
Reproducibility319

The backbone recommendation model, DLRM by Naumov et al. [2019], has an open-source PyTorch320

implementation available on Github which includes an implementation of CE. For CCE you need a321

fast library for K-means. We recommend the open-sourced implementation by Johnson et al. [2019]322

for better performance, but you can also use the implementation in Scikit-learn [Pedregosa et al.,323

2011]. The baseline result should be straightforward to reproduce as we closely follow the instructions324

provided by Naumov et al. [2019]. For the CE methods, we only need to change two functions in325

the code: create_emb and apply_emb. We suggest using a class for each CE method; see Figure 3.326

For the random hash function, one could use a universal hash function or numpy.random.randint.327

Measuring the Embedding Compression factor The most important number from our experi-328

mental section is the “Embedding Compression” factor in Table 1. We measure this by training the329

model with different caps on of parameters in the embedding tables (See e.g. the x-axis in Figure 4a.330

E.g. if the Criteo Kaggle dataset has categorical features with vocabularies of sizes 10, 100 and 106,331

we try e.g. to cap this at 8000, using a full embedding table for the small features, and a CCE table332

with 8000/16 = 500 rows (since each row has 16 parameters). This corresponds to a compression333

rate of (10 + 100 + 106)/(10 + 100 + 500) ≈ 1639.5. Or if we measure only the compression of334

the largest table, 106/500 = 2000. Unfortunately there’s a discrepancy in the article, which we only335

found after the main deadline, that uses the second measure in the introduction (hence the number336

11,000x compression) where as Figure 4a uses the first measure (and thus the lower number 8,5000x).337

For the experiments where we only train for 1 epoch, some methods never reach baseline BCE338

within the number of parameters we test. Hence the Compression Rates we report are based on339

extrapolations. For each algorithm we report a range, e.g. 127-155x for CE with Concatenation on340

Criteo Kaggle 1 epoch. Since the loss graphs tend to be convex, the upper bound (155x) is based on a341

linear interpolation (being optimistic about when the method will hit baseline BCE) and the lower342

bound (127x) is based on a quadratic interpolation, which only intersects the baseline at a higher343

parameter count.344

K-means For the K-means from FAISS, we use max_points_per_centroid=256 and niter=50.345

The first parameter sub-samples the number of points to 256 times the number of cluster centroids (k),346

and is the recommended rate after which “no benefit is expected” according to the library maintainers.347

In practice we predict the right value will depend on the dimensionality of your data, so using the348

split into lower dimensional columns is beneficial. For niter we initially tried a larger value (300), but349

found it didn’t improve the final test loss. We found on Kaggle for PQ, niter=50, BCE=0.455540 and350

niter=300, BCE=0.455537. For CCE (single epoch, single clustering at half an epoch), niter=50 gave351

BCE=0.45928 and niter=300 gave BCE=0.45905, so a very slight improvement, but not enough to352

make up for the extra training time.353

Datasets For our experiments, we sub-sampled an eighth of the Terabyte dataset and pre-hashed354

them using a simple modulus to match the categorical feature limit of the Kaggle dataset. For both355

Kaggle and Terabyte dataset, we partitioned the data from the final day into validation and test sets.356

Using the benchmarking setting of the DLRM code, the Kaggle dataset has around 300,000 batches357

while the Terabyte dataset has around 2,000,000 batches.358

Early stopping Early stopping is used when running the best of 10 epochs on the Kaggle dataset.359

We measure the performance of the model in BCE every 50,000 batches (around one-sixth of one360

epoch) using the validation set. If the minimum BCE of the previous epoch is less than the minimum361

BCE of the current epoch, we early stop.362

Deep Hash Embeddings We follow Kang et al. [2021] in using a fixed-width MLP with Mish363

activation. However, DHE is only described in one version in the paper: 5 layers of 1024 nodes364

per layer. For our experiments, we need to initialize DHE with different parameter budgets. We365

found that in general, DHE performs better with fewer layers when the number of parameters is fixed.366

However, we cannot use just a single layer, since that would be a linear embedding table, not an MLP.367

As a compromise, we fix the number of hidden layers to 2 and set the number of hashes to be the368

same as the dimension of the hidden layers.369

12

For example, if we were allowed to use 64, 000 parameters with an embedding dimension of 64, then370

by solving a quadratic equation we get that the number of hashes and the dimension of the hidden371

layers are both 136. This gives us372

n_hashes · hidden_dim + 2 ∗ hidden_dim2 + hidden_dim · embedding_dim = 64192

parameters.373

13

A What didn’t work374

Here are the ideas we tried but didn’t work at the end.375

Using multiple helper tables It is a natural idea use more than one helper table. However, in our376

experiments, the effect of having more helper tables is not apparent.377

Circular clustering Based on the CE concat method, the circular clustering method would use378

information from other columns to do clustering. However, the resulting index pointer379

functions are too similar to each other, meaning that this method is essentially the hashing380

trick. We further discuss this issue in Appendix G.381

Continuous clustering We originally envisioned our methods in a tight loop between training and382

(re)clustering. It turned out that reducing the number of clusterings didn’t impact perfor-383

mance, so we eventually reduced it all the way down to just one. In practical applications,384

with distribution shift over time, doing more clusterings may still be useful, as we discuss in385

Section 3.386

Changing the number of columns In general, increasing the number of columns leads to better387

results. However the marginal benefits quickly decrease, and as the number of hash functions388

grow, so does the training and inference time. We found that 4 columns / hash-functions389

was a good spot.390

Residual vector quantization The CCE method combines Product Quantization (PQ) with the CE391

concat method. We tried combining Residual vector quantization (RVQ) with the Hash392

Embeddings method from Tito Svenstrup et al. [2017]. This method does not perform393

significantly better than the Hash Embeddings method.394

Seeding with PQ We first train a full embedding table for one epoch, and then do Product Quantiza-395

tion (PQ) on the table to obtain the index pointer functions.396

We then use the index pointer functions instead of random hash functions in the CE concat397

method. This method turned out performing badly: The training loss quickly diverges from398

the test loss after training on just a few batches of data.399

Here are some variations of the CCE method:400

Earlier clustering We currently have two versions of the CCE method: CCE half, where clustering401

happens at the middle of the first epoch, and CCE, where clustering happens at the end of402

the first epoch. We observe that when we cluster earlier, the result is slightly worse. Though403

in our case the CCE half method still outperforms the CE concat method.404

More parameters before clustering The CCE method allows using two number of parameters, one405

in Step 1 where we follow the CE hybrid method to get a sketch, and one in Step 3 where we406

follow the CE concat method. We thought that by using more parameters at the beginning,407

we would be able to get a better set of index pointer tables. However, the experiment408

suggested that the training is faster but the terminal performance is not significantly better.409

Smarter initialization after clustering In Algorithm 3 we initialize Mi with the cluster centroids410

from K-means and the “helper table” M ′i ← 0. We could instead try to optimize M ′i to411

match the residuals of T as well as possible. This could reduce the discontinuity during412

training more than initializing to zeros. However, we didn’t see a large effect in either413

training loss smoothness or the ultimate test score.414

14

B Proof of the main theorem415

0.417 0.720
0.000 0.302
0.147 0.092
0.186 0.346
0.397 0.539
0.419 0.685
0.204 0.878

 ≈

1 0 0 0
0 1 0 0
0 0 0 1
0 1 0 0
1 0 0 0
1 0 0 0
0 0 1 0

0.411 0.648

0.093 0.324
0.204 0.878
0.147 0.092

Figure 5: K-means as matrix factorization. A central part of the analysis of CCE is the simple
observation that K-means factors a matrix into a tall sparse matrix and a small dense one. In other
words, it finds a sparse approximation the column space of the matrix.
Let’s remind ourselves of the “Dense CCE algorithm” from Section 3: Given X ∈ Rn×d1 and416

Y ∈ Rn×d2 , pick k such that n > d1 > k > d2. We want to solve find a matrix T ∗ of size d1 × d2417

such that ‖XT ∗ − Y ‖F is minimized – the classical Least Squares problem. However, we want to418

use memory less than the typical nd21. We thus use this algorithm:419

Dense CCE Algorithm: Let T0 = 0 ∈ Rd1×d2 . For i = 1 to m:420

Sample Gi ∼ N(0, 1)d1×(k−d2);

Compute Hi = [Ti−1 | Gi] ∈ Rd1×k

Mi = arg inf
M
‖XHiM − Y ‖2F ∈ Rk×d2 .

Ti = HiMi

We will now argue that Tm is a good approximation to T ∗ in the sense that ‖XTm − Y ‖2F is not421

much bigger than ‖XT ∗ − Y ‖2F .422

Let’s consider a non-optimal choice of Mi first. Suppose we set Mi =
[
Id2
M ′i

]
where M ′i is chosen423

such that ‖HiMi − T ∗‖F is minimized. By direct multiplication, we have HiMi = Ti−1 +GiM
′
i .424

Hence in this case minimizing ‖HiMi − T ∗‖F is equivalent to finding M ′i at each step such that425

‖GiM ′i − (T ∗ − Ti−1)‖F is minimized.426

In other words, we are trying to estimate T ∗ with
∑
iGiM

′
i , where each Gi is random and each M ′i427

is greedily chosen at each step. This is similar to, for example, the approaches in Barron et al. [2008],428

though they use a concrete list of Gi’s. In their case, by the time we have d1/k such Gi’s, we are just429

multiplying X with a d1 × d1 random Gaussian matrix, which of course will have full rank, and so430

the concatenated M matrix can basically ignore it. However, in our case we do a local, not global431

optimization over the Mi.432

Recall the theorem:433

Theorem B.0. Given X ∈ Rn×d1 and Y ∈ Rn×d2 . Let T ∗ = arg minT∈Rd1×d2‖XT − Y ‖2F be an434

optimal solution to the least squares problem. Then435

E
[
‖XTi − Y ‖2F

]
≤ (1− ρ)i(k−d2)‖XT ∗‖2F + ‖XT ∗ − Y ‖2F ,

where ρ = ‖X‖2−2/‖X‖2F .436

Here we use the notation that ‖X‖−2 is the smallest singular value of X .437

Corollary B.1. In the setting of the theorem, if all singular values of X are equal, then438

E
[
‖XTi − Y ‖2F

]
≤ e−i

k−d2
d1 ‖XT ∗‖2F + ‖XT ∗ − Y ‖2F .

Proof of Theorem B.1. Note that ‖X‖2F is the sum of the d1 singular values squared: ‖X‖2F =
∑
i σ

2
i .439

Since all singular values are equal, say to σ ∈ R, then ‖X‖2F = d1σ
2. Similarly in this setting,440

‖X‖2−2 = σ2 so ρ = 1/d1. Using the inequality 1− 1/d1 ≤ e−1/d1 gives the corollary.441

Proof of Theorem B.0. First split Y into the part that’s in the column space of X and the part that’s442

not, Z. We have Y = XT ∗ + Z, where T ∗ = arg minT ‖XT − Y ‖F is the solution to the least443

15

squares problem. By Pythagoras theorem we then have444

E
[
‖XTi − Y ‖2F

]
= E

[
‖XTi − (XT ∗ + Z)‖2F

]
= E

[
‖X(Ti − T ∗)‖2F

]
+ ‖Z‖2F ,

so it suffices to show445

E
[
‖X(Ti − T ∗)‖2F

]
≤ (1− ρ)i(k−d2)‖XT ∗‖2F .

We will prove the theorem by induction over i. In the case i = 0 we have Ti = 0, so E[‖X(T0 −446

T ∗)‖2F] = E[‖XT ∗‖2F] trivially. For i ≥ 1 we insert Ti = HiMi and optimize over M ′i :447

E[‖X(Ti − T ∗)‖2F] = E[‖X(HiMi − T ∗)‖2F]

≤ E[‖X(Hi[I |M ′i]− T ∗)‖2F]

= E[‖X((Ti−1 +GiM
′
i)− T ∗)‖2F]

= E[‖X(GiM
′
i − (T ∗ − Ti−1))‖2F].

= E[E[‖X(GiM
′
i − (T ∗ − Ti−1))‖2F | Ti−1]]

≤ (1− ρ)k−d2 E[‖X(T ∗ − Ti−1)‖2F]

≤ (1− ρ)i(k−d2)‖XT ∗‖2F ,

where the last step followed by induction. The critical step here was bounding448

EG[inf
M
‖X(GM − T)‖2F] ≤ (1− ρ)k−d2‖XT‖2F ,

for a fixed T . We will do this in a series of lemmas below.449

We show the lemma first in the “vector case”, corresponding to k = 2, d2 = 1. The general matrix450

case follow below, and is mostly a case of induction on the vector case.451

Lemma B.2. Let X ∈ Rn×d be a matrix with singular values σ1 ≥ · · · ≥ σd ≥ 0. Define452

ρ = σ2
d/
∑
i σ

2
i , then for any t ∈ Rd,453

Eg∼N(0,1)d

[
inf
m∈R
‖X(gm− t)‖22

]
≤ (1− ρ)‖Xt‖22.

Proof. Setting m = 〈Xt,Xg〉/‖Xg‖22 we get454

‖X(gm− t)‖22 = m2‖Xg‖22 + ‖Xt‖22 − 2m〈Xg,Xt〉 (1)

=

(
1− 〈Xt,Xg〉2

‖Xt‖22‖Xg‖22

)
‖Xt‖22. (2)

We use the singular value decomposition of X = UΣV T . Since g ∼ N(0, 1)d and V T is unitary, we455

have V T g ∼ N(0, 1)d and hence we can assume V = I . Then456

〈Xt,Xg〉2

‖Xt‖22‖Xg‖22
=

(tTΣUTUΣg)2

‖UΣt‖22‖UΣg‖22
(3)

=
(tTΣ2g)2

‖Σt‖22‖Σg‖22
(4)

=
(
∑
i tiσ

2
i gi)

2

(
∑
i σ

2
i t

2
i)(
∑
i σ

2
i g

2
i)
, (5)

where Equation (4) follows from UTU = I in the SVD. We expand the upper sum to get457

Eg

[
(
∑
i tiσ

2
i gi)

2

(
∑
i σ

2
i t

2
i)(
∑
i σ

2
i g

2
i)

]
= Eg

[∑
i,j titjσ

2
i σ

2
j gigj

(
∑
i σ

2
i t

2
i)(
∑
i σ

2
i g

2
i)

]
(6)

= Eg

[∑
i t

2
iσ

4
i g

2
i

(
∑
i σ

2
i t

2
i)(
∑
i σ

2
i g

2
i)

]
. (7)

16

Here we use the fact that the gi’s are symmetric, so the cross terms of the sum have mean 0. By scaling,458

we can assume
∑
i σ

2
i t

2
i = 1 and define pi = σ2

i t
2
i . Then the sum is just a convex combination:459

(7) =
∑
i

pi Eg

[
σ2
i g

2
i∑

i σ
2
i g

2
i

]
. (8)

Since σi ≥ σd and gi’s are IID, by direct comparison we have460

Eg

[
σ2
i g

2
i∑

i σ
2
i g

2
i

]
≥ Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
Hence461

(7) ≥ Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]∑
i

pi = Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
.

It remains to bound462

Eg

[
σ2
dg

2
d∑

i σ
2
i g

2
i

]
≥ σ2

d∑
i σ

2
i

= ρ, (9)

but this follows from a cute, but rather technical lemma, which we will postpone to the end of this463

section. (Theorem B.4.)464

It is interesting to notice how the improvement we make each step (that is 1− ρ) could be increased465

to 1− 1/d by picking G from a distribution other than IID normal.466

If X = UΣV T , we can also take g = V Σ−1g′, where g′ ∼ N(0, 1)d1×(k−d2). In that case we get467

E

(
〈Xt,Xg〉
‖Xg‖2‖Xt‖22

)2

= E

(
tTV Σ2V T g

‖Ug′‖2‖Xt‖22

)2

= E

(
tTV Σg′

‖g′‖2‖Xt‖22

)2

=
1

d1

‖tTV Σ‖22
‖Xt‖22

=
1

d1
.

So this way we recreate the ideal bound from Theorem B.1. Note that ‖X‖
2
−2

‖X‖2F
≤ 1/d1. Of course it468

comes with the negative side of having to compute the SVD of X . But since this is just a theoretical469

algorithm, it’s still interesting and shows how we would ideally update Ti. See Figure 6 for the effect470

of this change experimentally.471

It’s an interesting problem how it might inspire a better CCE algorithm. Somehow we’d have to get472

information about the the SVD of X into our sparse super-space approximations.473

We now show how to extend the vector case to general matrices.474

Lemma B.3. Let X ∈ Rn×d1 be a matrix with singular values σ1 ≥ · · · ≥ σd1 ≥ 0. Define475

ρ = σ2
d1
/
∑
i σ

2
i , then for any T ∈ Rn×d2 ,476

EG∼N(0,1)d1×k

[
inf

M∈Rk×d2

‖X(GM − T)‖2F
]
≤ (1− ρ)k‖XT‖2F .

Proof. The case k = 1, d2 = 1 is proven above in Theorem B.2.477

Case k = 1: We first consider the case where k = 1, but d2 can be any positive integer (at most478

k). Let T = [t1|t2| . . . |td2] be the columns of T and M = [m1|m2| . . . |md2] be the columns of M .479

Then the ith column of X(GM − T) is X(Gmi − ti), and since the squared Frobenius norm of a480

17

0 5 10 15 20 25 30
Cluster + Learn iterations

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

M
S

E

n=625, d1=125, d2=5, k=25

noise
smart noise
half smart noise
half noise

Figure 6: SVD aligned noise converges faster. In the discussion we mention that picking the random
noise in Hi as g = V Σ−1g′, where g′ ∼ N(0, 1)d1×(k−d2), can improve the convergence rate from
(1 − ρ)ik to (1 − 1/d)ik, which is always better. In this graph we experimentally compare this
approach (labeled “smart noise”) against the IID gaussian noise (labeled “noise”), and find that the
smart noise indeed converges faster – at least once we get close to zero noise. The graph is over 40
repetitions where X is a random rank-10 matrix plus some low magnitude noise.
We also investigate how much we lose in the theorem by only considering M on the form [I|M ′],
rather than a general M that could take advantage of last rounds Ti. The plots labeled “half noise”
and “half smart noise” are limited in this way, while the two others are not. We observe that the effect
of this is much larger in the “non-smart” case, which indicates that the optimal noise distribution we
found might accidentally be tailored to our analysis.

matrix is simply the sum of the squared column l2 norms, we have481

E[‖X(GM − T)‖2F] = E

[
d2∑
i=1

‖X(Gmi − ti)‖22

]

=

d2∑
i=1

E
[
‖X(Gmi − ti)‖22

]
≤

d2∑
i=1

(1− ρ) E[‖Xti‖22] (10)

= (1− ρ) E

[
d2∑
i=1

‖Xti‖22

]
= (1− ρ) E[‖XT‖2F].

where in (10) we applied the single vector case.482

Case k > 1: This time, let g1, g2, . . . , gk be the columns of G and let mT
1 ,m

T
2 , . . . ,m

T
k be the483

rows of M .484

We prove the lemma by induction over k. We already proved the base-case k = 1, so all we need485

is the induction step. We use the expansion of the matrix product GM as a sum of outer products486

18

������

0.2 0.4 0.6 0.8 1.0
p

1.0

1.2

1.4

1.6

1.8

2.0

Exponential Distribution

ChiSquare Distribution

1

Figure 7: Expectation, E
[

x
px+(1−p)y

]
when x, y are IID with Exponential (blue) or Chi Square

distribution (Orange). In both cases the expectation is ≥ 1 when p ≤ 1/2, just as Theorem B.4
predicts.

GM =
∑k
i=1 gim

T
i :487

E[‖X(GM − T)‖2F] = E

∥∥∥∥∥X
(

k∑
i=1

gim
T
i − T

)∥∥∥∥∥
2

F

= E

∥∥∥∥∥X
(
g1m

T
1 +

(
k∑
i=2

gim
T
i − T

))∥∥∥∥∥
2

F

≤ (1− ρ) E

X (∥∥∥∥∥
k∑
i=2

gim
T
i − T

)∥∥∥∥∥
2

F

 (11)

≤ (1− ρ)k E
[
‖XT‖2F

]
.

where (11) used the k = 1 case shown above, and (12) used the inductive hypothesis. This completes488

the proof for general k and d2 that we needed for the full theorem.489

B.1 Technical lemmas490

It remains to show an interesting lemma used for proving the vector case in Theorem B.2.491

Lemma B.4. Let a1 . . . , an ≥ 0 be IID random variables and assume some values pi ≥ 0 st.∑
i pi = 1 and pn ≤ 1/n. Then

E

[
an∑
i piai

]
≥ 1.

This completes the original proof with pi =
σ2
i∑

j σ
2
j

and ai = g2i .492

19

Proof. Since the ai are IID, it doesn’t matter if we permute them. In particular, if π is a random493

permutation of {1, . . . , n− 1},494

E

[
an∑
i piai

]
= Ea

[
Eπ

[
an

pnan +
∑
i piaπi

]]
(12)

≥ Ea

[
an

Eπ
[
pnan +

∑
i<n piaπi

]] (13)

= Ea

[
an

pnan +
∑
i<n pi(

1
n−1

∑
j<n aj)

]
(14)

= Ea

[
an

pnan + (1− pn)
∑
i<n

ai
n−1

]
, (15)

where Equation (13) uses Jensen’s inequality on the convex function 1/x.495

Now define a =
∑n
i=1 ai. By permuting an with the other variables, we get:496

Ea

[
an

pnan + (1− pn)
∑
i<n

ai
n−1

]
= Ea

[
an

pnan + 1−pn
n−1 (a− an)

]
(16)

= Ea

[
1

n

n∑
i=1

ai

pnai + 1−pn
n−1 (a− ai)

]
(17)

= Ea

[
1

n

n∑
i=1

ai/a
1−pn
n−1 − (1−pn

n−1 − pn)ai/a

]
(18)

= Ea

[
1

n

n∑
i=1

φ(ai/a)

]
, (19)

where
φ(qi) =

qi
1−pn
n−1 − (1−pn

n−1 − pn)qi

is convex whenever 1−pn
n−1

/
(1−pn
n−1 − pn) = 1−p

1−np > 1, which is true when 0 ≤ pn < 1/n. That
means we can use Jensen’s again:

1

n

n∑
i=1

φ(ai/a) ≥ φ

(
1

n

∑
i

ai
a

)
= φ

(
1

n

)
= 1,

which is what we wanted to show.497

C Hashing498

If h : [n] → [m] and s : [n] → {−1, 1} are random functions, a Count Sketch is a matrix499

H ∈ {0,−1, 1}m×n where Hi,j = s(i) if h(i) = j and 0 otherwise. Charikar et al. [2002] showed500

that if m is large enough, the matrix H is a dimensionality reduction in the sense that the norm ‖x‖2501

of any vector in Rn is approximately preserved, ‖Hx‖2 ≈ ‖x‖2.4502

This gives a simple theoretical way to think about the algorithms above: The learned matrix T ′ =503

HTT is simply a lower dimensional approximation to the real table that we wanted to learn. While504

the theoretical result requires the random “sign function” s for the approximation to be unbiased, in505

practice this appears to not be necessary when directly learning T ′. Maybe because the vectors can506

simply be slightly shifted to debias the result.507

There are many strong theoretical results on the properties of Count Sketches. For example, Woodruff508

[2014] showed that they are so called “subspace embeddings” which means the dimensionality509

4This also implies that inner products are approximately preserved by the dimensionality reduction.

20

reduction is “robust” and doesn’t have blind spots that SGD may accidentally walk into. However, the510

most practical result is that one only needs h to be a “universal hash function” ala Carter and Wegman511

[1977], which can be as simple and fast as the “multiply shift” hash function by Dietzfelbinger et al.512

[1997].513

If Count Sketch shows that hashing each i ∈ [n] to a single row in [m], we may wonder why methods514

like Hash Embeddings use multiple hash functions (or DHE uses more than a thousand.) The answer515

can be seen in the theoretical analysis of the “Johnson Lindenstrauss” transformation and in particular516

the “Sparse Johnson Lindenstrauss” as analyzed by Cohen et al. [2018]. The analysis shows that517

if the data being hashed is not very uniform, it is indeed better to use more than one hash function518

(more than 1 non-zero per column in H .) The exact amount depends on characteristics in the data519

distribution, but one can always get away with a sparsity of ε when looking for a 1 + ε dimensionality520

reduction. Hence we speculate that DHE could in general replace the 1024 hash functions with521

something more like Hash Embeddings with an MLP on top. Another interesting part of the Cohen522

et al. [2018] analysis is that one should ideally split [m] in segments, and have one hash function into523

each segment. This matches the implementations we based our work on below.524

D How to store the hash functions525

We note that unlike the random hash functions used in Step 1, the index pointer functions obtained526

from clustering takes space linear in the amount of training data or at least in the ID universe size.527

At first this may seem like a major downside of our method, and while it isn’t different from the528

index tables needed after Product Quantization, it definitely is something extra not needed by purely529

sketching based methods.530

We give three reasons why storing this table is not an issue in practice:531

1. The index pointer functions can be stored on the CPU rather than the GPU, since they are532

used as the first step of the model before the training/inference data has been moved from533

the CPU to the GPU. Furthermore the index lookup is typically done faster on CPUs, since534

it doesn’t involve any dense matrix operations.535

2. The index pointers can replace the original IDs. Unless we are working in a purely streaming536

setting, the training data has to be stored somewhere. If IDs are 64 bit integers, replacing537

them with four 16-bit index pointers is net neutral.538

3. Some hashing and pruning can be used as a prepossessing step, reducing the universe size539

of the IDs and thus the size of the index table needed.540

E Different strategies for CCE541

We include other graphs about CCE in Figure 8. They are all on the Kaggle dataset and were run542

three times. These graphs helped us develop insights on CCE and choose the correct versions for543

Figure 4a and Figure 4b.544

F AUC Graphs545

We also evaluate the models using AUC, which is another commonly used metric for gauging the546

effectiveness of a recommendation model. For example, it was used in [Kang et al., 2021]. AUC547

provides the probability of getting a correct prediction when evaluating a test sample from a balanced548

dataset. Therefore, a better model is implied by a larger AUC. In this section, we plot the graphs549

again using AUC; see Figure 9 and Figure 10.550

G Table Collapse551

Table collapsing was a problem we encountered for the circular clustering method as described in552

Appendix A. We describe the problem and the metric we used to detect it here, since we think they553

may be of interest to the community.554

21

103 104 105 106

Number of parameters for Largest Tables

0.449

0.450

0.451

0.452

0.453

0.454

0.455

0.456

0.457

B
C

E

CCE best of 10 epochs

Full Embedding Table
CCE ct0
CCE ct1 cf300000
CCE ct2 cf300000
CCE ct3 cf300000
CCE ct4 cf300000
CCE ct5 cf300000
CCE ct6 cf300000

(a) Kaggle dataset, CCE, best of 10 epoch: We ran
different versions of CCE for 10 epochs. Here ct means
the number of clustering done, and cf refers to the num-
ber of batches between clusterings. Since each epoch
has around 300, 000 batches, we essentially clustered
once every epoch. The performance increases with
more clustering. Another observation is that as m in-
creases, a few lines were merged due to early stopping.
We found that CCE ct6 cf300000 performs the best,
which becomes the CCE model in Figure 4a.

103 104 105 106

Number of parameters for Largest Tables

0.454

0.456

0.458

0.460

0.462

0.464

B
C

E

Strategy 1 for 1 epoch

Full Embedding Table
CCE ct0
CCE ct1 cf150000
CCE ct2 cf75000
CCE ct3 cf50000
CCE ct4 cf37500
CCE ct5 cf30000
CCE ct6 cf25000

(b) Kaggle dataset, CCE, Strategy 1: We ran differ-
ent versions of CCE for 1 epoch under the constraint
that all clusterings must finish before half of an epoch.
It turns out that there is a balance between the num-
ber of clusterings and the ‘quality’ of the clustering,
represented by the number of batches between cluster-
ings. We found that CCE ct2 cf75000 performs the
best, which becomes the CCE model in Figure 4b.

103 104 105 106

Number of parameters for Largest Tables

0.454

0.456

0.458

0.460

0.462

0.464

B
C

E

Strategy 2 for 1 epoch

Full Embedding Table
CCE ct1 cf150000
CCE ct2 cf100000
CCE ct4 cf60000
CCE ct6 cf42500

(c) Kaggle dataset, CCE, Strategy 2: Strategy 2 here
tries to have all the clustering finish by 2/3 of an epoch.
These runs did not perform well. It turned out that we
need to let the model have time to converge after all the
clusterings.

103 104 105 106

Number of parameters for Largest Tables

0.454

0.456

0.458

0.460

0.462

0.464

0.466

B
C

E

Strategy 3 for 1 epoch

Full Embedding Table
CCE ct1 cf300000
CCE ct1 cf150000
CCE ct2 cf150000
CCE ct1 cf75000
CCE ct2 cf75000

(d) Kaggle dataset, CCE, Strategy 3: This strategy
perfectly summarizes all the previous findings. Increas-
ing the number of clusterings in general gives better
performance; Letting the model ‘rest’ after clustering
increases the performance; Increasing the interval be-
tween clusterings give better result.

Figure 8: Strategies for CCE that gave us insight.

Suppose we are doing k-means clustering on a table of 3 partitions in order to obtain 3 index pointer555

functions hcj . These functions can be thought as a table, where the (i, j)-entry is given by hcj(i).556

There are multiple failure modes we have to be aware of. The first one is column-wise collapse:557

1 0 0
1 1 2
1 0 3
...

...
...

1 3 1

558

22

103 104 105 106

Number of parameters for Largest Tables

0.796

0.798

0.800

0.802

0.804

0.806

AU
C

Best of 10 epochs

Full Embedding Table
CCE (This paper)
CE with Concatenation
The Hashing Trick
Deep Hash Embeddings
Product Quantization

(a) Kaggle dataset, Best of 10 epoch, AUC.

103 104 105 106

Number of parameters for Largest Tables

0.780

0.785

0.790

0.795

0.800

0.805

AU
C

End of 1 epoch

Full Embedding Table
CCE (This paper)
Product Quantization
CE with Concatenation
The Hashing Trick
Deep Hash Embeddings

(b) Kaggle dataset, 1 epoch, AUC.

104 105 106

Number of parameters for Largest Tables

0.780

0.785

0.790

0.795

0.800
AU

C

End of 1 epoch

Full Embedding Table
CCE (This paper)
CE with Concatenation
The Hashing Trick
Product Quantization
Deep Hash Embeddings

(c) Terabyte dataset, 1 epoch, AUC.

Figure 9: The AUC version of Figure 4.

In this table the first column has collapsed to just one cluster. Because of the way k-means clustering559

works, this exact case of complete collapse isn’t actually possible, but we might get arbitrarily low560

entropy as measured by H1, which we define as follows: For each column j, its column entropy is561

defined to be the entropy of the probability distribution pj : hcj([n])→ [0, 1] defined by562

pj(x) =
#{i : hcj(i) = x}

n
.

Then we define H1 to be the minimum entropy of the (here 3) column-entropies.563

The second failure mode is pairwise collapse:564

1 0 1
2 2 3
1 0 3
3 1 0
2 2 1

565

In this case the second column is just a permutation of the first column. This means the expanded566

set of possible vectors is much smaller than we would expect. We can measure pairwise collapse567

by computing the entropy of the histogram of pairs, where the entropy of the column pair (j1, j2) is568

23

103 104 105 106

Number of parameters for Largest Tables

0.798

0.800

0.802

0.804

0.806

AU
C

CCE best of 10 epochs

Full Embedding Table
CCE ct0
CCE ct1 cf300000
CCE ct2 cf300000
CCE ct3 cf300000
CCE ct4 cf300000
CCE ct5 cf300000
CCE ct6 cf300000

(a) Kaggle dataset, CCE, best of 10 epoch, AUC.

103 104 105 106

Number of parameters for Largest Tables

0.790

0.792

0.794

0.796

0.798

0.800

0.802

AU
C

Strategy 1 for 1 epoch

Full Embedding Table
CCE ct0
CCE ct1 cf150000
CCE ct2 cf75000
CCE ct3 cf50000
CCE ct4 cf37500
CCE ct5 cf30000
CCE ct6 cf25000

(b) Kaggle dataset, CCE, Strategy 1, AUC.

103 104 105 106

Number of parameters for Largest Tables

0.790

0.792

0.794

0.796

0.798

0.800

0.802

AU
C

Strategy 2 for 1 epoch

Full Embedding Table
CCE ct1 cf150000
CCE ct2 cf100000
CCE ct4 cf60000
CCE ct6 cf42500

(c) Kaggle dataset, CCE, Strategy 2, AUC.

103 104 105 106

Number of parameters for Largest Tables

0.788

0.790

0.792

0.794

0.796

0.798

0.800

0.802

AU
C

Strategy 3 for 1 epoch

Full Embedding Table
CCE ct1 cf300000
CCE ct1 cf150000
CCE ct2 cf150000
CCE ct1 cf75000
CCE ct2 cf75000

(d) Kaggle dataset, CCE, Strategy 3, AUC.

Figure 10: The AUC version of Figure 8.

defined by the column entropy of hcj1(·) + max(hcj1)hcj2(·). Then we define H2 to be the minimum569

of such pair-entropies for all
(
3
2

)
pairs of columns.570

Pairwise entropy can be trivially generalized to triple-wise and so on. If we have c columns we may571

compute each of H1, . . . ,Hc. In practice H1 and H2 may contain all the information we need.572

G.1 What entropies are expected?573

The maximum value forH1 is log k, in the case of a uniform distribution over clusters. The maximum574

value for H2 is log
(
k
2

)
≈ 2 log k. (Note log n is also an upper bound, where n is the number of575

points in the dataset / rows in the table.)576

With the CE method we expect all the entropies to be near their maximum. However, for the Circular577

Clustering method this is not the case! That would mean we haven’t been able to extract any useful578

cluster information from the data.579

Instead we expect entropies close to what one gets from performing Product Quantization (PQ) on a580

complete dataset. In short:581

1. Too high entropy: We are just doing CE more slowly.582

2. Too low entropy: We have a table collapse.583

3. Golden midpoint: Whatever entropy normal PQ gets.584

24

