evaluation
metrics based on the NLL and Jensen-Shannon divergence (JSD; Lin (1991)), in accordance with
the experiments conducted in Garcia Satorras et al. (2021). The JSD calculates the distance between
the normalized histograms that are generated from the model and obtained from the training set, by
creating a histogram of the relative distances among all the node pairs in each molecule.

GrCNF handles subspace data. Therefore, orthonormalized data Y was used only in the proposed
GrCNF, as in PP⊤ ≃ Y ΛY ⊤ s.t. Λ is diagonal (Huang et al. (2015)), such that the k-dimensional
point cloud data P of N points N × k matrix is a matrix with k orthonormal basis vectors (D = 19,
k = 3). However, a complete point cloud generating task, such as QM9 Positional, must also store a
scale parameter

√
Λ such that P = Y

√
Λ. Therefore, GrCNF incorporates an additional architecture

to estimate
√
Λ. In addition, the proposed GrCNF encounters difficulties in computing the NLL

in distribution pψ(P ) of P ; thus, a new loss function is required to address this. In this study, the
evidence lower bound (ELBO), i.e., the lower bound of the log-likelihood log pψ(P ), was maximized
using a variational inference framework. This is equal to the minimization of −ELBO(P ). Further
details regarding ELBO can be found in Appendix C.2.

We compared our GrCNF with the GNF, GNF-att, GNF-att-aug, Simple dynamics, Kernel dynamics,
and E-NF methods. The network structure and experimental conditions for all these conventional
methods were identical to those used in Garcia Satorras et al. (2021). In all the experiments, the
training was performed for 160 epochs. The JSD values were the averages of the last 10 epochs for
all the models.

Result Table 2 presents the NLL and JSD cross-validated against the test data. Although the
proposed GrCNF could not directly compute the NLL in this problem setting, it outperformed all
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Figure 5: Visualization results of generated samples in Section 6.3. We visualize Generated QM9
by GrCNF and E-NF, as well as the aligned data points from the QM9 dataset that are closest to the
Generated QM9 samples. These visualizations illustrate that GrCNF is capable of generating realistic
data points that align well with the existing dataset.

the other algorithms because the relation NLL ≤ −ELBO is true in general. With regard to the JSD,
GrCNF achieved the best performance. Figure 2 presents the normalized histograms of the QM9
Positional molecular data and the data generated by GrCNF, in relation to the JSD of GrCNF. As
shown, the histograms of the molecules generated by GrCNF are close to the histograms of the data
set; thus, GrCNF can generate realistic molecules stably.

7 Conclusion

We proposed the concept of CNF on a Grassmann manifold (GrCNF) for stable shape generation.
The proposed model is a generative model capable of handling subspace data; i.e., it is a CNF that
considers the equivariance on the Stiefel manifold. Through suitable experiments, the ability of the
proposed GrCNF to generate qualitatively in 1-dimensional subspace datasets in R3 was confirmed.
Further, GrCNF significantly outperformed existing normalizing flows methods in terms of the
log-likelihood or ELBO for DW4, LJ13, and QM9 Positional. It was shown that GrCNF can be used
to generate realistic data more stably.

Societal Impact and Limitations Our work is concerned with accurately modeling the data
topology; thus, we do not expect there to be any negative consequence in our application field. The
proposed theory and implementation are valid in a remarkably general setting, although there are
limitations that can be addressed in future works: 1. The proposed method requires calculation of
the Kronecker product at each ODE step (Section 5.4), which is computationally expensive. 2. Our
current paper does not include experiments on high-dimensional data. Therefore, future experiments
should be conducted using higher dimensional data, such as point clouds that represent general object
geometry. However, the results presented in this paper still provide numerous valuable insights in the
field of stable shape generation.
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A Appendix Overview

First, we present the details of the various proofs of Section 4 in Appendix B. Next, in Appendix C,
we describe the network layers for the building GrCNF, and the detailed model architectures, hyper-
parameters, and implementation on the experiments. Finally, in Appendix D, we provide a summary
of the fundamentals of a Grassmann manifold, which is the core concept of this study.

B Proofs

B.1 Proposition 1

First, we invoked the following two corollaries.

Corollary 1 (Diffeomorphism Invariance of Flows). Let F : M → N be a diffeomorphism. If X is
a smooth vector field over M and θ is the flow of X , then the flow of F∗X

4 is ηt = F ◦ θt ◦ F−1,
with domain Nt = F (Mt) for each t ∈ R.

Proof. See Lee (2003, Corollary 9.14).

Corollary 2 (Homogeneity Property). The horizontal lift ξ
h

Y at representative Y ∈ St(k,D) relative
to ξ[Y ] ∈ T[Y ] Gr(k,D) satisfies the following homogeneity (equivariance) property (4) with regard
to ∀Q ∈ O(k).

ξ
h

Y Q = ξ
h

Y Q.

Proof. π (Y ) = π (Y Q) is true for ∀Y ∈ St(k,D) ,Q ∈ O(k). Therefore, π (Y ) = (π ◦ q) (Y )
is true when defined as q (Y ) = Y Q. When the derivative dπ (·) [·] of both sides is applied to the
horizontal lift ξ

h

Y of ξ[Y ], the following is obtained:

dπ (Y )
[
ξ
h

Y

]
= d (π ◦ q) (Y )

[
ξ
h

Y

]
= dπ (q (Y ))

[
dq (Y )

[
ξ
h

Y

]]
= dπ (Y Q)

[
ξ
h

Y Q
]
. (10)

Moreover, from (98) which is definition of horizontal lift, the following equation is true.

ξ[Y ] = dπ (Y )
[
ξ
h

Y

]
= dπ (Y Q)

[
ξ
h

Y Q

]
. (11)

Subsequently, we obtain the following equation.

ξ[Y ] = dπ (Y Q)
[
ξ
h

Y Q

]
= dπ (Y Q)

[
ξ
h

Y Q
]
. (12)

Finally, the uniqueness of the horizontal lift yields ξ
h

Y Q = ξ
h

Y Q.

Proposition 1. Let Gr(k,D) be a Grassmann manifold, X be any time-dependent vector field on
Gr(k,D), and FX,T be a flow on a X. Let X be any time-dependent horizontal lift and FX,T be a flow
of X. X is a vector field on St(k,D) if and only if FX,T is a flow on St(k,D) and satisfies invariance

condition X ∼ X
′

for all FX,T ∼ FX
′
,T . Therefore, X is a vector field on Gr(k,D) if and only if

FX,T :=
[
FX,T

]
is a flow on Gr(k,D), and vice versa.

Proof. Flow FX,T on Gr(k,D) ⇒ Vector Field X on Gr(k,D). Let θ : St(k,D) × O(k) →
St(k,D) , (Y ,Q) 7→ Y Q be a map representing the right action of the orthogonal group. In
addition, let FX,T be a flow on Gr(k,D) and FX,T be a flow on St(k,D). These satisfy FXQ,T ∼

4F∗ denotes the pushforward, that is, another notation for the differential of F .

1



FX,T , FXQ,T ∈ FX,T , FX,T ∈ FX,T .

X
(
t, FXQ,t (Y Q)

)
= X

(
t, FX,t (Y )Q

)
(13)

=
d

dt

{
FX,t (Y )Q

}
(14)

=
d

dt

(
θ ◦ FX,t

)
(Y ) (15)

= d(θ)Y

{
d

dt
FX,t (Y )

}
(16)

= d(θ)Y

{
X
(
t, FX,t (Y )

)}
(17)

= X
(
t, FX,t (Y )

)
Q. (18)

Thus, X ∼ XQ is true. Therefore, X is the horizontal lift of the vector field X on Gr(k,D) and is
unique for X.

Flow FX,T on Gr(k,D) ⇐ Vector Field X on Gr(k,D). Let θ : St(k,D) × O(k) →
St(k,D) , (Y ,Q) 7→ Y Q be a map representing the right action of the orthogonal group. In
addition, let X be a vector field over a horizontal bundle T h St(k,D) on St(k,D) and FX,T be its
flow. From the Corollary 1,

F θ∗◦X,T = θ ◦ FX,T ◦ θ−1 (19)

F θ∗◦X,T ◦ θ = θ ◦ FX,T (20)

F d(θ)Y X,T ◦ θ = θ ◦ FX,T (21)

FXQ,T (Y Q) = FX,T (Y )Q. (22)

Note that d(θ)Y X = XQ is derived from the Corollary 2 and (4) in Zhu & Sato (2021). This indicates
that FX,T ∼ FX

′
,T is true for any X,X

′ ∈ T h St(k,D) that satisfies X ∼ X
′
. Thus, a new flow

can be defined as FX,T :=
[
FX,T

]
. This is a flow on a Gr(k,D). Because X is a vector field in a

horizontal bundle T h St(k,D) on St(k,D), it is a horizontal lift of the vector field X on Gr(k,D)
and is therefore unique for X.

Thus, the proof is complete.

B.2 Proposition 2

Proposition 2. Let Gr(k,D) be a Grassmann manifold. Let p be the probability density on Gr(k,D)
and F be the flow on Gr(k,D). Suppose p is a density on St(k,D) and F is a flow on St(k,D).
Then, the distribution pF after transformations by F is also a density on St(k,D). Further, the
invariance condition pF ∼ pF ′ is satisfied for all F ∼ F

′
. Therefore, pF := [pF ] is a distribution on

Gr(k,D).

2



Proof. Let θ : St(k,D) × O(k) → St(k,D) : (Y ,Q) 7→ Y Q be a map representing the right
action of the orthogonal group.

pF (θ ◦ Y ) = pF (θ ◦ Y )
|det {Jθ (Y )}|
|det {Jθ (Y )}|

=
pθ−1◦F (Y )

|det {Jθ (Y )}|
(23)

= p
((
F−1 ◦ θ

)
(Y )

) |det {JF−1◦θ (Y )}|
|det {Jθ (Y )}|

(24)

=
(
p ◦ F−1

)
◦ θ (Y )

|det {Jθ◦F−1 (Y )}|
|det {Jθ (Y )}|

(25)

= θ ◦
(
p ◦ F−1

)
(Y )

∣∣det{Jθ (F−1 (Y )
)
JF−1 (Y )

}∣∣
|det {Jθ (Y )}|

(26)

= θ ◦
(
p ◦ F−1

)
(Y )

∣∣det{Jθ (F−1 (Y )
)}∣∣ |det {JF−1 (Y )}|

|det {Jθ (Y )}|
(27)

= θ ◦ p
(
F−1

)
(Y ) |det {JF−1 (Y )}|

∣∣det{Jθ (F−1 (Y )
)}∣∣

|det {Jθ (Y )}|
(28)

= θ ◦ pF (Y )

∣∣det{Jθ (F−1 (Y )
)}∣∣

|det {Jθ (Y )}|
(29)

= θ ◦ pF (Y ) , (30)

where |det {Jθ (X)}| = 1 is true because θ is the action of the orthogonal group. Therefore, as
pF (θ ◦ Y ) = θ ◦ pF (Y ) is true, pF ∼ pFQ ∈ pF is true. Based on this, it can be concluded that
the subject is satisfied.

B.3 Proposition 3

Proposition 3. The distribution pGr(k,D) on a Grassmann manifold Gr(k,D) based on the matrix-
variate Gaussian distribution MN can be expressed as follows.

pGr(k,D) ([X]; [M ],U ,V ) = VGr(k,D)MN
(
ξ
h

M ;0,U ,V
) ∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ , (31)

where M is an orthonormal basis matrix denoting the mean of the distribution, U is a positive
definite matrix denoting the row directional variance, V is a positive definite matrix denoting the
column directional variance, and ξ

h

M is a random sample from MN in an (D − k)× k-dimensional
horizontal space T h

M St(k,D). VGr(k,D) denotes the total volume of Gr(k,D) defined by (113), RM

denotes the horizontal retraction at M , and
∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ denotes the Jacobian.

Proof. Let pGr ([X]) be a probability density function on a Gr(k,D). From (101), let (dX) be the
invariant measure on Gr(k,D) and dξ

h

M be the Lebesgue measure on T h
M St(k,D). Subsequently,

a change of variables was performed according to the following:

pGr(k,D) ([X]) (dX) = pGr(k,D)

([
RM

(
ξ
h

M

)])
dξ

h

M (32)

pGr(k,D) ([X]) = pGr(k,D)

([
RM

(
ξ
h

M

)]) ∣∣∣∣∣det
(
dξ

h

M

dRM

)∣∣∣∣∣ (33)

pGr(k,D) ([X]) = pGr(k,D)

([
RM

(
ξ
h

M

)]) ∣∣∣det(∇
ξ
h
M
RM

)∣∣∣−1

. (34)
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Suppose pGr ([X]) is integrable with the probability measure [dX] on Gr(k,D) defined by (114).
Then, we obtain the following relation.∫

Gr(k,D)

pGr(k,D) ([X]) [dX] (35)

=
1

VGr(k,D)

∫
Gr(k,D)

pGr(k,D) ([X]) (dX) (36)

=
1

VGr(k,D)

∫
Th
M St(k,D)

pGr(k,D)

([
RM

(
ξ
h

M

)]) ∣∣∣det(∇
ξ
h
M
RM

)∣∣∣−1

dξ
h

M . (37)

In addition, we obtain the following equation based on [dX].∫
Gr(k,D)

pGr(k,D) ([X]) [dX] =

∫
Th
M St(k,D)

MN
(
ξ
h

M

)
dξ

h

M = 1, (38)

where MN
(
ξ
h

M

)
denotes the matrix-variate Gaussian distribution (Mathai et al. (2022)). Thus, the

probability density function on Gr(k,D) can be expressed as follows:

pGr(k,D)

([
RM

(
ξ
h

M

)])
= VGr(k,D)MN

(
ξ
h

M

) ∣∣∣det(∇
ξ
h
M
RM

)∣∣∣ . (39)

The Jacobian can be represented as
∣∣∣det(∇

ξ
h
M
RM

)∣∣∣ = ∣∣∣det{(∂RM

)⊤ (
∂RM

)}∣∣∣ 12 from Evans

& Ronald (2015), where ∂RM = ∂RM

∂ξ
h
M

. Further, ∂RM can be computed as follows. First, we define

the horizontal retraction RY : T h
Y St(k,D) → St(k,D) based on the Cayley transform from Zhu &

Sato (2021).

X = RM

(
ξ
h

M

)
= M + ξ

h

M −
(
1

2
M +

1

4
ξ
h

M

)(
Ik +

1

4
ξ
h

M

⊤
ξ
h

M

)−1

ξ
h

M

⊤
ξ
h

M . (40)

This is a fixed time (t = 1) version of (122). Next, for improved visibility in subsequent calculations,
let E = ξ

h

M , F = 1
2M + 1

4E, G =
(
Ik +

1
4H

)−1
, H = E⊤E. In addition, let D be defined as

the operator for the derivative of a matrix by a matrix. Then, the derivative ∇
ξ
h
M
RM = DX by E is

as follows:
∇

ξ
h
M
RM = DX = DM + DE − D (FGH) . (41)

Finally, each derivative can be calculated as follows:
DM =0, (42)
DE =IDk, (43)

D (FGH) =D (F (GH)) (44)

=
{
(GH)

⊤ ⊗ ID

}
DF + (Ik ⊗ F )D (GH) (45)

=
{
(GH)

⊤ ⊗ ID

}
DF + (Ik ⊗ F )

{(
H⊤ ⊗ Ik

)
DG+ (Ik ⊗G)DH

}
(46)

=
{
(GH)

⊤ ⊗ ID

}
DF

+ (Ik ⊗ F )
(
H⊤ ⊗ Ik

)
DG+ (Ik ⊗ F ) (Ik ⊗G)DH (47)

=
(
G⊤H⊤ ⊗ ID

)
DF +

(
H⊤ ⊗ F

)
DG+ (Ik ⊗ FG)DH, (48)

DF =D

(
1

2
M

)
+ D

(
1

4
E

)
=

1

4
DE, (49)

DG =−
(
G⊤ ⊗G

)
DH, (50)

DH =(Ik2 +Kk,k)
(
Ik ⊗E⊤)DE, (51)

where ⊗ denotes the Kronecker product. KD,k is a Dk × Dk matrix KD,k =∑m
i=1

∑n
j=1

(
Li,j ⊗L⊤

i,j

)
referred to as the commutation matrix, which denotes the transposi-

tion operation of D × k. Further, Li,j is a D × k matrix whose (i, j) component is 1 whereas all
other components are 0.

4



Figure 6: pGr(1,3) ([X]) with M = (1.0, 0.0, 0.0)
⊤
,U = σ2I3,V = I1, σ

2 = 0.5. Each sphere in
the figure indicates Gr(1, 3), with brighter spheres representing higher densities.

For details on the formulae for matrix derivatives used in this proof, please refer to Magnus &
Neudecker (2019).

pGr(k,D) ([X]) = pGr(k,D) ([X]; [M ],U ,V ) is a probability distribution following mean [M ]
and matrix variance U ,V . Using Gr(1, 3) as an example, we qualitatively confirmed through
visualization that pGr(1,3) ([X]) is a density on Gr(1, 3). Gr(1, 3) is a 1-dimensional subspace
in a 3-dimensional space; that is, a space whose elements are lines passing through the origin in
3-dimensional space. For the visualization, we expressed Gr(1, 3) by mapping a 1-dimensional
subspace to two points on a sphere (one point on the sphere and its antipodal point) of radius 1
centered at the origin.

Figure 6 shows the density of pGr(1,3) ([X]) with M = (1.0, 0.0, 0.0)
⊤
,U = σ2I3,V = I1, σ

2 =
0.5. Each sphere in the figure indicates Gr(1, 3), with brighter spheres representing higher densities.
The leftmost figure shows M as viewed from the front diagonally above, and the other figures present
the views when the viewpoint is rotated clockwise around the z-axis by 30◦ to 150◦ with movement
to the right. In the leftmost figure, the density is highly spread around M . In the other figures
(particularly the rightmost one), the antipodal point (−M = (−1.0, 0.0, 0.0)

⊤) is densely spread
out. This implies that when only one M is specified as the representative of the equivalence class
[M ], the density around the other elements in the equivalence class [M ] is as high as that around the
representative. Thus, we can confirm that pGr(k,D) ([X]) has a density of Gr(1, 3).
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C Experimental Details for Learning GrCNF

C.1 Details on ODE Solver with Orthogonal Integration

We explain in detail an ordinary differential equation (ODE) solver on Gr(k,D). Several studies
on ODE solvers employed on a manifold M have been reported (Munthe-Kaas (1999); Iserles et al.
(2000); Hairer (2006)). Hairer (2006) proposed a simple projection method that projected onto
the manifold at each step and the symmetric projection method suitable for long-time integration.
However, this method requires M to be a submanifold in Euclidean space, and thus cannot be applied
on Gr(k,D). In contrast, Celledoni & Owren (2002) proposed an intrinsic ODE solver that was
applicable to a Stiefel manifold and did not assume an outer Euclidean space. This solver works
on a Stiefel manifold, thus it must be reformulated into a solver suitable for Gr(k,D), which is our
problem setting. We introduce below a solver on Gr(k,D) via ODE operating on the horizontal space
T h
Y St(k,D), based on results from Celledoni & Owren (2002) and Section 4. This is an intrinsic

approach regardless of whether M has been embedded in a larger space with a corresponding
extension of the vector field.

First, consider an ODE expressed using a vector field Xθ on a curve γ (t) : [0,∞) → St(k,D) such
that for each time t.

dγ (t)

dt
= Xθ (t, γ (t)) , γ (0) = Y , (52)

where Xθ is constructed by a neural network with parameter θ, as described in Section 5.3. Horizontal
retraction RY which is defined as (122) and is described in Appendix D.6, defines local coordinates
of Gr(k,D) in a neighborhood of the point [Y ]. Thus, the solution of ODE can be expressed as:

γ (t) = RY (ϵ (t)) , (53)

where ϵ : [0,∞) → T h
Y St(k,D) is the curve on T h

Y St(k,D). By differentiating (53) with t, the
following equation is obtained:

dγ (t)

dt
=

d

dt
RY (ϵ (t)) = Xθ (t, γ (t)) . (54)

Therefore, the ODE defined on T h
Y St(k,D) is obtained as (8):

dVec (ϵ (t))

dt
=
(
∇ϵRY

)−1
Vec

(
Xθ
(
t, RY (ϵ (t))

))
= ∇γR

−1

Y Vec
(
Xθ
(
t, RY (ϵ (t))

))
,

where Vec denotes the map of vertically concatenating matrices and converting them into a single
vector. ∇γR

−1

Y can be calculated using the derivative of (123):

∇γR
−1

Y = 2
(
N−⊤ ⊗ ID

)
∇M + 2 (Ik ⊗M)∇N−1, (55)

where X = γ (t), M = Y − XX⊤Y , N = Ik + X⊤Y , ∇M = IDk −
(
Ik ⊗XX⊤) and

∇N−1 = −
(
N−⊤ ⊗N−1

) (
Ik ⊗X⊤). Because (8) is an ODE on T h

Y St(k,D) ∼= R(D−k)×k

from Absil et al. (2008), it can be solved using an ODE solver such as Runge-Kutta methods that
operate on Euclidean space. This study used Algorithm 5.1 presented in Celledoni & Owren (2002).
In each step, first, (8) was solved using the Runge-Kutta method of order 5 as in Dormand & Prince
(1980). Subsequently, the solution of ODE (52) was obtained by applying the solution ϵ to (53).

C.2 Loss Function based on Variational Inference

In the setting in Section 6.3, we used orthonormalized data Y as in PP⊤ ≃ Y ΛY ⊤, where Λ is
diagonal (Huang et al. (2015)), such that the k-dimensional point cloud data P of N points N × k
matrix is a matrix with k orthonormal basis vectors. Thus, generating a complete point cloud requires
the estimation of the scale parameters

√
Λ to be P = Y

√
Λ and a loss function that incorporates this.

In this study, we approximated by maximizing the evidence lower bound (ELBO), which is the lower
bound of the overall log-likelihood log pψ(P ) of pψ(P ), using a variational inference framework.
The loss function is the variational energy −ELBO(P ) with negative ELBO.

NLL = − log pψ(P ) ≤ −ELBO(P ) = Loss . (56)
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(a) (b)

Figure 7: The proposed ODE solver on the Grassmann manifold and the ODE solver on the Stiefel
manifold (Celledoni & Owren (2002)). (a) The proposed ODE solver working on a Grassmann
manifold. The ξ

h

Y obtained by the proposed neural architecture NN is the horizontal lift (98), that is,
dπ (Y )

[
ξ
h

Y

]
= ξ[Y ], of the tangent vector ξ[Y ] at the point [Y ] on the Grassmann manifold. The

proposed ODE solver maps and updates the tangent vector ξ[Y ] at the point [Y ] onto the Grassmann
manifold at each step using horizontal retraction (121). On the other hand, (b) the solver of Celledoni
& Owren (2002), working on Stiefel manifolds, updates in each step by mapping the tangent vector
ξY at the point Y onto the Stiefel manifold. In other words, the difference between the proposed
ODE solver and the ODE solver on Stiefel manifolds is that the ODE solver on Stiefel manifolds
works only on Stiefel manifolds, while the proposed ODE solver always updates in each step with
the Stiefel manifold and Grassmann manifolds linked together.

ELBO(P ) can be decomposed as follows.

ELBO(P ) = log pψ(P )−DKL (qϕ(Y |P )||pψ(Y |P )) (57)
= Eqϕ(Y |P ) [log pψ(P |Y )]−DKL (qϕ(Y |P )||pθ(Y )) , (58)

where qϕ(Y |P ) is the inference model with parameter ϕ, pψ(P |Y ) is the decoder model with
parameter ψ, pψ(Y |P ) is the posterior distribution with parameter ψ, and pθ(Y ) is the prior
distribution with parameter θ. Further, DKL (qϕ(Y |P )||pθ(Y )) can be formulated using differential
entropy as follows.

DKL (qϕ(Y |P )||pθ(Y )) = −Eqϕ(Y |P ) [pθ(Y )]−H [qϕ(Y |P )] . (59)

Thus, the final loss function is as follows.

Loss = −ELBO(P ) (60)
= −Eqϕ(Y |P ) [log pψ(P |Y )]− Eqϕ(Y |P ) [pθ(Y )]−H [qϕ(Y |P )] . (61)

Each term of the loss function can be calculated as follows.

Expectation of log-likelihood Eqϕ(Y |P ) [log pψ(P |Y )] is the reconstruction log-likelihood of P .
The expectation is estimated by Monte Carlo sampling.

Differential entropy In the decomposition of a point cloud P , there exists arbitrariness in the
choice of Y and Λ, as in PP⊤ ≃ Y ΛY ⊤. In this study, we assumed that the diagonal components
of Λ are in descending order, and we restricted the decomposition arbitrariness to be an action
Q ∈ O(k). If we suppose that the action Q follows a uniform distribution when Y = XQ holds,
then Y also follows a uniform distribution in the k-dimensional subspace span(Y ). Although
this is a uniform distribution on St(k, k), we can consider a uniform distribution on O(k) because
St(k, k) = O(k). The probability density function of Q is represented by UO(k) (Q) in (111).
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Therefore, the differential entropy of the decoder model can be calculated as follows.

H [qϕ(Y |P )] = E [− log qϕ(Y |P )] (62)

= −
∫
O(k)

UO(k) (Q) logUO(k) (Q)[dQ] (63)

= −
∫
O(k)

1

VO(k)
log

1

VO(k)
[dQ] (64)

=
log VO(k)

VO(k)

∫
O(k)

[dQ] (65)

=
log VO(k)

VO(k)
. (66)

Expectation of prior distribution We used (9) for the prior distribution pθ(Y ). Further, re-
parameterization was used to enable differentiable Monte Carlo estimation of expectations.

Eqϕ(Y |P ) [pθ(Y )] =
1

L

L∑
l=1

pθ(XQl) s.t. X ∼ Y , Ql ∈ O(k) , (67)

where it was assumed that Q is sampled from a uniform distribution, which follows Haar measure on
O(k). L is set L = 1.

C.3 Implementation Details and Experimental setting

The following sections present more details about the network architectures, training hyperparameters,
and experimental conditions for each of the experiments in Section 6.

C.3.1 Artificial Textures

Network Architecture The vector field was constructed with the specific input, intermediate, and
output layers described in Section 5.3. The GrCNF architecture is shown on top in Table 3. Layers
are denoted as Layer in the table, and were processed from top to bottom. Norm. and Act. denote the
normalization and activation functions to be applied immediately after the Layer, and the Norm. and
Act. were applied in that order. Further, Out Size denotes the output size after Act. Vec denotes the
map of vertically concatenating matrices and converting them into a single vector. Moreover, only
row Input denotes the size of the input data, not the input layer (HorP). (9) was used for the loss
function.

Hyper-parameters The mean M and covariances U and V in the prior distribution on the
Grassmann manifold were set to M = (1.0, 0.0, 0.0)

⊤, U = σ2I3, and V = I1, σ = 0.3,
respectively. Other hyperparameters used during the training of GrCNF are shown in Table 4.

Implementation We used PyTorch (Paszke et al. (2019)) to implement the model and run the
experiments. The CNF is based on the implementation5 in Chen et al. (2018) and the framework of
the RCNF (Mathieu & Nickel (2020)). Thus, the ODE was solved using the explicit and adaptive
Runge–Kutta method (Dormand & Prince (1980)) of order 5, and worked by projecting each step onto
a manifold (Hairer (2006)). The autograd in (7) was calculated with torch.autograd.grad (Paszke
et al. (2017)) in PyTorch. The experimental hardware was built with an Intel Core i7-9700 CPU and
a single NVIDIA GTX 1060 GPU with 6 GB of RAM.

The code used in the experiment to generate the data distributions on Gr(1, 3) is shown in Listing 1.
This implementation of the data distributions is based on the codes in Kim et al. (2020) and Grathwohl
et al. (2019)6.

5We used the authors’ implementation: https://github.com/rtqichen/torchdiffeq.git.
6We used the authors’ implementations: https://github.com/ANLGBOY/SoftFlow.git and https:

//github.com/rtqichen/ffjord.git.
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Listing 1: Code for the data distributions.
import numpy as np

def get_data_batch(batch_size , dist):
rng = np.random.RandomState ()

if dist == "2spirals":
n = np.sqrt(np.random.rand(batch_size // 2, 1)) * 540 * (2 * np.pi) / 360
d1x = -np.cos(n) * n + np.random.rand(batch_size // 2, 1) * 0.1
d1y = np.sin(n) * n + np.random.rand(batch_size // 2, 1) * 0.1
x = np.vstack ((np.hstack ((d1x , d1y)), np.hstack((-d1x , -d1y)))) / 3
sample_2d = x + np.random.randn(*x.shape) * 0.1

elif dist == "swissroll":
data = sklearn.datasets.make_swiss_roll(n_samples=batch_size , noise =.3) [0]
data = data.astype("float32")[:, [0, 2]]
sample_2d = data / 5

elif dist == "2circles":
data = sklearn.datasets.make_circles(n_samples=batch_size , \

factor =.5, noise =0.05) [0]
data = data.astype("float32")
sample_2d = data * 3

elif dist == "2sines":
x = (rng.rand(batch_size) - 0.5) * 2 * np.pi
u = (rng.binomial(1, 0.5, batch_size) - 0.5) * 2
y = u * np.sin(x) * 2.5
x += np.random.randn(*x.shape) * 0.1
y += np.random.randn(*y.shape) * 0.1
sample_2d = np.stack((x, y), 1)

elif dist == "target":
shapes = np.random.randint(7, size=batch_size)
mask = []
for i in range (7):

mask.append (( shapes == i) * 1.)

theta = np.linspace(0, 2 * np.pi, batch_size , endpoint=False)
x = (mask [0] + mask [1] + mask [2]) * (rng.rand(batch_size) - 0.5) * 4 + \

(-mask [3] + mask [4] * 0.0 + mask [5]) * 2 * np.ones(batch_size) + \
mask [6] * np.cos(theta)

y = (mask [3] + mask [4] + mask [5]) * (rng.rand(batch_size) - 0.5) * 4 + \
(-mask [0] + mask [1] * 0.0 + mask [2]) * 2 * np.ones(batch_size) + \
mask [6] * np.sin(theta)

x += np.random.randn(*x.shape) * 0.1
y += np.random.randn(*y.shape) * 0.1
sample_2d = np.stack((x, y), 1)

norm = sample_2d / np.max(np.linalg.norm(sample_2d , axis =1))
sample_3d = np.concatenate ((np.ones((batch_size , 1)), norm), axis =1)
return sample_3d / np.linalg.norm(sample_3d , axis =1)[:, np.newaxis]

C.3.2 DW4 and LJ13

Network Architecture As in Appendix C.3.1, the vector field was constructed with the specific
input, intermediate, and output layers described in Section 5.3. The GrCNF architecture is shown on
the bottom left and right in Table 3. The bottom left and right were used for experiments on the DW4
and LJ13 datasets, respectively. The views presented in the table is the same as in Appendix C.3.1.
(9) was used for the loss function. In addition, for architectures in methods other than GrCNF, please
refer to Garcia Satorras et al. (2021).

Hyperparameters The mean M and covariances U and V in the prior distribution on the Grass-
mann manifold were set to M = I4×2, U = σ2I4, and V = σ2I2, σ = 0.3 for DW4 and
M = I13×3, U = σ2I13, and V = σ2I3, σ = 0.3 for LJ13, respectively. Other hyperparameters
used during the training of GrCNF are shown in Table 4. In addition, for the hyperparameters in
methods other than GrCNF, please refer to Garcia Satorras et al. (2021).

Implementation The experimental hardware was built using a single NVIDIA Quadro RTX 8000
GPU with 48 GB of GDDR6 RAM. The other environments were the same as in Appendix C.3.1.
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Table 3: Network architectures for each experiment; (left) for the Simple Texture dataset, (middle)
for the DW4 dataset, (right) for the LJ13 dataset.

GrCNF for Textures

Layer Out Size Norm./Act.

Input 3×1 -
HorP 3×1 -/Tanh
Vec 3 -/-
CS 64 -/Tanh
CS 64 -/Tanh
CS 1 -/Tanh
Grad 3×1 -

GrCNF for DW4

Layer Out Size Norm./Act.

Input 4×2 -
HorP 4×2 -/Tanh
Vec 8 -/-
CS 64 -/Tanh
CS 64 -/Tanh
CS 64 -/Tanh
CS 1 -/Tanh
Grad 4×2 -

GrCNF for LJ13

Layer Out Size Norm./Act.

Input 13×3 -
HorP 13×3 -/Tanh
Vec 39 -/-
CS 32 -/Tanh
CS 32 -/Tanh
CS 32 -/Tanh
CS 1 -/Tanh
Grad 13×3 -

Full results In Tables 5 and 6, the same DW4 and LJ13 averaged results from Section 6.2 were
reported; however, they included the standard deviations over the three runs.

C.3.3 QM9 Positional

Network Architecture On the QM9 Positional, we addressed the task of generating the molecular
P by estimating the scale parameter

√
Λ = diag

({√
λi
}3
i=1

)
, in addition to the generation of

the orthonormal basis matrix Y with GrCNF. Because the molecular generation task requires a
specialized loss function based on variational inference, we used (56), as explained in Appendix C.2.
We designed two networks to achieve this. The first is the same GrCNF architecture as in previous
experiments, and the second is a scale estimator. Table 7 shows the architectures. The left side of the
table shows the GrCNF architecture and the right side shows the scale estimator. The scale estimator
estimated one scale parameter from each of the three orthonormal basis vectors Y =

{
yi ∈ R19

}3
i=1

,

for a total of three parameters
{√

λi ∈ R
}3
i=1

. With the orthonormal orthogonal basis matrix Y and
the estimated scale parameter

√
Λ, we generated a point cloud P = Y

√
Λ. In this study, the overall

architecture that generates P is also named GrCNF.

Hyperparameters The mean M and covariances U and V in the prior distribution on the Grass-
mann manifold were set to M = I19×3, U = σ2I19, and V = σ2I3, σ = 0.3, respectively. In
addition, for the hyperparameters in methods other than GrCNF, please refer to Garcia Satorras et al.
(2021).

Implementation The experimental hardware was built using a single NVIDIA A100 GPU with
80GB PCIe of GDDR6 RAM.
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Table 4: List of hyperparameters used in various experiments. A “-” indicates that the hyperparameter
is unused.

Textures DW4 LJ13 QM9

# of Data
Train ∞ 102/103/104/105 10/102/103/104 13, 831
Validation 500 1000 1000 2,501
Test 500 1000 1000 1,813

Optimizer

Name Adam Adam Adam Adam
beta1 0.9 0.9 0.9 0.9
beta2 0.999 0.999 0.999 0.999
Weight Decay - 1.0e-12 1.0e-12 1.0e-12
Learning Rate 1.0e-3 1.0e-4 1.0e-4 5.0e-4

Schedule
Epoch 72000 1000/300/50/6 500/1000/300/50 160
LR Step with 0.1 20000 - - -
Batch Size 500 100 10/100/100/100 128

NeuralODE

Integration Time Training Training Training 0.1
atol 1.0e-5 1.0e-5 1.0e-5 1.0e-5
rtol 1.0e-5 1.0e-5 1.0e-5 1.0e-5
Adjoint ✗ ✓ ✓ ✓

Table 5: Negative log-likelihood comparison on the test partition of DW4 dataset for different amounts
of training samples; averaged over 3 runs and including standard deviations.

DW4
# of Samples 102 103 104 105

GNF -2.30 ± 1.59 -7.04 ± 0.64 -7.19 ± 0.99 -7.93 ± 1.10
GNF-att -2.02 ± 1.34 -4.13 ± 1.20 -5.25 ± 0.89 -6.74 ± 0.89
GNF-att-aug -3.11 ± 2.15 -4.04 ± 3.40 -6.51 ± 0.49 -9.42 ± 1.15
Simple dynamics -1.22 ± 0.05 -1.28 ± 0.01 -1.36 ± 0.02 -1.39 ± 0.04
E-NF -0.54 ± 0.45 -9.89 ± 2.30 -12.15 ± 1.16 -15.29 ± 0.53
GrCNF -12.53 ± 0.92 -13.74 ± 0.30 -14.09 ± 0.44 -16.07 ± 0.46

Table 6: Negative log-likelihood comparison on the test partition of LJ13 dataset for different amounts
of training samples; averaged over 3 runs and including standard deviations.

LJ13
# Samples 10 102 103 104

GNF 6.77 ± 0.39 -0.76 ± 1.12 -4.26 ± 2.76 -12.43 ± 1.21
GNF-att 6.91 ± 0.17 1.40 ± 0.79 -6.81 ± 2.09 -12.05 ± 2.28
GNF-att-aug 2.95 ± 0.55 -6.11 ± 1.12 -13.94 ± 0.95 -15.74 ± 0.58
Simple dynamics -1.10 ± 2.55 -3.87 ± 0.25 -3.72 ± 0.08 -3.59 ± 0.52
E-NF -12.86 ± 3.67 -15.75 ± 5.02 -31.51 ± 1.19 -32.83 ± 1.98
GrCNF -23.64 ± 2.23 -44.24 ± 4.26 -58.02 ± 5.43 -58.71 ± 4.71
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Table 7: Network architectures for QM9 Positional. (Left) GrCNF architecture, (Right) scale es-
timation architecture. The scale estimator estimates one scale parameter from each of the three
orthonormal basis vectors Y =

{
yi ∈ R19

}3
i=1

, for
√
Λ = diag

({√
λi
}3
i=1

)
with three param-

eters
{√

λi ∈ R
}3
i=1

. Using the orthonormal orthogonal basis matrix Y and the estimated scale
parameter

√
Λ, we generate a point cloud P = Y

√
Λ. SiLU is an activation function proposed in

(Ramachandran et al. (2017)) and BatchNorm. is a batch normalization layer in (Ioffe & Szegedy
(2015)).

GrCNF for QM9 Positional

Layer Out Size Norm./Act.

Input 19×3 -
HorP 19×3 -/Tanh
Vec 57 -/-
CS 32 -/Tanh
CS 32 -/Tanh
CS 32 -/Tanh
CS 1 -/Tanh
Grad 19×3 -

Scale Estimator for QM9 Positional

Layer Out Size Norm./Act.

Input 19×3 -
FC 128 BatchNorm./SiLU
FC 256 BatchNorm./SiLU
FC 256 BatchNorm./SiLU
FC 128 BatchNorm./SiLU
FC 3 -/ReLU
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D Fundamentals of Concepts Associated with Grassmann Manifold

D.1 Definition of Stiefel Manifold

Definition 2. An (orthogonal or compact) Stiefel manifold St(k,D) is defined as the set of orthonor-
mal bases of k-dimensional subspaces in the Euclidean space RD as in (68).

St(k,D) :=
{
Y ∈ RD×k ∣∣ Y ⊤Y = Ik

}
. (68)

For Y ∈ St(k,D), the space span(Y ) spanned by its column vectors is the element of Gr(k,D).

f : St(k,D) → Gr(k,D) : Y 7→ span(Y ) . (69)

St(k,D) is a Dk − k(k+1)
2 -dimensional compact manifold (Absil et al. (2008)).

D.2 Equivalence Relation

To define the equivalence relation ∼ 7 on a Stiefel manifold St(k,D), we introduce the following
two lemmas.
Lemma 1. The necessary and sufficient conditions for span(Y1) = span(Y2) to hold for Y1,Y2 ∈
St(k,D) are as follows.

∃Q ∈ O(k) s.t. Y2 = Y1Q. (70)

Proof. span(Y1) = span(Y2) ⇐ Y2 = Y1Q. From the definition, Y ⊤
1 Y1 = Y ⊤

2 Y2 = Ik, the
following is obtained:

Ik = Y ⊤
1 Y1 = Q⊤Y ⊤

2 Y2Q = Q⊤Q. (71)
Thus, there exists a k-dimensional orthogonal matrix Q ∈ O(k). As the subspace span(Y ) is
invariant to coordinate transformations by orthogonal matrices, span(Y1) = span(Y2) is true.

span(Y1) = span(Y2) ⇒ Y2 = Y1Q. From the assumption, we immediately concluded that
Y2 = Y1Q for Q ∈ O(k).

Lemma 2. We define the equivalence relation ∼ on St(k,D) to be Y1 ∼ Y2 whenever (70) is
satisfied with respect to Y1,Y2 ∈ St(k,D). The fact that a binary relation is an equivalence relation
∼ implies that the following three statements hold for ∀Y1,Y2,Y3 ∈ St(k,D).

Reflexivity Y1 ∼ Y1.

Symmetry Y1 ∼ Y2 ⇒ Y2 ∼ Y1.

Transitivity Y1 ∼ Y2 ∧ Y2 ∼ Y3 ⇒ Y1 ∼ Y3.

Proof. With Lemma 1, we can confirm that it is valid as follows:

Reflexivity From Y1 = Y1I, I ∈ O, we obtain Y1 ∼ Y1.

Symmetry As Y2 = Y1Q is obtained from Y1 ∼ Y2, and Y2Q
⊤ = Y1, Q⊤ ∈ O is true, then

Y2 ∼ Y1 is obtained.

Transitivity Y3 = Y1Q1Q2 with Y2 = Y1Q1 and Y3 = Y2Q2. Q1Q2 is (Q1Q2)
⊤
(Q1Q2) =

Q⊤
2 Q

⊤
1 Q1Q2 = Q⊤

2 Q2 = I . Moreover, as (Q1Q2) (Q1Q2)
⊤

= Q1Q2Q
⊤
2 Q

⊤
1 = I holds,

Q1Q2 ∈ O is true. Therefore, we concluded Y1 ∼ Y3.

The equivalence class of Y ∈ St(k,D) is denoted by [Y ]. In other words, [Y ] is the set of all elements
of St(k,D) that are equivalent to Y , and the equivalence relation on St(k,D) divides St(k,D) into
equivalence classes with no intersection. Thus, Y is then referred to as the representative of the
equivalence class [Y ]. The set of equivalence classes is denoted St(k,D)/∼ and is referred to as the

7Reflexive, symmetric and transitive binary relations. As a consequence of these properties, in a given set,
one equivalence relation divides (classifies) the set into equivalence classes. Note that R is a binary relation in
the set X if for any x, y ∈ X , only either x is related to y by the relation R, or x is not related to y based on the
relation that R occurs. We write x is related to y by relation R" as xRy.
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quotient of St(k,D) by the equivalence relation ∼. In addition, π :→ St(k,D) → St(k,D)/∼ is
the natural projection that maps Y ∈ St(k,D) onto its equivalence class [Y ]. This projection π is
surjection.

D.3 Quotient Manifold

Definition 3. Let M be a manifold with equivalence relation ∼. The quotient space M/∼ with ∼ of
M is the set of all equivalence classes. Thus, M/∼:= {π (x) | x ∈ M}, where π : M → M/∼ is
the natural projection and π (x) :=

{
y ∈ M | y ∼ x

}
. Then, M is referred to as the total space or

the total manifold. Moreover, M/∼ is referred to as a quotient manifold of M if M/∼ admits a
differentiable structure.

Let M = M/∼ be a quotient manifold. Further, suppose that M is endowed with a Riemann metric
g, and let x = π (x). The horizontal space T h

xM is the orthogonal complement of the vertical space
T v
xM := Txπ

−1 (x) in the tangent space TxM and is defined as the follows:

T h
xM :=

(
T v
xM

)⊥
=
{
ηx ∈ TxM

∣∣ gx (ξx,ηx

)
= 0,∀ ξx ∈ T v

xM
}
. (72)

The horizontal lift ξ
h

x ∈ T h
xM of the tangent vector ξx ∈ TxM at point x ∈ π−1 (x) is a tangent

vector that is uniquely determined as dπx
(
ξ
h

x

)
= ξx (Absil et al. (2008)).

D.4 Grassmann Manifold Exploiting the Quotient Structure

D.4.1 Tangent Space on a Stiefel Manifold

We describe the relationship between tangent space T[Y ]Gr(k,D) on Gr(k,D) and tangent space
TY St(k,D) on St(k,D) to relate the tangent vectors of a Grassmann manifold Gr(k,D) to the
tangent vectors of a Stiefel manifold St(k,D) in a matrix representation. We take the derivative on
both sides of Y (t)

⊤
Y (t) = Ip in (68) by t and solve for t = 0.

d

dt

{
Y (t)

⊤
Y (t)

}
=

d

dt
Ip (73)

d

dt
Y (t)

⊤
Y (t) + Y (t)

⊤ d

dt
Y (t) = 0 (74)

d

dt
Y (0)

⊤
Y (0) + Y (0)

⊤ d

dt
Y (0) = 0 (75)

ξ
⊤
Y Y + Y ⊤ξY = 0, (76)

where ξY = d
dtY (0) is the tangent vector at Y 8.

Definition 4. Define the tangent space TY St(k,D) at Y on the Stiefel manifold as follows:

TY St(k,D) =
{
ξY ∈ RD×k

∣∣∣ ξ⊤Y Y + Y ⊤ξY = 0k

}
. (77)

Let matrix Y⊥ ∈ RD×(D−k) be a matrix satisfying the following:

Y ⊤
⊥ Y⊥ = ID−k, Y ⊤Y⊥ = 0, Y Y ⊤ + Y⊥Y

⊤
⊥ = ID. (78)

As [ Y Y⊥ ] is an orthogonal matrix 9 , the column vectors of Y and Y⊥ form an orthonormal
basis in RD. Thus, any D × k matrix can be written in terms of the C ∈ Rk×k and B ∈ R(D−k)×k

coefficient matrices as follows:
Y C + Y⊥B, (79)

8The tangent space is defined independently for each point of the manifold; hence, the subscript Y , as in ξY ,
is clearly stated to emphasize that it is a tangent vector at Y .

9[ Y Y⊥
]−1 [

Y Y⊥
]
=

[
Y Y⊥

]⊤ [
Y Y⊥

]
=

[
Y Y⊥

] [
Y Y⊥

]⊤
= ID .
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where ξY = Y C + Y⊥B is inserted. The following equation is obtained.

ξ
⊤
Y Y + Y ⊤ξY = (Y C + Y⊥B)

⊤
Y + Y ⊤ (Y C + Y⊥B) (80)

= B⊤Y ⊤
⊥ Y +C⊤Y ⊤Y + Y ⊤Y C + Y ⊤Y⊥B (81)

= B⊤Y ⊤Y⊥ +C⊤ +C (82)

= C⊤ +C (83)
= 0k. (84)

Thus, the following equation is derived.

C⊤ +C = 0k. (85)

Thus, C is a k × k skew-symmetric matrix Skew (k). Therefore, we obtain the following as another
representation of the tangent space on St(k,D).

TY St(k,D) =
{
Y C + Y⊥B

∣∣∣ C ∈ Skew (k) ,B ∈ R(D−k)×k
}
. (86)

D.4.2 Riemannian Metric on a Stiefel Manifold

In the tangent space TxM defined at each point x ∈ M on the manifold M, the inner product h
is endowed as a bilinear map. This h is referred to as a Riemannian metric on a manifold, and the
manifold M on which the Riemannian metric h is endowed is referred to as a Riemannian manifold
(M, h). We define the Riemannian metric g on St(k,D) as follows.

gY
(
ξY ,ηY

)
:= tr

(
ξ
⊤
Y ηY

)
s.t. ξY ,ηY ∈ TY St(k,D), Y ∈ St(k,D) . (87)

This is the standard inner product of RD×k induced by TY St(k,D), with TY St(k,D) ⊂ RD×k 1011.

D.4.3 Tangent Space on a Grassmann Manifold

We describe the relation between tangent spaces T[Y ]Gr(k,D) and TY St(k,D) to relate tangent
vectors in tangent spaces T[Y ]Gr(k,D) on Gr(k,D) to tangent vectors ξY ∈ TY St(k,D).

First, we define the vertical space T v
Y St(k,D) as a subspace of TY St(k,D) as follows.

T v
Y St(k,D) := TY π

−1 ([Y ]), (88)

where π : St(k,D) → Gr(k,D) is the natural projection defined by π (Y ) = [Y ] 12. Thus, π
converges all Y ′ ∈ St(k,D) such that Y ∼ Y ′ to a point [Y ] on Gr(k,D). Therefore, using (1),
(88) can be transformed as follows.

T v
Y St(k,D) = TY {Y Q | Q ∈ O(k)} . (89)

However, ξ
v

Y ∈ T v
Y St(k,D) can be written as ξ

v

Y = Y S with S ∈ TIkO(k).

TIkO(k) = TIkSt(k, k) (90)

=
{
IkC + (Ik⊥B = 0k)

∣∣∣ C ∈ Skew (k) ,B ∈ R(k−k=0)×k
}

(91)

= Skew (k) . (92)

10The inner product A ·C = A⊤C of a vector is typically referred to as the standard inner product. Further,
matrices are similarly defined with a standard inner product, defined as A ·C = tr

(
A⊤C

)
. A space RD×k

such that the D × k matrix A is an element is referred to as a matrix space. The standard basis of the matrix
space can be constructed by a matrix wherein only one element in the matrix is 1 and the remaining are 0. The
matrix space is a linear space because it satisfies the linearity that is similar to that in case of a linear vector
space.

11When N is a submanifold of a Riemannian manifold (M, g), we define the Riemannian metric g of N to
be:

gx (ξ,η) := gx (ξ,η) , x ∈ N ⊂ M, ξ,η ∈ TxN ⊂ TxM.

g is an induced metric and (N , g) is a Riemannian submanifold of (M, g). As St(k,D) is a submanifold of
RD×k, we can define the standard inner product A ·C = tr

(
A⊤C

)
of RD×k as the induced metric g. Thus,

St(k,D) is a Riemannian submanifold of RD×k.
12Suppose a set is given a suitable equivalence relation. A natural projection is a map that sends each element

of a set to the equivalence class to which it belongs.
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Thus, we obtain the following formula.

T v
Y St(k,D) = {Y C | C ∈ Skew (k)} . (93)

Next, we define the horizontal space T h
Y St(k,D) as the orthogonal complement of T v

Y St(k,D) in
TY St(k,D) endowed with the inner product (87).

T h
Y St(k,D) : = (T v

Y St(k,D))
⊥ (94)

=
{
ξ
h

Y ∈ TY St(k,D)
∣∣∣ tr(ξh⊤Y ηv

Y

)
= 0,ηv

Y ∈ T v
Y St(k,D)

}
. (95)

Based on the fact that T v
Y St(k,D) is a subspace of TY St(k,D) and T h

Y St(k,D) is defined as its
orthogonal complement, the direct sum decomposition is as follows.

TY St(k,D) = T v
Y St(k,D)⊕ T h

Y St(k,D) , (96)

where ⊕ denotes direct sum. Moreover, the tangent space is a linear space (Absil et al. (2008)). From
(86), element Y C of T v

Y St(k,D) corresponds to the first term of (93); thus, (96) is formulated as
follows:

T h
Y St(k,D) =

{
ξ
h

Y = Y⊥B
∣∣∣ B ∈ R(D−k)×k

}
. (97)

Note that the horizontal vector ξ
h

Y is not necessarily an orthogonal matrix.

Finally, define the element ξ
h

Y ∈ T h
Y St(k,D) of the horizontal space at Y ∈ St(k,D) for the

tangent vector ξ[Y ] ∈ T[Y ] Gr(k,D) at [Y ] ∈ Gr(k,D) as satisfying the following formula.

dπ (Y )
[
ξ
h

Y

]
= ξ[Y ], (98)

where dπ (Y ) : TY St(k,D) → T[Y ] Gr(k,D) is the derivative dπ(Y )
dY of π : St(k,D) → Gr(k,D)

at Y ∈ St(k,D). The ξ
h

Y ∈ T h
Y St(k,D) is referred to as the horizontal lift at Y ∈ St(k,D) of

[Y ] ∈ Gr(k,D).

We describe the tangent space of Gr(k,D) with the concept of horizontal lift.

Definition 5. Let T h
Y St(k,D) be a horizontal space on St(k,D). Then, we define the tangent space

T[Y ] Gr(k,D) of the Gr(k,D) as follows.

T[Y ] Gr(k,D) =
{
ξ[Y ]

∣∣∣ dπ (Y )
[
ξ
h

Y

]
= ξ[Y ], ξ

h

Y ∈ T h
Y St(k,D)

}
. (99)

From the above, ξ[Y ] ∈ T[Y ] Gr(k,D) is obtained from the map dπ (Y )
[
ξ
h

Y

]
when ξ

h

Y is obtained.
The ξ[Y ] is defined by an equivalence class and cannot be treated numerically in matrix form; however,

it is sufficient to obtain the ξ
h

Y for actual numerical calculations. For ξ[Y ] ∈ T[Y ] Gr(k,D), there

exists a ξ
h

Y ∈ T h
Y St(k,D) that uniquely satisfies (98). In other words, we can handle it in matrix

form by using elements of the horizontal space of Stiefel manifolds through the concept of horizontal
lifting. Figure 1 is a conceptual diagram of the tangent space representation of a Grassmann manifold
by horizontal lift.

D.4.4 Riemannian Metric on a Grassmann Manifold

We define the Riemannian metric g of Gr(k,D) through the concept of horizontal lift.

Definition 6. Let ξ
h

Y and ηh
Y be the horizontal lifts that become dπ (Y )

[
ξ
h

Y

]
= ξ[Y ] and

dπ (Y )
[
ηh
Y

]
= η[Y ], respectively. Then, we define the Riemannian metric on Gr(k,D) as fol-

lows:

g[Y ]

(
ξ[Y ],η[Y ]

)
:= gY

(
ξ
h

Y ,η
h
Y

)
= tr

(
B⊤D

)
, (100)

where B and D are matrices that are ξ
h

Y = Y⊥B and ηh
Y = Y⊥D, respectively.
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D.5 Invariant Measures

Let the column vectors of matrix Y = {y1, · · · ,yk} ∈ RD×k be the orthonormal basis that span
the subspace span(Y ) ∈ Gr(k,D) in RD, and the column vectors of Y⊥ = {yk+1, · · · ,yD} ∈
RD×D−k be the orthogonal complementary space span(Y⊥) of span(Y ), respectively. Then, the
following differential form can be defined.

(dY ) =

D−k∧
j=1

k∧
i=1

y⊤
k+jdyi (101)

=
(
y⊤
k+1dy1 ∧ · · · ∧ y⊤

k+1dyk
)
∧ · · · ∧

(
y⊤
Ddy1 ∧ · · · ∧ y⊤

Ddyk
)
, (102)

where ∧ is the wedge product and the relation satisfies ωi∧ωi = ωj∧ωj = 0 and ωi∧ωj = −ωj∧ωi.
The above equation is in k (D − k)-order differential form, which is an invariant measure on Gr(k,D)
(Chikuse (2003)).

If we define the matrix X⊥ to be [ X X⊥ ] for any point X = {x1, · · · ,xk} ∈ St(k,D), the
differential form for an invariant measure on St(k,D) is defined as follows.

(dX) =

D−k∧
j=1

k∧
i=1

x⊤
k+jdxi

∧
i<j

k
1x

⊤
j dxi = (dY ) (dQ) , (103)

where (dQ) is the invariant measure of O(k). The integral of (103), that is, the volume of St(k,D),
can be evaluated as follows:

VSt(k,D) =

∫
St(k,D)

(dX). (104)

(104) can be computed as follows. First, the surface SD of the D-dimensional unit sphere can be
defined as follows:

SD =
d

dr

∣∣∣∣
r=1

VD = DVD =
Dπ

D
2

Γ
(
D
2 + 1

) =
2π

D
2

Γ
(
D
2

) , (105)

where VD is the volume of a D-dimensional sphere π
D
2

Γ(D
2 +1)

rD and Γ
(
D
2

)
is the gamma function.

Then, the following equation is obtained.∫
St(k,D)

(dX) = SD

∫
St(k−1,D−1)

(dX1), (106)

where (dX1) is the differential form of St(k − 1, D − 1). Thus, (104) can be transformed as follows.

VSt(k,D) =

∫
St(k,D)

(dX) =

k∏
i=1

SD =
2kπ

Dk
2

Γk
(
D
2

) , (107)

where Γk
(
D
2

)
is the multidimensional gamma function. The invariant measure (dX) is an un-

normalized measure. A measure normalized to be a probability measure can be formulated as
follows:

[dX] =
1

VSt(k,D)
(dX) . (108)

This is a uniform distribution on St(k,D). As St(k, k) = O(k), the volume VO(k) of O(k) can be
represented using (dQ) as follows.

VO(k) = VSt(k,k) =
2kπ

k2

2

Γk
(
k
2

) . (109)

Furthermore, a measure normalized to be a probability measure can be represented by the following:

[dQ] =
1

VO(k)
(dQ) . (110)
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From the above, the probability density function UO(k) (Q) of the uniform distribution on O(k) is as
follows:

UO(k) (Q) =
1

VO(k)
s.t. Q ∈ O(k) , (111)∫

O(k)

UO(k) (Q) (dQ) =

∫
O(k)

1

VO(k)
(dQ) =

∫
O(k)

[dQ] = 1. (112)

As Gr(k,D) is defined as a quotient manifold St(k,D) /O(k) as in (2), the volume VGr(k,D) of
Gr(k,D) can be defined as follows.

VGr(k,D) =

∫
Gr(k,D)

(dY ) =
VSt(k,D)

VO(k)
=
VSt(k,D)

VSt(k,k)
=
π

k(D−k)
2 Γk

(
k
2

)
Γk
(
D
2

) . (113)

The measure normalized to be a probability measure is expressed as:

[dY ] =
1

VGr(k,D)
(dY ) . (114)

D.6 Retraction

In general, the points except the origin (p (0) = x) of the tangent space TxM at x on the manifold M
are not elements on M (p (t) ∈ TxM, t ̸= 0). Therefore, if the result of the operation on the tangent
space is to be used at another point on the manifold M, it is necessary to map p (t) to the manifold
M. The map from a tangent space to a manifold is referred to as an exponential map. However,
because the exponential map is computationally expensive, retraction based on numerical linear
algebra is often used as an alternative (Zhu & Sato (2021)). Retraction is a method for approximating
an exponential map to first order while maintaining global convergence in optimization algorithms
on Riemannian manifolds. The most commonly used retractions on Gr(k,D) are methods based on
QR decomposition or singular-value decomposition (SVD) (Absil et al. (2008); Zhu & Sato (2021)).
In addition, a retraction based on the Cayley transform is introduced in Zhu & Sato (2021). This
retraction is closely related to the Cayley transform on St(k,D) (Wen & Yin (2013); Xiaojing (2017);
Zhu & Duan (2019)) and the Projected polynomial retraction (Gawlik & Leok (2018a)).

D.6.1 Exponential Map and Retraction

Geodesics on Gr(k,D) can be expressed as the equivalence class
[
expGr

Y

(
tξY

)]
, where

expGr
Y

(
tξY

)
= [ Y Y⊥ ] exp (tB) ID×k. (115)

Here, exp on the right-hand side is the matrix exponential, and B =

[
0k −B⊤

B 0D−k

]
∈ skew (D),

where B satisfies ξY = Y⊥B. We can use a following exponential map that is mathematically
equivalent to (115) (Edelman et al. (1998)):

expGr
Y

(
tξY

)
:= {Y V cos (Σt) +U sin (Σt)}V ⊤, (116)

where U ,Σ,V ⊤ = SVD
(
ξY
)
.

Further, we can use the Padé approximation to approximate geodesics on Grassmann manifolds as
follows:

Y (t) = [ Y Y⊥ ] rm(tB)ID×k ≈ expGr
Y

(
tξY

)
, (117)

where rm (X) is the mth-order diagonal Padé approximation to the matrix exponential exp (X). See
the expression of rm (X) in Moler & Loan (2003). The simplest member of this class is surely the
first-order Padé approximation

RY

(
tξY

)
:= [ Y Y⊥ ] r1 (tB) ID×k (118)

= [ Y Y⊥ ]

(
In − t

2
B

)−1(
ID +

t

2
B

)
ID×k, (119)

which is also known as the Cayley transform. From the error expression exp (Y ) = rm (Y ) +
O
(
∥Y ∥2m+1

)
of the Padé approximation, we have

RY

(
tξY

)
= expGr

Y

(
tξY

)
+O

(
t2m+1

∥∥ξY ∥∥2m+1
)
, (120)

which is also given by Theorem 3 in Gawlik & Leok (2018b).
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D.6.2 Horizontal Retraction

From Definition 3 in Zhu & Sato (2021), (119) is a horizontal retraction, and

R[Y ]

(
tξ[Y ]

)
:=
[
RY

(
tξ

h

Y

)]
(121)

is a retraction on Gr(k,D) as a quotient manifold defined by (2). This is because R satisfies the
invariance condition that RY

(
tξ

h

Y

)
∼ RY ′

(
tξ

h

Y ′

)
for all Y ∈ St(k,D) ,Y ′ ∈ St(k,D) , ξY ∈

T h
Y St(k,D) and ξY ′ ∈ T h

Y ′ St(k,D) such that Y ∼ Y ′ and ξY and ξY ′ are horizontal lifts of
ξ[Y ] ∈ T[Y ] Gr(k,D) at Y and Y ′, respectively.

In low-rank cases, we can obtain an economical version of (119) as follows (Zhu & Sato (2021)).

RY

(
tξ

h

Y

)
= Y + tξ

h

Y −
(
t2

2
Y +

t3

4
ξ
h

Y

)(
Ik +

t2

4
ξ
h⊤
Y ξ

h

Y

)−1

ξ
h⊤
Y ξ

h

Y . (122)

The inverse retraction
(
R−1

[Y ]

)h
Y

: St(k,D) → T h
Y St(k,D) of RY

(
ξ
h

Y

)
is the following:(

R−1
[Y ] ([X])

)h
Y

= R
−1

Y (X) (123)

= 2Y⊥Y
⊤
⊥ X

(
Ik + Y ⊤X

)−1
(124)

= 2
(
X − Y Y ⊤X

) (
Ik + Y ⊤X

)−1
. (125)

19


	Introduction
	Related Works
	Mathematical Preliminaries
	Grassmann Manifold Defined as Quotient Manifold
	Manifold Normalizing Flow

	Invariant Densities from Grassmann Manifold Flow
	Construction of Flow from Vector Field
	Construction of Probability Densities with Flow
	Prior Probability Density Function

	Learning Probability Densities with Flow
	Training Paradigms
	Sampling Algorithm from Prior
	Construction of Vector Field
	ODE Solver with Orthogonal Integration
	Loss Function

	Experimental Results
	Generation and Density Estimation on Artificial Textures
	Comparison with Conventional Methods for DW4 and LJ13
	Comparison with Conventional Methods for QM9 Positional

	Conclusion
	Appendix Overview
	Proofs
	Proposition 1
	Proposition 2
	Proposition 3

	Experimental Details for Learning GrCNF
	Details on ODE Solver with Orthogonal Integration
	Loss Function based on Variational Inference
	Implementation Details and Experimental setting
	Artificial Textures
	DW4 and LJ13
	QM9 Positional


	Fundamentals of Concepts Associated with Grassmann Manifold
	Definition of Stiefel Manifold
	Equivalence Relation
	Quotient Manifold
	Grassmann Manifold Exploiting the Quotient Structure
	Tangent Space on a Stiefel Manifold
	Riemannian Metric on a Stiefel Manifold
	Tangent Space on a Grassmann Manifold
	Riemannian Metric on a Grassmann Manifold

	Invariant Measures
	Retraction
	Exponential Map and Retraction
	Horizontal Retraction



