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Abstract

Personalized federated learning with differential privacy has been considered a
feasible solution to address non-IID distribution of data and privacy leakage risks.
However, current personalized federated learning methods suffer from inflexible
personalization and convergence difficulties due to two main factors: 1) Firstly,
we observe that the prevailing personalization methods mainly achieve this by
personalizing a fixed portion of the model, which lacks flexibility. 2) Moreover,
we further demonstrate that the default gradient calculation is sensitive to the
widely-used clipping operations in differential privacy, resulting in difficulties in
convergence. Considering that Fisher information values can serve as an effective
measure for estimating the information content of parameters by reflecting the
model sensitivity to parameters, we aim to leverage this property to address the
aforementioned challenges. In this paper, we propose a novel federated learning
method with Dynamic Fisher Personalization and Adaptive Constraint (FedDPA) to
handle these challenges. Firstly, by using layer-wise Fisher information to measure
the information content of local parameters, we retain local parameters with high
Fisher values during the personalization process, which are considered informative,
simultaneously prevent these parameters from noise perturbation. Secondly, we
introduce an adaptive approach by applying differential constraint strategies to
personalized parameters and shared parameters identified in the previous for better
convergence. Our method boosts performance through flexible personalization
while mitigating the slow convergence caused by clipping operations. Experimental
results on CIFAR-10, FEMNIST and SVHN dataset demonstrate the effectiveness
of our approach in achieving better performance and robustness against clipping,
under personalized federated learning with differential privacy.

1 Introduction

Federated learning (FL) [32] has shown great potential in facilitating collaborative machine learning
across distributed devices. However, in real-world scenarios, local data normally present non-IID
[40, 44, 43, 10, 16, 27, 26], (non-independent and identically distributed), posing data heterogeneity
challenges [19, 22, 14, 9, 37] in FL. To address these challenges, various personalized federated
learning (PFL) algorithms have emerged [39, 2, 30, 28], demonstrating significant effectiveness
by incorporating personalized components that cater to the local data characteristics of each client.
Despite their success, PFL faces severe privacy leakage issues, as client-local training data may be
reconstructed through inference attacks [11, 33, 18, 42] during the collaborative updating phase. As a
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result, it is essential to adopt user-level differential privacy (DP) techniques [12, 8, 41, 38] to provide
more stringent privacy protection to PFL against potential privacy leaks, a.k.a, personalized federated
learning with differential privacy.

Despite its pilot progress, personalized federated learning with differential privacy still faces numerous
challenges. Most existing PFL approaches [30, 28, 3, 2] primarily rely on strong prior assumptions to
perform parameter partitioning, personalizing a fixed portion of the model parameters and sharing the
remaining ones. However, this approach lacks flexibility in parameter partitioning and cannot fully
adapt to the diverse data characteristics of different clients, thereby affecting the personalized model
performance. Besides, adding noise is an indispensable aspect in the differential privacy setting to
ensure privacy protection in PFL. However, previous methods [8, 38, 3] directly add noise to all the
network parameters, which unavoidably causes performance degradation. Considering that partial
personalized parameters might not rely on the feedback from the server, this provides potential to
reduce the noise impact. In light of these limitations, an essential issue that has long been overlooked
is ❶ how to develop a flexible personalization approach that enhances the learning capability of
model while mitigating the impact of noise on the model.

In order to achieve comprehensive user-level differential privacy, it is also crucial to implement
a clipping operation targeting the L2 norm of each local update [12, 41]. These updates are sent
to the server upon the completion of local training, ensuring that their magnitudes are bounded
by the clipping bound. However, traditional optimization methods [12, 38] primarily focus on
minimizing empirical risk, disregarding constraints on the L2 norms. Consequently, the local updates
accumulated by gradients are susceptible to clipping, leading to distortion phenomena that can
adversely affect model convergence. Existing methods for enhancing robustness [8, 23] against
clipping often apply a uniform L2 regularization strength to all parameters. Such approaches neglect
the inherent differences in parameter magnitudes, constraining the model learning capacity. This
raises another crucial question: ❷ how can we devise a dynamic constraint mechanism that maintains
the learning capacity of the model as well as augments clipping robustness?

In response to ❶, we propose an adaptive method that dynamically determines the personalized
parameter portion for each client, while simultaneously mitigating the influence of noise. Our
approach is inspired by the Fisher information matrix, which reflects the contribution of parameters
to the curvature of the loss function by computing the square of the first-order derivatives of log-
likelihood function. This mathematical process can also be intuitively understood as the information
content carried by the parameters. Following this concept, we further introduce layer-wise Fisher
information to measure the information content of client parameters. Prior to client training, we retain
essential parameters as personalized components, implementing personalization by preventing them
from being overwritten by the corresponding noisy global parameters. By employing this adaptive
personalization strategy, our method ensures that locally retained parameters remain unaffected by
the noise introduced for privacy protection, effectively overcoming the challenges associated with
inflexible personalization and the impact of noise.

To tackle the issue of local update robustness to ❷, we introduce an adaptive method that determines
different constraint strengths for different parameters. Taking into account the inherent differences
in parameter magnitudes, we only apply L2 norm regularization constraints to the updates of per-
sonalized parameters selected on account of layer-wise Fisher information, which preserves more
unique knowledge of local data, to maintain local knowledge effectively. While for the shared
parameter updates, we ensure that their L2 norm values approach the clipping bound through a
bounded regularization term, effectively mitigating the impact of clipping operation. By adopting
these strategies, we enhance the robustness to clipping while addressing the limitations of uniform
regularization successfully.

In this work, we propose a novel personalized federated learning method under differential privacy
named FedDPA via Dynamic Fisher Personalization (DFP) and Adaptive Constraint (AC). Our main
contributions are summarized as follows:

• We propose a dynamic personalization strategy using layer-wise Fisher information values,
enabling flexible personalization and reduced noise impact.

• We present an adaptive method for enhancing clipping robustness by adjusting constraint
strengths for different parameters, balancing client-specific features and global knowledge
while minimizing clipping effects.
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• We conduct extensive experiments under multiple tasks and settings. Accompanied with a
set of ablative studies, promising results validate the efficacy of our proposed methods and
indispensability of each module.

2 Related Works

2.1 Personalized Federated Learning

Federated Learning is a distributed machine learning approach that allows data to remain on local
devices while training a global model, with the FedAvg algorithm [32] as its most representative
example. Despite its revolutionary approach, the inherent non-Independent and Identically Distributed
(non-IID) nature of local data [19, 22, 40, 44, 17, 13, 15] poses significant challenges, thus leading to
the advent of personalized federated learning (PFL). In PFL, a portion of the model is personalized to
learn client-specific knowledge, while the remaining parts aim to capture the global patterns across all
clients. The mainstream PFL methods include LG-FedAvg [28], FedPer [2], PPSGD [3], and FULR
[5]. The LG-FedAvg [28] and FULR [5] methods both leverage a fixed local parameter to extract
a representation of the local data, thereby achieving personalization, but their static partitioning
approach lacks flexibility in adapting to diverse data characteristics. Besides, the FedPer [2] ,
FedBABU [35] and PPSGD [3] algorithms achieve personalization by retaining specific layers locally,
which can better cater to local data characteristics, but suffer from potential inflexibility in model
personalization. Additionally, another work [36] introduces FedSim and FedAlt, which analyze
different update paradigms of local and global parameters, contributing to the understanding of the
trade-offs between local data specificity and global data commonality. These approaches, while
effective to a certain extent, still bear limitations in their inflexible of personalization methods and the
potential performance degradation due to the direct training with noisy global parameters under DP
mechanism. We introduce an innovative approach to personalized federated learning. Our method,
based on layer-wise Fisher information values, allows for dynamic personalization that surpasses the
inflexibility of fixed parameter partitioning while mitigating the noise impact.

2.2 Differential Privacy

Differential Privacy (DP) provides substantial privacy in federated learning [12, 8, 41, 38, 25, 24],
by minimizing the impact of individual data changes on computation outputs. This privacy level is
quantified via (ε, δ)-differential privacy. Smaller ε and δ offer stronger privacy but introduce more
noise into the learning algorithm, which could degrade performance.

In federated learning, user-level DP is achieved by a two-step process intrinsic to the DP mechanism:
adding noise and clipping local updates before server transmission. The noise scale is calibrated
according to the function sensitivity. Clipping, which bounds the impact of local update, further
reinforces privacy. Although these essential steps ensure substantial privacy, they present challenges,
such as performance degradation and slower convergence, due to the unavoidable noise and clipping
operation. While user-level DP ensures robust privacy, it introduces challenges such as performance
degradation from added noise and slower convergence due to clipping. These challenges have been
addressed by several methods, including LUS [8], BLUR [8], DP-FedSAM [38], and PPSGD [3].
LUS and BLUR employ sparsification and unified regularization techniques to mitigate the effects of
added noise and enhance model convergence. DP-FedSAM [38] utilizes the SAM optimizer to bolster
parameter robustness against noise, aiming to identify more stable convergence points. Besides,
PPSGD [3] capitalizes on personalization to improve performance while maintaining privacy. Despite
their promising solutions, these methods don’t sufficiently address the issues caused by noise and
clipping in differential privacy. They failed to find the essence of the problem of noise perturbation, all
parameters will be affected by noise during training, leading to the degradation of model performance.
Furthermore, their uniform handling of clipping constraints fails to adapt to the dynamic nature of
local updates, which further hinders model learning and convergence. To tackle these challenges,
we propose a novel method that leverages layer-wise Fisher information to dynamically personalize
and protect parameters of high information content from noise impact. Simultaneously, we introduce
an adaptive regularization strategy to enforce differential constraints on personalized and shared
parameters, enhancing the model learning capacity and robustness to clipping.
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2.3 Fisher Information Matrix

The Fisher Information Matrix [29, 1], a pivotal concept in statistical estimation theory, encapsulates
the information an unknown parameter possesses about a random distribution. In the realm of deep
learning, FIM has been employed to study the curvature of loss functions, guide optimization and
evaluate the information content of parameters [31, 4, 20]. For instance, the Kronecker-Factored
Approximate Curvature (K-FAC) method [31] utilizes a Kronecker product approximation to the
FIM for more efficient natural gradient computations. The layer-wise relevance propagation method
[4] uses the diagonal of the FIM to quantify the importance of features, thereby enhancing model
interpretability. The Elastic Weight Consolidation algorithm [20, 7] employs FIM to guard important
parameters during the learning of new tasks, mitigating catastrophic forgetting. All these methods
utilize the diagonal of the FIM for approximation, reducing computational complexity and facilitating
more efficient learning processes. Although these methodologies have made significant strides, their
application in personalized federated learning with differential privacy constraints, remains largely
unexplored. These methods are not directly applicable to personalized federated learning, as they
don’t account for the unique challenges posed by non-IID data distribution and privacy constraints.
Our novel approach integrates layer-wise Fisher information into personalized federated learning,
leveraging it to dynamically determine the personalization parameters, thus protecting informative
ones from noise perturbation induced by differential privacy. This strategy effectively minimizes the
impact of noise, enhancing model performance in personalization. Additionally, we introduce an
adaptive method that dynamically adjusts L2 norm constraints based on their fisher information value
magnitudes. This method enhances the robustness to clipping operations, offering a more flexible
solution to balance between model learning and privacy protection under the PFL with differential
privacy.

3 Methodology

3.1 Preliminary

Personalized Federated Learning. Personalized Federated Learning (PFL) extends Federated
Learning (FL) by addressing the non-IID nature of real-world data distributions. In PFL, parameter
vector of client model is decomposed into a local part, u, that caters to the individual data peculiarities,
and a global part, v, which is universally shared.

Assume we have M clients, Each client possesses a unique private dataset, denoted by Dm =

(xi, yi)
Nm

i=1, where Nm signifies the size of the local dataset of client m. The parameter vector
w ∈ Rdw of model of client i is separated into local and global parts, forming wi = (v, ui), by
personalization techniques.

The optimization problem in PFL is defined as follows:

min
v,u1:m

{
f(v, u1:m) :=

1

m

M∑
i=1

fi(v, ui)
}
, (1)

where u1:m represents (u1, . . . , um) ∈ (Rdu)M and the fi(v, ui) := EDi∼Pi
[fi(v, ui, Di)] is the

expected risk of client i, where i = 1, ..., Nm. PFL use a iteration of two steps to solve this problem:

• Local Update: During the local update phase, each client i adopts the latest global
parameter vt while retaining its local ut

i from previous round to initialize the model
wt

i = (vt, ut
i), and then performs Elocal iterations of local updates to obtain new pa-

rameters wt+1
i = (vt+1

i , ut+1
i ). Subsequently, they compute the local update ∆vt+1

i by
calculating the difference between vt+1

i and vti .

• Collaborative Update: In the collaborative update phase, all clients send their local updates
∆vt+1

i to the server. The server then averages these parameters to update the parameters
vt+1 = vt + 1

M

∑M
i=1 ∆vt+1

i , which are then distributed back to all clients for the next
round of local updates. In our methods, since the shared part of parameters is selected
dynamically and cannot be previously determined , all clients send their whole updates
∆wt

t+1 to server.
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User-Level Differential Privacy. In the context of Personalized Federated Learning (PFL), it is
essential to employ differential privacy techinque to prevent potential privacy leakage. One strong
privacy-preserving mechanism used in this setting is Differential Privacy (DP).

Differential Privacy (DP) [12, 41] is a formal privacy framework that provides theoretical guarantees
against the identification of private data in a dataset. In the DP framework, ϵ is known as the privacy
budget, which quantifies the privacy protection level, and δ is the probability of the privacy guarantee
being violated. A randomized algorithm M satisfies (ϵ, δ)-DP if for any pair of adjacent datasets D
and D′ differing by only one record, and for any subset of outputs S in the range of M , it holds that:

Pr[M(D) ∈ S] ≤ eϵ Pr[M(D′) ∈ S] + δ (2)
This property implies that the probability distribution of the output of M changes only slightly when
a single record in the input dataset is modified, thus protecting individual privacy.

User-Level Differential Privacy (DP) is extensively used as an application of DP mechanism in the
context of personalized federated scenarios. User-Level DP refers to the privacy guarantee for the
participation information of a single client in the learning process. Based on the aforementioned
theory, user-level DP makes the global model updates indistinguishable whether a particular client
participates in the learning or not. This is achieved by implementing two crucial operations: clipping
and noise addition.

Clipping is done to control the maximum contribution of a single client to the global update, ensuring
that the DP property holds even in the presence of outliers. This is crucial for maintaining the privacy
of individuals in the learning process. Besides, noise addition (typically sampled from a zero-mean
Gaussian distribution) is performed to satisfy the randomness requirement of DP, making it harder to
infer specific information about any individual client. The combined effect of these two operations is
expressed as:

∆wC = ∆w
/
max(1,

||∆w||2
C

), ∆wC,N = ∆wC +N (0, C2σ2/|Mt|), (3)

where ∆w represents the original local update from the client, |Mt| represents the available client in
round t, C is the clipping threshold that controls the maximum contribution of a client to the global
update, ∆wC is the local update after clipping, ∆wC,N is the final local update after clipping and
adding noise, N is the Gaussian noise added to ensure DP, and σ is a noise multiplier computed by
privacy accountant and composition mechanism with respect to ϵ and δ.

3.2 Dynamic Personalization Strategy

Motivation of Fisher Information. The motivation to use Fisher Information stems from its
ability to quantify the amount of information that parameters can provide. Parameters that are
more informative can represent the knowledge more effectively, playing a crucial role in the model
prediction. Therefore, under the same noise perturbation, if the informative parameters are affected,
it will lead to a more severe degradation of model performance. In typical personalization work, at
the beginning of the local update phase, clients directly place the global parameters in fixed positions
into the network for training. This inflexible personalization approach doesn’t consider the impact of
noise on different parameters, which results in the model being more susceptible to noise interference.
Therefore, we need to avoid noise affecting informative parameters. In light of this, our approach
considers the hierarchical structure of neural networks and introduces layer-wise Fisher information.
We measure layer-wise of each parameter Fisher information, which reflects the sensitivity of the
model to the parameter changes, to optimize the model by preventing them from noise.

Construction of Dynamic Fisher Personalization. As discussed in ❶, the current DP-PFL methods
struggle with inflexible personalization due to the fixed portion of the model used for personalization.
To address this issue, we introduce a dynamic personalization strategy that leverages the Fisher
Information to enhance the adaptability of the model to the data distribution of individual clients
as follows. We start at the beginning of local update phase of client i at global epoch t, with its
private dataset Di and parameters wt−1

i = (vt−1, ut−1
i ) remain from last epoch. We can get the

empirical fisher value vector Fi ∈ Rdw where dw represents the num of parameters of w as a good
approximation of the diagonal of true fisher value for each parameter indexed by j in wt−1

i as :

F (wij) =

(
∂ logL(wi, Di)

∂wij

)2

, (4)
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where the logL(wi, Di) represents log-likelihood function of wi. Then, the layer-wise fisher value
F̂k for layer k by a layer-wise normalization for each parameters indexed by j in layer k as :

F̂k,j =
Fk,j −min{Fk,j}

max{Fk,j} −min{Fk,j}
. (5)

Given the layer-wise Fisher values for each parameter, we then generate two binary masks, M1 and
M2, for each parameter to conduct our dynamic parameter selection. In each mask, a parameter entry
is set to 1 if its corresponding Fisher value is greater than or equal to a threshold τ , otherwise, it is set
to 0. These masks are defined as follows for each parameter j:

M1[j] =

{
1, if F̂ij ≥ τ

0, otherwise
and M2[j] =

{
0, if F̂ij ≥ τ

1, otherwise
, (6)

where M1 and M2 are the entries in the first and second masks, respectively.

We then perform a Hadamard product (element-wise multiplication) between these masks and the
parameters to select the appropriate parameters for personalization. Specifically, parameters with a
larger Fisher value, which correspond to 1’s in M1, are retained from the previous epoch, while the
remaining parameters, which correspond to 1’s in M2, are replaced by the global parameters. This
operation can be expressed as follows:

wt
i = M1 ⊙ wt−1

i +M2 ⊙ wt−1, (7)

where ⊙ denotes the Hadamard product and wt−1 is the global parameters downloaded from server.
This approach ensures that more informative parameters (with larger Fisher values) are retained for
personalized learning, while less informative ones are updated with the global parameters, mitigating
the influence of noise.

Comparison with Analogous Methods. PPSGD [3] employs a fixed layer personalization approach
with an additive model to achieve personalization under differential privacy (DP). Meanwhile, the LUS
mechanism [8] utilizes a mask during their sparsification process after local training. Although these
methods have their merits, they are fundamentally different from our proposed strategy. In our work,
we advocate for a dynamic personalization approach using a mask, but crucially, this is applied prior
to the training process. Our aim is to provide a more flexible and adaptive personalization strategy that
can better cope with changes in the data distribution, noise level, and other dynamic factors affecting
the model performance. Furthermore, we focus on preserving the most informative parameters, those
that significantly contribute to the model performance, while allowing less informative ones to be
updated with global parameters, thereby reducing the impact of noise. This dynamic, pre-training
personalization strategy provides a unique advantage over the static, post-training personalization of
the aforementioned methods.

3.3 Adaptive Constraint

Motivation for Adaptive Constraint. The challenge of gradient distortion and convergence diffi-
culties in DP-PFL arises from the clipping operation applied to the L2 norm of each local update.
Traditional methods[8, 23] often apply a uniform regularization strength to all parameters, neglecting
the inherent differences among parameter magnitudes. To address this issue, we propose an adaptive
approach that determines different constraint strengths for different parameters, considering the
inherent magnitude of each parameter. This aims to maintain the learning capacity of the model while
also enhancing its robustness against clipping.

Construction of Adaptive Constraint. As discussed in ❷, the problem of gradient distortion and
convergence difficulties in DP-PFL arises from the clipping operation applied to the L2 norm of each
local update, our method is as follows. At the start of the local update phase, each client i at global
epoch t has parameters wt−1

i = (vt−1, ut−1
i ). These parameters are divided into two sets: shared

parameters vt−1
i and personalized parameters ut−1

i , identified by the previously introduced dynamic
personalization strategy. We propose two different constraints for the local updates of these two sets
of parameters.

For the personalized parameters, which contain unique knowledge from the local data, our aim is to
retain this local knowledge as much as possible. We therefore introduce a regularization term to loss
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function that constrains the L2 norm of the local update of the personalized parameters. The local
update of personalized parameters ut

i is expressed as:

ut
i = ut−1

i − η∇uL1(v
t−1
i , ut−1

i , Di), (8)

where η is the learning rate, and ∇L1 is the gradient of the first loss function. The first loss function,
L1, is calculated as the sum of the cross-entropy loss and the L2 norm of the difference between the
current and the previous personalized parameters:

L1 = − 1

n

n∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)] +
λ1

2
||ui − ut

i||2, (9)

where n is the number of instances in the dataset Di, yj is the true label of instance j, λ1 is a
hyper-parameter and ŷj is the predicted label of instance j.

For the shared parameters, we strive to ensure that their L2 norm values closely approach the clipping
bound. By adopting such a strategy, we anticipate reducing the influence that the clipping operation
exerts on the local update. We therefore introduce a bounded regularization term to the loss function
of the shared parameters. The local update of shared parameters vti is expressed as:

vti = vt−1
i − η∇vL2(v

t−1
i , ut

i, Di), (10)

where ∇L2 is the gradient of the second loss function. The second loss function, L2, is calculated as
the sum of the cross-entropy loss and the absolute difference between the L2 norm of the difference
between the current and previous shared parameters and the clipping bound:

L2 = − 1

n

n∑
j=1

[yj log(ŷj) + (1− yj) log(1− ŷj)] +
λ2

2

∣∣∣∣||vi − vti ||2 − C
∣∣∣∣
2
. (11)

Here, n is the number of instances in the dataset Di, yj is the true label of instance j, ŷj is the
predicted label of instance j, λ2 is also a hyper-parameter and C is the clipping bound.

By applying these adaptive constraints, our method effectively mitigates the impact of the clipping
operation and boosts the performance of FedDPA. The two loss functions, L1 and L2, cater to the
unique properties of personalized and shared parameters, respectively. L1 helps retain as much local
knowledge as possible, overcoming the slow convergence issue. Additionally, L2 ensures the shared
parameters updates align with the clipping bound, thereby improving the model robustness against
clipping. In both cases, the regularization strengths λ1 and λ2 are determined adaptively, taking into
account the inherent magnitude of each parameter. This novel consideration distinguishes our method
from traditional approaches and contributes to its superior performance.

3.4 Discussion and Limitation

Our analysis of extra computation cost is as follows: Assuming a total of Eg Global Epochs, M
clients, and P parameters for each model, during each client update process, the client undergoes S
steps of parameter updates in training. In each round, our method introduces computation costs as
follows: 1) Computing the Fisher information value, 2) Construction of the mask and 3) Calculating
the initial parameters using masks. In these steps, as each step is parameter-specific, our method
brings an additional computational cost of O(P ). Regarding that we have to carry out these operations
in each global epoch, we introduce a computational cost of O(Eg ·M · P ) in total.

Despite our extra computational cost, it is noteworthy that our approach has a relatively small overhead
compared to the overall training process. This is because, the model training still has a considerable
computational cost proportional to P , and all the training process would introduce O(Eg ·M ·P ·S).
Generally, in a training process, the value of S is in the tens or hundreds, so the computation cost
introduced by our method will be an order of magnitude or more less than the training expense.
Extensive experiments have verified the consistent improvement over the counterparts.

Besides the core functionality of our model, it also shows potential for applications in other fields,
such as feature selection in high-dimensional datasets, improving model robustness by focusing on
critical parameters, and enhancing privacy protection by selective parameter sharing. Regarding the
limitation of model homogeneity, our method assumes all clients share the same model structure,
which may not always be the case in real-world scenarios. Heterogeneity in model structures across
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Algorithm 1: The Proposed Method: FedDPA
Input: Global epochs Eg , local epochs El, participants number in the tth epoch mt, private data of the ith

client Di = (Xi, Yi), global model parameters w and client local parameters wi, hyper-parameter
λ1, λ2, τ , learning rate η

Local Update :
for i = 1, 2, ...,mt do

Receive wt−1 from Server
F̂i ← (Di, w

t−1
i ) by Eq. (4) and Eq. (5)

M1i and M2i ← (F̂i, τ) by Eq. (6)
wt

i = (vt−1, ut−1
i )←M1i ⊙ wt−1

i +M2i ⊙ wt−1 using Eq. (7)
for e = 1, 2, ..., El do

ut
i ← ut−1

i − η∇uL1(v
t−1, ut−1

i ) by L1 from (9)
vti ← vt−1 − η∇vL2(v

t−1, ut
i) by L2 from (11)

end
∆wt

i ← (vti , u
t
i)− (vt−1, ut−1

i )

∆wt
i ← ∆wt

i/max(1,
||∆wt

i ||2
C

) +N (0, C2σ2/|mt|) to ensure DP by Eq. (3)
end
Server Execute :
∆wt

i ← Local Update(wt−1)
for t = 1, 2, ..., Eg do

wt ← wt−1 + 1
mt

∑mt

i=1 ∆wt
i

for i = 1, 2, ...,mt do
Send wt to ith participant

end
end

clients can potentially limit the utility of our dynamic personalization strategy and adaptive constraints,
differences in model could lead to incompatibilities, which is an area where further research is needed
to improve the versatility of our method. It should be noted that this limitation is not unique to our
approach but is also shared by most of the aforementioned methods [8, 41, 38, 3] .

4 Experiments

We evaluate the performance of the proposed method and comparison methods through comprehensive
experiments on two distinct datasets under various conditions. Specifically, we test the accuracy
on the FEMNIST and SVHN dataset across different privacy budgets denoted by ϵ, and for the
CIFAR-10, we adjust the α parameter to simulate varying degrees of non-IID distribution and assess
accuracy accordingly. This wide-ranging experimental setup reflects practical scenarios and ensures
a thorough assessment of our method’s robustness and adaptability.

Data and Model. Our method is evaluated on two classification tasks, FEMNIST [6], CIFAR-10 [21]
and SVHN [34], embodying real-world non-IID and privacy-constrained scenarios. The FEMNIST is
a 62-class version of MNIST, CIFAR-10 is a widely-used image classification dataset, and the SVHN
dataset it a digits classification dataset which is collected from street view. We use a simple CNN
model with 2 convolution layers and 2 fully connected layers for FEMNIST and a deeper model with
3 convolution layers and 3 fully connected layers for CIFAR-10.

Comparison Methods. We compare the performance of our proposed method with several state-
of-the-art methods in differential privacy-enabled federated learning, including DP-FedAvg [12],
PPSGD [3], DP-FedAvg with LUS and BLUR [8], and DP-FedSAM [38].

Evaluation Metrics. The primary metric for evaluation is the average accuracy, calculated uniquely
for each client. Each client has their own personalized model trained on their individual dataset,
and accuracy is measured on these respective datasets. The average of these individual accuracies
across all clients is then calculated to yield the final metric. For the FEMNIST and SVHN dataset,
we evaluate this average accuracy under varying privacy budgets, underlining the advantage of
our method in mitigating noise impact. For the CIFAR-10 dataset, we evaluate average accuracy
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under different degrees of non-IID data partition, demonstrating the effectiveness of our dynamic
personalization strategy in handling non-IID data.

Implementation Details. For all dataset FEMNIST, CIFAR-10 and SVHN, we set the learning rate
to 1e-3 and optimize hyperparameters τ , λ1, and λ2 through grid search in {0.05, 0.1, 0.3, 0.5}. We
use the Rényi Differential Privacy (RDP) algorithm provided by Opacus as our privacy accountant.
The value of δ, in (ε, δ)-differential privacy, is set to the reciprocal of the number of clients (i.e.,
1/M). We use global epochs of 30 and 40, local epochs of 3 and 4, and batch sizes of 16 and 64 for
FEMNIST and CIFAR-10, respectively. For CIFAR-10, we partition the dataset into 10 subsets via
Dirichlet distribution and use a fixed noise multiplier to ensure differential privacy. For FEMNIST,
we selected the top 50 clients from the FEMNIST [6] division for training. All experiments were
implemented in Python with PyTorch on an NVIDIA 3090 GPU.

Table 1: Comparison of Model Performance under Different Conditions. Refer Sec. 4.1
FEMNIST SVHNMethods

ϵ =2 ϵ =4 ϵ =8 ϵ =16 ϵ = 2 ϵ = 4 ϵ = 6 ϵ = 8

DP-FedAvg [12] 71.92 72.80 73.26 75.02 53.91 54.76 56.33 57.65
BLUR+LUS [8] 72.80 74.23 74.58 75.16 53.76 57.52 56.90 58.57

PPSGD [3] 68.20 69.60 71.03 71.93 55.89 56.15 56.74 59.37
DP-FedSAM [38] 73.13 73.94 74.54 74.66 53.04 52.84 54.03 56.08

FedDPA(Ours) 74.46↑1.33 77.27↑3.04 77.42↑2.84 76.99↑1.83 58.78↑2.89 62.63↑5.11 63.66↑6.76 64.57↑5.29

Table 2: Performance Comparison on CIFAR-10. Refer Sec. 4.1
Methods α = 1 α = 10 α = 100 IID

DP-FedAvg [12] 42.61 58.89 60.03 60.97
BLUR+LUS [8] 48.97 58.70 60.50 61.12

PPSGD [3] 44.04 57.31 60.20 60.02
DP-FedSAM [38] 45.07 56.15 58.87 60.77

FedDPA(Ours) 49.75↑0.78 59.48↑0.59 60.68↑0.18 61.55↑0.43

4.1 Comparison with State-Of-the-Art Methods

We provide comparison results with SOTA methods on two image classification tasks [21, 6].

Analysis Under Different Privacy Budget. As Tab.1 shows, our method maintains high accuracy
across various privacy budgets on the FEMNIST dataset, underlining its robustness and superior
privacy-utility trade-off. The convergence plots Fig.1a and Fig.1b support our method’s efficiency,
demonstrating faster convergence and more effective loss minimization.

Analysis Under Different Degrees of Non-IID Data. Our method shows strong performance across
varying non-IID data partitions on the CIFAR-10 dataset, as seen on the right side of Tab.2. It
effectively handles non-IID data challenges via our flexible personalization method.

(a) Accuracy convergence curve (b) Loss convergence curve

Figure 1: Comparison of Model Performance and Optimization Objective Value. See details in 4.1
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4.2 Diagnostic Experiments

To highlight the contribution of each component in our method towards the overall performance, we
conduct a series of ablation experiments. Our proposed method comprises two integral components.

Dynamic Fisher Personalization (DFP). The DFP, as described in Sec. 3.2, contributes to the
improvement of accuracy across various privacy budgets. When DFP is employed (second row in the
table), there is a noticeable increase in accuracy for all privacy budgets compared to the base model
(first row), validating the effectiveness of DFP in enhancing model performance.

Adaptive Constraint (AC). The AC strategy, as introduced in Sec. 3.3, is dependent on DFP for its
operation. Therefore, there is no experiment featuring only the AC without the DFP. However, when
both DFP and AC are incorporated (third row in the table), the model’s accuracy further improves
across all privacy budgets. This demonstrates that the AC strategy enhances the utility of DFP,
contributing to an overall superior privacy-utility trade-off.

Table 3: Ablation Study with Different Privacy Budgets. Refer Sec. 4.2
Components Accuracy on clients dataset
DFP AC ϵ = 2 ϵ = 4 ϵ = 8 ϵ = 16

71.92 72.80 73.26 75.02
✓ 72.18 74.56 74.38 75.33
✓ ✓ 74.46↑2.28 77.27↑2.71 77.42↑2.93 76.99↑1.66

The results in Table 3 clearly illustrate that both DFP and AC contribute significantly to the perfor-
mance of the model under various privacy budgets. The combined use of both components provides
the best results, reinforcing the effectiveness of our proposed method.

4.3 Hyperparameter Study

We vary the hyperparameters including λ and τ in our proposed methods to demonstrate how out
model retains or change personalized portions in DFP and the sensitivity of constraint strength in AC.

Table 4: Ablation Study on τ . Refer Sec. 4.3
τ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proportion 100% 11.1% 4.5% 1.45% 0.97% 0.46% 0.15% 0.1% 0.1% 0.05% 0%
Accuracy 39.72 47.97 49.28 48.89 48.35 48.03 48.28 48.14 48.35 47.74 48.29

Table 5: Ablation Study on λ1. Refer Sec.4.3
λ1 0 0.05 0.1 0.3 0.5

Accuracy 60.82 62.64 59.66 59.28 59.57

Table 6: Ablation Study on λ2. Refer Sec. 4.3
λ2 0 0.05 0.1 0.3 0.5

Accuracy 58.34 59.76 61.01 47.61 45.66

For τ , we observe that our proposed method is relatively stable, verifying the robustness of our
proposed solution. For λ, we achieve the best performance when λ1 is around 0.05 and λ2 is around
0.1. We apply this across multiple different datasets, and it results in a consistent good performance.

5 Conclusion

In this paper, we delve into the challenges of inflexible personalization and convergence difficulties
under differential privacy in personalized federated learning. We introduce FedDPA with two
innovative components, Dynamic Fisher Personalization (DFP) and Adaptive Constraint (AC), that
utilize layer-wise Fisher information to dynamically personalize and adaptively constrain parameters,
effectively addressing the aforementioned issues. The efficacy of our proposed methods has been
thoroughly validated against many popular counterparts across various classification tasks. We are
hopeful that this work will pave the way for future research on personalized federated learning with
differential privacy.
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