
A Notations

In this section, we summarize the adopted notations in Table 5.

Table 5: Main notations and their descriptions.

Notation Description

Spaces
X and Y the data space and the label space {1, · · · , c}
n and c the dimension of the data space and the dimension of the label space
d and m the dimension of the embedding space and the dimension of the latent space

Distributions and Sets
P ID

X,Y and P ID
X the joint and the marginal real ID distribution

POOD
X the marginal real OOD distribution

GID
X,Y and GID

X the joint and the marginal auxiliary ID distribution
GOOD

X the marginal auxiliary OOD distribution
MZ the specified MoG distribution
UZ the specified uniform distribution

Data
xID and yID the real ID data and label
x̂ID and ŷID the auxiliary ID data and label

x̂OOD the auxiliary OOD data
zID and zOOD the latent ID and the latent OOD data
Z ID and ZOOD the latent ID and the latent OOD data sets

Models
h the predictor: Rn → Rc

ϕ and ρ the feature extractor and the classifier
s(·;h) the scoring function:Rn → R
fβ(·) the OOD detector:X → {ID,OOD}, with threshold β
G the generator: Rm → Rn

Loss and Function
ℓCE and ℓOE ID loss function and OOD loss function

ℓreg the generator regularization loss function
ℓalign the alignment loss
ϕ′(·) the general mapping function
M(·) the density function of MoG

B Related Works

OOD Scoring Functions. To discern OOD data from ID data, many works study how to devise
effective OOD scoring functions, typically assuming a well-trained model on ID data with its
fixed parameters [15, 36]. As a baseline method, Hendrycks and Gimpel [15] takes the maximum
softmax prediction (MSP) as the OOD score, where, in expectation, the MSP should be low for
OOD data since their true labels are not in the considered label space. However, MSP frequently
makes mistakes due to the over-confidence issue [36]. Therefore, recent works devise improved
scoring strategies [36, 20, 17, 64, 57]; integrate gradient information [25, 21, 35] or embedding
features [32, 53, 9, 46]; make further adjustments on specific tasks [56, 68, 38, 39]. In Appendix F.6,
we test ATOL with different scoring strategies, demonstrating that proper scoring functions can
lead to improved performance for data generation-based OOD detection. Therefore, OOD scoring
functions are typically orthogonal to data generation-based approaches.

OOD Training Strategies. OOD detection can also be improved by model fine-tuning, motivating
advanced works studying OOD training strategies. As one of the most potent approaches, outlier
exposure [16] train to make the perdictor produce low-confidence predictions for OOD data. Based
on outlier exposure, a set of improved methods have been proposed, from the perspective of data
re-sampling [79, 42], background classification [34, 3, 45], data transformation [70], adversarial
robust learning [34, 14, 4], meta learning [26] and energy scoring [36, 28]. However, real OOD data
are hard to be accessed, largely hindering their practical validity.
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Therefore, a set of learning strategies has been proposed, considering situations where real OOD data
are unavailable. Therein, improved representation [58, 54, 65, 77, 71, 44], extra-class learning [20,
52], and pseudo features learning [10, 60] have demonstrated their strengths for improved detection.
However, these methods can hardly beat the outlier exposure-based methods. Therefore, several
works [31, 62, 55, 50, 67] adopt data generators to synthesize OOD data for model training. They
can make the predictor learn to discern ID and OOD patterns without tedious OOD data acquisition.
However, the data generator may wrongly generate unreliable data containing ID semantics, confusing
the predictor between ID and OOD cases.

C Proof of Proposition 1

Proof. Following Theorem 3 in Fang et al. [11], if Eq. (5) approaches 0 and C1 holds, the predictor
h = ρ ◦ ϕ can separate the auxiliary ID and the auxiliary OOD cases well, i.e., suppϕ#GID

X ∩
suppϕ#GOOD

X = ∅. Then, by aligning the real and the auxiliary ID distributions in transformed space
(cf. C2), we can conclude that the auxiliary OOD data are almost reliable w.r.t. the real ID data.

D Overall Algorithm

In this section, we discuss our learning framework in detail. Our ATOL consists of two stages: 1)
generator regularization and 2) auxiliary task OOD learning.

For the generator regularization, the overall training framework is summarized in Algorithm 1,
regularizing in a stochastic manner with num_step_g iterations. We have the generator G : Rm →
Rn and the pre-defined latent distribution UZ in the latent space. In each training step, we sample a
set of latent data from UZ , assuming be of the size b as that of the mini-batch. With the regularization
term, we update the generator via one step of mini-batch gradient descent.

Algorithm 1 Generator Reguralization.
1: Inputs: initialized generator G(·) and the pre-defined latent distribution UZ .
2: for t = 1 to num_step_g do
3: Sample latent data {z}bi=1 from UZ ;
4: Compute regularization risk ℓreg(z;G);
5: Update generator minG ℓreg(z;G);
6: end for
7: Output: regularized generator G(·).

For the auxiliary task OOD learning, the overall training framework is summarized in Algorithm 2,
optimizing the predictor in a stochastic manner with num_step_p iterations. In each training step,
with the regularized generator, the auxiliary ID data x̂ID and the auxiliary OOD data x̂OOD can be
generated from the latent ID data zID and the latent OOD data zOOD respectively, where the latent
ID and OOD data follow the crafted distribution ZID, ZOOD

3 in Eqs (6)-(7). We assume the size b as
that of the mini-batch regarding the ID samples and b′ for the OOD samples4. Then, the risk for the
auxiliary and the real data are jointly computed and update the predictor h parameters using Eq. (10).
After training, we apply the MaxLogit scoring in discerning ID and OOD cases.

E Details of Experiment Configuration

E.1 Hyper-parameters

We study the effect of hyper-parameters on the final performance of our ATOL, where we consider the
trade-off parameter α, mean value µ, covariance matrix scale σ for Mixture of Gaussian(MoG), the
sampling space size u in latent space, and the dimension of latent space m. We also study the impact

3With abuse of notation, we denote the distribution in latent space as Z for simplicity.
4Note that the mini-batch size of the real ID data and the auxiliary ID data have no need to be equal in the

Algorithm 2. In this paper we make them equal for convenience
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Algorithm 2 Auxiliary Task OOD Learning.
1: Inputs: predictor h = ρ ◦ ϕ, regularized generator G(·), real ID distribution P ID

X,Y , crafted
latent distributions ZID and ZOOD;

2: for t = 1 to num_step_p do
3: Sample latent data {zID}bi=1 and {zOOD}b

′

i=1 from ZID and ZOOD, resp;
4: Generate auxiliary data x̂ID = G(zID) and x̂OOD = G(zOOD) by regularized generator G(·)

and sample real ID data {(xID, yID)}bi=1 from P ID
X,Y ;

5: Compute risk ℓ(h) = ℓCE(xID, yID; x̂ID, ŷID;h) + ℓOE(x̂OOD;h) + ℓalign(x̂ID, ŷID;ϕ);
6: Update predictor minh ℓ(h);
7: end for
8: Output: predictor h(·).

of transformed data from different layers of WRN-40-2. All the above experiments are conducted on
the CIFAR benchmarks.

Trade-off parameter α. Table 6 demonstrates the performance of ATOL with varying α values
that trade-off the OOD detection task learning loss and the alignment losses. α is selected from
{0.01, 0.1, 0.5, 1, 3, 5, 10}. We can observe that on CIFAR-10, the best performance is obtained
at α = 1, and the best performance on CIFAR-100 is obtained at α = 5. In general, a large α is
advantageous for the accuracy of the predictor since ID distribution alignment not only enables the
transfer of the ability to discern ID and OOD data but also facilitates the ID classification of the
predictor. However, when α is large, the predictor tends to align the ID data rather than discern ID
and OOD cases at the early stage of training. Hence, a relatively small (α ≤ 5) usually leads to good
performance than a much larger value.

Table 6: Performance of ATOL with varying α on CIFAR-10 and CIFAR-100

Trade-off parameter α CIFAR-10 CIFAR-100
FPR95 ↓ AUROC ↑ Acc ID ↑ FPR95 ↓ AUROC ↑ Acc ID ↑

α = 0.01 22.99 92.66 92.89 71.07 80.45 72.67
α = 0.1 20.02 94.66 93.43 65.99 82.92 73.44
α = 0.5 15.56 96.05 94.03 60.23 84.88 73.89
α = 0.8 15.51 96.40 94.15 60.23 84.93 73.99
α = 1 14.11 96.94 94.17 59.89 84.77 73.99
α = 3 16.01 96.56 93.96 56.53 86.37 73.89
α = 5 16.28 96.57 94.17 55.38 86.41 73.98
α = 10 17.08 96.50 94.57 61.82 84.97 74.58

Mean values for MoG µ. We show the effect of the mean value µ of sub-Gaussian from the Mixture
of Gaussian M in the latent space. The mean value µ decides the latent distribution for the auxiliary
ID data, and the results are listed in Table 7. We conduct experiments with two realizations of the
Gaussian mean: case 1 is to choose at random from a uniform distribution, and case 2 (used in ATOL)
is to obtain the values from the vertices of a high-dimensional hypercube (i.e., a mean vector with m
elements, where each element is randomly selected from between {−µ, µ} as the mean for MoG).

Specifically, the performance of case 1 is stable, since the randomness of value sampling. In contrast,
in case 2, the mean value plays an important role in the performance of ATOL, where the mean for
each sub-distribution is fixed at a set value. In general, a relatively large mean value for the MoG
usually leads to good performance than a much smaller value. When the mean value is small, the
MoG will concentrate on a limited region, leading to the great overlapping among sub-Gaussians.
Such an overlapping can result in confusion of the semantics of the auxiliary ID data. Moreover, a
proper choice value for the case 2 is superior to the case 1, reflecting that our strategy is useful for
our proposed ATOL.

Covariance matrix for MoG σ. We show the effect of σ for the Mixture of Gaussian M in the
latent space. The value σ decides the covariance matrix of the latent distribution for the auxiliary ID
data. We vary σ ∈ {0.05, 0.1, 0.3, 0.5, 1, 1.5}, and the results are listed in Table 8. As we can see,
too large σ leads to inferior performance since too large σ will result in largely overlapping with
other Gaussian in latent space, as we discussed earlier. On CIFAR-10 dataset, the best performance is
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Table 7: Performance of ATOL with varying µ on CIFAR-10 and CIFAR-100

Mean µ
Case 1 Case 2

0.1 0.5 1 1.5 2 3 5 0.1 0.5 1 1.5 2 3 5

CIFAR-10 FPR95 ↓ 17.60 16.26 16.26 16.20 16.30 16.29 16.31 23.29 21.32 18.62 16.08 15.14 14.69 14.52
AUROC ↑ 96.13 96.59 96.56 96.55 96.56 96.55 96.54 93.44 94.61 95.85 96.37 96.75 97.02 97.05

CIFAR-100 FPR95 ↓ 63.93 64.04 63.42 62.55 63.05 63.84 63.56 62.08 63.17 55.24 59.49 60.06 61.80 62.54
AUROC ↑ 83.26 83.37 83.54 84.42 84.14 83.80 84.08 84.19 82.28 86.35 86.98 85.72 85.22 84.85

obtained at σ = 0.1, while on CIFAR-100, the best performance is obtained at σ = 0.5. We suppose
that the semantics and scale of the varying datasets differ, necessitating different σ.

Table 8: Performance of ATOL with varying σ on CIFAR-10 and CIFAR-100

Covariance matrix scale σ σ = 0.01 σ = 0.1 σ = 0.3 σ = 0.5 σ = 1 σ = 1.5

CIFAR-10 FPR95 ↓ 14.67 14.62 14.88 15.99 20.09 21.31
AUROC ↑ 96.99 97.02 96.99 96.37 95.45 94.61

CIFAR-100 FPR95 ↓ 63.97 62.82 60.44 56.06 63.72 64.42
AUROC ↑ 84.50 84.85 85.70 86.49 82.95 83.58

Space size for latent space u. We show the effect of u for the latent distribution UZ , which identifies
the space size of UZ in latent space for the auxiliary OOD data. We vary u ∈ {0.5, 1, 4, 8, 16, 32},
and the results are listed in Table 9. Generally, a small latent space leads to the limited information
in the latent space, which results in the inferior performance (e.g., the ATOL performance when
u = 0.5). As we set a relatively large value (u ≥ 4), the performances are stable on both datasets.

Table 9: Performance of ATOL with varying u on CIFAR-10 and CIFAR-100

Latent space size u u = 0.5 u = 1 u = 4 u = 8 u = 16 u = 32

CIFAR-10 FPR95 ↓ 18.15 14.90 13.96 13.90 14.12 14.02
AUROC ↑ 93.96 95.97 96.96 96.96 96.95 96.96

CIFAR-100 FPR95 ↓ 60.18 58.02 56.25 56.42 56.09 55.97
AUROC ↑ 83.42 85.43 86.64 86.57 86.38 86.44

Dimension of latent space m. To study the impact of dimension m of latent space (the input
space of the data generator), we conduct experiments based on different dimensions of a random-
parameterized generator of DCGAN. We vary m ∈ {8, 16, 32, 64, 128, 256}, and the results are
listed in Table 10. We find that the generator with m = 64 has the best performance. We suppose that
a data generator with high dimensional input space may be more intractable, while low dimensional
input space may not contain sufficient information. Therefore, a reasonably large m helps achieve a
better result.

The above experiments about hyper-parameters only serve to support the validity of our method.
However, a proper choice of hyper-parameters can truly induce improved results in effective OOD
detection, reflecting that all the introduced hyper-parameters are useful in our proposed ATOL.

E.2 Effect of Mistaken OOD Generation

In section 1, we revisit the common baseline approach [16], which uses real OOD data, for OOD
detection. We investigate the effect of mistaken OOD generation on the OOD detection performance.
In particular, we use a WRN-40-2 architecture trained on CIFAR-100 with varying proportions of
real ID data mixed in the real OOD data, reflecting the severity of wrong OOD data during training.
As shown in Figure 1(b), the performance (FPR95) degrades rapidly from 35.70% to 64.21% as the
proportion of unreliable OOD data increases from 0% to 75%. This trend signifies that current OOD
detection methods are indeed challenged by mistaken OOD generation, which motivates our work.
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Table 10: Performance of ATOL with varying m on CIFAR-10 and CIFAR-100

Dimension m m = 8 m = 16 m = 32 m = 64 m = 128 m = 256

CIFAR-10 FPR95 ↓ 24.98 22.71 22.62 20.78 28.39 29.55
AUROC ↑ 94.74 94.84 94.81 95.57 94.11 93.12

CIFAR-100 FPR95 ↓ 70.62 70.03 68.33 65.69 65.93 71.83
AUROC ↑ 80.45 80.65 82.30 83.26 82.86 78.90

E.3 Realizations of Distance

As described in 4.1, we suppose that the centralized distance between two data points that are measured
in the latent space should be positively correlated to that of the distance measured in the data space,
namely, distance-preserving. In this ablation, we contrast the performance of different realizations
used for the normalized distance in Eq. 8. We empirically test three realizations: 1) Cosine similarity-
based: d(z1, z2) =

z⊤
1 z2

∥z1∥∥z2∥ ; 2) Taxicab distance-based: d(z1, z2) = ∥z1 − z2∥1 − E ∥z1 − z2∥1;
3) Euclidean distance-based [73]: d(z1, z2) = ∥z1 − z2∥2 −E ∥z1 − z2∥2. As one can see from the
Table 11, all the forms of distance can lead to reliable OOD detection performance, indicating that
ATOL is general to various realizations.

Table 11: Performance comparisons with different realizations of centralized distance

Centralized distance d
CIFAR-10 CIFAR-100

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Cosine similarity-based 19.73 95.77 60.15 85.41
Taxicab distance-based 18.40 94.78 58.76 85.83

Euclidean distance-based 14.62 97.02 55.52 86.32

E.4 Class-agnostic Auxiliary ID Data

ATOL adopts a class-conditional way to generate auxiliary ID data [59, 72], then aligns transformed
distribution with real ID data based on labels. In this ablation, we contrast with a class-agnostic
implementation, i.e., we generate the auxiliary ID data from one single Gaussian and randomly assign
labels to the auxiliary ID data. The parameter of the single Gaussian is similar to the sub-Gaussian in
the MoG, except that the mean value is the zero vector. Under the same training setting, the class-
agnostic way for auxiliary ID data leads to a worse result, which may be caused by random labels
and unavailable alignment. Even if class-agnostic approaches struggle due to the homogenization of
auxiliary data, the predictor can still learn to discern ID and OOD data.

Table 12: Performance comparisons with different implementations of auxiliary ID data

Methods CIFAR-10 CIFAR-100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Class-agnostic 21.72 93.93 61.54 84.34
Class-conditional 14.62 97.02 55.52 86.32

E.5 Sample More Auxiliary Data

We note that with a powerful generation-based learning scheme, we can generate sufficient data to
make the predictor learn the knowledge of OOD without tedious OOD data acquisition. Therefore, we
consider increasing the number of generated auxiliary data, making the predictor see more auxiliary
data to strengthen the ability to discern ID and OOD data. To verify the effect of generating more data,
we conduct ATOL on CIFAR-10 and CIFAR-100 with different batch size b and b′ w.r.t. the ID and
OOD data, respectively. The experiment results are shown in Table 13, demonstrating that generating
more auxiliary data could strengthen the effect of ATOL. However, larger batch size means the extra
calculation cost, which may be improved in the future.
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Table 13: Performance of ATOL with varying batch size of ID and OOD data

Batch size CIFAR-10 CIFAR-100
b b′ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

b = 32 b′ = 32 22.21 95.04 65.94 83.67
b = 32 b′ = 128 15.43 96.83 58.77 83.98
b = 64 b′ = 64 19.60 95.38 63.26 84.12
b = 64 b′ = 256 14.21 96.97 55.03 86.16
b = 128 b′ = 128 20.39 95.43 63.62 82.33
b = 128 b′ = 512 13.99 97.09 54.96 86.17
b = 256 b′ = 256 19.25 95.72 62.94 83.97
b = 256 b′ = 1024 13.68 97.18 54.71 86.22

E.6 Using Embedding of Different Layers

To study the impact of embedding spaces from different layers, we conduct ID distribution alignment
on different output layers of WRN-40-2. In Table 14, we find that using the embedding space from
the penultimate layer of WRN-40-2 achieves the best performance. We suppose that alignment based
on a too-shallow layer may not be enough to impact the embedding of subsequent layers. However,
the calibration based on the last layer may interrupt the normal classification between the real data
and auxiliary data, since that they have completely different high-level semantics.

Table 14: Performance comparisons with different layers on CIFAR-10 and CIFAR-100

Different embedding layers CIFAR-10 CIFAR-100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Block 1 (hshallow) 31.78 91.01 72.88 80.15
Block 2 (hmiddle) 23.43 93.62 70.04 81.52
Block 3 (hdeep) 13.68 97.18 55.52 86.32
Last layer (hlast) 27.11 91.85 65.12 83.28

E.7 Using Different Network Architectures

In the main paper, we have shown that ATOL is competitive on WRN-40-2. The following experi-
mental results on CIFAR benchmarks can support our claims 1, where using a more complex model
(i.e., DenseNet-121 [19]) can lead to better performance in OOD detection. All the numbers are
reported over OOD test datasets described in Section 5.1.

Table 15: Performance comparisons with different network architectures DenseNet-121 on CIFAR-10
and CIFAR-100 ↓ (or ↑) indicates smaller (or larger) values are preferred.

Method SVHN LSUN-Crop LSUN-Resize iSUN Texture Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

WRN-40-2 20.60 96.03 1.48 99.59 5.20 98.78 5.00 98.76 26.05 95.03 27.55 94.33 14.31 97.09
DenseNet-121 18.05 96.27 1.45 99.58 4.35 99.88 4.45 98.86 20.90 95.70 25.85 94.39 12.51 97.28

CIFAR-100

WRN-40-2 70.85 84.70 13.45 97.52 51.85 90.12 55.80 89.02 63.10 83.37 75.30 78.86 55.06 87.26
DenseNet-121 70.30 85.96 61.55 87.93 22.15 95.87 22.30 95.59 48.30 87.87 77.15 79.28 50.29 88.75

E.8 How to best perform data generation-based methods for OOD detection

BoundaryGAN [31], ConfGAN [55] and ManifoldGAN [62] use DCGAN [51] to generate OOD data
to benefit the predictor for OOD detection. As we show in Section 5.2, even with the DCGAN, ATOL
has shown promising OOD detection performance. Moreover, we argue for ATOL can profit from
a delicate data generators [5], which can generate more diverse data to further benefit the predictor
learning from generated data. To this end, we use the generator of StyleGAN-v2 and BigGAN as the
data generator for ATOL, namely, ATOL-StyleGAN and ATOL-BigGAN (ATOL-S and ATOL-B for
short), which are one of the most popular generative models.
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Table 16: Performance comparisons with different data generators on CIFAR-10 and CIFAR-100 ↓
(or ↑) indicates smaller (or larger) values are preferred; a bold font indicates the best results.

Method SVHN LSUN-Crop LSUN-Resize iSUN Texture Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

ATOL 20.60 96.03 1.45 99.59 5.20 98.78 5.00 98.76 26.05 95.03 27.55 94.33 14.31 97.09
ATOL-S 21.40 94.66 1.95 99.43 2.20 99.44 2.15 99.45 23.85 93.96 30.35 92.84 13.65 96.63
ATOL-B 12.75 96.92 4.60 98.92 0.65 99.78 0.55 99.83 10.25 97.12 22.85 94.80 8.61 97.90

CIFAR-100

ATOL 70.85 84.70 13.45 97.52 51.85 90.12 55.80 89.02 63.10 83.37 75.30 78.86 55.06 87.26
ATOL-S 69.95 80.95 17.00 96.89 16.35 96.95 22.75 95.11 58.55 83.35 74.45 77.35 43.18 88.43
ATOL-B 54.65 89.69 43.95 91.27 7.80 98.57 9.60 98.13 37.45 89.51 66.90 80.82 36.72 91.33

ID
Unreliable OOD

(a) Mistaken OOD Generation

ID
Auxiliary ID
Auxiliary OOD

(b) ATOL without Alignment

ID
Auxiliary ID
Auxiliary OOD

(c) ATOL

Figure 3: The t-SNE Visualization of empirical embedding feature distribution of ATOL training on
CIFAR-10 dataset. The red circle represents the real ID data, the blue star represents the unreliable
OOD generated data, the orange triangle represents auxiliary ID data, and the yellow star represents
auxiliary OOD data. We qualitatively illustrate the results about mistaken OOD generation, ATOL
without alignment and our ATOL.

E.9 Visualization of Embedding Features

Qualitatively, to understand how our method helps the predictor to learn, we exploit t-SNE [61] to
show the embedding distributions of real and auxiliary data. The embedding features are extracted
from the penultimate layer of a WRN-40-2 model trained on CIFAR-10. In Figure 3(a), the mistaken
OOD generation leads to an overlap between ID samples and the unreliable OOD samples in the
embedding space. In contrast, our ATOL can make the predictor learn to discern the ID and OOD
cases as in 3(b), relieving the mistaken OOD generation by a large margin. However, the auxiliary ID
distribution is far from the real ID distribution, which indicates that the OOD detection capability
in the auxiliary task cannot benefit the predictor in real OOD detection. Such a distribution shift
results in poor OOD detection performance in the real task (cf. Section 5.3). As shown in Figure 3(c),
we further align the real ID and auxiliary ID distribution in embedding space, where the features
of auxiliary ID data are consistent with real ID data. Further, the auxiliary OOD data is observably
separate from the real ID data, which proves that ATOL can benefit the predictor learning from the
reliable OOD data, thereby providing strong flexibility and generality.

E.10 Hardware Configurations

All experiments are realized by Pytorch 1.11 with CUDA 12.0, using machines equipped with
NVIDIA Tesla A100 GPUs.

F Further Experiments

F.1 CIFAR Benchmarks

In this section, We compare our method with advanced OOD detection methods besides the data
generation-based methods, including MSP [15], ODIN [35], Mahalanobis [32], Free Energy [36],
MaxLogit [17], ReAct [56], ViM [64], KNN [57], Watermark [68], ASH [9], BoundaryGAN [31],
ConfGAN [55], ManifoldGAN [62],CSI [58], G2D [50], CMG [67], LogitNorm [71], VOS [10],
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Table 17: Comparison of ATOL and advanced methods on CIFAR-10 dataset. All methods are trained
on ID data only, without using outlier data. ↓ (or ↑) indicates smaller (or larger) values are preferred;
a bold font indicates the best results.

Method SVHN LSUN-Crop LSUN-Resize iSUN Texture Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OOD Scoring Functions

MSP 49.45 91.46 26.40 96.27 51.80 91.56 54.40 90.41 59.60 88.41 58.50 88.32 50.03 91.07
ODIN 29.16 91.52 12.84 96.29 32.53 90.19 42.27 89.79 44.51 88.74 34.54 90.25 32.64 91.13

Mahalanobis 13.33 97.57 39.56 94.10 43.21 93.14 43.55 92.80 15.46 97.18 68.23 84.69 37.23 93.25
Free Energy 37.00 90.29 5.85 98.93 30.35 93.88 33.00 92.61 52.15 85.72 42.15 89.25 33.42 91.78
MaxLogit 36.60 90.36 6.55 98.82 30.50 93.80 33.15 92.54 51.75 85.84 42.55 89.21 33.52 91.76

ReAct 50.73 86.36 6.48 98.70 29.23 94.59 36.53 92.92 59.08 85.16 42.76 90.24 37.47 91.33
ViM 56.97 89.77 49.96 91.43 63.54 88.15 62.20 88.47 45.20 91.76 47.86 91.45 54.29 90.17
KNN 31.29 95.01 26.84 95.33 25.89 95.36 29.48 94.28 41.21 92.08 44.02 90.47 33.12 93.76

KNN+ 8.98 98.33 7.94 97.90 18.67 96.92 23.55 94.65 16.57 96.72 36.33 93.98 18.67 96.42
Watermark 16.80 96.89 13.30 97.74 12.50 97.86 12.95 97.73 32.20 93.87 34.20 93.63 20.33 96.29

ASH 50.73 86.36 6.48 98.70 29.23 94.59 36.53 92.92 59.08 85.16 42.76 90.24 37.47 91.33

OOD Training Strategies

BoundaryGAN 86.15 79.48 19.05 96.50 41.75 92.18 46.35 90.63 70.15 78.71 70.15 81.25 55.60 86.46
ConfGAN 56.75 87.56 7.95 98.26 14.70 97.02 17.65 96.72 40.25 90.25 52.10 88.23 31.57 93.01

ManifoldGAN 26.20 94.51 5.05 98.84 27.25 95.22 30.70 93.94 32.05 91.06 38.85 90.95 26.68 94.09
CSI 20.48 96.63 1.88 99.55 6.18 98.78 5.49 98.99 21.07 96.27 33.73 93.68 14.80 97.31
G2D 6.10 98.63 8.30 98.41 45.35 89.48 45.25 88.96 36.80 88.63 49.20 86.34 31.83 91.74

LogitNorm 6.84 98.58 1.58 99.53 18.85 96.94 20.79 96.58 26.64 94.87 30.38 93.85 17.51 96.73
CMG 41.70 92.48 50.35 89.35 37.80 94.24 35.60 94.75 38.70 92.12 34.95 94.07 39.83 92.83
VOS 46.15 93.69 3.30 99.11 41.80 94.20 48.10 93.31 57.85 88.33 61.25 87.54 43.08 92.03

NPOS 36.55 93.30 9.98 98.03 21.87 95.60 28.93 94.25 52.83 85.74 39.56 89.71 31.62 92.77
CIDER 5.86 98.36 7.35 98.50 47.58 93.64 47.15 93.60 28.04 94.79 41.10 91.03 29.51 94.99

ATOL 20.60 96.03 1.45 99.59 5.20 98.78 5.00 98.76 26.05 95.03 27.55 94.33 14.31 97.09
ATOL-S 21.40 94.66 1.95 99.43 2.20 99.44 2.15 99.45 23.85 93.96 30.35 92.84 13.65 96.63
ATOL-B 12.75 96.92 4.60 98.92 0.65 99.78 0.55 99.83 10.25 97.12 22.85 94.80 8.61 97.90

NPOS [60] and CIDER [44]. For clarity, we divide the baseline methods into two categories: OOD
scoring functions and OOD training strategies, referring to Appendix B.

We summarize the main experiments in Table 17-18 on CIFAR benchmarks for common OOD
detection compared with the advanced OOD detection methods. For a fair comparison, all the
methods only use ID data without using real OOD datasets. We show that ATOL can achieve
superior OOD detection performance on average for the evaluation metrics of FPR95 and AUROC,
outperforming the competitive rivals by a large margin. Specifically, We incorporate the auxiliary
OOD detection task to benefit the predictor learn the OOD knowledge without accessing to the real
OOD data, which significantly improve the OOD detection performance.

Compared with the best baseline KNN+ [57], ATOL reduces the FPR95 from 33.12% to 8.61% on
CIFAR-10 and from 51.75% to 8.61% on CIFAR-100. Moreover, for the previous works that adopt
similar concepts in synthesize the boundary samples as outliers in the embedding space, i.e., VOS [10]
and NPOS [60], our ATOL also reveals better results, with 28.76% and 17.31% improvements on the
CIFAR-10 dataset and 11.27% and 7.20% improvements on the CIFAR-100 dataset w.r.t. FPR95.
It indicates that our data generation strategy can lead a better OOD learning compared with the
synthesizing features strategies. Note that, we can further benefit our ATOL from the latest progress
in OOD scoring, improving the performance of our method in OOD detection (cf. Appendix F.6).

F.2 ImageNet Benchmarks

Table 19 lists the detailed experiments on the ImageNet benchmark. The baselines are the same as
what we described in Section F.1. Our ATOL achieves superior performance on average against all
the considered baselines. Further, for the cases with iNaturalist and Places365, which are believed to
be the challenging OOD datasets on the ImageNet situation, our ATOL also achieves considerable
improvements against all other advanced methods. We highlight that ATOL outperforms the best
baseline (i.e., CSI) by 5.55% in FPR95, and ATOL is also simpler to use and implement than CSI,
which relies on sophisticated data augmentations and ensemble in testing. Overall, it demonstrates
that our ATOL can also work well for challenging detection scenarios with extremely large semantic
space and complex data patterns.

F.3 Hard OOD Detection

Besides the above test OOD datasets, we also consider hard OOD scenarios [58], of which the test
OOD data are very similar to that of the ID cases in style. Following the common setup [57] with the
CIFAR-10 dataset being the ID case, we evaluate our ATOL on three hard OOD datasets, namely,
LSUN-Fix [76], ImageNet-Fix [8], and CIFAR-100. We compare our ATOL with several works
reported performing well in hard OOD detection, including KNN [57], ASH [9] and CSI [58], where
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Table 18: Comparison of ATOL and advanced methods on CIFAR-100 dataset. All methods are
trained on ID data only, without using outlier data. ↓ (or ↑) indicates smaller (or larger) values are
preferred; a bold font indicates the best results.

Method SVHN LSUN-Crop LSUN-Resize iSUN Texture Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OOD Scoring Functions

MSP 83.95 72.80 59.30 85.33 80.45 76.51 81.85 76.19 83.00 74.01 82.10 74.39 78.44 76.54
ODIN 70.75 72.57 46.20 85.31 63.38 76.55 60.23 74.83 60.31 76.96 61.61 77.72 60.41 77.32

Mahalanobis 48.66 87.40 98.30 57.28 38.27 90.77 41.91 89.38 45.37 87.65 95.11 65.45 61.26 79.65
Free Energy 85.55 74.53 23.90 95.53 77.60 80.22 80.30 79.07 79.95 76.24 79.15 76.37 71.07 80.33
MaxLogit 84.40 74.72 28.20 94.77 77.25 80.19 79.45 79.14 79.05 76.34 79.25 76.47 71.27 80.27

ReAct 51.22 77.77 21.91 95.67 68.54 77.95 66.82 78.06 58.81 79.54 69.22 76.27 56.09 80.88
ViM 72.32 82.92 74.03 81.57 84.89 77.03 84.15 76.69 33.51 91.72 64.17 79.57 68.78 81.58
KNN 42.39 92.26 59.46 79.88 59.46 88.85 59.89 87.48 48.30 88.90 81.27 74.82 59.99 85.37

KNN+ 49.73 88.06 59.27 82.20 31.94 93.81 37.11 91.86 48.30 87.96 84.16 71.96 51.75 85.98
Watermark 84.95 75.04 73.15 85.74 72.95 85.79 71.95 85.47 71.95 81.82 79.25 77.48 75.70 81.89

ASH 65.63 87.44 18.90 96.77 76.81 80.53 79.26 79.59 72.71 80.54 81.72 74.84 65.84 83.29

OOD Training Strategies

BoundaryGAN 84.50 71.00 53.55 88.38 74.80 78.87 77.90 77.60 86.00 66.80 83.55 72.07 76.72 75.79
ConfGAN 88.30 72.04 39.35 92.01 77.85 80.26 79.70 79.47 79.65 71.27 84.30 70.99 74.86 77.67

ManifoldGAN 81.65 74.51 39.95 91.52 80.20 73.16 81.80 74.07 76.35 76.31 81.30 74.84 73.54 77.40
CSI 62.96 84.75 61.84 85.82 96.47 49.28 95.91 52.98 78.30 71.25 85.00 71.45 80.08 85.23
G2D 45.40 88.56 42.40 91.38 85.80 73.22 84.70 74.66 83.95 72.18 82.10 74.19 70.73 79.03

LogitNorm 41.37 92.78 14.57 97.20 87.96 67.88 89.15 65.74 69.66 78.87 78.00 78.59 63.45 80.18
CMG 73.05 82.12 86.50 72.07 81.45 77.80 82.70 76.85 80.30 73.86 73.65 82.39 79.60 77.51
VOS 78.06 82.59 40.40 92.90 83.47 70.82 85.77 70.20 82.46 77.22 82.31 75.47 75.41 78.20

NPOS 66.09 87.59 31.70 95.11 63.34 80.98 62.59 80.27 74.76 80.45 77.86 80.65 62.72 84.17
CIDER 52.21 88.44 46.88 90.18 52.23 89.89 47.57 89.91 84.67 70.62 84.67 71.82 61.37 83.48

ATOL 75.50 81.50 10.05 98.15 55.35 87.46 56.75 87.64 64.90 83.32 70.55 79.86 55.52 86.32
ATOL-S 69.95 80.95 17.00 96.89 16.35 96.95 22.75 95.11 58.55 83.35 74.45 77.35 43.18 88.43
ATOL-B 54.65 89.69 43.95 91.27 7.80 98.57 9.60 98.13 37.45 89.51 66.90 80.82 36.72 91.33

Table 19: Comparison of ATOL and advanced methods on ImageNet dataset. All methods are trained
on ID data only, without using outlier data. ↓ (or ↑) indicates smaller (or larger) values are preferred;
a bold font indicates the best results.

Method iNaturalist SUN Places365 Texture Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

OOD Scoring Functions

MSP 64.25 78.49 87.47 68.61 85.56 72.29 63.60 79.28 75.22 74.67
ODIN 63.85 77.78 89.98 61.80 88.00 67.17 67.87 77.40 77.43 71.04

Mahalanobis 95.90 60.56 95.42 45.33 98.90 44.65 55.80 84.60 86.50 58.78
Free Energy 61.14 77.65 90.20 61.59 89.88 63.78 57.61 77.61 74.71 70.16
MaxLogit 57.41 81.85 83.91 70.63 81.36 73.54 63.42 76.18 71.53 75.55

ReAct 55.47 81.20 66.81 82.59 63.71 85.11 46.33 90.30 58.08 84.80
ViM 85.44 77.16 89.50 75.00 87.73 78.25 38.47 90.55 75.29 80.24
KNN 65.40 83.73 75.62 77.33 79.20 74.34 40.80 86.45 64.75 80.91

KNN+ 61.48 80.35 74.04 77.33 63.53 82.95 33.48 90.53 58.13 82.79
Watermark 67.36 80.60 72.64 79.55 79.20 70.80 81.74 83.46 75.24 78.61

ASH 80.00 67.39 92.20 58.97 87.01 68.10 70.18 69.61 82.35 66.02

OOD Training Strategies

BoundaryGAN 83.36 68.68 90.75 63.84 87.66 67.50 80.16 68.12 85.48 66.78
ConfGAN 72.67 78.29 80.73 73.88 77.40 77.24 68.74 78.74 74.88 77.03

ManifoldGAN 72.50 78.08 84.40 72.67 82.85 74.90 50.28 85.28 72.50 78.08
CSI 64.24 85.47 53.92 95.30 58.68 93.00 52.57 91.13 57.35 91.22
G2D 73.44 78.11 81.28 74.05 77.18 77.33 67.82 79.17 74.93 77.16

LogitNorm 76.96 77.94 75.91 79.07 72.65 81.44 71.63 80.15 74.29 79.65
CMG 71.33 78.78 80.88 73.93 75.77 77.58 63.83 80.57 72.95 77.63
VOS 87.52 72.45 83.85 74.76 79.97 77.26 72.91 82.71 81.06 76.79

NPOS 74.74 77.43 83.09 73.73 78.23 76.91 56.10 84.37 73.04 78.11
CIDER 79.22 67.27 84.82 74.34 77.39 78.77 19.80 95.16 65.31 78.89

ATOL 60.98 79.53 73.90 79.97 58.48 86.97 13.85 96.80 51.80 85.82

the results are summarized in Table 20. As we can see, our ATOL can beat these advanced methods
across all the considered datasets, even for the challenging CIFAR-10 vs. CIFAR-100 setting.

F.4 Comparison of ATOL and Outlier Exposure

This section compares ATOL and OE on CIFAR and ImageNet benchmarks in Tables 21-22. As we
can see, our ATOL shows comparable performance with outlier exposure, meanwhile eliminating the
reliance on real OOD data. Such outstanding performances are sufficient to verify that ATOL can
make the predictor learn from the auxiliary OOD detection task as effectively as learning from the
real OOD data. Note that, on the ImageNet benchmark, OE reveals inferior performance compared
to ATOL since the real OOD data collected from the realistic scenarios inevitably overlap with the
large-scale ID data to some extent, while getting pure and efficient OOD data is labor-intensive and
inflexible. The results demonstrate the drawbacks of the methods using real OOD data. In contrast,
our ATOL does not suffer from this issue and can benefit from the auxiliary OOD detection task for
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Table 20: Comparison of ATOL and advanced methods in hard OOD detection. ↓ (or ↑) indicates
smaller (or larger) values are preferred; a bold font indicates the best results in a column.

Methods LSUN-Fix ImageNet-Fix CIFAR-100
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CSI 39.79 93.63 37.47 93.93 45.64 87.64
KNN 42.01 91.98 40.41 92.33 49.22 89.91
ASH 45.12 89.72 42.56 89.99 50.45 87.09

ATOL 22.25 95.89 24.20 94.99 42.80 91.19

real OOD detection. Moreover, the better results of our ATOL over OE verify the effectiveness of
OOD learning only based on ID data, which can draw more attention from the community toward
OOD learning with ID data.

Table 21: Comparison of ATOL and Outlier Exposure on CIFAR-10 and CIFAR-100. ↓ (or ↑)
indicates smaller (or larger) values are preferred; a bold font indicates the best results in a column.

Scores SVHN LSUN-Crop LSUN-Resize iSUN Texture Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

ATOL 20.60 96.03 1.45 99.59 5.20 98.78 5.00 98.76 26.05 95.03 27.55 94.33 14.31 97.09
ATOL-S 21.40 94.66 1.95 99.43 2.20 99.44 2.15 99.45 23.85 93.96 30.35 92.84 13.65 96.63
ATOL-B 12.75 96.92 4.60 98.92 0.65 99.78 0.55 99.83 10.25 97.12 22.85 94.80 8.61 97.90

OE 20.35 96.75 2.20 99.52 0.95 99.72 0.85 99.76 17.15 96.79 23.05 95.64 10.76 97.03

CIFAR-100

ATOL 75.50 81.50 10.05 98.15 55.35 87.46 56.75 87.64 64.90 83.32 70.55 79.86 55.52 86.32
ATOL-S 69.95 80.95 17.00 96.89 16.35 96.95 22.75 95.11 58.55 83.35 74.45 77.35 43.18 88.43
ATOL-B 54.65 89.69 43.95 91.27 7.80 98.57 9.60 98.13 37.45 89.51 66.90 80.82 36.72 91.33

OE 75.10 80.69 24.95 95.11 20.05 95.36 25.45 93.94 48.15 87.94 43.25 88.55 39.49 90.26

Table 22: Comparison of ATOL and Outlier Exposure on ImageNet. ↓ (or ↑) indicates smaller (or
larger) values are preferred; a bold font indicates the best results in a column.

Scores iNaturalist SUN Places365 Texture Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

ATOL 60.98 79.53 73.90 79.97 58.48 86.97 13.85 96.80 51.80 85.82
OE 78.31 75.23 80.10 76.55 70.41 81.78 66.38 82.04 73.80 78.90

F.5 Model Trained from Scratch

In this section, we provide the implementation details and the experimental results for ATOL trained
from scratch. We train the WRN-40-2 model on CIFAR-10. For training, ATOL is run for 100
epochs with an initial learning rate of 0.1 and cosine decay. The batch size is 64 for ID cases and 256
for OOD cases. Going beyond fine-tuning with the pre-trained model, we show that ATOL is also
applicable and effective when training from scratch. Here, we further introduce the area under the
precision-recall curve (AUPR) to evaluate the OOD detection performance. The table 23 showcases
the performance of ATOL trained on the CIFAR-10 dataset, where the promising performance of
ATOL still holds.

F.6 ATOL with different scoring functions

To further verify the generality and the effectiveness of ATOL, we test ATOL with three representative
OOD scoring functions, namely, MSP [15], Free energy [36], and MaxLogit [17]. Regarding all the
cases with different scoring functions, our ATOL always achieves good performance, demonstrating
that our proposal can genuinely make the predictor learn from OOD knowledge for OOD detection.
Further, comparing the results across different scoring strategies, we observe that using the MaxLogit
scoring leads to better results than the MSP scoring. Therefore, we choose the MaxLogit in ATOL.

F.7 Performance and Efficiency Comparison on Advanced Approaches

In the main context, our primary focus is on comparing data generation-based approaches. Moreover,
we also compare the training time for a set of representative methods on CIFAR-100 (similar results on
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Table 23: Performance of ATOL from scratch on CIFAR-10

ATOL from scratch FPR95 ↓ AUROC ↑ AUPR ↑
SVHN 18.85 96.63 99.30

LSUN-Crop 2.20 99.51 99.90
LSUN-Resize 6.70 97.88 99.56

iSUN 7.25 97.83 99.55
Texture 26.40 94.77 98.62

Places365 30.35 92.53 97.95

Average 15.29 96.52 99.15

Table 24: Performance with different OOD scoring functions on CIFAR-10 and CIFAR-100

Scores SVHN LSUN-Crop LSUN-Resize iSUN Texture Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

MSP 29.10 94.57 1.45 99.58 6.95 98.60 6.75 98.63 22.45 94.78 27.30 93.27 15.67 96.57
Energy 16.45 96.27 1.25 99.60 3.35 99.29 3.70 99.22 26.00 93.75 35.70 92.14 14.41 96.71

MaxLogit 21.15 95.97 1.20 99.61 4.40 98.87 5.40 98.75 24.75 95.18 25.40 94.74 13.72 97.19

CIFAR-100

MSP 69.70 83.88 16.75 96.77 56.60 88.55 58.95 87.55 64.60 82.14 77.00 78.09 57.27 86.16
Energy 36.00 94.05 8.85 98.12 38.15 89.07 42.25 87.77 66.65 81.37 75.40 77.01 44.55 87.90

MaxLogit 70.85 84.70 13.45 97.52 51.85 90.12 55.80 89.02 63.10 83.37 75.30 78.86 55.06 87.26

CIFAR-10), summarizing the results in the following table. As we can see, our method demonstrates
promising performance improvement over other methods with acceptable computational resources.

F.8 Mean and Standard Deviation

This section demonstrates the effectiveness of our ATOL by validating the experiments using five
individual trails (random seeds) on the CIFAR benchmarks. Along with the individual findings, we
also summarize the mean performance and standard deviation for all of the trials for CIFAR-10,
CIFAR-100 and ImageNet. The experimental results are summarized in Tables 27-28. As we can see,
our ATOL can result in better OOD detection performance and more stable performance over various
ID dataset options.

F.9 Visualization of generated images

In this section, we visualize some synthesized examples for intuitive demonstration. As demonstrated
in the main paper, ATOL performs surprisingly well on CIFAR-10, CIFAR-100, and ImageNet.
ATOL also enables us to generate visual results for intuitive inspection. For auxiliary ID cases, we
sample noise from different Gaussian distributions from MoG with different means but the same
standard deviation in latent space, representing different classes of the auxiliary ID data. For auxiliary
OOD cases, we sample noise from a uniform distribution in latent space except for the region with
high MoG density. The generated auxiliary data are visualized in Figure 4-9.

Except for the mistaken OOD generation on CIFAR datasets, we further visualize the mistaken OOD
generation data of the advanced data generation-based methods on ImageNet dataset. Since the
generators are trained on ID data and these selection procedures can make mistakes, one may wrongly
select data with ID semantics as OOD cases (cf., Figure 10). As we can see, the increased difficulty in
searching for the proper OOD-like data in ImageNet leads to more critical mistaken OOD generation.

Table 25: Performance with different OOD scoring functions on ImageNet.

Scores iNaturalist SUN Places365 Texture Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

MSP 61.16 80.38 73.37 77.65 61.73 83.63 22.91 93.55 54.79 83.80
Energy 62.15 80.49 72.13 82.15 62.69 85.78 31.10 92.73 57.02 85.29

MaxLogit 60.98 79.53 73.90 79.97 58.48 86.97 13.85 96.80 51.80 85.82
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Table 26: Performance and efficiency comparison with advanced approaches on CIFAR-100. We
report the per epoch training time (measured by seconds)

Methods FPR95 ↓ AUROC ↑ Training Time (s)↓
CSI 80.08 85.23 98.88

LogitNorm 63.45 80.18 25.16
VOS 75.41 78.20 38.97

NPOS 62.72 84.17 61.54
ATOL 55.22 87.24 58.33

ATOL-S 43.18 88.43 70.28
ATOL-B 36.72 91.33 65.33

Table 27: Performance of ATOL on CIFAR with 5 individual trails. ↓ (or ↑) indicates smaller (or
larger) values are preferred; and a bold font indicates the best results in the corresponding column.

Scores SVHN LSUN-Crop LSUN-Resize iSUN Texture Places365 Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

CIFAR-10

#1 21.55 96.10 0.95 99.62 5.00 98.79 4.55 98.90 26.30 95.04 28.90 93.60 14.54 97.01
#2 21.65 95.74 1.15 99.60 5.40 98.79 3.80 98.93 26.25 94.91 27.75 94.19 14.33 97.03
#3 18.05 96.27 1.45 99.58 4.35 98.88 4.45 98.86 20.90 95.70 25.85 94.39 12.51 97.28
#4 20.85 96.11 1.60 99.59 5.05 98.76 5.75 98.73 26.50 94.80 28.20 94.32 14.66 97.05
#5 21.40 94.66 1.95 99.43 2.20 99.44 2.15 99.45 23.85 93.96 30.35 92.84 13.65 96.63

mean
± std

20.70
± 1.35

95.77
± 0.58

1.42
± 0.34

99.56
± 0.06

4.4
± 1.15

98.93
± 0.25

4.14
± 1.17

98.97
± 0.24

24.75
± 2.16

94.88
± 0.55

28.21
± 1.47

93.86
± 0.58

13.93
± 0.79

97.00
± 0.20

CIFAR-100

#1 68.45 85.62 14.10 97.41 54.70 88.63 59.55 87.45 61.60 83.56 74.70 78.76 55.52 86.90
#2 70.05 86.34 14.90 97.27 51.60 89.37 55.55 88.34 63.30 83.37 75.95 78.76 55.22 87.24
#3 70.85 84.70 13.45 97.52 51.85 90.12 55.80 89.02 63.10 83.37 75.30 78.86 55.06 87.26
#4 65.55 86.13 14.55 97.37 53.00 89.31 55.65 88.81 67.50 82.39 75.35 77.76 55.27 86.96
#5 69.45 84.80 14.35 97.67 55.45 89.08 58.10 88.30 61.70 84.64 74.70 78.16 55.63 87.11

mean
± std

68.86
± 1.83

85.52
± 0.67

14.27
± 0.48

97.44
± 0.13

53.32
± 1.52

89.30
± 0.48

56.92
± 1.61

88.38
± 0.54

63.44
± 2.14

83.46
± 0.71

75.19
± 0.46

78.46
± 0.42

55.34
± 0.20

87.09
± 0.14

G Broader Impacts and Limitations

Broader impacts. This paper pioneers work on the problem of mistaken OOD generation in
OOD detection, which is significant for the safety-critical applications of models with the rapid
development of machine learning. Our method is proposed for the problem, relieving the this problem
by a large margin and achieving superior performance. Due to data privacy and security, access of
data is often challenging. In our method, we propose an auxiliary OOD detection task built upon the
generator with ID knowledge to make the predictor learn to discern ID and OOD cases. Note that,
the idea of the auxiliary task can be extended to other domains beyond OOD detection, which may
result in the particular applications of other techniques.

Limitations. First, our current realization of ATOL is relatively intricate, requiring training
constraints on both the generator and the predictor. Further studies will explore more advanced
conditions that can ease our realization and further reduce computing costs. Second, we observe
that the diversity of generated data is closely related to the final performance (cf., Appendix E.8).
However, in our current version, we do not consider diversity for the generator in either theories or
algorithms, which will motivate our following exploration.
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Table 28: Performance of ATOL on ImageNet with 5 individual trails. ↓ (or ↑) indicates smaller (or
larger) values are preferred; and a bold font indicates the best results in the corresponding column.

Scores iNaturalist SUN Places365 Texture Average
FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

#1 60.98 79.53 73.90 79.97 58.48 86.97 13.85 96.80 51.80 85.82
#2 62.87 78.82 73.95 80.48 58.67 87.14 13.95 96.79 52.36 85.80
#3 61.50 78.99 73.53 80.28 58.73 87.09 13.95 96.79 51.93 85.79
#4 58.07 80.10 72.32 81.09 59.41 86.70 15.20 96.56 51.25 86.12
#5 61.70 78.77 73.06 80.11 58.80 87.20 13.95 96.79 51.88 85.72

mean
± std

61.02
± 1.60

79.24
± 0.50

73.35
± 0.60

80.38
± 0.39

58.81
± 0.31

87.02
± 0.17

14.18
± 0.51

96.74
± 0.09

51.84
± 0.35

85.85
± 0.13

Figure 4: Generated auxiliary ID data on CIFAR-10 dataset. Each figure contains 64 images of each
class.

Figure 5: Generated auxiliary OOD data on CIFAR-10 dataset.

Figure 6: Generated auxiliary ID data on CIFAR-100 dataset. Each figure contains 64 images of each
class. Due to space limitations, we only show 10 out of 100 classes.
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Figure 7: Generated auxiliary OOD data on CIFAR-100 dataset.

Figure 8: Generated auxiliary ID data on ImageNet dataset. Each figure contains 64 images of each
class. Due to space limitations, we only show 10 out of 1000 classes.

Figure 9: Generated auxiliary OOD data on ImageNet dataset.

Figure 10: Mistaken OOD generation on ImageNet dataset. Each figure contains 64 images.
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