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Abstract

Biases with respect to socially-salient attributes of individuals have been well
documented in evaluation processes used in settings such as admissions and hiring.
We view such an evaluation process as a transformation of a distribution of the
true utility of an individual for a task to an observed distribution and model it as a
solution to a loss minimization problem subject to an information constraint. Our
model has two parameters that have been identified as factors leading to biases:
the resource-information trade-off parameter in the information constraint and the
risk-averseness parameter in the loss function. We characterize the distributions
that arise from our model and study the effect of the parameters on the observed
distribution. The outputs of our model enrich the class of distributions that can be
used to capture variation across groups in the observed evaluations. We empirically
validate our model by fitting real-world datasets and use it to study the effect
of interventions in a downstream selection task. These results contribute to an
understanding of the emergence of bias in evaluation processes and provide tools
to guide the deployment of interventions to mitigate biases.

1 Introduction

Evaluation processes arise in numerous high-stakes settings such as hiring, university admissions,
and fund allocation decisions [20, 30, 90, 122]. Specific instances include recruiters estimating
the hireability of candidates via interviews [121, 30], reviewers evaluating the competence of grant
applicants from proposals [147, 18], and organizations assessing the scholastic abilities of students
via standardized examinations [99, 19]. In these processes, an evaluator estimates an individual’s
value to an institution. The evaluator need not be a person, they can be a committee, an exam, or
even a machine learning algorithm [51, 122, 145]. Moreover, outcomes of real-world evaluation
processes have at least some uncertainty or randomness [30, 18, 79]. This randomness can arise both,
due to the features of the individual (e.g., their test scores or grades) that an evaluator takes as input
[31, 76, 124], as well as, due to the evaluation process itself [50, 30, 140].

Biases against individuals in certain disadvantaged groups have been well-documented in evaluation
processes [147, 74, 104, 110, 30]. For instance, in employment decisions and peer review, women
receive systematically lower competence scores than men, even when qualifications are the same
[147, 110], in standardized tests, the scores show higher variance in students from certain genders
[21, 112], and in risk assessment–a type of evaluation–widely used tools were twice as likely to
misclassify Black defendants as being at a high risk of violent recidivism than White defendants
[6]. Here, neither the distribution of individuals’ true evaluation depends on their socially-salient
attributes nor is the process trying to bias evaluations, yet biases consistently arise [147, 74, 104,
110, 30]. Such evaluations are increasingly used by ML systems to learn or make decisions about
individuals, potentially exacerbating inequality [51, 122, 145]. This raises the question of explaining
the emergence of biases in evaluation processes which is important to understand how to mitigate
them, and is studied here.
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Related work. A wide body of work has studied reasons why such differences may arise and how
to mitigate the effect of such biases [75, 57, 54, 32, 88, 28]. For one, socioeconomic disadvantages
(often correlated with socially-salient attributes) have been shown to impact an individual’s ability to
perform in an evaluation process, giving rise to different performance distributions across groups
[55, 16]. Specifically, disparities in access to monetary resources are known to have a significant
impact on individuals’ SAT scores [55]. Moreover, because of differences between socially-salient
attributes of individuals and evaluators, the same amount of resources (such as time or cognitive effort)
spent by the evaluator and the individual, can lead to different outcomes for individuals in different
groups [64, 95, 8]. For instance, it can be cognitively more demanding, especially in time-constrained
evaluation processes, for the evaluator to interact with individuals who have a different cultural
background than them, thus impacting the evaluations [95, 86, 70, 58, 142, 115, 113]. Further, such
biases in human evaluations can also affect learning algorithms through biased past data that the
algorithms take as input [75, 57, 54, 28].

Another factor that has been identified as a source of bias is “risk averseness:” the tendency to
perceive a lower magnitude of increase in their utility due to a profit than the magnitude of decrease
in their utility due to a loss of the same magnitude as the profit [84, 144, 151]. Risk averseness is
known to play a role in high-stakes decisions such as who to hire, who to follow on social networks,
and whether to pursue higher education [71, 23, 14]. In evaluations with an abundance of applicants,
overestimating the value of an individual can lead to a downstream loss (e.g., because an individual is
hired or admitted) whereas under-estimating may not have a significant loss [139, 65]. Thus, in the
presence of risk averseness, the outputs of evaluation processes may skew the output evaluations to
lower or higher values. The same skew can also arise from the perspective of individuals [13, 33, 111].
For instance, when negotiating salaries, overestimating their salary can lead to adverse effects in
the form of evaluators being less inclined to work with the individual or in extreme cases denying
employment [13, 33]. Moreover, these costs have been observed to be higher for women than for
men, and are one of the prominent explanations for why women negotiate less frequently [13, 33].

A number of interventions to mitigate the adverse effects of such biases in evaluation processes have
been proposed. These include representational constraints that, across multiple individuals, increase
the representation of disadvantaged and minority groups in the set of individuals with high evaluations
[46, 135, 131, 19, 77, 27, 116], structured evaluations which reduce the scope of unintended biases
in evaluations [123, 68, 147, 15], and anonymized evaluations that, when possible, blind the decision
makers to the socially-salient attributes of individuals being evaluated [72].

Mathematically, some works have modeled the outcomes of evaluation processes based on empirical
observations [12, 22, 90, 61]. For instance, the implicit variance model of [61] models differences in
the amount of noise in the utilities for individuals in different groups. Here, the output estimate is
drawn from a Gaussian density whose mean is the true utility v (which can take any real value) and
whose variance depends on the group of the individual being evaluated: The variance is higher for
individuals in the disadvantaged group compared to individuals in the advantaged group. Additive and
multiplicative skews in the outputs of evaluation processes have also been modeled [90, 22] (also see
Appendix A). [90] consider true utilities v > 0 distributed according to the Pareto density and they
model the output as v/ρ for some fixed ρ ≥ 1; where ρ is larger for individuals in the disadvantaged
group. These models have been influential in the study of various downstream tasks such as selection
[90, 61, 38, 129, 67, 106, 108, 29], ranking [40], and classification [28] in the presence of biases.

Our contributions. We propose a new optimization-based approach to model how an evaluation
process transforms an (unknown) input density fD representing the true utility of an individual or
a population to an observed distribution in the presence of information constraints or risk aversion.
Based on the aforementioned studies and insights in social sciences, our model has two parameters:
the resource-information parameter (τ ∈ R) in the information constraint and the risk-averseness
parameter (α ≥ 1) in the objective function; see (OptProg) in Section 2. The objective measures the
inaccuracy of the estimator with respect to the true density fD, and involves a given loss function
ℓ and the parameter α – α is higher (worse) for individuals in groups facing higher risk aversion.
The constraint places a lower bound of τ on the amount of information (about the density of the
true value v) that the individual and evaluator can acquire or exchange in their interaction – τ is
higher for individuals in groups that require more resources to gain unit information. We measure
the amount of information in the output density by its differential entropy. Our model builds on the
maximum-entropy framework in statistics and information theory [80] and is derived in Section 2
and can be viewed as extending this theory to output a rich family of biased densities.
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In Section 3, we show various properties of the output densities of our model. We prove that the
solution to (OptProg) is unique under general conditions and characterize the output density as a
function of fD, ℓ, τ , and α; see Theorem 3.1. By varying the loss function and the true density, our
framework can not only output standard density functions (such as Gaussian, Pareto, Exponential, and
Laplace), but also their appropriate “noisy” and “skewed” versions, generalizing the models studied
in [90, 22, 61]. Subsequently, we investigate how varying the parameter τ affects the output density
in Section 3. We observe that when τ → −∞, there is effectively no constraint, and the output is
concentrated at a point. For any fixed α, as τ increases, the output density spreads–its variance and/or
mean increases. We also study the effect of increasing α on the output density. We observe that when
the true density is Gaussian or Pareto, the mean of the output density decreases as α increases for any
fixed τ . Thus, individuals in the group with higher α and/or τ face higher noise and/or skew in their
evaluations as predicted by our model.

Empirically, we evaluate our model’s ability to emulate biases present in real-world evaluation
processes using two real-world datasets (JEE-2009 Scores and the Semantic Scholar Open Research
Corpus) and one synthetic dataset (Section 4). For each dataset, we report the total variation (TV)
distance between the densities of biased utilities in the data and the best-fitting densities output by our
framework and earlier models. Across all datasets, we observe that our model can output densities
that are close to the density of biased utilities in the datasets and has a better fit than the models
of [61, 90]; Table 1. Further, on a downstream selection task, we evaluate the effectiveness of two
well-studied bias-mitigating interventions: equal representation (ER) and proportional representation
(PR) constraints, and two additional interventions suggested by our work: decreasing the resource-
information parameter τ and reducing the risk-averseness parameter α. ER and PR are constraints
on the allowable outcomes, τ can be decreased by, e.g., training the evaluators to improve their
efficiency, and α can be decreased using, e.g., structured interviews [30]. We observe that for each
intervention, there are instances of selection, where it outperforms all other interventions (Figure 1).
Thus, our model can be used as a tool to study the effectiveness of different types of interventions in
downstream tasks and inform policy; see also Appendix L.1 and Appendix B.

2 Model

The evaluation processes we consider have two stakeholders–an evaluator and an individual–along
with a societal context that affects the process. In an evaluation process, an evaluator interacts
with an individual to obtain an estimate of the individual’s utility or value. We assume that each
individual’s true utility v is drawn from a probability distribution. This not only captures the case
that the same individual may have variability in the same evaluation (as is frequently observed in
interviews, examinations, and peer-review [31, 50, 76, 124, 30, 140, 18]) but also the case that v
corresponds to the utility of an individual drawn from a population. For simplicity, we consider the
setting where v is real-valued and its density is supported on a continuous subset Ω ⊆ R. This density
gives rise to a distribution over Ω with respect to the Lebesgue measure µ over R. For instance, Ω
could be the set of all real numbers R, the set of positive real number R>0, an open interval such as
[1,∞), or a closed interval [a, b]. Following prior work modeling output densities [90, 40, 61], we
assume that the true utility of all individuals is drawn from the same density fD.

We view an evaluation process as a transformation of an (unknown) true density fD into an observed
density fE over Ω. In real-world evaluation processes, this happens through various means: by
processing features of an individual (e.g., past performance on exams or past employment), through
interaction between the evaluator and the individual (e.g., in oral examinations), or by requesting
the individual to complete an assessment or test [121, 99, 19]. We present an optimization-based
model that captures some of the aforementioned scenarios and outputs fE . The parameters of this
model encode factors that may be different for different socially-salient groups, thus, making fE
group dependent even though fD is not group dependent. We derive our model in four steps.

Step 1: Invoking the entropy maximization principle. In order to gain some intuition, consider a
simple setting where the utility of an individual is a fixed quantity v (i.e., fD is a Dirac-delta function
around v). We first need to define an error or loss function ℓ : Ω× Ω → R; given a guess x of v, the
loss function ℓ(x, v) indicates the gap between the two values. We do not assume that ℓ is symmetric
but require ℓ(x, v) ≥ 0 when x ≥ v. Some examples of ℓ(x, v) are (x − v)2, |x− v| , x/v, and
ln(x/v). The right choice of the loss function can be context-dependent, e.g., (x−v)2 is a commonly
used loss function for real-valued data, and ln(x/v) is sometimes better at capturing relative error for
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heavy-tailed distributions over positive domains [83]. For a density f for x, Ex∼f ℓ(x, v) denotes the
expected error of the evaluation process. One can therefore consider the following problem: Given
a value ∆, can we find an f such that Ex∼f ℓ(x, v) ≤ ∆? This problem is under-specified as there
may be (infinitely) many densities f satisfying this constraint. To specify f uniquely, we appeal to
the maximum entropy framework in statistics and information theory [81]: Among all the feasible
densities, one should select the density f which has the maximum entropy. This principle leads to the
selection of a density that is consistent with our constraint and makes no additional assumption. We
use the notion of the (differential) entropy of a density with respect to the Lebesgue measure µ on R:

Ent(f) := −
∫
x∈Ω

f(x) ln f(x)dµ(x), (1)

where f(x) ln f(x) = 0 whenever f(x) = 0. Thus, we get the following optimization problem:

argmaxf : density on Ω Ent(f), s.t., Ex∼f ℓ(x, v) ≤ ∆. (2)

This optimization problem is well-studied and it is known that by using different loss functions, we
can derive many families of densities [102, 148]. For instance, for ℓ(x, v) := (x− v)2, we recover
the Gaussian density with mean v, and for ℓ(x, v) := ln(x/v), we obtain a Pareto density.

Step 2: Incorporating the resource-information parameter. We now extend the above formulation
to include information constraints in the evaluation process. In an evaluation process, both the
evaluator and the individual spend resources such as time, cognitive effort, or money to communicate
the information related to the utility of the individual to the evaluator. For instance, in interviews,
both the interviewer and the interviewee spend time and cognitive effort. In university admissions,
the university admissions office needs to spend money to hire and train application readers who, in
turn, screen applications for the university’s admission program, and the applicants need to spend
time, cognitive effort, and money to prepare and submit their applications [24, 150]. The more
resources are spent in an evaluation process, the more additional information about v is acquired. We
model this using a resource-information parameter τ , which puts a lower bound on the entropy of f .
Thus, we modify the optimization problem in Equation (2) in the following manner. We first flip the
optimization problem to an equivalent problem where we minimize the expected loss subject to a
lower bound on the entropy, Ent(f), of f . A higher value of the resource-information parameter τ
means that one needs to spend more resources to obtain the same information and corresponds to a
stronger lower bound on Ent(f) (and vice-versa) in our framework.

argminf : density on Ω Ex∼f ℓ(x, v), s.t., Ent(f) ≥ τ. (3)

When τ → −∞, the optimal density tends to a point or delta density around v (recovering the most
information), and when τ → ∞, it tends to a uniform density on Ω (learning nothing about v).
Since differential entropy can vary from negative to positive infinity, the value of τ is to be viewed
relative to an arbitrary reference point. τ may vary with the socially-salient group of the individual in
real-world contexts. For instance, in settings where the evaluator needs to interact with individuals
(e.g., interviews), disparities can arise because it is less cognitively demanding for an evaluator to
communicate with individuals who speak the same language as themselves, compared to individuals
who speak a different language [95]. In settings where the evaluator assesses individuals based on
data about their past education and employment (e.g., at screening stages of hiring or in university
admissions), disparities can arise because the evaluator is more knowledgeable about a specific
group’s sociocultural background compared to others, and would have to spend more resources to
gather the required information for the other groups [49, 62].

Step 3: Incorporating the risk-averseness parameter. We now introduce the parameter α that
captures risk averseness. Roughly speaking, risk averseness may arise in an evaluation process
because of the downstream impact of the output. The evaluator may also benefit or may be held
accountable for the estimated value, and hence, would be eager or reluctant to assign values much
higher than the true utility [71, 23, 14]. Further, the individual may also be risk averse, e.g. during a
hiring interview, the risk of getting rejected may prompt the individual to quote less than the expected
salary [13, 33, 111]. To formalize this intuition, for a given ℓ, we define a risk-averse loss function
ℓα : Ω× Ω → R that incorporates the parameter α ≥ 1 in ℓ as follows:

ℓα(x, v) := α · ℓ(x, v) if x ≥ v and ℓα(x, v) := ℓ(x, v) if x < v. (4)

Not only does this loss function penalize overestimation versus underestimation, but in addition, the
more the overestimation, the more the penalization is. This intuition is consistent with the theory
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of risk averseness [10, 119]. Our choice is related to the notion of hyperbolic absolute risk aversion
[78, 109], and one may pick other ways to incorporate risk averseness in the loss function [144, 98].
As an example, if ℓ(x, v) = (x − v)2, then the ℓ22-loss is ℓα(x, v) = α · (x − v)2, if x ≥ v and
(x− v)2 otherwise. If ℓ(x, v) = ln (x/v), then the log-ratio loss is ℓα(x, v) = α · ln (x/v), if x ≥ v;
ln (x/v) otherwise. Plots of these two loss functions are in Figure 2.1 Thus, the analog of Equation (3)
becomes

argminf : density on Ω Ex∼f ℓα(x− v, v), s.t., Ent(f) ≥ τ. (5)

We note that, for the risk-averse loss function defined in (4), the following hold: For all α ≥ α′ ≥ 1,
ℓα(x, v) ≥ ℓα′(x, v) for all x, v ∈ Ω, and ℓα(x, v)−ℓα′(x, v) is an increasing function of x for x ≥ v.
Beyond (4), one could consider other ℓα(x, v) satisfying these two properties in our framework; we
omit the details. One can also incorporate the (opposite) notion of “risk eager,” where values of x
lower than v are penalized more as opposed to values of x higher than v by letting α ∈ (0, 1].

Step 4: Generalizing to arbitrary fD. To extend Equation (5) to the setting when v comes from a
general density fD, we replace the loss function by its expectation over fD and arrive at the model
for the evaluation process that we propose in this paper:

argminf : density on Ω Errℓ,α (fD, f) :=
∫
v∈Ω

[∫
x∈Ω

ℓα(x, v)f(x)dµ(x)
]
fD(v)dµ(v), (OptProg)

such that −
∫
x∈Ω

f(x) log f(x)dµ(x) ≥ τ.

For a given ℓ and parameters α and τ , this optimization framework can be viewed as transforming
the true utility density fD of a group of individuals to the density fE (the solution to this optimization
problem). It is worth pointing out that neither the evaluator nor the individual is solving the above
optimization problem – rather (OptProg) models the evaluation process and the loss function ℓ, α,
and τ depend on the socially-salient attribute of the group of an individual; see also Appendix B.

3 Theoretical results

Characterization of the optimal solution. We first characterize the solution of the optimization
problem (OptProg) in terms of fD, ℓα, τ , and α. Given a probability density fD, a parameter α ≥ 1,
and a loss function ℓ, consider the function IfD,ℓ,α(x) :=

∫
v ∈Ω

ℓα(x, v)fD(v)dµ(v). This integral
captures the expected loss when the estimated utility is x. Further, for a density f , the objective
function of (OptProg) can be expressed as Errℓ,α (fD, f) :=

∫
x∈Ω

IfD,ℓ,α(x)f(x)dµ(x).

Theorem 3.1 (Informal version of Theorem C.1 in Appendix C). Under general conditions on fD
and ℓ, for any finite τ and α ≥ 1, (OptProg) has a unique solution f⋆(x) ∝ exp (−IfD,ℓ,α(x)/γ

⋆),
where γ⋆ > 0 is unique and also depends on α and τ . Further, Ent(f⋆) = τ .

The uniqueness in Theorem 3.1 implies that, if α = 1, τ = Ent(fD), and ℓ(x, v) := ln fD(x) −
ln fD(v), then the optimal solution is f⋆(x) = fD(x). To see this, note that in this case IfD,ℓ,α(x) =
ln fD(x) + Ent(fD). Hence, f⋆(x) = fD(x) satisfies Theorem 3.1’s conclusion (see Section C.7 for
details). Thus, in the absence of risk averseness, and for an appropriate choice of resource-information
parameter, the output density is the same as the true density.

Theorem 3.1 can be viewed as a significant extension of results that show how well-known proba-
bility distributions arise as solutions to the entropy-maximization framework. Indeed, the standard
maximum-entropy formulation only considers the setting where the input utility is given by a single
value, i.e., the distribution corresponding to fD is concentrated at a single point; and the risk-
averseness parameter α = 1. While the optimal solution to the maximum-entropy framework (2)
restricted to the class of well-known loss functions, e.g. ℓ22-loss or linear loss, can be understood
by using standard tools from convex optimization (see [48]), characterizing the optimal solution
to the general formulation (OptProg) is more challenging because of several reasons: (i) The input
density fD need not be concentrated at a single point, and hence one needs to understand conditions
on fD when the formulation has a unique optimal solution. (ii) The loss function can be arbitrary
and one needs to formulate suitable conditions on the loss function such that (OptProg) has a unique
optimal solution. (iii) The risk-averseness parameter α makes the loss function asymmetric (around

1A variation of (4) that we use in the empirical part is the following: For a fixed “shift” v0, let ℓα(x, v) :=
α · ℓ(x, v + v0) if x ≥ v + v0 and ℓα(x, v) := ℓ(x, v + v0) if x < v + v0.
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any fixed value v) and makes the analysis of the error in the objective function non-trivial. Roughly
speaking, the only restrictions, other than standard integrability assumptions, that we need on the
input are: (a) Monotonicity of the loss function ℓ(x, v) with respect to either x or v, (b) the growth
rate of the loss function ℓ(x, v) is at least logarithmic, and (c) the function IfD,ℓ,α(x) has a unique
global minimum, which is a much weaker assumption than convexity of the function. Note that for
the ℓ22-loss function given by ℓ(x, v) = (x− v)2, the first two conditions hold trivially; and when the
input density fD is Gaussian, it is not hard to show that IfD,ℓ,α(x) is strongly convex and hence the
third condition mentioned about holds (see Appendix H for details). These conditions are formally
stated in Appendix C.1 and we show that they hold for the cases of Gaussian, Pareto, Exponential,
and Laplace densities in Sections H, I, J, K respectively.

The proof of Theorem 3.1 is presented in Appendix C and the following are the key steps in
it: (i) The proof starts by considering the dual of (OptProg) and shows that strong duality holds
(see Appendix C.2 and Appendix C.3). (ii) The next step is to show that the optimal solution f⋆

of (OptProg) exists and is unique. This requires proving that the dual variable γ⋆ (corresponding to
the entropy constraint in (OptProg)) is positive – while this variable is always non-negative, the main
technical challenge is to show that it is non-zero. In fact, there are instances of (OptProg) where γ⋆ is
zero, and an optimal solution does not exist (or an optimal solution exists, but is not unique). (iii)
The proof of γ⋆ ̸= 0 requires us to understand the properties of the integral IfD,ℓ,α(x) (abbreviated
as I(x) when the parameters fD, ℓ, α are clear from the context). In Appendix C.4 we show that
I(x) can be expressed as a sum of two monotone functions (see Theorem C.10). This decomposition
allows us to show that the optimal value of (OptProg) is finite. (iv) In Appendix C.5, we show that
the optimal value of (OptProg) is strictly larger than I(x⋆) (Lemma C.13, Lemma C.14), where x⋆

is the minimizer of I(x). This requires us to understand the interplay between the growth rate of
the expected loss function and the entropy of a density as we place probability mass away from x⋆.
Indeed, these technical results do not hold true if the loss function ℓ(x, v) grows very slowly (as a
function of x/v or (|x− v|). (v) Finally, in Theorem C.15, we show that γ⋆ is nonzero. This follows
from the fact that if γ⋆ = 0, then the optimal value of (OptProg) is equal to I(x⋆), which contradicts
the claim in (iv) above. Once we show γ⋆ > 0, the expression for the (unique) optimal solution, i.e.,
f⋆(x) ∝ exp (−I(x)/γ⋆), follows from Theorem C.16.

We conclude this section with two remarks. 1) In Appendix E, we show that Theorem 3.1 implies that
τ = (Errℓ,α (fD, f

⋆) /γ⋆) + lnZ⋆, where Z⋆ :=
∫
Ω
exp (−IfD,ℓ,α(x)/γ

⋆) dµ(x) is the partition
function or the normalizing constant that makes f⋆ a probability density; This equation is an analog
of the Gibbs equation in statistical physics and gives a physical interpretation of IfD,ℓ,α(x) and γ⋆:
γ⋆ is the temperature and IfD,ℓ,α(x) is the energy corresponding to state x. This may be useful in
understanding the effects of different parameters on the output density. 2) If one wishes, one can use
(OptProg) to understand the setting where a single individual is being evaluated by setting the input
density fD to be concentrated at their true utility v. For instance, if we set the loss function to be
the ℓ22-loss, using Theorem 3.1, one can show that for any given values of the parameters, α and τ

and loss function being ℓ22-loss, the mean of the output density is v −
√

γ⋆

π ·
√
α−1√
α

; see Appendix D
for a proof. Therefore for α > 1, the mean of the output density is strictly less than u. This gives a
mapping from the “true ability” to the (mean of the) “biased ability” in this case. This mapping can
be used to understand how the parameters τ and α in the evaluation process transform the true ability.

Effect of varying τ for a fixed α. We first study the effect of changing the resource-information
parameter τ on f⋆ for a fixed value of the risk-averseness parameter α ≥ 1. To highlight this
dependency on τ , here we use the notation f⋆

τ to denote the optimal solution f⋆. We start by noting
that as γ⋆ increases, the optimal density becomes close to uniform, and as it goes towards zero, the
optimal density concentrates around a point x⋆ that minimizes energy: argminx∈Ω IfD,ℓ,α(x). Note
that the point x⋆ does not depend on τ . However, γ⋆ may depend in a complicated manner on both τ
and α, and it is not apparent what effect changing τ has on γ⋆. We show that, for any fixed α ≥ 1, as
τ decreases, the output density gets concentrated around x⋆ (see Theorem F.1). This confirms the
intuition that as we reduce τ by adding more resources in the evaluation process, the uncertainty in
the output density should be reduced. Similarly, if τ increases because of a reduction in the resources
invested in the evaluation, the uncertainty in f⋆

τ should increase, and hence, the output density should
converge towards a uniform density. For specific densities, one can obtain sharper results. Consider
the case when fD is a Gaussian with mean m and variance σ2, and ℓα(x, v) := α(x− v)2 if x ≥ v,
and (x− v)2 if x < v. The uncertainty in the Gaussian density is captured by the variance, and hence,
we expect the output density to have a higher variance when the parameter τ is increased. Indeed,

6



when α = 1, we show that the optimal density f⋆
τ is a Gaussian with mean m and variance e2τσ2;

see Appendix H. Thus, if one increases τ from −∞ to ∞, the variance of the output density changes
monotonically from 0 to ∞. When α ≥ 1, numerically, it can be seen that for any fixed α ≥ 1,
increasing τ increases the variance, and also decreases the mean of f⋆

τ ; see Figure 3. Intuitively, the
decrease in mean occurs because higher variance increases the probability of the estimated value
being much larger than the mean, and the risk-averseness parameter imposes a high penalty when the
estimated value is larger than the true value. In fact, we show in Theorem F.5 that the variance of
f⋆
τ for any continuous input density fD supported on R is at least 1

2π e
2τ−1. This follows from the

well-known fact that among all probability densities supported on R with variance σ2, the Gaussian
density with variance σ2 maximizes the (differential) entropy [120]; see Section F.2 for details. In a
similar vein, we show that the mean of f⋆

τ is at least eτ−1 when the input density fD is supported
on [0,∞), and hence approaches ∞ as τ goes to ∞ (see Theorem F.7). This result relies on the fact
that among all densities supported on [0,∞) and with a fixed expectation 1/λ (for λ > 0), the one
maximizing the entropy is the exponential density with parameter λ [48].

We now consider the special setting when the input density fD is Pareto with parameter β > 0
(fD(x) := βx−β−1 for x ∈ [1,∞)), and ℓα(x, v) := α ln(x/v) if x ≥ v, and ln(x/v) if x < v.
When α = 1, we show that the optimal density f⋆

τ is also a Pareto density with parameter β⋆

satisfying the following condition: 1 + (1/β⋆) − lnβ⋆ = τ. Using this, it can be shown that, for
α = 1, both the mean and variance of f⋆

τ monotonically increase to ∞ as τ goes to ∞; see Appendix I.
The increase in variance reflects the fact that increasing τ increases the uncertainty in the evaluation
process. Unlike the Gaussian case, where the mean of f⋆

τ could shift to the left of 0 with an increase
in τ , the mean of the output density in this setting is constrained to be at least 1, and hence, increasing
the variance of f⋆

τ also results in an increase in its mean. Numerically, for any fixed α ≥ 1, increasing
τ increases both the mean and variance of f⋆

τ ; see Figures 3 and 6.

Effect of varying α for a fixed τ . Let f⋆
α denote the optimal solution f⋆ with α for a fixed τ .

We observe that, for any fixed x, IfD,ℓ,α(x), which is the expected loss when the output is x, and
Errℓ,α(f

⋆
α, fD) are increasing functions of α; see Appendix G. Thus, intuitively, the mass of the

density should shift towards the minimizer of IfD,ℓ,α(x). Moreover, the minimizer of IfD,ℓ,α(x) itself
should reduce with increasing α. Indeed, as the evaluation becomes more risk averse, the expected
loss, IfD,ℓ,α(x), for an estimated value x, increases. However, the asymmetry of the loss function
leads to a more rapid rate of increase in IfD,ℓ,α(x) for larger values of x. As a result, minimizer of
IfD,ℓ,α(x) decreases with increasing α. Thus, as we increase α, the output densities should shrink
and/or shift towards the left. We verify this for Pareto and Gaussian densities numerically: for fixed
τ , increasing α decreases the mean f⋆

α for both Pareto and Gaussian fD; see Figures 4 and 7. As for
the variance, with fixed τ , increasing α increases the variance when fD is Gaussian and decreases the
variance when fD is Pareto; see Figures 4 and 7. See also discussions in Appendices H and I.

Connection to the implicit variance model. Our results confirm that increasing τ effectively
increases the “noise” in the estimated density by moving it closer to the uniform density. The implicit
variance model of [61] also captures this phenomenon. More concretely, in their model, the observed
utility of the advantaged group is a Gaussian random variable with mean µ and variance σ2

0 , and the
observed utility of the disadvantaged group is a Gaussian random variable with mean µ and variance
σ2
0 + σ2. This model can be derived from our framework where the input density fD is Gaussian, the

risk-averseness parameter α = 1, the loss function is ℓ(x, v) = (x− v)2 and the disadvantaged group
is associated with a higher value of the resource-information parameter τ ; see Section H for details.

Connection to the multiplicative bias model. In the multiplicative-bias model of [90], the true utility
of both the groups is drawn from a Pareto distribution, and the output utility for the disadvantaged
group is obtained by scaling down the true utility by a factor ρ > 1. This changes the domain of the
distribution to [1/ρ,∞) from [1,∞) and, hence, does not fit exactly in our model which does not
allow for a change in the domain. Nevertheless, we argue that when the input density fD is Pareto
with a parameter β, τ = Ent(fD) and α > 1, and the loss function is given by ℓ(x, v) = lnx− ln v,
then output density f⋆

α has a smaller mean than that of the input density. As we increase α, the
evaluation becomes more risk-averse and hence decreases the probability of estimating higher utility
values. Hence, the mean of the output density decreases. We first show that for any fixed β, as the
parameter α increases, the output density converges to a density g⋆. We then show numerically that,
for all the Pareto distributions considered by our study, the mean of the density g⋆ is less than that of
the output density f⋆

α when α = 1. We give details of this argument in Section I.

7



Dataset This work Multiplicative Implicit
Vary α and τ Fix α=1 Fix τ=Ent(fD) bias [90] variance [61]

JEE-2009 (Birth category) 0.09 0.15 0.21 0.14 0.10
JEE-2009 (Gender) 0.07 0.15 0.19 0.07 0.08
Semantic Scholar (Gender) 0.03 0.09 0.23 0.08 0.13
Synthetic Network 0.03 0.05 10.0 0.05 0.22

Table 1: TV distances between best-fit densities and real data (Section 4) with 80%-20% training and testing
data split: Each dataset consists of two densities fG1 and fG2 of utility, corresponding to the advantaged and
disadvantaged groups. We fix fD=fG1 and report the best-fit TV distance between fG2 and densities output by
(a) our model, (b) the multiplicative bias model, and (c) the implicit variance model. We compare our model to
variants where we fix α=1 and τ=Ent(fD). Our model achieves a small TV distance on all datasets.

4 Empirical results

Ability to capture biases in data. First, we evaluate our model’s ability to output densities that are
“close” to the densities of biased utility in one synthetic and two real-world datasets.

Setup and discussion. In all datasets we consider, there are natural notions of utility for individuals:
scores in college admissions, number of citations in research, and degree in (social) networks. In
each dataset, we fix a pair of groups G1 and G2 (defined by protected attributes such as age, gender,
and race) and consider the empirical density of utilities fG1 and fG2 for the two groups. Suppose
group G1 is more privileged or advantaged than G2. In all datasets, we observe notable differences
between fG1 and fG2 that advantaged G1 (e.g., fG1 ’s mean is at least 34% higher than fG2 ’s).

Implementation details. Our goal is to understand whether our model can “capture” the biases
or differences between fG1

and fG2
. To evaluate this, we fix fD = fG1

, i.e., fG1
is the true

density, and compute the minimum total variation distance between fG2
and a density output by

our model, i.e., minα,τ dTV

(
f⋆
α,τ , fG2

)
; where f⋆

α,τ is the solution to (OptProg) with inputs α and
τ . (The total variation distance between two densities f and g over Ω is 1

2

∫
Ω
|f(x)− g(x)| dµ(x)

[97].) To illustrate the importance of both α and τ , we also report the TV-distances achieved with
α = 1 (no skew) and with τ = τ0 := Ent(fD) (vacuous constraint), i.e., minτ dTV

(
f⋆
1,τ , fG2

)
and minα dTV

(
f⋆
α,τ0 , fG2

)
, respectively. As a further comparison, we also report the minimum

TV distances achieved by existing models of biases in evaluation processes: the multiplicative-bias
model and the implicit variance model [90, 61]. Concretely, we report minµ,ρ dTV (fD,µ,ρ, fG2) and
minµ,σ dTV (fD,µ,σ, fG2) where fD,µ,ρ is the density of ρv+µ for v ∼ fD and fD,µ,σ is the density
of v + µ+ σζ where v ∼ fD and ζ ∼ N (0, 1).

Below we present brief descriptions of the datasets; detailed descriptions and additional implementa-
tion appear in Appendix L.

Dataset 1 (JEE-2009 scores). Indian Institutes of Technology (IITs) are, arguably, the most prestigious
engineering universities in India. Admission into IITs is decided based on students’ performance in
the yearly Joint Entrance Exam (JEE) [20]. This dataset contains the scores, birth category (official
SES label [135]), and (binary) gender of all students from JEE-2009 (384,977 total) [91]. We consider
the score as the utility and run two simulations with birth category (G1 denotes students in GEN
category) and gender (G1 denotes male students) respectively as the protected attributes. We set
Ω as the discrete set of possible scores. We fix ℓ22-loss as fG1

and fG2
appear to be Gaussian-like

(unimodal with both a left-tail and a right-tale; see Figure 13 in Appendix L).

Dataset 2 (Semantic Scholar Open Research Corpus). This dataset contains the list of authors,
the year of publication, and the number of citations for 46,947,044 research papers on Semantic
Scholar. We consider the total first-author citations of an author as their utility and consider their
gender (predicted from first name) as the protected attribute (G1 denotes male authors). We fix
Ω = {1, 2, . . . } and ℓ as the log-ratio loss as fG1

and fG2
have Pareto-like density.

Dataset 3 (Synthetic network data). We generate a synthetic network with a biased variant of the
Barabási–Albert model [5, 17, 35, 93]. The vertices are divided into two groups G1 and G2. We start
with a random graph G0 with m=50 vertices where each vertex is in G1 w.p. 1

2 independently. We
extend G0 to n=10, 000 vertices iteratively: at each iteration, one vertex u arrives, u joins G1 w.p. 1

2
and otherwise G2, and u forms one edge with an existing vertex v–where v is chosen w.p. ∝ dv if
v ∈ G1 (dv is v’s current degree) and ∝ 1

2dv otherwise. We use a vertex’s degree as its utility, fix
Ω = {1, 2, ...}, and use log-ratio loss as fG1

and fG2
have Pareto-like density.
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Observations. We report the TV distances for all simulations in Table 1 (also see Figure 11 and Fig-
ure 12) for the plots of the corresponding best-fit densities). We observe that across all simulations
our model can output densities that are close in TV distance (≤ 0.09) to fG2 . Moreover, both α and τ
parameters are important, and dropping either can increase the TV distance significantly (e.g., by 1.5
times on JEE-2009 data with birth category and 2.66 times on the Semantic Scholar data). Compared
to the implicit variance model, our model has a better fit on the JEE-2009 (Birth category), Semantic
Scholar, and Synthetic Network data because the implicit variance model does not capture skew
and in these datasets fG1

is a skewed version of fG2
. Compared to the multiplicative bias model,

our model has a better fit on the JEE-2009 (Birth category), as here the utilities have Gaussian-like
distributions due to which multiplicative bias largely has a translation effect. Finally, on the JEE-2009
(Gender) data, our model’s performance is similar to multiplicative bias and implicit variance models
because in this data fG1 and fG2 are similar (TV distance≤0.08)

Effect of interventions on selection. Next, we illustrate the use of our model to study the effectiveness
of different bias-mitigating interventions in downstream selection tasks (e.g., university admissions,
hiring, and recommendation systems).

Subset selection tasks. There are various types of selection tasks [59, 4, 30]. We consider the
simplest instantiation where there are n items, each item i has a true utility vi ≥ 0, and the
goal is to select a size-k subset SD maximizing

∑
i∈S vi. If V=(v1, . . . , vn) is known, then

this problem is straightforward: select k items with the highest utility. However, typically V is
unknown and is estimated via a (human or algorithmic) evaluation process that outputs a possi-
bly skewed/noisy estimate X=(x1, . . . , xn) of V [125, 152, 110, 118, 36]. Hence, the outputs is
SE := argmax|S|=k

∑
i∈S xi, which may be very different from SD and possible has a much lower

true utility:
∑

i∈SE
vi ≪

∑
i∈SD

vi.

Interventions to mitigate bias. Several interventions have been proposed to counter the adverse effects
of bias in selection, including, representational constraints, structured interviews, and interviewer
training. Each of these interventions tackles a different dimension of the selection task. Represen-
tational constraints require the selection to include at least a specified number of individuals from
unprivileged groups [30, 37, 135]. Structured interviews reduce the scope of unintended skews by
requiring all interviewees to receive the same (type of) questions [30, 123, 68]. Interviewer training
aims to improve efficiency: the amount of (accurate) information the interviewer can acquire in a
given time [30]. Which intervention should a policymaker enforce?

Studying the effectiveness of interventions. A recent and growing line of work [90, 40, 28, 61,
67, 38, 107] evaluates the effectiveness of representational constraints under specific models of
bias: they ask, given C of subsets satisfying some constraint, when does the constraint optimal set,
SE,C := argmaxS∈C

∑
i∈S xi, have a higher utility than the unconstrained optimal SE , i.e., when

is
∑

i∈SE,C
vi >

∑
i∈SE

vi? Based on their analysis [90, 40, 28, 61, 67, 38, 107] demonstrate the
benefits of different constraints including, equal representation (ER), which requires the output S
to satisfy |S ∩G1| = |S ∩G2| and, proportional representation (PR), which requires S to satisfy
|S∩G1|/|G1| = |S∩G2|/|G2|. A feature of our model is that its parameters α and τ have a physical
interpretation, which enables the study of other interventions: for instance, structured interviews aim
to reduce skew in evaluation, which corresponds to shifting α closer to 1, and interviewer-training
affects the information-to-resource trade-off, i.e., reduces τ .

Using our model we compare ER and PR with two new interventions: change α by 50% (α-
intervention) and change τ by 50% (τ -intervention). Here, 50% is an arbitrary amount for illustration.

Setup. We consider a selection scenario based on the JEE 2009 data: we fix fD = fG1
, α′, τ ′ to be

the best-fit parameters on the JEE 2009 data (by TV distance), and |G1| = 1000. Let fα and fτ be
the densities obtained after applying the alpha intervention and the tau intervention respectively.
(Formally, fα=f⋆

α′/2,τ ′ and fτ=f⋆
α′,3τ ′/2.) We vary |G2| ∈ {500, 1000, 1500}. For each i ∈ G1, we

draw vi ∼ fD and set xi = vi (no bias). For each i ∈ G2, we draw vi ∼ fD, xi ∼ f⋆
α,τ , xα

i ∼ fα,
and xτ

i ∼ fτ coupled so that the CDFs of the respective densities at vi, xi, x
α
i , and xτ

i are the same.
We give ER and PR the utilities {xi}i as input, we give α-intervention utilities {xα

i }i as input, and the
τ -intervention utilities {xτ

i }i. For each |G1| and |G2|, we vary 50 ≤ k ≤ 1000, sample utilities and
report the expected utilities of the subset output by each intervention over 100 iterations (Figure 1).
Here, 1000 is the largest value for which ER is satisfiable across all group sizes |G1| and |G2|.
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(c) |G1| = 1000 and |G2| = 2000

Figure 1: Effectiveness of different interventions on the selection-utility–as estimated by our model: The x-axis
shows k (size of selection) and the y-axis shows the ratio of the (true) utility of the subset output with an
intervention to the (true) utility of the subset output without any intervention. The main observation across
the figures is that, for each intervention, there is a choice of k, and group sizes |G1| and |G2|, where the
intervention outperforms all other interventions. Hence, each intervention has a different effect on the latent
utility of selection and a policymaker can use our model to study their effect and decide which intervention to
enforce. Error bars represent the standard error of the mean over 100 repetitions.

Observations. Our main observation is that there is no pair of interventions such that one always
achieves a higher utility than the others. In fact, for each intervention, there is a value of k, |G1|, and
|G2|, such that the subset output with this intervention has a higher utility than the subsets output
with other interventions. Thus, each intervention has a very different effect on the latent utility of
the selection and a policymaker can use our model to study the effects in order to systematically
decide which interventions to enforce; see Appendix L.1 for a case study of how a policymaker could
potentially use this model to study bias-mitigating interventions in the JEE context.

5 Conclusion, limitations, and future work

We present a new optimization-based approach to modeling bias in evaluation processes ((OptProg)).
Our model has two parameters, risk averseness α and resource-information trade-off τ , which are
well documented to lead to evaluation biases in a number of contexts. We show that it can generate
rich classes of output densities (Theorem 3.1) and discuss how the output densities depend on the
two parameters (Section 3). Empirically, we demonstrate that the densities arising from our model
have a good fit with the densities of biased evaluations in multiple real-world datasets and a synthetic
dataset; often, leading to a better fit than models of prior works [90, 61] (Table 1). We use our
model as a tool to evaluate different types of bias-mitigating interventions in a downstream selection
task–illustrating how this model could be used by policymakers to explore available interventions
(Figure 1 and Appendix L.1); see also Appendix B. Our work relies on the assumptions in prior works
that there are no differences (at a population level) between G1 and G2; see, e.g., [89, 61, 40]. If this
premise is false, then the effectiveness of interventions can be either underestimated or overestimated
which may lead a policymaker to select a suboptimal intervention. That said, if all the considered
interventions reduce risk aversion and/or resource constraints, then the chosen intervention should still
have a positive impact on the disadvantaged group. Our model can be easily used to study multiple
socially-salient groups by considering a group-specific risk-aversion parameter and a group-specific
information constraint. For example, if two groups G1, G2 overlap, then we can consider three
disjoint subgroups G1 ∩ G2, G1\G2 and G2\G1. Our model of evaluation processes considers
scenarios where candidates are evaluated along a single dimension. It can also be applied – in
a dimension-by-dimension fashion – to scenarios where individuals are evaluated along multiple
dimensions, but the evaluation in any dimension is independent of the evaluation in other dimensions.
Modeling evaluation processes involving multiple correlated dimensions is an interesting direction.
While we illustrate the use of our model in a downstream selection task, utilities generated from biased
evaluation processes are also used in other decision-making tasks (such as regression and clustering),
and studying the downstream impact of evaluation biases on them is an important direction. Moreover,
the output of or model can be used by policymakers to assess the impact of interventions in the
supermodular set aggregation setting, where the utility of the selected group is more than the sum of
the individuals. Our model cannot be directly used to understand the effect of interventions in the
long term. Additional work would be required to do so, perhaps as in [38], and would be an important
direction for future work. Finally, any work on debiasing could be used adversarially to achieve the
opposite goal. We need third-party evaluators, legal protections, and available recourse for affected
parties – crucial components of any system – though beyond the scope of this work.
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A Other related work

Models of bias in Economics. There are two prominent models of discrimination in the Economics
literature: taste-based discrimination and statistical discrimination [114]. These capture different
types of biases [117, 45, 49, 12, 22, 41, 11] (also see [66, 25, 114]). Taste-based discrimination
[22] models explicit biases (e.g., racism and sexism) and, in the vanilla taste-based discrimination
model, individuals are divided into two groups and a decision-maker pays an additional cost for
interacting with individuals in the disadvantaged group. This additional additive cost diminishes
the value of disadvantaged individuals for the decision-maker. While we do not model explicit
biases, such an additive bias also arises in our model of evaluation processes with specific parameter
choices, suggesting that additive biases may also arise due to resource constraints and risk averseness
(Appendix C). Statistical discrimination models how group-wise disparities in the noise in the
inputs to a Bayesian decision-maker propagate to systematic disparities in decisions [117, 11]. Our
mathematical model can be viewed as giving an explanation of why such disparities may arise in the
input.

Implicit biases in Psychology. There is a long and rich history of the study of implicit (and explicit)
biases in Psychology, e.g., [85, 101, 74, 104, 69, 127, 149]. This body of works proposes various
theories about why implicit biases arise [69] and their relation to real-world stimuli [130, 63, 42]. We
refer the reader to [73, 87] for an overview. [69] explains that the ease of categorizing individuals into
categories (defined by, e.g., color, race, or gender) provides an incentive to the evaluator to use their
prior (possibly biased) knowledge, and this leads to implicit biases. In contrast, we show that even
when the evaluator has the same prior estimate for all social groups, biases can arise in evaluation
processes when the information-to-resource trade-off or the degree of risk averseness is different for
different groups. Further, since resource constraints and risk averseness are not specific to the setting
of a single evaluator, our model of evaluation processes also models scenarios where the evaluator
denotes a group or an organization.

Optimization and human behavior. The use of optimization to model human behavior dates
back to (at least) von Neumann and Morgenstern’s work that showed that, under a small number of
assumptions, the behavior of an evaluator is as if they are optimizing the expected value of a “utility
function” [144]. Since then, numerous apparent deviations from this theory were discovered [84].
These deviations, broadly referred to as irrational behavior or cognitive biases, laid the foundation of
Behavioral Economics [138]. Several theories have been proposed to account for the deviations in
human behavior from utility maximization. Including prospect theory that models risk averseness
of individuals – the empirical observation that humans process losses and gains of equal amounts
(monetary or otherwise) asymmetrically [84] – bounded rationality that reconciles irrational human
behavior by proposing that humans solve underlying optimization problems approximately (instead
of optimally) [132], and resource rational analysis that proposes that humans trade-off the utility of
with the costs (e.g., such as effort and time) required to find a solution with higher utility [100]. These
works model hidden costs and constraints on humans that lead to deviations from the traditional
“rational” utility maximization. Like this work, these works also use optimization to explain human
behavior, but while they focus on irrational behaviors and cognitive biases, our work focuses on
biases with respect to socially-salient attributes in evaluation processes.

Other entropy-based models. Maximum entropy distributions have been widely deployed in
machine learning [56] and theoretical computer science [133]. Maximum entropy distributions have
been shown to be “stable” [136]. The maximum-entropy framework over discrete distributions has
been used to preprocess data to debias it [39]. In our optimization program, we use entropy to
measure the amount of “information” in a distribution — this appears as a constraint in our program.
An entropy-constrained viewpoint is also prevalent in explanations of other phenomena. For instance,
various optimization algorithms can be captured using an optimization- and entropy-based viewpoint
[9, 96, 143], it is also known to arise in explanations of biological phenomena [43], and leads to
Page rank and other popular random-walk-based procedures [105]. Finally, taking an optimization
viewpoint when studying a dynamical system also has additional benefits, such as providing a
“potential function” that functions that gives an efficient and interpretable method of tracking the
progress of a complex dynamical system [137].

22



2 1 0 1 2
0

5

10

15 Plot of (x, 0) for different  when = 2
2

= 1
= 2
= 3
= 4

(a) ℓα(x, 0) when ℓ(x, v) = (x− v)2
3 4 5 6 7

1

0

1

Plot of (x, 5) for different  when (x, v) = x
v

= 1
= 2
= 3
= 4

(b) ℓα(x, 5) when ℓ(x, v) = lnx− ln v

Figure 2: Plots of risk-averse loss function ℓα(x, v) for different α and ℓ.

B Specific examples of our model

In this section, we present some specific examples of mechanisms by which information constraints
and risk aversion lead to bias. One context is college admissions. It is well known that SAT scores
are implicitly correlated with income (and, hence, test preparation) in addition to student ability
[1]. While the true ability may be v, the score is skewed depending on the amount/quality of
test preparation, which depends on socioeconomic status that may be correlated to socially-salient
attributes. The parameter α in our model can be used to encode this. As for τ , while an evaluator
may know what a GPA means at certain universities well known to them, they may not understand
what GPA means for students from lesser-known schools. This lack of knowledge can be overcome,
but takes effort/time, and without effort entrenches the status quo.

Another example is the evaluation of candidates using a standardized test. In time-constrained settings,
a high value of the resource-information parameter τ for the disadvantaged group indicates that such
candidates may not be able to comprehend a question as well as someone from an advantaged group.
This could be due to various factors including less familiarity with the language used in the test or the
pattern of questions, as opposed to someone who had the resources to invest in a training program for
the test. Similarly, a high value of the risk-averseness parameter captures that an evaluator, when
faced with a choice of awarding low or high marks to an answer given by a candidate from the
disadvantaged group, is less likely to give high marks. More concretely, suppose there are several
questions in a test, where each question is graded either 0 or 1. Assume that a candidate has true
utility v ∈ [0, 1], and hence, would have received an expected score v for each of the questions if
one were allowed to award grades in the continuous range [0, 1]. However, the fact that the true
scores have to be rounded to either 0 or 1 can create a bias for the disadvantaged group. Indeed, the
probability that an evaluator rounds such an answer to 1 may be less than v – the risk-averseness
parameter measures the extent to which this probability gets scaled down.

Most of the prior works on interventions in selection settings have focused on adding representational
constraints for disadvantaged groups. Such constraints, often framed as a form of affirmative action,
could be beneficial but may not be possible to implement in certain contexts. For instance, in a
landmark 2023 ruling, the US Supreme Court effectively prohibited the use of race-based affirmative
action in college admissions [2]. Our work, via a more refined model of how bias might arrive
at a population level in evaluation processes, allows for evaluating additional interventions that
focus on procedural fairness; this allows working towards diversity and equity goals without placing
affirmative-action-like constraints.

In this framing, we can consider decreasing either α or τ . Improving either would work towards
equity, but which ones to target or to what extent and via which method would be context-dependent
and vary in cost. A decrease in α can be achieved by reducing risk-averseness in the evaluation
process; e.g. by investing in better facilities for disadvantaged groups, or making the evaluation
process blind to group membership. A reduction in τ may follow by allocating additional resources
to the evaluation process, e.g., by letting a candidate choose an evaluation in their native language.
Our framework allows a policymaker to study these trade-offs, and we discuss specific examples in
Appendix L.
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C Characterization of optimal solution to the optimization problem

In this section, we present the formal version of Theorem 3.1. We first state the general conditions
under which this result is true, and give an outline of its proof. Recall that an instance of the
optimization problem is given by a tuple I := (Ω, fD, ℓ, α, τ), where Ω is a closed interval in R (i.e.,
Ω is one of [a, b], [a,∞), (−∞, b], (−∞,∞) for some suitable real values a or b), fD is the density
of the true utility that is Lebesgue measurable, ℓ is the loss function, τ is the resource-information
parameter and α ≥ 1 is the risk-averseness parameter. The main result, Theorem C.1, states that
under mild conditions, the instance I has a unique optimal solution. We present applications of
Theorem C.1 when the input density is Gaussian, Pareto, Exponential, and Laplace in Sections H, I, J,
and K respectively.

In Section C.1, we state the primal optimization formulation and the assumptions needed by The-
orem C.1. Clearly, we need that the instance I has a non-empty set of solutions, i.e., there exists
a density of entropy at least τ (assumption (A0)). In Section C.2, we state the dual of the convex
program PrimalOpt and show that weak duality holds. This proof requires integrability of the loss
function with respect to the measure induced by the density fD (assumption (A3)). This assumption
also ensures that the optimal value does not become infinite.

In Section C.3, we show that strong duality holds. We use Slater’s condition to prove this. This proof
also shows that there exist optimal Lagrange dual variables. However, this does not show that there is
an optimal solution f⋆ to the primal convex program. In fact, one can construct examples involving
natural loss functions and densities where strong duality holds, but the optimal solution does not exist.
In order to prove the existence of an optimal solution f⋆ to the instance I, we show that the optimal
Lagrange dual variable γ⋆ (corresponding to the entropy constraint in PrimalOpt) is strictly positive.
This proof requires several technical steps.

We first study properties of the function IfD,α,ℓ(x) in Section C.4, which is the expected loss if the
estimated value is x. It is easy to verify that the objective function of PrimalOpt, Errℓ,α(fD, f), is
the integral of IfD,α,ℓ(x)f(x) over Ω. Therefore, the optimal solution f⋆(x) would place a higher
probability mass on regions where IfD,α,ℓ(x) is small. Under natural monotonicity conditions on the
loss function (assumption (A1)), we show that IfD,α,ℓ(x) can be expressed as a sum of an increasing
and a decreasing function. This decomposition shows that for natural loss functions, e.g., those which
or concave or convex in each of the coordinates, the function IfD,α,ℓ(x) is unimodal; we state this as
an assumption (A5) to take care of general loss function settings.

In Section C.5, we show that γ⋆ > 0. This proof hinges on the following result: For every instance
I = (Ω, fD, ℓ, α, τ) with finite optimal value, there is a positive constant η such that the optimal
value is at least IfD,ℓ,α(x

⋆) + η, where x⋆ is the minimizer of IfD,ℓ,α(x). This requires unimodality
of the function IfD,ℓ,α(x) and bounded mean (and median) of fD (assumption A4). Somewhat
surprisingly, this result also requires that the loss function ℓ(v, x) grows at least logarithmically as a
function of |v − x| (assumption (A2)). Without this logarithmic growth, an optimal solution need not
exist: it may happen that there are near-optimal solutions that place vanishingly small probability
mass outside the global minimum x⋆ of IfD,ℓ,α(x). Thus, even though we have an entropy constraint,
there will be a sequence of solutions, whose error converges to the optimal value, that converges to a
delta function.

In Section C.6, we use the positivity of γ⋆ to explicitly write down an expression for the optimal
primal solution. We use strict convexity of the feasible region for PrimalOpt to show that the optimal
solution is unique. Finally, in Section C.7, we show that if fD has bounded entropy, then there is a
suitable choice for the loss function ℓ, and parameters α and τ , such that we recover fD as the unique
optimal solution in the resulting instance.

C.1 The primal optimization problem and assumptions

We re-write the optimization problem OptProg here. An instance I of this problem is given by a
tuple I := (Ω, fD, ℓ, α, τ), where Ω is a closed interval in R, fD is the density of the true utility that
is Lebesgue measurable, ℓ is the loss function, τ is the resource-information parameter and α ≥ 1 is
the risk-averseness parameter. Recall that µ is the Lebesgue measure on R. Note that Ω can be of the
form (−∞,∞), or [a,∞) for a real a, (−∞, b] for a real b, or [a, b] for real a, b, a < b.
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The primal problem for I = (Ω, fD, ℓ, α, τ) is as follows. Here, Dom denotes the set {f : Ω →
R≥0}.

min
f∈Dom

Errℓ,α (fD, f) :=

∫
Ω

[∫
Ω

ℓα(x, v)f(x)dµ(x)

]
fD(v)dµ(v)

(PrimalOpt)

such that Ent(f) := −
∫
Ω

f(x) ln f(x)dµ(x) ≥ τ (6)∫
Ω

f(x)dµ(x) = 1. (7)

We state the assumptions and justify each of these:

A0 (Strict feasibility of the instance) The interval Ω has length strictly larger than eτ . This is
satisfied trivially if Ω is infinite.
Remark: In order to ensure that the set of feasible solutions to an instance of PrimalOpt is
non-empty, we require that Ω has length at least eτ ; otherwise even the uniform distribution
on Ω shall have entropy less than τ . The strict inequality is needed to ensure strong duality
(Slater’s condition).

A1 (Monotonicity of the loss function) We assume that the loss function ℓ : Ω× Ω → R is
continuous and ℓ(x, x) = 0 for all x ∈ Ω. We consider two types of loss functions, TYPEP
and TYPEN. The TYPEP loss functions have the following monotonicity property: For any
fixed v ∈ Ω, ℓ(v, x) strictly increases as |v − x| increases. It follows that ℓ(v, x) ≥ 0 with
equality if and only if v = x. The TYPEN loss functions have the following property: For
a fixed v ∈ Ω, ℓ(v, x) is a strictly increasing function of x. It follows that ℓ(v, x) ≥ 0 if
x ≥ v and ℓ(v, x) < 0 if x < v. For example, ℓ(x, v) = (x − v)2, |x − v| are of TYPEP,
whereas ℓ(x, v) = lnx− ln v, (x− v) are of TYPEN.
Remark: These are natural monotonicity properties. A TYPEP loss function ensures that
the optimal density to an instance I of PrimalOpt assigns higher values to points where
the input density fD is more concentrated. A TYPEN loss function ensures that the optimal
density does not place high probability mass at points that are much larger than the mean of
fD.

A2 (Growth rate of the loss function) We would like to assume that the loss function ℓ(x, v)
grows reasonably rapidly as |x− v| increases. It turns out that the “right” growth rate would
be at least logarithmic. For instance, we could require that |ℓ(x, v)| is Ω(| ln(x − v)|).
However, unless we assume some form of the triangle inequality, such a lower bound would
not imply a lower bound on |ℓ(x2, v) − ℓ(x1, v)| for any x2, x1, v ∈ Ω. Thus, we make
the following assumption: There is a constant C, such that for all x2, x1, v ∈ Ω, with
|x1 − x2| ≥ C, v /∈ (x1, x2),

|ℓ(x2, v)− ℓ(x1, v)| ≥ ln |x2 − x1| − θx1
,

where θx1
is a value which depends on x1 only. For example, when ℓ(x, v) = (x− v), the

above is satisfied with θx = 0, C = 1; and when ℓ(x, v) = lnx− ln v, the above property
holds with θx = lnx,C = 0.
Remark: This is a subtle condition, and is needed to ensure that an optimal solution exists.
Consider for example, an instance I with Ω = [0,∞), fD being the exponential density,
ℓ(x, v) = ln ln(x+ 2)− ln ln(v + 2) (the “+2” factor is to ensure that ln(x+ 2) does not
become negative). The parameters α, τ can be arbitrary. Let ε > 0 be an arbitrarily small
constant. Now, consider a solution that places 1− ε probability mass at x = 0 and spreads
the remaining ε probability mass uniformly over an interval of length eτ/ε to achieve entropy
τ . Since the loss function grows slowly, the expected loss of this solution decreases with
decreasing ε. Thus, even though strong duality holds in this instance, an optimal solution
does not exist. In fact, we have a sequence of solutions, with error converging to the optimal
value of I, converging to the delta-function at 0.

A3 (Integrability of the loss function) We assume that the function ℓ(x, v)fD(v) is in L1(µ)
for every x ∈ Ω. In other words, for each x ∈ Ω,∫

Ω

|ℓ(x, v)|fD(v)dµ(v) < ∞.
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Remark: This is needed in order to carry out basic operations like the swapping of integrals
(Fubini’s Theorem) on the objective function. Further, this ensures that the objective function
does not become infinite under reasonable conditions.

A4 (Bounded mean and half-radius) We assume that the true utility density fD has a bounded
mean m. Moreover, we assume that there is a finite value R such that at least half of the
probability mass of fD lies in the range [m−R,m+R], i.e.,∫

Ω∩[m−R,m+R]

fD(v)dµ(v) ≥ 1/2.

Remark: This condition ensures that fD decays at a reasonable rate (though it is much
milder than requiring bounded variance).

A5 (Unique global minimum for estimated loss function) Let IfD,ℓ,α(x) denote the expected
loss when the estimated value is x, i.e.,

IfD,ℓ,α(x) :=

∫
Ω

ℓα(x, v)fD(v)dµ(v).

We assume that this function has a unique minimum on Ω. Moreover, if x⋆ denotes
argminx∈Ω IfD,ℓ,α(x), we also assume that for all other local minima x of this function,
IfD,ℓ,α(x) is larger than IfD,ℓ,α(x

⋆) by a fixed constant. We state this condition formally as
follows: Given any δ > 0, there is an εδ > 0 such that for all x satisfying |x− x⋆| > δ, we
have IfD,ℓ,α(x) ≥ IfD,ℓ,α(x

⋆) + εδ .
Remark: This condition is needed to ensure the uniqueness of the optimal solution. The
optimal density for an instance I = (Ω, fD, ℓ, α, τ) tries to place higher probability
mass in regions where IfD,ℓ,α(x) is low. Therefore, a unique global minimum (and well-
separatedness from other local minima) is needed to ensure that the optimal solution
is unique. When the loss function is TYPEN, this condition is always satisfied (unless
the optimal value is −∞). For a TYPEP loss function, this condition is satisfied if the
loss function ℓ(x, v) is concave or convex in x (for each fixed value of v), e.g., when
ℓ(x, v) = (x− v)2, |x− v|, | lnx− ln v|.

The following is the formal version of Theorem 3.1.
Theorem C.1 (Characterization of optimal density). Consider an instance I of the optimization
problem PrimalOpt defined on a closed interval Ω ⊆ R. Let ℓ, α, τ, fD denote the loss function, risk-
averseness parameter, resource-information parameter, and the density of the true utility respectively
in I. If assumptions (A0)–(A5) are satisfied, then there is a unique solution f⋆ to the instance I.
This solution satisfies the following condition:

f⋆(x) ∝ exp

(
−IfD,ℓ,α(x)

γ⋆

)
, (8)

where γ⋆ is the Lagrange variable corresponding to the entropy constraint (6) and is strictly positive.
Moreover, Ent(f⋆) = τ .

C.2 Dual formulation and weak duality

Let γ ≥ 0 and ϕ ∈ R denote the Lagrange variables for the constraints (6) and (7) respectively. Then,
the Lagrangian is

L(f, γ, ϕ) := Errℓ,α(fD, f) + γ(τ − Ent(f)) + ϕ

(∫
Ω

f(x)dµ(x)− 1

)
.

Given γ ≥ 0, ϕ, define

g(γ, ϕ) := inf
f∈Dom

L(f, γ, ϕ). (9)

The dual problem is

max
γ∈R≥0,ϕ∈R

g(γ, ϕ). (DualOpt)

We first show weak duality.
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Theorem C.2 (Weak duality). Consider an instance I = (Ω, fD, ℓ, α, τ) of PrimalOpt satisfying
assumption (A3). Let g(γ, ϕ) be as defined in (9). Then,

max
γ∈R≥0,ϕ∈R

g(γ, ϕ) ≤ min
f :f feasible for PrimalOpt

Errℓ,α(fD, f).

Proof. We assume that the primal problem has a feasible solution, otherwise the desired inequality
follows trivially. Let f be a feasible solution to PrimalOpt and let γ, ϕ be real values with γ ≥ 0.
Then,

g(γ, ϕ) ≤ L(f, γ, ϕ)

= Errℓ,α(fD, f) + γ(τ − Ent(f)) + ϕ

(∫
Ω

f(x)dµ(x)

)
≤ Errℓ,α(fD, f),

where the first inequality follows from the definition of g(γ, ϕ), and the last inequality follows from
the fact that f is a feasible solution to the instance I of PrimalOpt.

C.3 Strong duality

Theorem C.3 (Strong duality). Consider an instance I = (Ω, fD, ℓ, α, τ) of PrimalOpt satisfying
assumptions (A0), (A1) and (A3). Let f⋆ and (γ⋆, ϕ⋆) be the optimal solutions to PrimalOpt
and DualOpt respectively. Then g(γ⋆, ϕ⋆) = Errℓ,α(fD, f

⋆).

Proof. We first observe that there is a feasible solution to the instance I. This is so because, by
assumption (A0), Ω must contain an interval I of length at least eτ . Now, we define f as the uniform
distribution on I . Then Ent(f) = τ , and hence, f is a feasible solution to the instance I. We now
argue that Errℓ,α(fD, f) is finite.

Claim C.4. Consider the function f and the interval I defined above. Then, Errℓ,α(fD, f) < ∞.

Proof. Let a, b denote the left and the right end-points of the interval I respectively. For any x ∈ I
and v ∈ Ω, we claim that ℓα(x, v) ≤ max(ℓα(a, v), ℓα(b, v)). First, consider the case when the
loss function is TYPEP. If v is at least x, then ℓ(x, v) ≤ ℓ(a, v); otherwise ℓ(x, v) ≤ ℓ(b, v). If
the loss function is TYPEN, then we know that it is an increasing function of x, and therefore,
ℓ(x, v) ≤ ℓ(b, v). Thus, we see that for any x ∈ I , v ∈ Ω, ℓα(x, v) ≤ max(ℓα(a, v), ℓα(b, v)) ≤
|ℓα(a, v)|+ |ℓα(b, v)|. Therefore (recall that f is the uniform distribution on I),

Errℓ,α(fD, f) ≤
1

|I|

∫
I

|ℓ(a, v)|fD(v)dµ(v) +
1

|I|

∫
I

|ℓ(b, v)|fD(v)dµ(v) < ∞,

where the last inequality follows from assumption (A3).

Thus, we see that the optimal value of PrimalOpt is either finite or −∞. If it is −∞, then weak
duality implies that DualOpt has optimal value −∞ as well. Thus, we have shown strong duality in
this case.

For the rest of the proof, assume that the optimal value, p⋆, of PrimalOpt is finite. We show strong
duality using Slater’s condition. Towards this, we define two sets A and B, both of which are
contained in R3. Define

A :=

{
(u, v, t) : u ≥ τ − Ent(f), v =

∫
Ω

f(x)dµ(x)− 1, t ≥ Errℓ,α(fD, f), for some f ∈ Dom

}
,

and
B := {(0, 0, q) : q < p⋆} .

It is easy to see that B is convex. We show that A is also convex.
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Claim C.5. The set A as defined above is a convex subset of R3.

Proof. The proof follows from the fact that Ent(f) is a concave function of f and Errℓ,α(fD, f)
is linear in f . Formally, suppose (u1, v1, t1), (u2, v2, t2) ∈ A and λ ∈ [0, 1]. We need to show
that (u, v, t) := λ(u1, v1, t1) + (1 − λ)(u2, v2, t2) ∈ A. By the definition of the set A, there exist
f1, f2 ∈ Dom such that

ui ≥ τ − Ent(fi), vi =

∫
Ω

fi(x)dµ(x)− 1, ti ≥ Errℓ,α(fD, fi), i ∈ {1, 2}.

Consider f = λf1 + (1− λ)f2. Then f is also a density and is in Dom. Further,

Errℓ,α(fD, f) = λ1Errℓ,α(fD, f1) + (1− λ1)Errℓ,α(fD, f2) = λt1 + (1− λ)t2 = t.

Similarly, since −x lnx is concave,

Ent(f) = −
∫
Ω

f(x) ln f(x)dµ(x)

≥ −λ

∫
Ω

f1(x) ln f1(x)dµ(x)− (1− λ)

∫
Ω

f2(x) ln f2(x)dµ(x) ≥ τ.

Thus, (u, v, t) ∈ A.

We argue that A and B are disjoint. Indeed, otherwise, there is an f ∈ Dom such that f is a
density, Ent(f) ≥ τ and Errℓ,α(fD, f) < p⋆, a contradiction. By the hyperplane separation
theorem [34, 143], there is a hyperplane (γ̃, ϕ̃, ν̃)⊤(x1, x2, x3) = c such that A and B lie on different
sides of this hyperplane. In other words, for every (x1, x2, x3) ∈ A,

γ̃x1 + ϕ̃x2 + ν̃x3 ≥ c,

and for every (x1, x2, x3) ∈ B,
γ̃x1 + ϕ̃x2 + ν̃x3 ≤ c.

Therefore, for each f ∈ Dom,

γ̃(τ − Ent(f)) + ϕ̃

(∫
Ω

f(x)dµ(x)− 1

)
+ ν̃Errℓ,α(fD, f) ≥ c, (10)

and

ν̃p⋆ ≤ c. (11)

Claim C.6. γ̃ and ν̃ are non-negative.

Proof. Suppose, for the sake of contradiction, that γ̃ < 0. Consider f ∈ Dom as given by Claim C.4.
Choose values (x1, x2, x3) as follows: x1 is a large enough value greater than τ − Ent(f), x2 = 0,
x3 = Errℓ,α(fD, f). Claim C.4 shows that x3 is finite. Since (x1, x2, x3) ∈ A, γ̃x1 + ν̃x3 ≥ α.
Since γ̃ < 0, we can choose x1 large enough to make γ̃x1+ ν̃x3 go below α, which is a contradiction.
Similarly, we can show that ν̃ ≥ 0.

Thus, two cases arise (i) ν̃ > 0, or (ii) ν̃ = 0. First, consider the case when ν̃ > 0. Define
γ⋆ = γ̃/ν̃, ϕ⋆ = ϕ̃/ν̃. Inequalities (10) and (11) show that for all f ∈ Dom,

γ⋆(τ − Ent(f)) + ϕ⋆

(∫
Ω

f(x)dµ(x)− 1

)
+ Errℓ,α(fD, f) ≥ p⋆,

i.e., g(γ⋆, ϕ⋆) ≥ p⋆. It follows from weak duality (Theorem C.2) that g(γ⋆, ϕ⋆) = p⋆ and the dual
optimum value is equal to p⋆.

Now consider the case when ν̃ = 0. Again, inequalities (10) and (11) show that for all f ∈ Dom,

γ̃(τ − Ent(f)) + ϕ̃

(∫
Ω

f(x)dµ(x)− 1

)
≥ 0.

28



Next, we observe that there is an f0 ∈ Dom such that f0 is a density and Ent(f0) > τ . Indeed, let f0
be the uniform distribution over an interval of length strictly larger than eτ (such an interval exists by
assumption (A0)). Substitution f = f0 in the above inequality, and assuming γ̃ > 0, the l.h.s. of the
above inequality becomes strictly less than 0, which is a contradiction. Therefore, it must be the case
that γ̃ = 0. Hence, we see that for all f ∈ Dom,

ϕ̃

(∫
Ω

f(x)dµ(x)− 1

)
≥ 0.

Since all the three quantities γ̃, ϕ̃, ν̃ cannot be 0, it must be the case that ϕ⋆ ̸= 0. But for any density
f0 ∈ Dom, by suitably scaling it by a positive real, we can make the quantity

(∫
Ω
f(x)dµ(x)− 1

)
strictly larger than or strictly smaller than 0, which is again a contradiction. Hence, we have concluded
that ν̃ cannot be 0. This completes the proof of strong duality.

Corollary C.7. Consider an instance I = (Ω, fD, ℓ, α, τ) of PrimalOpt and assume that the optimal
value p⋆ is finite. Then there exists a solution (γ⋆, ϕ⋆) to DualOpt such that p⋆ = g(γ⋆, ϕ⋆).

Proof. This follows from the proof of Theorem C.3. When p⋆ is finite, the parameter ν̃ > and, hence,
γ⋆ = γ̃/ν̃, ϕ⋆ = ϕ̃/ν̃ as defined in the proof of this result satisfy the property that g(γ⋆, ϕ⋆) =
p⋆.

We would now like to prove that, assuming that the optimal primal value is finite, the optimal
dual variable γ⋆ is non-zero. This allows us to write an explicit expression for an optimal solution
to PrimalOpt. We first need to understand the properties of the following integral, which was defined
in assumption (A5):

IfD,ℓ,α(x) =

∫
Ω

ℓα(x, v)fD(v)dµ(v).

When the parameters fD, ℓ, α will be clear from the context, we shall often abbreviate IfD,ℓ,α(x) as
I(x).

C.4 Properties of the integral I(x)

We study some of the key properties of the integral I(x). We shall assume that assumptions (A0)–(A4)
hold. The integral I(x) can be split into two parts:

I(x) = α

∫
Ω∩(−∞,x]

ℓ(x, v)fD(v)dµ(v)︸ ︷︷ ︸
:=IL(x)

+

∫
Ω∩[x,∞)]

ℓ(x, v)fD(v)dµ(v)︸ ︷︷ ︸
:=IR(x)

.

Lemma C.8. The integral IL(x) is a strictly increasing function of x. Further, IL(x2)− IL(x1) ≥
α(ln(x2 − x1) − θx1

)FD(x1), for all x2, x1 ∈ Ω satisfying x2 − x1 ≥ C. Here, FD denotes the
cumulative distribution function (c.d.f.) of fD.

Recall that the parameter θx1
appears in the assumption (A3).

Proof. Consider x1, x2 ∈ Ω with x1 < x2. Then

IL(x2)− IL(x1) = α

∫ x1

−∞
(ℓ(x2, v)− ℓ(x1, v))fD(v)dµ(v) + α

∫
[x1,x2]∩Ω

ℓ(x2, v)fD(v)dµ(v).

By assumption (A1), ℓ(x2, v) > ℓ(x1, v) for all v ≤ x1 and ℓ(x2, v) ≥ 0 for all v ≤ x2, we see that
IL(x2) > IL(x1). Suppose x2−x1 ≥ C. Then ℓ(x2, v)− ℓ(x1, v) ≥ ln |x2−x1| − θx1

. Therefore,
using A3, the first integral above is at least

α(ln(|x2 − x1| − θx1
)

∫ x1

−∞
fD(v)dµ(v) = α(ln(x2 − x1)− θx1

)FD(x1).
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Lemma C.9. The integral IR(x) is a strictly increasing function of x when the loss function is
TYPEN, and is a strictly decreasing function of x when the loss function is TYPEP.

Proof. Consider x1, x2 ∈ Ω with x1 < x2. Then

IR(x2)− IR(x1) = −
∫ x2

x1

ℓ(x1, v)fD(v)dµ(v) +

∫
[x2,∞)∩Ω

(ℓ(x2, v)− ℓ(x1, v))fD(v)dµ(v).

First, consider the case of TYPEN loss function. Then for all v ≥ x1, ℓ(x1, v) ≤ ℓ(v, v) = 0, and
hence, the first integrand above is positive. We also know that for all v, ℓ(x2, v) ≥ ℓ(x1, v), and
hence, the second integrand above is also positive. This shows that IR(x) is an increasing function of
x when the loss function is TYPEN.

Now consider the case when the loss function is TYPEP. For any value v ≥ x1, ℓ(x1, v) ≥ ℓ(v, v) = 0.
Similarly, for v ≥ x2, ℓ(x2, v) < ℓ(x1, v). Thus, IR(x2) < IR(x1) in this case.

Combining Lemma C.8 and Lemma C.9, we get the main result about the variation of I(x).

Theorem C.10 (Monotonicity of I(x) with respect to x). Assume that conditions (A0)–(A4) hold.
The function I(x) is a continuous function of x. For a TYPEN loss function, I(x) is a monotonically
strictly increasing function of x, with I(x) going to −∞ as x goes to −∞ (assuming Ω is unbounded
from below). For a TYPEP loss function, I(x) is the sum of an increasing and a decreasing function,
and has a global minimum on Ω. Further, I(x) goes to ∞ as x goes to ∞ or −∞ (assuming these
values lie in Ω).

Proof. First, consider the case of TYPEN loss functions. It follows from Lemma C.8 and Lemma C.9
that I(x) is a strictly increasing function of x. The integrand in IL(x) is I[x ≥ v]ℓ(x, v)fD(v),
where I[ ] denotes the indicator function. As shown in the proof of Lemma C.8, this is a monotonically
decreasing function of x. Therefore, the monotone convergence theorem [126] implies that IL(x)
goes to 0 as x goes to −∞. Similarly, IR(x) goes to −∞ as x goes to −∞. Similarly, in the case of
TYPEP loss function, IL(x) goes to 0 and IR(x) goes to ∞ as x goes to −∞. Thus, I(x) goes to ∞.
Similarly, I(x) goes to ∞ as x goes to ∞. Since I(x) is the sum of an increasing and decreasing
function, and is infinite as x goes to ∞ or −∞, it must have a global minimum on Ω.

Corollary C.11. Consider an instance I := (Ω, fD, ℓ, α, τ) of PrimalOpt. If the loss function is
TYPEP, then the optimal value is always finite. If the loss function is TYPEN and the optimal value
is finite, then Ω is of the form [a,∞) or [a, b] for some a, b ∈ R.

Proof. First, consider the case when the loss function is TYPEP. We exhibit a solution f with finite
objective value. Let f be the uniform distribution over an interval A of length eτ (by assumption (A0),
such an interval always exists). Since I(x) is continuous, it achieves a maximum value on A – let this
value be p. Then Errℓ,α(fD, f) ≤ p. Thus, we see that the optimal value for this instance is finite.

Now we prove the second assertion. Suppose, for the sake of contradiction, that the loss function is
TYPEN and Ω is unbounded from below. We claim that the optimal value for this instance is −∞,
which will be a contradiction. To see this, consider a density f ∈ Dom which is uniform on an
interval A = [s, t] of length eτ (by assumption (A0)). The entropy of this density is τ and, hence,
this is a feasible solution to the instance I. However,

Errℓ,α(fD, f) =

∫
Ω

I(x)f(x)dµ(x) =
1

eτ

∫
A

I(x)dµ(x) ≤ I(t).

Thus, we can keep moving the interval A to the left, which would mean that I(t) would tend to −∞
(using Theorem C.10). This shows that the optimal value of this instance is −∞.

We shall use the following fact about the finiteness of optimal value when condition (A5) is also
satisfied.
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Claim C.12. Consider an instance I = (Ω, fD, ℓ, α, τ) of PrimalOpt satisfying conditions (A0)–
(A5). Then the optimal value is always finite.

Proof. If the loss function is TYPEP, this follows from Corollary C.11. In the case of a TYPEN loss
function, the optimal value is finite unless Ω is unbounded from below. In this case, Theorem C.10
shows that argminx∈Ω I(x) does not exist, and hence, assumption (A5) is violated.

C.5 Positivity of the optimal dual variable

We now prove that the optimal dual variable γ⋆ is strictly positive. In this section, we assume that
assumptions (A0)–(A5) hold. For this, we need certain technical results.

Lemma C.13. Consider an instance I = (Ω, fD, ℓ, α, τ) of PrimalOpt with the loss function being
TYPEP. Let x⋆ be argminx∈Ω I(x). Then there is a value η > 0, such that any feasible solution f
must have Errℓ,α(fD, f) ≥ I(x⋆) + η.

Proof. Let x⋆ denote the unique global minimum of I(x) on Ω (using assumption (A5)). We show
that there is a small enough value ε > 0 such that any feasible solution f must place at least ε amount
of probability mass outside Iε := [x⋆ − ε, x⋆ + ε]. This suffices for the following reason. We know
by the assumption (A5) that there is a positive value ζ such that I(x) > I(x⋆) + ζ for all x /∈ Iε.
Thus,

Errℓ,α(fD, f) =

∫
Ω∩Iε

I(x)f(x)dµ(x) +

∫
Ω\Iε

I(x)f(x)dµ(x)

≥ I(x⋆) + εζ.

Hence, we can choose the desired value η to be εζ.

It remains to find such a ε. We consider such a value ε and assume that a feasible solution f places
strictly more than 1− ε probability mass inside Iε. We need one notation: For an interval A, define

EntA(f) := −
∫
Ω∩A

f(x) ln f(x)dµ(x).

Let m be the mean of fD and let R be the half-radius of fD, i.e., fD places at least half of its
mass in the interval [m−R,m+R] ∩ Ω. Let A0 be a large enough interval containing x⋆ and the
interval [m−R,m+R] – assume that the end-points of A0 are at least A0/2 away from any point
in [m−R,m+R]. We consider intervals of growing size around A0. Let A0 := [s0, t0]. Let A1 be
the union of the intervals on both sides of A0, each of length e2/ε. Similarly, having defined Ai−1

(which will be a union of two intervals), define Ai to be the union of two intervals on both sides of
Ai−1, each of length e2

i

.

Consider the feasible solution f . Let βi be the total probability mass placed by f on Ai. Thus,

Ent(f) = EntIε(f) + EntA0\Iε(f) +
∑
i≥1

EntAi
(f).

We bound each of the terms above. Note that EntAi
(f) is maximized when we distribute βi mass

uniformly over Ai. Similarly, EntIε(f) is at most ln(ε) and EntA0\Iε ≤ ln |A0| = lnD. Thus, we
see that

τ ≤ Ent(f) ≤ ln(εD) +
∑
i≥1

βi ln
|Ai|
βi

≤ ln(εD) +
∑
i≥1

βi ln |Ai|.

In other words, ∑
i≥1

βi ln |Ai| ≥ τ − ln(εD).

Observe that we can still choose ε and, hence, we will choose it such that the r.h.s. above becomes
as large as we want (ideally, much larger than p⋆). Observe that any point in Ai is at least |Ai−1|
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distance away from any point in [m−R,m+R]. Therefore, (and this is where we use non-negativity
of the loss function, which has been assumed to be TYPEP)

Errℓ,α(fD, f) ≥
∑
i

βi

2
(ln |Ai−1| − θx) ≥

∑
i

βi ln |Ai|
4

− θx,

where we have used the fact that | ln |Ai| = 2 ln |Ai−1|. It follows from the above two inequalities

that if we choose ε =
(

eτ

4θxp⋆D

)4
, then Errℓ,α(fD, f) ≥ 2p⋆. Hence, either f places less than 1− ε

mass inside Iε or its objective function value is more than 2p⋆.

The above proof only worked for TYPEP loss functions. We need a similar result for TYPEN loss
functions. The ideas are similar, but we need to use the function I(x) in a more subtle manner.
Lemma C.14. Consider an instance I = (Ω, fD, ℓ, α, τ) of PrimalOpt with the loss function being
TYPEN. Let x⋆ be argminx∈Ω I(x). Then there is a value η > 0, such that any feasible solution f
must have Errℓ,α(fD, f) ≥ I(x⋆) + η.

Proof. As in the proof of Lemma C.13, we would like to argue that there is a positive ε > 0
such that any feasible solution places at least ε amount of mass outside the interval Iε. Since the
optimum is finite, Corollary C.11 shows that Ω is bounded from below, i.e., it is of the form [a, b] or
[a,∞). Theorem C.10 now implies that x⋆ = a.

Again, define the sets Ai as in the proof of Lemma C.13, but now, we make A0 start from the lower
limit a of Ω. Thus, each of the Ai will now be a single interval, with Ai being to the right of Ai−1.
Now we use the fact that when the loss function is TYPEN, both the functions IL(x) and IR(x) are
monotonically increasing (Lemma C.8 and Lemma C.9). Further, for a point x ∈ Ai, Lemma C.8
shows that

IL(x)− IL(m+R) ≥ α

2
(ln |Ai−1| − θm+R), )

because the c.d.f. of fD at m+R is at least 1/2. Hence,∫
Ai∩Ω

(IL(x)− IL(x⋆)f(x)dµ(x) ≥ αβi

2
(ln |Ai−1| − θm+R).

Summing the above over all i ≥ 1, and proceeding as in the proof of Lemma C.13, we see that by
choosing a small enough ε, (here t0 denotes the right end-point of A0)∑

[t0,∞)∩Ω

IL(x)f(x)dµ(x)− IL(x⋆)

can be made larger than a desired quantity Q, which depends only on the parameters of the input
instance I. Since IR(x) is an increasing function of x, we also get∫

[t0,∞)∩Ω

I(x)f(x)dµ(x) ≥ I(x⋆) +Q.

One remaining issue is that the integral on the l.h.s. does not include the terms for [a, t0) (recall
that I(x) can be negative). However, observe that I(x) is an increasing function of x, and hence
I(x) ≥ I(a) for all x. Therefore,

Errℓ,α(fD, f) =

∫
Ω

I(x)f(x)dµ(x)

=

∫ t0

a

I(x)f(x)dµ(x) +

∫
[t0,∞)∩Ω

I(x)f(x)dµ(x)

≥ I(a) + I(a) +Q.

Again, by choosing Q large enough, we can set the above to more than 2I(a).

As an immediate consequence of this result, we see that for an instance of PrimalOpt satisfying
conditions (A0)–(A5), the optimal dual solution γ⋆ is non-zero.
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Theorem C.15. Consider an instance I = (Ω, fD, ℓ, α, τ) of PrimalOpt satisfying conditions (A0)–
(A5). Then there is an optimal dual solution (γ⋆, ϕ⋆) to DualOpt satisfying γ⋆ > 0.

Proof. Let p⋆ denote the optimal value of this instance (it is finite by Claim C.12). Corollary C.11
implies that I(x) has a (unique) global minimum x⋆ in Ω. Assume, for the sake of contradiction,
that γ⋆ = 0. We claim that g(γ⋆, ϕ⋆) = I(x⋆). Indeed, consider a function f which places unit
probability mass at x⋆. Then it is easy to verify that L(f, γ⋆, ϕ⋆) = I(x⋆). However, Lemma C.13
and Lemma C.14 show that p⋆ > I(x⋆), which is a contradiction (because by Theorem C.3, strong
duality holds).

C.6 Optimality conditions and uniqueness of optimal solution

We now show that, under suitable conditions, there is an optimal solution to an instance of PrimalOpt.
Theorem C.16 (Optimality condition). Consider an instance I of the optimization problem Pri-
malOpt defined on a space Ω. Let ℓ, α, τ, fD denote the loss function, risk-averseness parameter,
resource-information parameter, and the density of the true utility respectively in I. Assume that
the optimal value for this instance is finite and assumptions (A0), (A3) hold. Let (γ⋆, ϕ⋆) be an
optimal solution to the corresponding DualOpt with γ⋆ > 0. Consider a function f⋆ ∈ Dom defined
as follows:

IfD,ℓ,α(x) + γ⋆(1 + ln f⋆(x)) + ϕ⋆ = 0, ∀x ∈ Ω. (12)

Then f⋆ is an optimal solution to the instance I.

Proof. Let p⋆ denote the value of the optimal solution to I. Since p⋆ is finite, Theorem C.15 shows
that there is an optimal dual solution satisfying γ⋆ > 0. Recall that

g(γ⋆, ϕ⋆) := min
f∈Dom

L(f, γ⋆, ϕ⋆).

Let f⋆ be the function defined by (12) (f⋆(x) is well-defined since γ⋆ > 0, this is where we need
strict positivity of γ⋆). We argue that L(f⋆, γ⋆, ϕ⋆) = g(γ⋆, ϕ⋆).

Indeed, consider any other function h ∈ Dom. Define a function θ : [0,∞) → R as follows:

θ(t) := L((1− t)f⋆(x) + t h(x), γ⋆, ϕ⋆) = L(f⋆(x) + te(x), γ⋆, ϕ⋆),

where e(x) = h(x)− f⋆(x). We first claim that θ(t) is a convex function of t.

Claim C.17. The function θ : [0, 1] → R is a convex function.

Proof. We observe that Err(f⋆+t ·e, fD) is a linear function of t. The function γ(τ−Ent(f⋆+t ·e))
is a convex function of t, and ϕ

(∫
Ω
(f(x) + te(x))dµ(x)− 1

)
is a linear function of t. Therefore,

θ(t) which is the sum of these three functions, is a convex function of t.

We shall show that dθ(t)
dt

∣∣
t=0+

= 0. Along with the convexity of θ(t), this implies that θ(0) ≤ θ(1)

and hence L(f⋆, γ⋆, ϕ⋆) ≤ L(h, γ⋆, ϕ⋆). A routine calculation shows that dθ(t)
dt

∣∣
t=0+

is equal to∫
Ω

(IfD,ℓ,α(x) + γ⋆(1 + ln f⋆(x)) + ϕ⋆) e(x)dµ(x).

Inequality (12) implies that the above expression is 0. This proves the desired result. Thus, we have
shown that L(f⋆, γ⋆, ϕ⋆) = g(γ⋆, ϕ⋆), and therefore, f⋆ is an optimal solution to the instance I .

We now show the uniqueness of the optimal solution to PrimalOpt. Consider an instance of this
optimization problem specified by Ω, loss function ℓ, density fD and parameters α, τ . Let F denote
the set of feasible densities, i.e.,

F := {f : f ∈ Dom, f is a density on Ω and
∫
Ω

f(x) ln f(x)dµ(x) ≤ −τ}.
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Lemma C.18. F is strictly convex.

Proof. Let f1, f2 ∈ F and λ be a parameter in [0, 1]. We first show that the density f defined by
f(x) := λf1(x) + (1− λ)f2(x), x ∈ Ω, is also in F . Clearly, f is a density, because f(x) ≥ 0 and∫

Ω

f(x)dµ(x) = λ

∫
Ω

f1(x)dµ(x) + (1− λ)

∫
Ω

f2(x)dµ(x) = λ+ (1− λ) = 1.

Hence, the fact that g(y) := y ln y is a strongly convex function on R≥0 implies that

f(x) ln f(x) ≤ λf1(x) ln f1(x) + (1− λ)f2(x) ln f2(x)),

with equality if and only if f1(x) = f2(x). Integrating both sides, and using the fact that f1, f2
belong to F , we get ∫

Ω

f(x) ln f(x)dµ(x) ≤ −λτ − (1− λ)τ

= −τ.

Thus, if f1(x) and f2(x) differ on a set of positive measure, then f(x) ln f(x) < λf1(x) + (1 −
λ)f2(x) on a set of positive measure. Integrating both sides, we get Ent(f) > τ . This shows that the
set F is strictly convex.

Strict convexity of F now allows us to show the uniqueness of the optimal solution.

Theorem C.19 (Uniqueness of optimal solution). Consider an instance I = (Ω, fD, ℓ, α, τ)
of PrimalOpt satisfying the property that the optimal value is finite and there is an optimal dual
solution with γ⋆ > 0. Then there is a unique optimal solution to this instance.

Proof. Let p⋆ denote the optimal value of this instance. Theorem C.16 already shows the existence
of an optimal solution. We show the uniqueness of an optimal solution. We have assumed that there
is an optimal dual solution (γ⋆, ϕ⋆) such that γ⋆ > 0. The complementary slackness condition shows
that for any optimal solution f to the instance I, Ent(f) must equal τ .

Suppose, for the sake of contradiction, that there are two distinct optimal solutions f⋆
1 and f⋆

2 to I
(i.e., f⋆

1 (x) ̸= f⋆
2 on a subset of positive measure). Consider a solution f⋆ = tf⋆

1 + (1 − t)f⋆
2 for

some t ∈ (0, 1). Linearity of Errℓ,α(fD, f) shows that Errℓ,α(fD, f⋆) = p⋆ as well. Now f⋆ is also
a feasible solution by Lemma C.18; in fact, this lemma shows that Ent(f⋆) > τ . But this contradicts
the fact that every optimal solution must have entropy equal to τ . Thus, we see that there must be a
unique optimal solution to the instance I.

Combining Lemma F.2, Theorem C.16 and Theorem C.19, we see that Theorem C.1 holds.

C.7 Conditions under which optimal solution is fD

We show that our optimization framework can output the true utility fD for a choice of the parameters
α, τ , and the loss function ℓ.

Theorem C.20 (Parameters that recover the true utility). Consider an instance I =
(Ω, fD, ℓ, α, τ) of the optimization problem PrimalOpt. Assume that the density fD has finite entropy.
Suppose, α := 1, τ := Ent(fD), and the loss function ℓ(x, v) := ln fD(v) − ln fD(x). Then the
density fD is the unique optimal solution to PrimalOpt for I.

Proof. We claim that, for the values of dual variables γ := 1 and ϕ := Ent(fD) − 1, g(γ, ϕ) =
L(fD, γ, ϕ). Towards this, we show that fD minimizes L(f, γ, ϕ) over all f ∈ Dom. We first show
that fD satisfies the condition (12) with γ⋆ = γ, ϕ⋆ = ϕ, f⋆ = fD; it shall then follow from exactly
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the same arguments as in Theorem C.16 that fD = argminf∈Dom L(f, γ, ϕ). Now, we check that fD
satisfies condition (12) (recall that the loss function ℓ(x, v) := ln fD(v)− ln fD(x)):

I(x) + γ(1 + ln fD(x)) + ϕ =

∫
Ω

ℓ(x, v)fD(v)dµ(v) + γ(1 + ln fD(x)) + ϕ

=

∫
Ω

fD(v) ln fD(v)dµ(v)− ln fD(x)

∫
Ω

fD(v)dµ(v) + (1 + ln fD(x)) + Ent(fD)− 1

= −Ent(fD)− ln fD(x) + (1 + ln fD(x)) + Ent(fD)− 1 = 0.

This proves the desired claim.

Thus,
g(γ, ϕ) = L(fD, γ, ϕ) = Errℓ,α(fD, fD).

Thus, g(γ, ϕ) is equal to the objective function value of PrimalOpt at f = fD. Hence, fD is an
optimal solution to PrimalOpt for I. In order to prove uniqueness, note that the above argument also
yields an optimal solution (γ, ϕ) to DualOpt. Since γ > 0, complementary slackness conditions imply
that any optimal solution must have entropy exactly equal to τ . Now, arguing as in Theorem C.19,
we see that there is a unique optimal solution.

D Derivation of output density for a single individual

In this section, we consider the setting when a single individual with true utility u is being evaluated.
In this case, the input density fD(x) is specified by the Dirac-delta function centered at v, denoted
δv(x). Using Theorem 3.1, we can characterize the output density as follows:

Lemma D.1. Consider an instance I = (Ω, fD, ℓ, α, τ) of (OptProg) where Ω = R, fD = δv(x)
for some real v, ℓ(x, u) = (x− u)2, and α and τ are arbitrary real parameters. Then the optimal
density is given by

f⋆(x) =

{
Ke−

(x−v)2

γ⋆ if x ≤ v

Ke−
α(x−v)2

γ⋆ otherwise
,

where K is the normalization constant and γ⋆ is the optimal dual variable for the entropy constraint.

The mean of this density is equal to v −
√

γ⋆

π ·
√
α−1√
α

.

Proof. We first evaluate the integral I(x) as follows:

I(x) :=

∫
Ω

fD(u)ℓα(x, u)dv = α

∫ x

−∞
δv(u)(x− u)2 +

∫ ∞

x

δv(u)(x− u)2.

When x ≤ v, the first integral on the r.h.s. is 0, and hence, the above integral is equal to (x− v)2.
Similarly, if x > v, the above integral is equal to α(x−v)2. The expression for f⋆(x) in the statement
of the Lemma now follows from (12).

A routine calculation shows that the normalization constant K is equal to 2
√
α√

πγ⋆(1+
√
α)

. Now the
mean of this density turns out to be

v −
√

γ⋆

π
·
√
α− 1√
α

.

35



E Connection to the Gibbs equation

Theorem E.1 (Gibbs equation). Consider an instance I = (Ω, fD, ℓ, α, τ) of the optimization
problem PrimalOpt that satisfies the assumptions of Theorem C.1. Then, the following holds:

−γ⋆ lnZ⋆ = Errℓ,α(f
⋆, fD) + γ⋆Ent(f⋆). (13)

Here, f⋆(x) ∝ e−
I(x)
γ⋆ is the solution to PrimalOpt, Z⋆ :=

∫
e−

I(x)
γ⋆ dµ(x), and γ⋆ > 0 is the solution

to DualOpt. Recall that I(x) :=
∫
Ω
ℓα(x, v)fD(v)dµ(v).

Proof. Theorem C.1 implies that there exists f⋆(x) and γ⋆ > 0 such that

f⋆(x) ∝ e−
I(x)
γ⋆ .

Thus, if we let Z⋆ :=
∫
e−

I(x)
γ⋆ dµ(x), then

f⋆(x) =
e−

I(x)
γ⋆

Z⋆
.

Thus, from the optimality condition (12), we obtain that there is a ϕ⋆ such that

I(x) + γ⋆(1 + ln f⋆(x)) + ϕ⋆ = 0.

Since γ⋆ > 0, we can divide by it to obtain Z⋆ = e1+
ϕ⋆

γ⋆ . We integrate the above with respect to the
density f⋆(x) to get

Errℓ,α(f
⋆, fD) + γ⋆ − γ⋆τ + ϕ⋆ = 0.

Thus, we obtain:

γ⋆τ = γ⋆Ent(f⋆) = Errℓ,α(f
⋆, fD) + γ⋆ lnZ⋆. (14)

Rearranging this equation we obtain the theorem.

In analogy with the Gibbs equation in statistical physics [94], Z⋆ can be viewed as the partition
function corresponding to the energy function I(x), γ⋆ corresponds to the temperature, −γ⋆ lnZ⋆

corresponds to the free energy and Err(f⋆, fD) is the internal energy.

It follows from the theorem that we can write f⋆(x) as

f⋆(x) = e−τ exp

(
−I(x)− Errℓ,α(f

⋆, fD)

γ⋆

)
. (15)

F Effect of changing the resource-information parameter τ

F.1 Effect of decreasing τ

Theorem F.1 (Effect of decreasing τ ). Fix α ≥ 1, a density fD, and loss function ℓ. Assume that
the function IfD,ℓ,α(x) satisfies condition (A5), and let x⋆ := argminx∈Ω IfD,ℓ,α(x). Given a τ , let
f⋆
τ denote the optimal solution to PrimalOpt. For every δ > 0, there exists a value Tδ such that when
τ ≤ Tδ , the solution f⋆

τ has the following property: For every x ∈ Ω, |x− x⋆| ≥ δ, we have

f⋆
τ (x)

f⋆
τ (x

⋆)
≤ δ.

In other words, the density outside an interval of length δ around x⋆ has a much smaller value than
at x⋆.
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In order to prove the above result, we first show that the optimal dual value γ⋆
τ goes to 0 as τ goes to

−∞. Then we shall use Theorem E.1 to show that the optimal density is highly sensitive to small
changes in I(x).
Lemma F.2. Fix an interval Ω ⊆ R, parameter α ≥ 1, density fD of true utility and loss function
ℓ. Assume that the function IfD,ℓ,α(x) has a unique global minimum. Let Iτ denote the instance
(Ω, fD, ℓ, α, τ). Let γ⋆

τ be the optimal Lagrange variable corresponding to this instance (assuming it
has a non-empty solution). Then

lim
τ→−∞

γ⋆
τ = 0.

Proof. We first observe that the instance Iτ will always have a feasible solution for small enough
τ . Indeed, when eτ is less than the length of Ω, there is always a feasible solution to Iτ . Let τ0 be
a value of τ for which the instance Iτ has a feasible solution. For sake of brevity, let I(x) denote
IfD,ℓ,α(x), and let x⋆ := argminx∈Ω I(x). We first argue that Err(fD, f⋆

τ ) remains in a bounded
range.

Claim F.3. Consider a value of τ ≤ τ0. Let f⋆
τ be the optimal solution to the instance Iτ . Then

I(x⋆) ≤ Errℓ,α(fD, f
⋆
τ ) ≤ Errℓ,α(fD, f

⋆
τ0).

Proof. The first inequality follows from the fact that

Errℓ,α(fD, f
⋆
τ ) =

∫
Ω

I(x)f⋆
τ (x)dµ(x) ≥ I(x⋆).

The second inequality follows from the fact that the solution f⋆
τ0 is also a feasible solution for the

instance Iτ .

Suppose for the sake of contradiction,

lim
τ→−∞

γ⋆
τ > 0.

In other words, θ0 := lim supτ→−∞ γ⋆
τ > 0. It follows that there is an infinite sequence A := (τ0 >

τ1 > · · · ) going to −∞ such that γ⋆
τi ≥ θ0/2 for all τi ∈ A.

Consider an interval of finite but non-zero length in Ω – let U = [s, t] be such an interval. Since U is
closed and I(x) is a continuous function, there are finite values a0, b0 such that a0 ≤ I(x) ≤ b0 for
all x ∈ U . Thus we get:

Claim F.4. There is a positive real η, such that

exp

(
Errℓ,α(fD, f

⋆
τ )− I(x)

γ⋆
τ

)
≥ η

holds for all x ∈ U, τ ∈ A.

Proof. It follows from Claim F.3 and the observation above that for all x ∈ U and all τ ≤ τ0,
|Errℓ,α(fD, f⋆

τ )− I(x)| lies in the range [I(x⋆)− b0,Errℓ,α(fD, f
⋆
τ ) + a0]. Since γτ ≥ θ0/2 for all

τ ∈ A, the result follows.

The above claim along with Theorem E.1 shows that f⋆
τ (x) ≥ η e−τ for all x ∈ U, τ ∈ A. Since

A contains an infinite sequence of values going to −∞, we can choose a value τ ∈ A such that
ηe−τ > 1/|U |. But then f⋆

τ (x) >
1
|U | for all x ∈ U , which is not possible because f⋆ is a density.

This proves the lemma.

We now prove Theorem F.1. Consider the instance I as stated in this statement of this theorem. Let
τ0 be a value of the information-resource parameter for which there is a density with entropy τ in Ω
(i.e., when PrimalOpt has a feasible solution). Recall that x⋆ = argminx∈Ω I(x). Consider a δ > 0.
Assumption (A5) shows that there is a value εδ > 0 such that I(x)− I(x⋆) > εδ for all x satisfying
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|x− x⋆| ≥ δ. Now consider an x such that |x− x⋆| ≥ δ. Using Theorem E.1, we see that, for all
τ ≤ τ0

f⋆
τ (x)

f⋆
τ (x

⋆)
= exp

(
I(x⋆)− I(x)

γ⋆
τ

)
≤ exp (−εδ/γ

⋆
τ ) ,

where the last inequality follows from the fact that γ⋆
τ is positive. Now, Lemma F.2 shows that there a

value Tδ such that for all τ ≤ Tδ , 0 < γ⋆
τ ≤ δ εδ

ln(1/δ) . Therefore, for all x, |x− x⋆| ≥ δ,

f⋆
τ (x)

f⋆
τ (x

⋆)
≤ δ.

This proves Theorem F.1.

F.2 Effect of increasing τ

In this section, we consider the effect of an increase in τ on the variance and the mean of the optimal
density.

Theorem F.5 (Effect of increasing τ on variance). Consider a continuous density fD on R, loss
function ℓ and information-resource parameter α. For a given risk-averse parameter τ , let Iτ denote
the instance (R, fD, ℓ, α, τ) of PrimalOpt. Let f⋆

τ be the optimal solution to the instance Iτ . Then
the variance of f⋆

τ is at least 1
2π e

2τ−1.

The proof relies on the following result.

Theorem F.6 (Gaussian maximizes entropy; Theorem 3.2 in [48]). For a continuous probability
density function f on R with variance σ2, Ent(f) ≤ 1

2 +
1
2 ln

(
2πσ2

)
with equality if and only if f is

a Gaussian density with variance σ2.

Proof of Theorem F.5. Consider the instance Iτ and the optimal solution f⋆
τ for this instance. Since

f⋆
τ is a feasible solution, Ent(f⋆

τ ) ≥ τ . If f⋆
τ , has unbounded variance, then the desired result follows

trivially. Hence, assume that f⋆ has bounded variance, say σ2. Now, Theorem F.6 shows that

Ent(f⋆
τ ) ≤

1

2
+

1

2
ln(2πσ2).

Using the fact that Ent(f⋆
τ ) ≥ τ , the above inequality implies that σ2 ≥ 1

2π e
2τ−1. This proves the

desired result.

We now show that the mean of the optimal density also increases with increasing τ when the input
density fD is supported on [0,∞).

Theorem F.7 (Effect of increasing τ on mean). Consider a continuous density fD on Ω := [0,∞),
loss function ℓ and information-resource parameter α. For a given risk-averse parameter τ , let Iτ
denote the instance (Ω, fD, ℓ, α, τ) of PrimalOpt, and f⋆

τ denotes the optimal solution to the instance
Iτ . Then the mean of f⋆

τ is at least eτ−1.

The proof relies on the following result.

Theorem F.8 (Exponential maximizes entropy; Theorem 3.3 in [48]). For a continuous probability
density function f on [0,∞) with mean λ, Ent(f) ≤ 1 + ln (λ).

Proof of Theorem F.7. The proof proceeds along similar lines as that of Theorem F.5. We know that
Ent(f⋆

τ ) ≥ τ because it is a feasible solution to the instance Iτ . If f⋆
τ has unbounded mean, we are

done; therefore, assume its mean, denoted λ, is finite. Theorem F.8 shows that Ent(f) ≤ 1 + lnλ.
Since Ent(f⋆

τ ) ≥ τ , we see that λ ≥ eτ−1. This proves the theorem.
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G Effect of changing the risk-averseness parameter α

Theorem G.1 (Monotonicity of I(x) with respect to α). Consider an instance I = (Ω, fD, ℓ, α, τ)
of the optimization problem PrimalOpt. Then, for any x ∈ Ω, IfD,ℓ,α(x) is an increasing function of
α.

Proof. By definition

Iα(x) := IfD,ℓ,α(x) =

∫
v≤x

ℓα(x, v)fD(v)dµ(v) +

∫
v>x

ℓ(x, v)fD(v)dµ(v).

Recall from (4), that for any x, v ∈ Ω, ℓα(x, v) := ℓ(x, v) if x < v and ℓα(x, v) := αℓ(x, v) when
x ≥ v. Since our model requires ℓ(x, v) ≥ 0 whenever x ≥ v, ℓα(x, v) ≥ ℓα′(x, v) for any x ≥ v
and α ≥ α′. Thus, we have that Iα(x) ≥ Iα′(x) for all x ∈ Ω.

Theorem G.2 (Monotonicity of Err with respect to α). Consider an instance Iα = (Ω, fD, ℓ, α, τ)
of the optimization problem PrimalOpt. Suppose Iα satisfies the assumption of Theorem C.1 and
let f⋆

α be the optimal solution to instance Iα. Then, the function Errℓ,α(f
⋆
α, fD) is an increasing

function of α.

Proof. As noted in Section C, if the instance I satisfies the assumptions for α = 1, then the instances
obtained by changing α continue to satisfy the assumptions needed in Theorem C.1. Thus, we may
assume the optimal solution exists for each version of I where we vary α ≥ 1, and let f⋆

α denote the
optimal density. We first show that for any fixed density f , Errℓ,α(f, fD) is an increasing function of
α. This is so because

Errℓ,α(f, fD) =

∫
v∈Ω

(∫
x<v

ℓ(x, v)f(x)dµ(x)

)
fD(v)dµ(v)

+

∫
v∈Ω

(∫
x≥v

ℓα(x, v)f(x)dµ(x)

)
fD(v)dµ(v)

and ℓα(x, v) is an increasing function of α for any x, v ∈ Ω. Consider two values of the parameter
α: 1 ≤ α1 < α2. Note that the instances corresponding to both α1 and α2 are feasible as α only
appears in the objective and, hence, does not affect feasibility. Suppose for the sake of contradiction
that Errℓ,α2

(f⋆
α2
, fD) < Errℓ,α1

(f⋆
α1
, fD). f

⋆
α2

satisfies Ent(f⋆
α2
) ≥ τ as it is a feasible solution of

the problem instance defined by α2 and, hence, it is also a feasible solution for the problem instance
defined by α1. This and the definition of f⋆

α1
imply that Errℓ,α1

(f⋆
α1
, fD) ≤ Errℓ,α1

(f⋆
α2
, fD). Thus,

we get Errℓ,α2(f
⋆
α2
, fD) < Errℓ,α1(f

⋆
α2
, fD), which contradicts the (above observed) monotonicity

of Errℓ,α(f⋆
α2
, fD) with respect to α.

H Gaussian density

The Gaussian density is defined as follows over Ω = R and has parameters m ∈ R and σ:

fG(x) :=
1√
2πσ2

e−
(x−m)2

2σ2 , x ∈ R.

m is the mean and σ2 is the variance. The differential entropy of fG is 1
2 + 1

2 ln(2πσ
2) [148]. We

consider the loss function to be ℓ(x, v) := (x− v)2. First, we compute the expression of I(x) which
we use to verify the applicability of Theorem C.1 with the above parameters.
Lemma H.1 (Expression for Iα(x)). Consider an instance I = (Ω, fG , ℓ, α, τ) of PrimalOpt where
Ω = R, ℓ(x, v) := (x− v)2, and fG is the Gaussian density with mean m and variance σ2. Then

I(x) = (α− 1)σ2
(
(w2 + 1)Φ(w) + wϕ(w)

)
+ σ2

(
w2 + 1

)
,

where w := x−m
σ , ϕ(x) := 1√

2π
e−

x2

2 , and Φ(x) :=
∫ x

−∞ ϕ(x)dµ(x) denotes the cumulative
distribution function of the Gaussian density.
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Figure 3: Mean and variance of the output density f , i.e., Ex∼f [x] and Varx∼f [x], as a function of τ when
fD is the standard normal density and α is fixed to 2.

Proof. By definition,

I(x) = α

∫ x

−∞
(x− v)2fG(v)dµ(v) +

∫ ∞

x

(x− v)2fG(v)dµ(v).

We first make a change of variables. Let w := x−m
σ and y := v−m

σ . Thus, the density of y is Gaussian
with mean 0 and variance 1. We denote this density by ϕ. The above integral becomes

ασ2

∫ w

−∞
(w − y)2fG(v)dµ(v) + σ2

∫ ∞

w

(w − y)2fG(v)dµ(v)

= ασ2

∫ w

−∞
(w2 + y2 − 2wy)ϕ(y)dµ(y) + σ2

∫ ∞

w

(w2 + y2 − 2wy)ϕ(y)dµ(y)

= ασ2

∫ w

−∞
(w2 + y2 − 2wy)ϕ(y)dµ(y)− σ2

∫ w

−∞
(w2 + y2 − 2wy)ϕ(y)dµ(y)

+ σ2

∫ ∞

−∞
(w2 + y2 − 2wy)ϕ(y)dµ(y)

= (α− 1)σ2
(
w2Φ(w) + Φ(w)− wϕ(w) + 2wϕ(w)

)
] + σ2

(
w2 + 1

)
= (α− 1)σ2

(
(w2 + 1)Φ(w) + wϕ(w)

)
+ σ2

(
w2 + 1

)
.

Applicability of Theorem C.1. We verify that any instance I = (Ω, fG , ℓ, α, τ) of PrimalOpt
defined by Ω = R, fG as a Gaussian density, a finite α, and τ satisfies the assumptions in Theorem C.1.
Since Ω = R, (A0) holds for any finite τ . (A1) and (A2) hold due to the choice of the loss function.
(A3) holds since fG has a finite variance. (A4) holds with, e.g., R = σ2. In Lemma H.1, we compute

I(x) = (α− 1)σ2
(
(w2 + 1)Φ(w) + wϕ(w)

)
+ σ2

(
w2 + 1

)
,

where w = x−m
σ . From this expression, it follows that I(x) is differentiable and

∂2I(x)

∂2x
= 2 + 2(α− 1)Φ(w).

Since α ≥ 1 and Φ(·) is non-negative, it follows that I(x) is strongly convex and, hence, has a unique
global minimum. Therefore, (A5) holds. Since assumptions (A0)–(A5) hold, we invoke Theorem C.1
to deduce the form of f⋆.

Figure 3 plots the mean and the variance of the output density f⋆ as a function of the parameter τ
when the input density fD is the standard normal density. Figure 4 plots the mean and the variance of
the output density as a function of the parameter α in this setting.
Theorem H.2 (Expression for f⋆ when α = 1). Consider an instance I = (Ω, fD, ℓ, 1, τ) of Pri-
malOpt where Ω = R, ℓ(x, v) := (x−v)2, and fG is the Gaussian density with mean m and variance
σ2. Let f⋆ be the optimal solution of I. Then f⋆ is a Gaussian with mean m and variance 1

2π e
2τ−1.
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Figure 4: Mean and variance of the output density f , i.e., Ex∼f [x] and Varx∼f [x], as a function of α when
fD is the standard normal density and τ is fixed to the entropy of fD .
Thus, for α = 1, increasing τ does not change the mean, but increases the variance of the output
density.

Proof. For α = 1, Lemma H.1 implies that

I(x) = (x−m)2 + σ2.

As shown earlier, by Theorem C.1, f⋆ has the following form

f⋆(x) ∝ e
−(x−m)2+σ2

γ⋆ ∝ e
−(x−m)2

γ⋆ .

where the proportionality constant and γ⋆ are determined by
∫
R f⋆(x)dµ(x) = 1 and Ent(f⋆) = τ .

f⋆ is a Gaussian density with mean m and variance γ⋆

2 and, hence, Ent(f⋆) = 1
2 + 1

2 ln (πγ
⋆)

[148]. Since Ent(f⋆) = τ , the previous equality implies that γ⋆ = 1
π e

2τ−1. It follows that

f⋆(x) = 1√
2e2τ−1

exp
(
−π (x−m)2

e2τ−1

)
which is the Gaussian density with mean m and variance

1
2π e

2τ−1.

Shift in mean with increase in α. We consider the effect of the parameter α on the mean of the
output density. We consider an instance I1 = (Ω, fD, ℓ, α, τ) where Ω = R, fD is the normal density
N(µ, σ2), ℓ(v, x) = (x − v)2, τ = Ent(fD) = ln(σ

√
2πe) and α = 1. We know from the proof

of Theorem H.2 that the output density f⋆ is the same as fD and hence, has mean 0.

Now consider an instance I2, that corresponds to the disadvantaged group and has the same parameters
as that of I1, except that the parameter α is larger than 1. Let f⋆

α denote the corresponding output
density. We know from Theorem C.16 that the output density is proportional to e−Iα(x)/γ⋆

α , where γ⋆
α

is the optimal dual variable for the entropy constraint and Lemma H.1 shows that Iα(x) is given by:

Iα(x) = (α− 1)σ2
(
(w2 + 1)Φ(w) + wϕ(w)

)
+ σ2

(
w2 + 1

)
,

where w = (x− µ)/σ. For sake of brevity, let g(w) denote (w2 + 1)Φ(w) + wϕ(w), and assume
w.l.o.g. that µ = 0 and σ = 1, i.e., the input density is standard normal. Thus, Iα(x) can be written
as (α− 1)g(x) + (x2 + 1). When α is large, the first term here dominates the second term as long
as Φ(x) ≫ 1/α. Since Φ(x) ≥ 1/2 for all x ≥ 0, Iα(x) is relatively large for all x ≥ 0, and hence,
f⋆
α(x) goes to 0 for x ∈ [0,∞) as α increases. In fact, g(x) is much larger than 1/α when x is larger

than −Ω(
√
ln(α)) and, hence, f⋆

α should be small for such values of x as well. Therefore, we expect
the mean of the output density f⋆

α to go to −∞ as α goes to ∞. Further, the mean of f⋆
α should

decrease at a logarithmic rate with respect to α. We verify these observations numerically in Figure 5.

Deriving the implicit variance model. We show that the implicit variance model can be derived
from our optimization framework. In particular, we prove the following result:
Theorem H.3. Consider an instance of the implicit variance model given by parameters µ, σ, σ0.
Consider instances I1 = (Ω, fG , ℓ, α, τ1) and I2 = (Ω, fG , ℓ, α, τ2) of (OptProg), where Ω = R,
fG is the normal density N(µ, σ2

0), α = 1, ℓ(v, x) = (x − v)2, τ1 = 1
2 (1 + ln(2πσ2

0)) and
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Figure 5: Figure (a) plots the input density, i.e., standard normal density, and the output density when the
parameter α = 1000. Figure (b) plots the mean of the output density as a function of the parameter α (on a log
scale).

τ2 = 1
2 (1 + ln(2π(σ2

0 + σ2))). Then the output density of (OptProg) on I1 is N(µ, σ2
0) and the

output density of (OptProg) on I2 is N(µ, σ2
0 + σ2).

Proof. The result follows from Theorem H.2. For the instance I1, Theorem H.2 shows that the output
density of OptProg is the normal density with mean µ and variance

1

2π
e2τ1−1 = σ2

0 .

Similarly, it follows that the output density for the instance I2 is normal with mean µ and variance
1

2π
e2τ2−1 = σ2

0 + σ2.

I Pareto density

The Pareto density is defined as follows over Ω = [1,∞) and has a parameter β > 1:

fP(x) :=
β

xβ+1
, x ∈ [1,∞).

The mean of this density is β
β−1 . Thus, the mean is finite only when β > 1. Its differential entropy

is 1 + 1
β + ln 1

β [148]. We consider the loss function ℓ(x, v) := lnx − ln v. First, we compute
the expression for I(x) which we use to verify the applicability of Theorem C.1 with the above
parameters.
Lemma I.1 (Expression for Iα(x)). Consider an instance I = (Ω, fP , ℓ, α, τ) of PrimalOpt where
Ω = [1,∞), ℓ(x, v) := lnx− ln v, and fP is the Pareto density with parameter β > 1. Then

I(x) = α lnx+
α− 1

βxβ
− α

β
.

Proof. We use integration by parts to derive the following expression for I(x):

I(x) = α

∫ x

1

(lnx− ln v)
β

vβ+1
dµ(v) +

∫ ∞

x

(lnx− ln v)
β

vβ+1
dµ(v)

= α

[
ln v − lnx

vβ

]x
1

− α

∫ x

1

1

vβ+1
dµ(v) +

[
ln v − lnx

vβ

]∞
x

+

∫ ∞

x

1

vβ+1
dµ(v)

= α lnx+
α

β

(
1

xβ
− 1

)
− 1

βxβ
.
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Figure 6: Mean and variance of the output density f , i.e., Ex∼f [x] and Varx∼f [x], as a function of τ when
fD is the Pareto distribution with parameter 3 and α is fixed to 2.

Applicability of Theorem C.1. Next, we verify that assumptions (A0)–(A5) hold. Since Ω =
[1,∞), (A0) holds for any finite τ . (A1) and (A2) hold due to the choice of the loss function. (A3)
can be shown to hold since fP is a Pareto density: To see this note that for any finite x ≥ 1∫

Ω

|ℓ(x, v)| fP(v)dµ(v) =
∫ x

1

(ln(x) + ln(v)) fP(v)dµ(v) +

∫ ∞

x

(ln(v)− ln(x)) fP(v)dµ(v)

≤
∫ ∞

1

(ln(x) + ln(v)) fP(v)dµ(v)

= ln(x) +

∫ ∞

1

ln(v)fP(v)dµ(v)

= ln(x) +

[
− ln(v)

vβ

]∞
1

+

∫ ∞

1

1

vβ+1
dµ(v)

= ln(x) +

[
−v−β

β

]∞
1

= ln(x) +
1

β

< ∞.

Thus, (A3) holds. (A4) holds with, e.g., R = 2. By Lemma I.1,

I(x) = α lnx+
α− 1

βxβ
− α

β
.

Thus, I(x) is differentiable at each x ∈ Ω. Moreover, for all x ∈ Ω

∂I(x)

∂x
=

α

x
− α− 1

xβ+1
=

1

x

(
α− α− 1

xβ

)
x≥1
> 0.

Since the derivative is positive for all x ∈ Ω = [1,∞), it follows that I(x) has a unique global mini-
mum at x = 1. Therefore, (A5) holds. Since assumptions (A0)–(A5) hold, we invoke Theorem C.1
to deduce the form of f⋆. Figure 6 plots the mean and the variance of the output density f⋆ as a
function of the parameter τ when the input density fD is the standard normal density. Figure 7 plots
the mean and the variance of the output density as a function of the parameter α in this setting.
Theorem I.2 (Expression for f⋆ with α = 1). Consider an instance I = (Ω, fP , ℓ, 1, τ) of Pri-
malOpt where Ω = [1,∞), ℓ := lnx− ln v, and fP is the Pareto density with parameter β > 1. Let
f⋆ be the optimal solution of instance I. f⋆ is a Pareto density with parameter βτ satisfying the
following condition:

1 +
1

βτ
− lnβτ = τ.
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Figure 7: Mean and variance of the output density f , i.e., Ex∼f [x] and Varx∼f [x], as a function of α when
fD is the Pareto distribution with parameter 3 and τ is fixed to the entropy of fD .

Let mτ and σ2
τ be the mean and variance of f⋆

τ as a function of τ . It holds that mτ is monotonically
increasing in τ and σ2

τ is either infinite or monotonically increasing in τ .

Proof. For α = 1, Lemma I.1 implies that

I(x) = ln(x)− 1

β
.

As shown earlier, one can invoke Theorem C.1 for instance I for any finite τ , which implies that f⋆

has the following form

f⋆(x) ∝ e
− ln(x)+ 1

β
γ⋆ ∝ x− 1

γ⋆ .

where the proportionality constant and γ⋆ are determined by
∫
Ω
f⋆(x)dµ(x) = 1 and Ent(f⋆) = τ .

f⋆ is a Pareto density with parameter βτ = 1
γ⋆ − 1 and, hence, has a differential entropy of

1 + 1
βτ

+ ln 1
βτ

[148]. This combined with the condition Ent(f⋆) = τ implies that f⋆ is the Pareto
density with βτ satisfying

1 +
1

βτ
+ ln

1

βτ
= τ.

Since 1 + 1
βτ

+ ln 1
βτ

is a decreasing function of βτ , it follows that increasing τ monotonically

decreases βτ . Note that βτ > 1 for any finite τ . The mean and variance of f⋆ are mτ = βτ

βτ−1

and σ2
τ = βτ

(βτ−1)2(βτ−2) respectively. Since mτ is a monotonically decreasing function of βτ (for
βτ > 1) and βτ is a monotonically decreasing function of τ , it follows that mτ is a monotonically
increasing function of βτ . The variance σ2

τ is finite when βτ > 2. Moreover, if βτ > 2, then σ2
τ is a

monotonically decreasing function of βτ . Since βτ is a monotonically decreasing function of τ , it
follows that σ2

τ is either infinite or a monotonically increasing function of βτ .

Reduction in mean with increase in α. We show how our framework can capture a similar
phenomenon as the multiplicative-bias model of [90]. Recall that in the multiplicative-bias model,
the estimated utility of the disadvantaged group is scaled down by a factor ρ > 1.

Fix a parameter β > 1. Consider an instance I1 given by the parameters I1 = (Ω =
[1,∞), fD, ℓ, α, τ) where fD is the Pareto density with parameter β, τ = Ent(fD) = 1 + 1

β +

ln 1
β , α = 1 and ℓ(x, v) = lnx− ln v. As shown in Theorem I.2, the output density f⋆ is the same

as fD. The proof of this result also shows that the output density f⋆(x) is proportional to e−I(x)/γ⋆

,
where I(x) = lnx− 1

β and γ⋆ is the optimal dual variable for the corresponding entropy constraint.

The disadvantaged group is modeled by an instance I2 which has the same parameters as that of I1
except that the parameter α is larger than 1. In this case, Theorem I.2 shows that the optimal density
f⋆
α(x) is proportional to e−Iα(x)/γ⋆

α , where Iα(x) = α lnx+ α−1
βxβ − α

β and γ⋆
α is the corresponding
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Figure 8: Figure (a) plots the input Pareto density with parameter β = 1.5 and the corresponding limiting
output density. Figure (b) plots the mean of the input Pareto density and the corresponding limiting output
density as a function of the parameter β.

optimal dual variable. For large α, Iα(x) ∼ α(I(x) + 1
βxβ ). Hence, the output density (for large α)

is given by

f⋆
α(x) = K · e−

α
γ⋆
α

(
I(x)+ 1

βxβ

)
,

where K is a normalization constant. The normalization constant K and the ratio γ⋆/α are given by
two constraints: (i) integral of f⋆

α over the domain Ω should be 1, and (ii) the entropy of f⋆
α should be

equal to τ = Ent(fD). This shows that the ratio γ⋆
α/α tends to a constant for large α, and hence, the

output density converges to the density given by

g⋆(x) = Ke
−C

(
ln x+ 1

βxβ

)
.

We plot the output density g⋆(x) for β = 1.5 in Figure 8(a). In Figure 8(b), we observe that for all
considered values of the parameter β, the mean of the limiting output density g⋆ always remains
below that of the input density fD. It is also worth noting that for large β, the gap between the mean
of the input density and that of the (limiting) output density diminishes. Intuitively, this happens
because as β increases, the mean of the input (Pareto) density gets closer to 1 (recall that the mean of
a Pareto density with parameter β is equal to β

β−1 ). Now the output density also places more mass
closer to 1, but gets restricted because of two conditions: (i) the entropy of the output density must be
the same as that of the corresponding input density, and (ii) it cannot place any probability mass on
values below 1. Hence, there is not much “room” for the output density to place extra probability
mass on values close to 1 (as compared to the corresponding Pareto density). Hence its mean cannot
go much below that of the corresponding Pareto density.

J Exponential density

The exponential density is defined as follows over Ω = [0,∞) and has a parameter λ > 0:

fExp(x) := λe−λx, x ∈ [0,∞).

λ is referred to as the “rate” parameter. The mean of the exponential density is 1
λ . The differential

entropy of fExp is 1− lnλ [148]. We consider the loss function ℓ(x, v) := x− v. First, we compute
the expression of I(x) which we use to verify the applicability of Theorem C.1 with the above
parameters.

Lemma J.1 (Expression for I(x)). Consider an instance I = (Ω, fExp, ℓ, α, τ) of PrimalOpt where
Ω = [0,∞), fExp is the Exponential density with rate parameter λ, and ℓ(x, v) := x− v. Then

I(x) =
1

λ

(
α(λx− 1) + (α− 1)e−λx

)
.
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Proof. The desired integral is

λα

∫ x

0

(x− v)e−λvdµ(v) + λ

∫ ∞

x

(x− v)e−λvdµ(v).

We do a change of variable, with y := x− v above, to get

λα

∫ x

0

yeλ(y−x)dµ(y) + λ

∫ 0

−∞
yeλ(y−x)dµ(y) = λαe−λx

[
eλy

λy − 1

λ2

]x
0

+ λe−λx

[
eλy

λy − 1

λ2

]0
−∞

=
α(λx− 1)

λ
+

αe−λx

λ
− e−λx

λ

=
1

λ

(
α(λx− 1) + (α− 1)e−λx

)
.

Applicability of Theorem C.1. We show that assumptions (A0)–(A5) hold. Since Ω = [0,∞),
(A0) holds for any finite τ . (A1) and (A2) hold due to the choice of the loss function. (A3) can be
shown to hold since fExp is an Exponential density: To see this note that for any finite x ∈ Ω∫

Ω

|ℓ(x, v)| fExp(v)dµ(v) =

∫ x

1

(x− v) fExp(v)dµ(v) +

∫ ∞

x

(v − x) fExp(v)dµ(v)

≤
∫ ∞

1

(|x|+ |v|) fExp(v)dµ(v)

= |x|+ 1

λ
< ∞.

Thus, (A3) holds. (A4) holds with, e.g., R = 1
λ . By Lemma J.1,

I(x) =
1

λ

(
α(λx− 1) + (α− 1)e−λx

)
.

From this expression, it follows that I(x) is differentiable at each x ∈ Ω. Moreover, for all x ∈ Ω

∂2I(x)

∂2x
= λ(α− 1)e−λx.

For any α > 1, this derivative is positive for all x ∈ Ω and, hence, I(x) strictly convex whenever
α > 1 and, thus, it has a unique global minimum. If α = 1, then I(x) = x− 1

λ . This function has a
unique global minimum at x = 0 over Ω = [0,∞). Combining with the α > 1 case, it follows that
(A5) holds. Since assumptions (A0)–(A5) hold, one can invoke Theorem C.1 to deduce the form of
f⋆.
Theorem J.2 (Expression for f⋆ when α = 1). Consider an instance I = (Ω, fExp, ℓ, 1, τ)
of PrimalOpt where Ω = [0,∞), ℓ(x, v) := x− v, and fExp is the Exponential with rate parameter
λ. Let f⋆ be the optimal solution of I. Then f⋆ is the Exponential density with mean eτ−1

Thus, for α = 1, increasing τ increases the rate parameter of the output density.

Proof. Since α = 1, Lemma J.1 implies that

I(x) = x− 1

λ
.

As shown earlier, one can invoke Theorem C.1 for instance I for any finite τ , which implies that f⋆

has the following form

f⋆(x) ∝ exp

(−x− 1
λ

γ⋆

)
∝ exp

(
−x

γ⋆

)
.

where the proportionality constant and γ⋆ are determined by
∫
Ω
f⋆(x)dµ(x) = 1 and Ent(f⋆) = τ .

Since f⋆ is an Exponential density with rate parameter 1
γ⋆ , its entropy is Ent(f⋆) = 1 + ln (γ⋆)

[148]. Since Ent(f⋆) = τ , the previous equality implies that γ⋆ = eτ−1. It follows that f⋆(x) =

e1−τ · exp
(
− x

exp(τ−1)

)
which is the Exponential density with mean eτ−1.
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K Laplace density

The Laplace density is defined as follows over Ω = R and has parameters a ∈ R and b > 0:

fL(x) :=
1

2b
e−

1
b |x−a|, x ∈ R.

a is referred to as the “location” parameter and b as “diversity.” The differential entropy of fL is
1 + ln(2b) [148]. We consider the loss function to be ℓ(x, v) := |x− a| − |v − a| for a ∈ R. First,
we compute the expression for I(x) that we use to show that Theorem C.1 is applicable with the
above parameters.

Lemma K.1 (Expression for I(x)). Consider an instance I = (Ω, fL, ℓ, α, τ) of PrimalOpt where
Ω = R, fL is the Laplace density with parameters a ∈ R and b > 0, and ℓ(x, v) := |x− a|− |v − a|.
Then

I(x) =

{
αb(w − 1) + b (α−1)

2 e−w if x ≥ a

−b(w + 1) + b (1−α)
2 ew otherwise

,

where w := x−a
b .

Proof. The desired integral is

α

2b

∫ x

−∞
(|x− a| − |v − a|)e−|v−a|/bdµ(v) +

1

2b

∫ ∞

x

(|x− a| − |v − a|)e−|v−a|/bdµ(v).

We perform a change of variables with w := x−a
b and y = v−a

b . Then the above integral becomes

αb

2

∫ w

−∞
(|w| − |y|)e−|y|dµ(y) +

b

2

∫ ∞

w

(|w| − |y|)e−|y|dµ(y).

Now two cases arise (i) w ≥ 0, or (ii) w ≤ 0. First, consider the case when w ≥ 0. Then the above
integral becomes:

α

2

∫ 0

−∞
(w + y)eydµ(y) +

α

2

∫ w

0

(w − y)e−ydµ(y) +
1

2

∫ ∞

w

(w − y)e−ydµ(y)

=
α(w − 1)

2
+

α(w + e−w − 1)

2
− e−w

2

= αb(w − 1) +
(α− 1)b

2
e−w.

In the second case, we get

α

2

∫ w

−∞
(−w + y)eydµ(y) +

1

2

∫ 0

w

(−w + y)eydµ(y) +
1

2

∫ ∞

0

(−w − y)e−ydµ(y)

= −αew

2
+

ew − w − 1

2
− 1 + w

2

= −(w + 1)b+
(1− α)ewb

2
.

Applicability of Theorem C.1. We show that for any finite a ∈ R and b > 0, assumptions (A0)–
(A5) hold for the instance I = (Ω, fL, ℓ, α, τ) of PrimalOpt where Ω = R, fL is the Laplace density
with parameters a ∈ R and b > 0, and ℓ(x, v) = |x− a| − |v − a|. Since Ω = R, (A0) holds for any
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finite τ . (A1) and (A2) hold due to the choice of the loss function. (A3) can be shown to hold since
fL is a Laplace density: To see this note that for any finite x ∈ Ω∫

Ω

|ℓ(x, v)| fL(v)dµ(v) ≤
∫ ∞

0

(|x− a|+ |v − a|) fL(v)dµ(v)

= |x− a|+ b

2
< ∞.

Thus, (A3) holds. (A4) holds with, e.g., R = b ln(2). By Lemma K.1,

I(x) =

{
αb(w − 1) + b (α−1)

2 e−w if x ≥ a

−b(w + 1) + b (1−α)
2 ew otherwise

,

where w = x−a
b . One can check that I(x) is continuous and differentiable at each x ∈ Ω \ {a}.

Moreover, for all x < a, ∂I(x)
∂x < 0 and for all x ≥ a, ∂I(x)

∂x ≥ 0. Hence, it follows that I(x) has a
unique global minimum at x = a. Therefore, (A5) holds. Since assumptions (A0)–(A5) hold, we
invoke Theorem C.1 to deduce the form of the optimal density.
Theorem K.2 (Expression for f⋆ when α = 1). Consider an instance I = (Ω, fL, ℓ, 1, τ)
of PrimalOpt where Ω = R, fD is the Laplace density with parameters a ∈ R and b > 0, and
ℓ(x, v) = |x− a| − |v − a|. Let f⋆ be the optimal solution of I . Then f⋆ is the Laplace density with
parameters (a, eτ−1/2).

Thus, for α = 1, increasing τ does not change the location parameter, but increases the “diversity”
parameter of the output density.

Proof. Since α = 1, Lemma K.1 implies that

I(x) = |x− a| − b

2
.

As shown earlier, one can invoke Theorem C.1 for instance I for any finite τ , which implies that f⋆

has the following form

f⋆(x) ∝ exp

(
− |x− a| − b

2

γ⋆

)
∝ exp

(
− |x− a|

γ⋆

)
.

where the proportionality constant and γ⋆ are determined by
∫
R f⋆(x)dµ(x) = 1 and Ent(f⋆) = τ .

Clearly, f⋆ is a Laplace density with the diversity parameter γ⋆, its entropy is Ent(f⋆) = 1+ln (2γ⋆)
[148]. On the other hand, since Ent(f⋆) = τ , the previous equality implies that γ⋆ = 1

2e
τ−1.

It follows that f⋆(x) = e1−τ · exp
(
− 2|x−a|

exp(τ−1)

)
which is the Laplace density with parameters

(a, 1
2e

τ−1).

L Implementation details and additional empirical results

In this section, we present additional discussions and evaluations of intervention in the JEE setting
(Appendix L.1), plots omitted from Section 4 (Appendix L.2), and implementation details of our
model (Appendix L.3). The code for this paper is available at https://github.com/AnayMehro
tra/Bias-in-Evaluation-Processes.

L.1 Case Study: Evaluating bias-mitigating interventions in IIT-JEE admissions

In this section, we continue our study of the effectiveness of different interventions in a downstream
selection task. Like in Section 4, we consider selection based on the JEE 2009 scores, but here
consider representational constraints actually used in admissions to IITs. We also discuss additional
interventions being implemented by the Indian state and central governments to reduce inequity in
JEE scores.
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Recall that, the Indian Institutes of Technology (IITs) are a group of engineering institutes in India.
In 2009, there were 15 IITs and today this has grown to 23. Undergraduate admissions at IITs are
decided based on the scores of candidates in the Joint Entrance Exam (JEE). JEE is conducted once
every year. In 2009, the scores, (binary) genders, and birth categories of all candidates who appeared
in JEE 2009 were released in response to a Right to Information application filed in June 2009
[91]. The birth category of the candidates is an official socioeconomic status label recognized by the
government of India [135].

Here, we focus on two groups of candidates: the candidates in the general (GEN) category (the
most privileged) and candidates not in the general category. We begin by discussing some of the
interventions in place to reduce inequity in JEE scores and subsequent admissions at IITs.

Interventions used in IIT admissions. The Indian constitution allows the central government and
state governments to enforce affirmative action in the form of quotas or lower bound constraints
for official SES groups at educational institutes, employments, and political bodies [82, 146]. In
2005 lower-bound interventions were introduced in the admissions process at the IITs. Concretely,
in 2009, out of the 7,440 seats, 3,688 (49.6%) were reserved for students who are not in the GEN
category. This means that at least 3,688 out of the 7, 440 students admitted into IITs must not be in
the GEN category. Note that this allows more than 3,688 or even all admitted students to be outside
the GEN category. We call this constraint the Reservation constraint and, in this section, we study
its effectiveness compared to other forms of interventions.

Apart from reservations, a number of other interventions have also been proposed and/or implemented
to reduce biases in the JEE. We discuss two other types of interventions next.

Interventions to reduce skew. Private coaching institutes that train students for JEE have been
criticized for being exorbitantly expensive and, hence, inaccessible for students in low SES groups
[44]. Lack of accessibility to training resources can reduce the scores of candidates in low SES groups–
creating a skew in the scores. To improve accessibility to training, in 2022, the Delhi government
established a new program that will provide free training to students enrolled in government-funded
schools [53]. Similar programs have also been introduced in other states [52, 141] and by school
education boards that span multiple states [26]. In the context of our model, these interventions can
be seen as reducing this skew in the evaluation process.

Interventions to reduce information constraint. A criticism of JEE is that it is only offered in the
English and Hindi languages. This is undesirable because only 44% of Indians report English or
Hindi as their first language and, according to the 2011 census, less than 68% of Indians list one of
these languages among the three languages they are most comfortable with [103]. IITs have been
repeatedly criticized for not offering the exam in regional languages [128, 7, 47]. The main concern
is that the current exam reduces the performance of students less familiar with English and Hindi.
In the context of our model, this can be thought of as placing a stronger information constraint on
candidates who do not speak English or Hindi as a first language: these students would need to spend
a higher cognitive load to understand the questions. This constraint not only acts during the exam but
also during the preparation period because students speaking regional languages (and not English or
Hindi), have to devote additional time to learning either English or Hindi in addition to the technical
material for the exam.

While the JEE exam itself has not been offered in regional languages yet. Recently, in 2021, the
screening test that candidates have to clear before appearing in JEE was offered in 11 regional
languages in addition to English and Hindi [134].

In this section, we compare the effectiveness of the above three interventions – Reservation for
lower SES groups, interventions to reduce skew (change α by ∆α percent), and interventions to
reduce information-constraint (change τ by ∆τ percent).

Setup (Group sizes and k). Admissions into IITs are highly selective. For instance, in 2009, 384,977
applicants (232,334 from GEN; 60%) took the exam and just 7,440 (2%) were admitted to IITs.
The admission is based on the candidates’ All India Rank (henceforth just rank)–which denotes the
candidate’s position in the list of candidates ordered in decreasing order of their scores in JEE. Let
G1 be the group of students in GEN category and G2 be all other students. To study the impact of
different interventions for admissions into IITs, we fix group sizes and k to match real numbers:
|G1| = 232, 334, |G2| = 152, 643, and k = 7, 400. We focus on the set of candidates who scored
at least 80 (out of 480) on the exam. (The threshold 80 ensures that at least 10k candidates outside
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(a) Changing α by ∆α percent
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(b) Changing τ by ∆τ percent

Figure 9: Effectiveness of different interventions on the selection-utility–as estimated by our model: We vary
the strengths of the interventions (∆α ∈ [0, 1] and ∆τ ∈ [0, 1]) and report the expected utilities of the subset
output by all three interventions. The x-axis shows the strength of the intervention changing α (Figure 9(a)) or
τ (Figure 9(b)). The y-axis shows the ratio of the (true) utility of the subset output with an intervention to the
(true) utility of the subset output without any intervention. Our main observation is that for each of the three
interventions, there is a value of the percentage change in α and τ (i.e., ∆α and ∆τ respectively) for which the
intervention outperforms the other two interventions. Hence, depending on the amount of change a policymaker
expects a specific intervention (e.g., providing free coaching) to have on the parameters α and τ , they can use
our framework as a tool to inform their decision about which intervention to enforce. Error bars represent the
standard error of the mean over 100 repetitions.

the GEN category are considered and this is significantly lower than the k-th highest score of 167).
We fix fD to be the density of utilities of all candidates in G1 who scored at least 80. Since fD
has a Pareto-like density (see Figure 10), we fix ℓ(x, v) = ln(x)− ln(v). We fix Ω to be the set of
all possible scores and fG2

to be the density of all candidates in G2 who scored at least 80. As in
Section 4, we select α and τ that lead to the density closest in TV distance to fG2 . The rest of the
setup is the same as in Section 4.

Unlike the main body, here, we only consider high-scoring candidates (those with a score of at
least 80) because JEE is highly selective (k/n ≤ 0.02) and, hence, to have meaningful results the
estimated density fE should have a good fit to the density from the real-data on the top 2% quantile,
i.e., the right tail. To ensure this, we specifically consider the right tail of the distribution (by dropping
candidates with a score below 80).

Observations and discussion. We vary ∆α ∈ [0, 1] and ∆τ ∈ [0, 1] and report the expected utilities
of the subset output by all three interventions over 100 iterations in Figure 9. Our main observation
is that for each of the three interventions, there is a value of the percentage change in α and τ (i.e.,
∆α and ∆τ respectively) for which the intervention outperforms the other two interventions. Hence,
depending on the amount of change a policymaker expects a specific intervention (e.g., providing free
coaching) to have on the parameters α and τ , they can use our framework as a tool to inform their
decision about which intervention to enforce. Further, we observe that, as expected, increasing ∆α

and ∆τ , i.e., the percentage of change in α and τ , improves the utility achieved by the corresponding
interventions.

Limitations and further discussion. Next, we discuss some of the limitations of our study. First, we
note that interventions such as increasing the accessibility of education can not only reduce inequity

0.000

0.005

0.010

0.015

0.020 Students in GEN category
Students not in GEN category

Figure 10: The densities of scores of students in GEN category (blue) and students not in GEN category
(orange) in JEE-2009–only for students scoring at least 80 points out of 480.
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in JEE but can also have positive effects on other exams and hiring. Hence, such interventions can
have a larger positive (or negative) impact than suggested by our simulations. Studying these auxiliary
effects is beyond the scope of this paper. Further, our study also does not model the response of
the students, e.g., how do interventions affect the students’ incentive to invest in skill development?
Finally, our model only predicts the effect of α and τ on utility distributions. These predictions may
not be accurate and a careful post-deployment evaluation may be required to accurately assess the
effectiveness of different interventions.

L.2 Additional plots for simulations in Section 4

In this section, we present plots of the best-fit densities output by our framework on different datasets.

(a) Best-fit distribution (α = 3 · 10−4 and τ = 1.51) with JEE-2009 (Birth
category)

(b) Best-fit distribution (α = 3 · 10−4 and τ = 1.51) with JEE-2009 (Gender)

Figure 11: Illustration of the best-fit distribution output by our framework for the JEE-2009 dataset.
Captions of subfigures report the best fit α and τ .

L.3 Implementation details

L.3.1 Our framework and other models

In this section, we give implementation details of our model. Recall that our model outputs the
density which is the optimal solution of the following optimization program.
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(a) Best-fit distribution (α = 22.78 and τ = 2.09) with Semantic Scholar Open
Research Corpus

(b) Best-fit distribution (α = 1.92 and τ = 3.19) with synthetic network data

Figure 12: Illustration of the best-fit distribution output by our framework for the Semantic Scholar
Open Research Corpus. Captions of subfigures report the best fit α and τ .

argminf : density on Ω Errℓ,α (fD, f) :=
∫
Ω

[∫
Ω
ℓα(x, v)f(x)dµ(x)

]
fD(v)dµ(v), (OptProg-App)

such that −
∫
Ω
f(x) log f(x)dµ(x) ≥ τ.

An instance of this program is specified by the following parameters.

1. A domain Ω ⊆ R (e.g., Ω = R and Ω = [1,∞));

2. A true density fD over Ω with respect to the Lebesgue measure µ;

3. A loss function ℓ : Ω× Ω → R (e.g., ℓ(x, v) = (x− v)2 and ℓ(x, v) = ln (x/v));

4. A risk-averseness (or risk-eagerness) parameter α > 0; and

5. A resource-information parameter τ > 0.

Recall that ℓα is a risk-averse loss defined by ℓ and α as in (4). For our simulations, we consider
the shifted variant of ℓα mentioned in Section 2: given a shift parameter v0 ∈ R, a loss function
ℓ : Ω× Ω → R, and parameter α > 0

ℓα,v0(x, v) =

{
α · ℓ(x, v + v0) if x > v + v0,

ℓ(x, v + v0) otherwise.
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Let f⋆
α,τ,v0

be the optimal solution to the instance Iα,τ,v0 = (Ω, fD, ℓ, α, τ, v0) of (OptProg).

Algorithmic task. Given a “target” density fT (denoting the density of biased utilities in the data),
risk-averse loss function ℓα, and true density fD, the goal of our implementation is to find α◦, τ◦,
and v◦0 that minimize the total variation distance between fT and f⋆

α,τ,v0
:

(α◦, τ◦, v◦0) := argmin
α,τ,v0

dTV(f
⋆
α,τ,v0

, fT ).

Algorithmic approach and implementation. We perform grid-search over all three parameters
α, τ, and v0. Given a specific α, τ, and v0, to solve the above problem, we use the characterization in
Theorem 3.1 to find f⋆

α,τ,v0
. Recall that the optimal solution of (OptProg) is of the following form

f⋆
α,τ,v0

(x) = C · exp (−Iα,v0
(x)/γ⋆)

where Iα,v0(x) :=
∫
Ω
ℓα,v0(x, v)fD(x)dµ(x) and C, γ⋆ > 0 are constants that are uniquely specified

by the following two equations∫
Ω

f⋆
α,τ,v0

(x)dµ(x) = 1 and −
∫
Ω

f⋆
α,τ,v0

(x) log
(
f⋆
α,τ,v0

(x)
)
dµ(x) = τ.

Algorithmically, finding C and γ⋆ requires computing a double integral over Ω. In all of the
simulations in Section 4, Ω is a discrete domain, so these integrals reduce to summations and we
compute them exactly. We also provide an implementation of our algorithm for continuous domains.
The implementation for continuous domains uses the quad function in scipy to compute the integrals.
For the grid search itself, we varied α over [10−4, 102], τ over [10−1, 10], and v0 over Ω. We found
this range to be sufficient for our simulation, but it would be interesting to design a principled way of
specifying the ranges given other parameters and target density fT .

Implementation details of multiplicative bias model [90] and implicit variance model [61].
Recall that the multiplicative bias and the implicit variance models are specified by parameters ρ
and σ respectively: given a fixed true value v ∈ R, the output of the multiplicative bias model is
v/ρ and the output of the implicit variance model is v + ζ where ζ is a zero-mean normal random
variable with variance σ2. In addition, we allow both models to introduce a shift v0. For the
multiplicative bias model, given a true density fD and a target density fT , we compute (ρ◦, v◦0)
that solves argminρ,v0

dTV(fρ,v0 , fT ) where fρ,v0 is the density of (v/ρ) + v0 for v ∼ fD. For
the implicit variance model, given a true density fD and a target density fT , we compute (σ, v0)
that solves argminσ,v0

dTV(fσ,v0
, fT ) where fσ,v0

is the density of v + v0 + ζ for v ∼ fD and a
zero-mean normal random variable ζ with variance σ2. For both models, we compute the optimal
parameters using grid search: we vary v0 over Ω, (1/ρ) over [0, 1], and σ over [10−2, 10].

L.3.2 Computational resources used

All simulations were run on a MacBook Pro with 16 GB RAM and an Apple M2 Pro processor.

L.3.3 JEE-2009 Scores

Additional discussion of the dataset. The JEE-2009 test scores were released in response to a
Right to Information application filed in June 2009 [91]. This dataset contains the scores of all
students from JEE-2009 (384,977 total) [91]; we used the version available provided by [40]. In
addition to the scores, for each student, the data contains their self-reported (binary) gender and
their birth category. The birth category of a student is an officially designated indicator of their
socioeconomic group, where the general (GEN) category is the most privileged; see [135, 19] for
more details.

We observe that students not in the GEN category have significantly lower average scores than
students in the GEN category (18.2 vs. 35.1); this may not imply that students not in the GEN
category would perform poorly if admitted. Indeed, among students of equal true “potential,” those
from underprivileged groups are known to perform poorer on standardized tests [60]. In the Indian
context, this could be due to many reasons, including that in India, fewer students outside the GEN
category attend primary school compared to students from the general category, and on average a
lower amount of money is spent on the education of students in the non-general category compared
to the general category [92].
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Figure 13: Distribution of scores in the JEE dataset for different protected groups based on birth
category. See Section 4 for a discussion of the dataset.

L.3.4 Semantic Scholar Open Research Corpus

Cleaning and predicting author names. We follow the procedure used by [40]. Concretely, we
remove papers without publication year (1.86% of total) and predict author gender using their first
name from a publicly available dataset [3], containing first names and gender of everyone born
between 1890 to 2018 and registered with the US social security administration (USSSA). We remove
authors whose first name has 2 or fewer characters, as these names are likely to be abbreviations
(retaining 75% of the total), and then categorize an author as female (respectively male) if more than
ϕ = 0.9 fraction of the people of the same first name are female (respectively male) in the USSSA
data. We drop all uncategorized authors (32.25% of the remaining). This results in 3,900,934 women
and 5,074,426 men (43.46% females). We present the tradeoff between the total number of authors
retained and ϕ in Figure 14.

Counting the number of citations. We aim to ensure that the citation counts we compute correspond
to the total citations received by an author over their lifetime (so far). Since the dataset only contains
citations from 1980 onwards, we remove authors who published their first paper before 1980 as
the dataset does not have information about their earlier citations. This is the same as the cleaning
procedure used by [40]. We present the resulting citation-distributions for male and female authors
respectively in Figure 15.
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Figure 14: The tradeoff between the threshold ϕ used for clearing the Semantic Scholar Open
Research Corpus and the number of authors retained. Details appear in Appendix L.3.4.

54



Figure 15: Distributions of total citations of men and women in the Semantic Scholar Open Research
Corpus. Details appear in Appendix L.3.4.
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