
7 Appendix

A Considerations for defining stability values

In the following we want to lay out the thought process that has led us to this exact formulation of
stability values. To sum it up, our choice of the s-value is guided by familiarity, practicality, and
flexibility.

One of the advantages of using the KL divergence is that the procedure is a convex optimization
problem for linear estimands. There are other considerations from a practical perspective. First, all
continuously differentiable f -divergences have an equivalent Taylor expansion in a neighborhood
around 0. From this perspective, for small shifts it does not matter which divergence to choose.
Compared to other f -divergences, one advantage of the KL divergence is that it is widely known in
the statistics and ML communities.

Another popular distance is the total variation distance. The KL divergence is less conservative than
the total variation distance which would create very drastic distributional changes. To be more precise,
for the parameter θ(P ′) = EP ′ [X] and all distributions P , we would have

inf
P ′

TV(P0, P
′) such that EP ′ [X] = 0.

This infimum is zero, that is the parameter is unstable for any P . Thus, the stability value defined
via total variation distance is too coarse in the sense that infinitely small shifts will already break
common parameters of interest. Thus, its usefulness is very limited in practice.

Comparing our choice

s(µ, P0) = sup
P

exp{−DKL(P ||P0)} s.t. EP [Z] = 0,

with the potential choice

s′(µ, P0) = inf
P
DKL(P ||P0) s.t. EP [Z] = 0,

the latter can lead to extremely unstable optimization procedures if the argmin is far away from P0.
Trying to estimate s′ could lead to unreliable and misleading stability evaluations. Our choice of
transformation guarantees that the regime where estimation of the KL divergence is unstable, leads to
s values that are close to each other. In other words, we "compress" regimes in which the s-values
are hard to estimate.

Figure 6: Anscombe’s quartet data

B Example: Anscombe’s quartet

We demonstrate the usage of our method on Anscombe’s quartet [2], which comprises of four data
sets that yield nearly identical OLS estimates and p-values (see Figure 6). While p-values cannot
unveil the difference in distributional stability of the regression coefficients among the four data sets,
the proposed measure captures the stability of the regression coefficients under distribution shift.

In Table 4, we display the OLS estimate, p-values and our s-values (both general and variable
specific). While the p-value is the same for all data sets, the s-values differ. The regression coefficient
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Table 4: This table exhibits the OLS estimate, p-values, general and variable-specific s-values of the
regression coefficient for each data set in Anscombe’s quartet. The p-values are the same for all data
sets. The s-values vary drastically across the data sets, indicating that the parameter is more stable
under distribution shift for data set 3 and data set 4 than for data set 1 and data set 2.

Part

Y = β0 +Xβ1 OLS estimate (β1) p-values s sX

Set 1 0.5 0.00217 0.465 0
Set 2 0.5 0.00217 0.63 0.63
Set 3 0.5 0.00217 0 0
Set 4 0.5 0.00217 0 0

β

Shift in marginal distribution of the covariate with respect to KL divergence

Figure 7: The plot shows the minimum and maximum value of the regression coefficient (β)
achievable by a shift in the marginal distribution of the covariate X . More specifically, the upper and
lower bounds are estimated versions of the bounds in equation (9).

in set 1 has a s-value of 0.465, which indicates that the regression coefficient may be null under
distributional shifts. However, when considering directional shifts with E = X , one obtains the
directional s-value sX = 0. For Set 2, both types of s-values take the same non-zero value while sets
3 and 4 have s = sE = 0. Thus, the proposed stability measure coincides with the intuition that the
regression coefficient is relatively stable in data sets 3 and 4 under distribution shift.

In Figure 7, we plot estimated versions of the upper and lower bounds as defined in (9) across c for
different choices of the variable E.

In this example, distributional instability of regression coefficients mostly occurs due to model
misspecification. In practice, we can test for model misspecification using classical approaches like
the Ramsey Regression Equation Specification Error Test (RESET) test [35] or via diagnostic tests.
However, such tests do not quantify instability in terms of distributional shifts, and distributional
instability can occur even if models are well-specified.

C Consistency and asymptotic normality

C.1 S-value of the mean

Here we present the consistency results of the estimator of s-value of mean ŝ(µ, Pn) defined in
equation (5).

Lemma C.1 (Consistency of s-value). Let Z ∼ P0 be a real-valued non-degenerate random variable
with mean µ(P0) = EP0

[Z] and a finite moment generating function on R. Then ŝ(µ, Pn)
P→ s(µ, P0)

as n→∞.
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We provide the proof of the above lemma in Appendix I.1. Now let us turn to asymptotic normality.
Lemma C.2 (Asymptotic normality of s-values). Let Z ∼ P0 be a real-valued random variable with
mean µ(P0) = EP0

[Z] and a finite moment generating function on R. Assume that E[Z2eλ
∗Z ] > 0.

Let λ̂ = argmin 1
n

∑n
i=1 e

λZ and λ∗ = argminEP0 [e
λZ ]. Then,

1

n

n∑
i=1

eλ̂Z − EP0
[eλ

∗Z ]
d
= N

(
0,

VarP0
(eλ

∗Z)

n

)
+ oP (1/n).

The proof for this result can be found in the Appendix, Section H. Based on this result, one can
construct confidence intervals for the s-value. To be more precise, for fixed α ∈ (0, 1), one can
define confidence intervals via ŝ± z1−α/2 σ̂√

n
, where σ̂2 is the empirical variance of (eλ̂Zi)i=1,...,n

and z1−α/2 is the 1− α/2 quantile of a standard Gaussian random variable.

Directional s-values

Let us now discuss consistency of ŝE(µ, Pn). We make the following regularity assumption.

Assumption 1. Let f̂n(·) be an estimate of EP0
[Z|E = ·] defined over E . We assume that

supe∈E |EP0
[Z|E = e]− f̂n(e)|∞ → 0.

Lemma C.3 (Consistency of directional s-value). Under the setting of Theorem 2 and Assumption 1,
we have ŝE(θ, Pn)

P→ sE(θ, P0) as n→∞.

We present the proof of Lemma C.3 in Appendix I.3. To obtain asymptotically valid confidence
intervals for s-values, one has to deal with the fact that the non-parametric estimates f̂n(·) may
converge very slowly to the ground truth. To deal with this problem, we employ a debiasing
technique.

Lemma C.4 (Asymptotic normality of directional s-values). Let f̂n(·) be an estimate of f(·) =

EP0
[Z|E = ·]. We assume that f̂n is fit on a held-out portion of the data set, that is f̂n(·) is

independent of Di, i = 1, . . . , n. We assume that supe∈E |f̂n(e) − f(e)| = oP (n
−1/4). Further-

more, we assume that the moment generating function of Z is finite on R and that the matrix
EP0 [f(E)2eλ

∗f(E)] > 0. Let λ̂ = argmin 1
n

∑n
i=1 e

λf̂n(Ei) and λ∗ = argminEP0 [e
λf(E)]. Then,

1

n

n∑
i=1

(1 + λ̂Zi − λ̂f̂n(Ei))eλ̂f̂n(Ei) − EP0
[e(λ

∗)f(E)]
d
= N

(
0,
σ2
s

n

)
+ oP (1/n),

where
σ2
s = VarP0(e

λ∗f(E)) + VarP0(e
λ∗f(E)λ∗(Z − f(E))).

The proof of this result can be found in the appendix, Section H. One can construct asymptotically
valid confidence intervals based on this result, analogously as discussed after Lemma C.2. The
de-biasing technique uses sample splitting, which reduces efficiency. Full efficiency can be obtained
by using cross-fitting techniques, see for example Chernozhukov et al. [8]. The debiasing technique
leads to asymptotically unbiased and normal estimates, but it does come at the cost of stability. This
can be easily seen from the formula: the standard approach has asymptotic variance VarP0

(eλ
∗f(E)),

which is larger than σ2
s unless Z ≡ f(E). For this reason and for simplicity, in the main paper we

stick to the estimator in equation (8), instead of the more unstable debiased estimator.

D S-values of parameters defined via risk minimization

Here, we discuss how to compute s-values for parameters defined via risk minimization and generalize
to multi-parameter settings. Let us describe two examples where this is of interest. First, for a
parameter vector η, each component might correspond to the causal effect of a subgroup. One may
then ask whether there is a small distribution shift that renders all causal effects zero. The theory
outlined in this section is also relevant for settings where one is interested in a single parameter in the
presence of nuisance parameters. For example, in causal inference one component of the parameter
vector might corresponds to the causal effect of interest, while the other components of the vector
might correspond to the effect of observed confounders, which are not of interest by themselves.
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We consider the following setting. Let Θ ⊆ Rp be the parameter (model) space, P0 be the data
generating distribution (training distribution) on the measure space (Z,A), Z be a random element
of Z , and L : Θ×Z → R be a loss function, which is strictly convex and differentiable in its first
argument. Define the parameter θM (P ) for P ∈ P via

θM (P ) = argmin
θ∈Θ

EP [L(θ, Z)]. (10)

Let ℓ(θ, Z) = ∂θL(θ, Z). So far, for simplicity we have only considered s-values of one-dimensional
parameters. In practice, we need a slightly more general notion of s-values that can handle p-
dimensional parameters. For η ∈ Rp, define the extended s-value via

s(θM − η, P0) = sup
P∈P

exp{−DKL(P ||P0)} s.t. θM (P )− η = 0. (11)

Choosing η is similar to choosing a null hypothesis for significance testing in statistical decision
problems. For example, in linear regression it is common to test the global null, where the regression
coefficient is assumed to be zero for all components. Analogously, in this setting one might ask
whether just a small distributional shift can shift all components of the parameter to zero.

Similar to the one-dimensional mean case (Section 3.1), the s-value in (11) can be obtained by solving
a p-dimensional convex optimization problem that we state in the following corollary. Its proof can
be found in Appendix I.4.
Corollary D.1. Let ℓ(η, Z) have a finite moment generating function on Rp under P0 for all η ∈ Θ.
Then, the s-value of the parameter θM as defined in (10) is given by

s(θM − η, P0) = inf
λ∈Rp

EP0
[eλ

⊺ℓ(η,Z)]. (12)

Consistency and asymptotic normality can be obtained analogously as in Lemma C.1 and Lemma C.2.
A general theorem is formulated in the Appendix, Section H. We next present some examples of
parameters defined via risk minimization.
Example 5 (Regression). Let X ⊆ Rp be a p-dimensional feature space and Y be the space of
response. Let Y ∈ Y satisfy Y = Xθ + ϵ, where θ ∈ Θ ⊂ Rp and ϵ is uncorrelated with X . Then
the OLS parameter θM (P ) is given by

θM (P ) = argmin
θ

EP [(Y −Xθ)2].

If X⊺(Y −Xη) has finite moment generating function on Rp for all η ∈ Θ then using Corollary D.1,
we have

s(θM − η, P0) = inf
λ∈Rp

EP0
[eλ

⊺X⊺(Y−Xη)].

Example 6 (Generalized linear models). Let X ⊆ Rp be a p-dimensional feature space and Y be
the space of response. Let Y ∈ Y satisfy E[Y | X] = g−1(Xθ) where θ ∈ Θ ⊂ Rp and g is the link
function. With slight abuse of notation, let L(Y,Xθ) be the negative log-likelihood function. The
maximum likelihood parameter θM is given by

θM (P ) = argmin
θ

EP [L(Y,Xθ)].

IfX⊺∂2L(Y,Xη) has finite moment generating function on Rp for all η ∈ Θ then using Corollary D.1,
we have

s(θM − η, P0) = inf
λ∈Rp

EP0
[eλ

⊺X⊺∂2L(Y,Xη)].

We next characterize directional s-values. We define the extended directional s-value as

sE(θ
M − η, P0) = sup

P∈P,P [•|E]=P0[•|E]

exp{−DKL(P ||P0)} s.t. θM (P )− η = 0. (13)

Similarly as above, directional s-values can be obtained by solving a convex optimization problem
that we state in the following corollary. We present the proof in Appendix I.5.
Corollary D.2 (Directional shifts). Let ℓ(η, Z) have a finite moment generating function on Rp under
P0. Then,

sE(θ
M − η, P0) = inf

λ
EP0 [e

λ⊺EP0
[ℓ(Z,η)|E]]. (14)
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Consistency and asymptotic normality can be obtained analogously as in Lemma C.3 and Lemma C.4.
A general theorem is formulated in the Appendix, Section H.

Next, we present an example from regression setting.

Example 7 (Regression). Let X ⊆ Rp be a p-dimensional feature space and Y be the space of the
response. Let Y ∈ Y satisfy Y = Xθ + ϵ, where θ ∈ Θ ⊂ Rp and ϵ is independent of X . As above,
the OLS parameter θM (P ) is defined as

θM (P ) = argmin
θ

EP [(Y −Xθ)2].

If X⊺(Y − Xη) has finite moment generating function on Rp for all η ∈ Θ, then Corollary D.2
implies

sX(θM − η, P0) = inf
λ∈Rp

EP0
[eλ

⊺X⊺(EP0
[Y |X]−Xη)].

Now let us investigate the case with high directional distributional stability with respect to E = X .
In the following, let us assume that sX(θM − η, P0) = 0 for all η ̸= θ(P0) and that X has positive
density with respect to the Lebesgue measure. By definition of the s-value we have θM (P ) = θM (P0)
for every measure P that is absolutely continuous with respect to P0 and satisfies P (·|X = x) =
P0(·|X = x) for all x ∈ X . By definition of OLS, we must have that almost surely

EP0
[X⊺(Y −XθM )|X] = 0.

Thus, almost surely,

X⊺(EP0
[Y |X]−XθM ) = EP0

[X⊺(Y −XθM )|X] = 0.

IfX has a density with respect to the Lebesgue measure, then EP0
[Y |X] = XθM almost surely. Thus,

directional distributional instability in linear models with respect to E = X is related to whether
the linear model is a good approximation of the regression surface, i.e. EP0 [Y |X] ≈ XθM . More
specifically, if the linear model is a good approximation of the regression surface, directional stability
is high. This is an example, where distributional instability can be induced by model misspecification.
As discussed earlier in Section B, distributional instability can also be induced by other sources such
as the presence of exogenous covariates that are correlated both with covariates and the outcome.

We can similarly obtain results for generalized linear models (see Example 6).

D.1 S-values for a single component

In many cases, practitioners may be interested in obtaining the s-value for a single component of
θM ∈ Rp instead of the entire vector θM . For example, in causal inference, one component of θM
can correspond to average treatment effect while other parameters may not be of scientific interest.
In such settings, one might want to evaluate the stability of the parameter of interest (the average
treatment effect) and not the stability of the nuisance components. Let θMk be the k-th component of
parameter vector θM ∈ Rp for k ∈ {1, . . . , p}.
Intuitively, to obtain the s-value of a single parameter, we seek for the smallest possible shift in
distribution that tilts the parameter to a pre-determined value, hence, we take supremum over other
remaining nuissance parameters. To be more precise, using the definition of s-values and Corollary
D.1, we have

s(θMk − ηk, P0) = sup
P∈P

exp{−DKL(P ||P0)} s.t. ηk(P )− ηk = 0

= sup
η1,...,ηk−1,ηk+1,...,ηp

sup
P∈P

exp{−DKL(P ||P0)} s.t. η(P )− η = 0

= sup
η1,...,ηk−1,ηk+1,...,ηp

inf
λ∈Rp

EP0
[eλ

⊺ℓ(η,Z)].

(15)

We next obtain a finite sample estimate of s-values for individual components of θM and show that it
is consistent to the population version. Let Pn be the empirical distribution of Zi

i.i.d.∼ P0. We propose
to estimate the s-value via the plugin estimator
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ŝ(θMk − ηk, Pn) = sup
η1,...,ηk−1,ηk+1,...,ηp

inf
λ∈Rp

EPn
[eλ

⊺ℓ(η,Z)]

= sup
η1,...,ηk−1,ηk+1,...,ηp

inf
λ∈Rp

1

n

n∑
i=1

eλ
⊺ℓ(η,Zi)

(16)

This is a challenging optimization problem. The optimization problem in (16) is non-convex and
hence, finding the global optimum in practice is intractable. In Appendix F, we propose algorithms
to solve the optimization problem in (16) with convergence guarantees. We also propose a simple
plug-in estimate in Appendix E.

The non-convexity of the optimization problem has important consequences for interpreting s-values.
For the sake of simplicity, let us assume that n is large, that is that estimation errors due to finite
samples can be ignored. If the estimated s-value is large, the algorithm constructs a small distribution
shift that changes the sign of the parameter. In other words, the parameter is certifiably unstable. On
the other hand, if the estimated s-value is small, then this could be due the algorithm being stuck in a
local optimum. Thus, for non-convex problems a large s-value is an indication of instability, but a
small s-value cannot be necessarily interpreted as a proof of stability. This is similar to hypothesis
testing in statistical inference, where the non-significance of a p-value cannot be interpreted as a
proof of the null hypothesis.

We next show consistency of ŝ(θMk − ηk, Pn) to the corresponding population stability value s(θMk −
ηk, P0). To this end, we make the following assumption.
Assumption 2. Let Σ ⊂ Rp be a compact subset such that the map η → ℓ(η, Z) is continuous on Σ
and EP0

[supη∈Σ e
λ⊺ℓ(η,Z)] <∞ for any λ ∈ Rp.

Lemma D.1 (Consistency of s-value). Let Σk denote the projection of Σ on the kth co-ordinate.
Under Assumption 2, we have supηk∈Σk

|ŝ(θMk −ηk, Pn)−s(θMk −ηk, P0)|
P→ 0 for k = {1, . . . , p}

as n→∞.

We present the proof of Lemma D.1 in Appendix I.6.
Example 8 (Regression). Let X ⊆ Rp be a p-dimensional bounded feature space and Y be the space
of the response. Let Y ∈ Y satisfy Y = X⊺β + ϵ, where β ∈ Θ ⊂ Rp and ϵ is independent of X . We
have L(η,X, Y ) = 1

2 (Y −X
⊺η)2, ℓ(η,X, Y ) = −X(Y −X⊺η) and hence,∇ηℓ(η,X, Y ) = XXT .

Now, for a compact subset Σ ⊂ R, EP0 [supη∈Σ e
λ⊺ℓ(η,Z)] <∞ if ϵ has a finite moment generating

function on R. Invoking Lemma D.1, we can conclude that the estimator is consistent.

Let us now discuss how to estimate directional s-values of individual components. Suppose we want
to obtain the directional s-value of the k-th component of vector θM ∈ Rp. Using Corollary D.2, the
population directional s-value is given by

sE(θ
M
k − ηk, P0) = sup

η1,...,ηk−1,ηk+1,...,ηp

inf
λ∈Rp

EP0
[eλ

⊺EP0
[ℓ(η,Z)|E]]. (17)

Now we propose a finite sample estimator of the directional s-value of individual components and
show consistency.

Let Qn(η,E) be a finite sample estimator of EP0
[ℓ(η, Z) | E], then the finite sample plugin estimator

is given by
ŝE(θ

M
k − ηk, Pn) = sup

η1,...,ηk−1,ηk+1,...,ηp

inf
λ∈Rp

EPn [e
λ⊺Qn(η,E)]. (18)

Again, this is a challenging optimization problem. We discuss algorithms in Appendix G. A sim-
plification that allows to derive upper bounds can be found in Appendix, Section E. We make the
following additional assumption to show consistency of ŝE(θMk − ηk, Pn).
Assumption 3. supη supe ∥EP0

[ℓ(η, Z)|E = e]−Qn(η, e)∥∞ → 0, where Qn(η, e) is an estimate
of EP0

[ℓ(η, Z)|E = e].
Lemma D.2 (Consistency of directional s-value). Under Assumptions 2 and 3, we have

sup
ηk∈Σk

|ŝE(θMk − ηk, Pn)− sE(θMk − ηk, P0)|
P→ 0 for k = {1, . . . , p}

as n→∞.
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We present the proof of Lemma D.2 in Appendix I.7. To quantify uncertainty, in this settings we find
the bootstrap preferrable over asymptotic expansions (as in Section 3) to account for the fact that the
algorithm might get stuck in a local minimum.

E A simple plug-in estimator

Equation (15) and equation (17) are non-convex optimization problems that are potentially difficult
to solve. In practice, we can obtain a lower bound by removing the outer supremum in (15) and (17)
and using a plug-in estimator for the lower bound.

Let η̃ = (θ̂M1 , . . . , θ̂Mk−1, ηk, θ̂
M
k+1, . . . , θ̂

M
p ), where the θ̂Mi are estimates of θMi (P0). Furthermore,

let Qn(η,E) be an estimate of E[ℓ(η, Z)|E]. We can obtain plug-in estimators of s(θMk − ηk, P0)
and sE(θMk − ηk, P0) via

ŝplug-in(θ
M
k − ηk, P0) = inf

λ∈Rp
EPn

[eλ
⊺ℓ(η̃,Z)]

= inf
λ∈Rp

1

n

n∑
i=1

eλ
⊺ℓ(η̃,Zi) and

ŝE,plug-in(θ
M
k − ηk, P0) = inf

λ∈Rp
EPn

[eλ
⊺EP0

[ℓ(η̃,Z)|E]]

= inf
λ∈Rp

1

n

n∑
i=1

eλ
⊺Qn(η̃,Ei).

Clearly, the objective functions are convex and hence the optimization problem is easily solvable.
Large plug-in estimate certify instability of parameters. However, since these plug-in estimators
are based on lower bounds of s(θMk − ηk, P0) and sE(θMk − ηk, P0), estimates close to zero do not
certify stability. Overall, the plug-in estimator can be used as a first check to evaluate distributional
instability of a parameter.

F S-values of general estimands

Here, we are interested in obtaining s-values of individual components of parameters defined via
risk minimization as in (15). The corresponding optimization problem to obtain s-value as in (15) is
generally non-convex. Hence, obtaining a globally optimal solution of the optimization problem is
very challenging. Here, we characterize the form of a locally optimal solution of the corresponding
optimization problem and give algorithms to solve such problems in Appendix F.1. Here we use the
original definition of s-value as opposed to the form given in (15), that is,

s(θMk , P0) = sup
P∈P

exp{−DKL(P ||P0)} s.t. θMk (P ) = 0, (19)

For ease of presentation, from here on we denote the parameter of interest as θ instead of θMk and

consider a finite sample setting where we observe n samples {Zi}ni=1
i.i.d.∼ P0 for some distribution

P0 ∈ P . Let the empirical distribution of {Zi}ni=1 be denoted by P0,n =
∑n
i=1

1
nδi, where δi is

a dirac measure on Zi. Let Wn = [0, 1]n be n dimensional unit cube and let Sn = {w ∈ Rn :
w1 + . . . + wn = 1, wi ≥ 0 for i = 1, . . . , n} be n dimensional probability simplex. We focus
on a one dimensional parameter θ : Sn → R where we define for w ∈ Sn, θ(w) as θ(

∑n
i=1 wiδi).

With a slight abuse of notation from now on, we redefine θ on the n dimensional unit cube Wn

as θ(w) = θ
(∑n

i=1 wiδi∑
i wi

)
for w ∈ Wn. We recall that we want to obtain (extended) s-value of

parameter θ given by

s(θ − c, P0,n) = sup
w∈Wn

exp{−
n∑
i=1

wi log(nwi)} s.t. θ(w) = c,

n∑
i=1

wi = 1. (20)

where c is a real constant.
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The above optimization problem belongs to the class of general constrained minimization problems
with equality constraints (see Chapter 3 of Bertsekas [5]). In the following, we present necessary and
sufficient conditions for a point to be a local optimum of problem in (20). This characterization can
be used to verify if we obtained a locally optimal solution of our optimization problem (20). We first
define a locally optimal solution to the problem in (20).

Definition F.1. An element w∗ ∈ Sn (the n dimensional probability simplex) is said to be a
locally optimal solution to problem (20) if θ(w∗) = c and there exists a small ϵ > 0 such that∑n
i=1 w

∗
i log nw

∗
i ≤

∑n
i=1 wi log nwi for all w ∈ Sn : θ(w) = c and ∥w − w∗∥ < ϵ.

We next present a necessary condition for a point to be a local optimum of (20) that follows
immediately from Proposition 3.1.1 of Bertsekas [5].

Corollary F.1 (Necessary conditions). Assume that θ : int(Wn)→ R is continuously differentiable.
Let w∗ ∈ Sn be a locally optimal solution to problem (20), and assume that there does not exist a
constant r ∈ R such that∇wθ(w∗) = r(1, . . . , 1). Then there exists a constant λ ∈ R such that

w∗
i ∝ eλ∇iθ(w

∗) for all i = {1, . . . , n}. (21)

We next present a sufficient condition for a point to be local optimum of (20) that follows from
Proposition 3.2.1 of Bertsekas [5]. To that end, we introduce the Lagrangian function h : Rn × R×
R→ R that we define as

h(w, δ, µ) =

n∑
i=1

wi log (wi) + δ(θ (w)− c) + µ(

n∑
i=1

wi − 1) for w ∈Wn, and δ, µ ∈ R. (22)

Corollary F.2 (Second order sufficiency conditions). Assume that θ : int(Wn) → R is twice
continuously differentiable, and let w∗ ∈Wn and δ∗, µ∗ ∈ R satisfy

∇wh(w∗, δ∗, µ∗) = 0, ∇δ,µh(w∗, δ∗, µ∗) = 0,

γ′∇2
wwh(w

∗, δ∗, µ∗)γ > 0, for all γ ̸= 0 with∇θ(w∗)′γ = 0 and
n∑
i=1

γi = 0.

Then w∗ is a strict local optimum of (20).

Based on the characterization of local optima above, we present a Majorization-Minimization based
algorithm [28] in Appendix F.1 to solve (20) and give sufficient conditions under which the iterates
of the algorithm converges to a point that satisfies the first-order necessary conditions (21). We have
similar characterization of locally optimal solution for the optimization problem involved in obtaining
the directional s-values (2) that we present in Appendix G.1 along with the algorithm to solve such
problems.

F.1 Algorithms to obtain s-values for general estimands

Here we present a Majorization-Minimization (MM) based algorithm [28] to solve the problem in
(20) and show that it converges to a point that satisfies first-order necessary conditions (21). We
also adapt our procedure to obtain directional or variable specific s-value. We can use several
existing algorithms to solve (20) (see Chapter 4 of Bertsekas [5]) that come with some convergence
guarantees. However, the convergence guarantees of the existing algorithms typically come under
the assumption that the iterates obtained by the algorithm converge (or we only have guarantees
along a subsequence) whereas we present sufficient conditions under which the iterates obtained
by our algorithm always converge to a point that satisfies first-order necessary conditions. Further,
the existing algorithms require obtaining close approximations to the first-order stationary points of
the corresponding augmented Lagrangian (for example, augmenting the objective function with a
square of the parameter θ with a high penalty), however, standard approaches for obtaining first-order
stationary points of such functions require slightly stronger assumptions (M-smoothness of the square
of θ, see Assumption 4 and the following remark below). Further, since the constraint function
involves a one-dimensional parameter θ, our procedure can be efficiently adapted to obtain s-value
over a range of constants c as in equation (20).

To that end, we make the following smoothness assumption of our parameter θ.
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Assumption 4. The function θ : int(Wn)→ R is continuously differentiable and M smooth for some
M ∈ R, that is, for w,w′ ∈Wn,

|θ(w′)− θ(w)− ⟨∇θ(w), w′ − w⟩| ≤ M

2
∥w − w′∥22 . (23)

Since ℓ1 and ℓ2 norms are equivalent in finite dimensional spaces, by Pinsker’s inequality, we have
the following relation for any w,w′ ∈ Sn for some real constant L > 0,

|θ(w′)− θ(w)− ⟨∇θ(w), w′ − w⟩| ≤ L
n∑
i=1

w
′

i log
w

′

i

wi
. (24)

This new upper bound would help obtain a closed-form expression of update in each iteration of the
algorithm (see Proposition 1).

Remark In practice, the constant L is often not known in which case, we need to tune it similarly
as we would tune the step size in a gradient descent-based method.

Remark Although, it appears we make stronger smoothness assumptions for θ than what is needed
for convergence guarantees of algorithms in Chapter 4 of Bertsekas [5], however, such assumptions
are standard for convergence guarantees of gradient descent-based methods that are typically used
to minimize the augmented Lagrangian at each iterate of the algorithm as needed for example, in
Proposition 4.2.2 of Bertsekas [5] where we need M -smoothness of the square of θ.

To obtain a solution of (20), we solve the Lagrangian form of the optimization problem in (20) as
given by

minimize
w1,...,wn,wi≥0,

∑
wi=1

g(w) = δ(θ (w)− c) +
n∑
i=1

wi log (wi) (25)

for any fixed δ. If there exists a δ such that the iterates obtained by our algorithm converges to some
wδopt ∈ Wn that satisfies θ(wδopt) = c, then we can show that wδopt satisfies first order necessary
conditions (21). In practice, we use grid search to obtain a δ that yields θ(wδopt) = c.

Now we present the MM based algorithm to solve (25) for a given δ and parameters that satisfy
Assumption 4. Without loss of generality, we assume that θ(P0,n) > c and hence, we choose δ > 0.
First, we upper bound the objective in (25) using inequality (24) so that we have for w,w′ ∈Wn

g(w′) ≤ GL(w′, w) := δ

(
θ(w)− c+ ⟨∇θ(w), w′ − w⟩+ L

n∑
i=1

w′
i log

w′
i

wi

)
+

n∑
i=1

w′
i logw

′
i.

(26)

Note that GL(w′, w) is convex in w′ and that g(w′) = GL(w
′, w) when w′ = w. Our algorithm

then runs iteratively where given a current solution wk, we obtain the next iterate wk+1 as wk+1 =
argminw:

∑n
i=1 wi=1GL(w,w

k), which has a closed form that we present in the proposition below.
We define the iteration map M :Wn →Wn as M(wk) = wk+1 for all wk ∈Wn.

Proposition 1. Let wk+1 be the iterate obtained at kth iteration, that is,

M(wk) = wk+1 = argmin
w:

∑n
i=1 wi=1

δ

(
θ(wk)− c+ ⟨∇θ(wk), w − wk⟩+ L

n∑
i=1

wi log
wi
wki

)
+

n∑
i=1

wi logwi,

(27)
then it is uniquely given by

(M(wk))i = wk+1
i ∝ e−

δ
1+Lδ∇iθ(w

k)(wki )
Lδ

1+Lδ , (28)

for all i = {1, . . . , n}.
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F.2 Proof of Proposition 1

Proof. The optimization problem in (27) is a convex optimization problem and we obtain the solution
to (27) via a Lagrange multipliers.

The Lagrangian is given by

argmin
w:

∑n
i=1 wi=1

δ

(
⟨∇θ(wk), w − wk⟩+ L

n∑
i=1

wi log
wi
wki

)
+

n∑
i=1

wi logwi + γ(

n∑
i=1

wi − 1). (29)

Differentiating with respect to wi and setting the derivative to 0 gives,

δ∇iθ(wk) + δL log
wi
wki

+ δL+ logwi + 1 + γ = 0. (30)

Hence, the result follows after rearranging the terms and using the constraint
∑n
i=1 wi = 1.

Below we summarize our algorithm to solve (25) for a fixed δ.

Algorithm 1: Solving (25) for a fixed δ.
Input: Training distribution P0,n, parameter θ satisfying Assumption 4 where without loss
of generality θ(P0,n) > c, penalty δ > 0, convergence tolerance ϵ .
Output: First order stationary solution of (25).
Set k ← 0, initialize w0 with some w ∈W , for example, w0

i =
1
n for all i = {1, . . . , n}.

1. For k ≥ 0, obtain wk+1 as in (28).

2. Set k ← k + 1.

3. Stop if g(wk+1)− g(wk) ≤ ϵ.
Return wδopt = wk+1.

We next present the convergence analysis of Algorithm 1 in the following proposition that we prove in
Section F.3. First, we recall the definition of a stationary point of a constrained optimization problem
where the constraint set is convex.

Definition F.2. Consider the following optimization problem

minimize
x:x∈C

f(x) (31)

where f : Rp → R is differentiable but possibly non-convex, C ⊂ Rp is a closed convex set. We call
x∗ a stationary point of (31) if and only if

⟨∇f(x∗), (x− x∗)⟩ ≥ 0 for all x ∈ C. (32)

Proposition 2. Let {wk}k≥1 be the sequence of probability distributions generated by Algorithm 1,
which solves (25) for some fixed δ and convergence tolerance ϵ = 0. If there exists a constant A such
that |θ(w)| ≤ A for all w ∈Wn, the unit cube in n-dimension, then we have:

1. The sequence {g(wk)}k≥1 is decreasing and converges.

2. In addition if all stationary points of (25) are isolated, then the sequence {wk}k≥1 converges
and if limk→∞ wk = w∗

δ ̸= ( 1n , . . . ,
1
n ), then w∗

δ satisfies first order necessary conditions
(21), where the constraint in (20) is replaced with θ(w) = θ(w∗

δ ).

Next we use grid search to find δ (typically increase the value of δ) such thatwδopt satisfies θ(wδopt) = c.
Below we summarize the algorithm to find a solution of (20) that satisfies first order necessary
conditions (21).
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Algorithm 2: s-value for general estimands.
Input: Training distribution P0, parameter θ satisfying Assumption 4, convergence toler-
ance ϵ .
Output: First order stationary point of (20).
Set k ← 1, initialize δ0 = 0, δ1 = 2γ for some small γ > 0.

1. Run Algorithm 1 with δ = δk and obtain the output of Algorithm 1 as wδkopt.

2. If |θ(wδkopt)− c| ≤ ϵ, stop and return s(θ − c, P0,n) = e−
∑n

i=1(w
δk
opt)i logn(w

δk
opt)i .

3. If θ(wδkopt) > c+ ϵ, set δk+1 = 2δk, set k ← k + 1. and go to step 1.

4. If θ(wδkopt) < c− ϵ, do a binary search with δ lying between lower limit as δmin = δk−1

and upper limit as δmax = δk till we obtain a δ such that |θ(wδopt)− c| ≤ ϵ.

In practice, we are interested in obtaining s-values over an arbitrary range of constants c, in which
case, we can just fix a range of values for the penalty δ in increasing order (say δ0 < δ1 < . . . < δP
for some P ∈ Z+) and use Algorithm 1 to obtain corresponding s-value for a given δ ∈ {δ1, . . . δP }
where we can now use warm start to initialize the algorithm for δp using the final iterate of the
algorithm for δp−1. Such heuristics give efficiency gain in practice.

Remark The above procedure generalizes to the directional case (2). However, it requires
obtaining the conditional expectation of the gradient of the parameter θ with respect to the variable
E. We can get an exact estimate of the conditional expectation when E has finite support and similar
analysis as above guarantees convergence of the iterates to local optima. However, if E has infinite
support (for example, E is a continuous random variable) then we can only obtain an approximation
of the conditional expectation using (say) any non-parametric regression method in which case we do
not have a guaranteed convergence to local optima. In such situations, we can modify the problem by
discretizing E to have such guarantees. We give more details in the next section G.

F.3 Proof of Proposition 2

We next proceed to prove Proposition 2. The proof uses similar arguments as the proof of Proposition
12.4.4 of Lange [28]. The proof builds on the following lemmas.

Definition F.3 (Cluster point of a sequence). A point w∗ is a cluster point of a sequence wk provided
there is a subsequence wkl that tends to w∗.

Lemma F.1 (Proposition 12.4.1, Lange [28]). If a bounded sequence wk ∈ Rn satisfies

lim
k→∞

∥∥wk+1 − wk
∥∥ = 0,

then its set T of cluster points is connected. If T is finite, then T reduces to a single point, and
limk→∞ wk = w∗ exists.

Lemma F.2. Let Γ be the set of cluster points generated by the MM sequence wk+1 = M(wk)
starting from some initial w0. then Γ is contained in the set S of stationary points of (25).

Proof. First observe that the iteration map M in (28) is continuous as θ is continuously differentiable.
Now, the sequence wk stays within the compact set Wn. Consider a cluster point z = liml→∞ wkl .
Since the sequence g(wk) is monotonically decreasing and bounded below, limk→∞ g(wk) exists.
Hence, taking limits in the inequality g(M(wk)) ≤ g(wk) and using the continuity of functions M
and g imply g(M(z)) = g(z). Thus, z is a fixed point of M and also a stationary point of (25).

Lemma F.3. The set of cluster points Γ of wk+1 =M(wk) is compact and connected.

Proof. Γ is a closed subset of the compact set Wn and is hence, compact. By Lemma F.1, Γ is con-
nected provided limk→∞

∥∥wk+1 − wk
∥∥ = 0. If this sufficient condition fails, then by compactness

of Wn, we can extract a subsequence wkl such that liml→∞ wkl = u and liml→∞ wkl+1 = v both
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exist, however, v ̸= u. Further, continuity of function M requires v = M(u) while the descent
condition implies

g(v) = g(M(u)) = g(u) = lim
k→∞

g(wk).

Hence, u is a fixed point of M , which is a contradiction. Hence, the sufficient condition that
limk→∞

∥∥wk+1 − wk
∥∥ = 0 holds.

From (26), we observe that GL(w′, w) is strictly convex in w′ and hence, we have the following
chain of inequalities

g(wk+1) ≤ GL(wk+1, wk) < GL(w
k, wk) = g(wk). (33)

Since g is lower bounded, hence the sequence g(wk) decreases and converges which proves 1.

Now, if all stationary points of (25) are isolated and since the domain Wn is compact, then there can
only be a finite number of stationary points as an infinite number of them would admit a convergent
sequence whose limit will not be isolated. Since, the set of cluster points Γ of wk+1 = M(wk) is
a connected subset of the finite set of stationary points, Γ is a singleton, and hence, the bounded
sequence wk has the single element of Γ as its limit. Let limk→∞ wk = w∗, then by Proposition 1,
we have w∗

i ∝ e−δ∇iθ(w
k) for all i = {1, 2, . . . , n}. Hence, by Corollary F.1, we have the result.

G Directional s-values of general estimands

Here, we want to obtain directional s-values (with respect to some variable E) as in (2) for more
general one dimensional parameters defined over the space of probability distributions, θ : P → R.
We first characterize the form of a locally optimal solution of the optimization problem in (2) and
present algorithm to solve the corresponding optimization problem in Appendix G.1.

We assume that random variable E has finite support of size K (say) and E takes values in the set
{e1, . . . , eK}. We consider a finite sample setting where we observe n samples {Zi, Ei}ni=1

i.i.d.∼ P0

for some distribution P0 ∈ P where {Zi, Ei}ni=1 are i.i.d. realizations of the random variable
(Z,E). Let the empirical distribution of {Zi, Ei}ni=1 be denoted by P0,n =

∑n
i=1

1
nδi, where

δi is a dirac measure on (Zi, Ei). We recall that Wn = [0, 1]n is n dimensional unit cube and
Sn = {w ∈ Rn : w0+ . . .+wn = 1, wi ≥ 0 for i = 1, . . . , n} is n dimensional probability simplex.
Let Pw denote the probability distribution corresponding to w ∈ Sn that is, it puts mass wi on the ith
sample. We focus on one dimensional parameter θ : Sn → R where we define for w ∈ Sn, θ(w) as
θ(
∑n
i=1 wiδi). With a slight abuse of notation from now on, we redefine θ on the n dimensional unit

cube Wn as θ(w) = θ
(∑n

i=1 wiδi∑
i wi

)
for w ∈ Wn. We recall that we want to obtain the conditional

s-value of parameter θ (with respect to the variable E) given by

sE(θ − c, P0,n) = exp{− min
w∈W

n∑
i=1

wi log(nwi)} s.t. θ(w) = c,

n∑
i=1

wi = 1 and

P0,n(· | E = ek) = Pw(· | E = ek) for all k ∈ [K].
(34)

The constraints P0,n(· | E = ek) = Pw(· | E = ek) for all k ∈ [K] are linear in weights w that we
justify next. Let Ik denote the set of indices such that Ej = ek for all j ∈ Ik and each k ∈ [K], then
we have for each k ∈ [K] and i ∈ Ik

P0,n(Zi | E = ek) = Pw(Zi | E = ek)

=⇒ wi∑
j∈Ik wj

=
1

|Ik|
.

(35)

Hence, the above constraint implies that for each k ∈ [K], all wi such that i ∈ Ik are equal. That
is, the constraints P0,n(· | E = ek) = Pw(· | E = ek) for all k ∈ [K] are equivalent to the
constraint that wi = wj for all (i, j) with Ei = Ej . We can rewrite the above constraints by a
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collection of pairwise equality constraints using a minimum collection of functions U such that for
any u :Wn → R such that u ∈ U , u is given by u(w) = wa − wb for some a ̸= b where a, b ∈ [n].
Hence, the above optimization problem belongs to the class of general constrained minimization
problems with equality constraints (see Chapter 3 of Bertsekas [5]). Now we present necessary and
sufficient conditions for a point to be a local optimum of (34), which can be used to verify that we
obtained a locally optimal solution of our optimization problem (34). Let M be a random variable
taking values in the set {∇1θ(w), . . . ,∇nθ(w)}. Now, for any given probability distribution P ∈ P ,
let there be a probability distributionQ such that {Zi, Ei,Mi}ni=1

i.i.d.∼ Q whereQ is the push-forward
of (Z,E) ∼ P , that is, Q((Z,E,M) = (Zi, Ei,∇iθ)) = P ((Z,E) = (Zi, Ei)) for i ∈ [n] and
P ∈ P . In particular, we denote the push forward of (Z,E) ∼ P0 under the above mapping by Q0.

We first give a necessary condition for a point to be a local optimum of (34) that follows from
Proposition 3.1.1 of Bertsekas [5].
Corollary G.1 (Necessary conditions). Assume that θ : int(Wn)→ R is continuously differentiable.
Let w∗ ∈ Sn be a locally optimal solution to problem (34), and assume that there does not exist a
constant r ∈ R such that (EQ0

[M | E = e1], . . . ,EQ0
[M | E = eK ]) = r(1, . . . , 1). Then there

exists a constant λ ∈ R such that

w∗
i ∝ eλEQ0

[M |E=Ei] for all i = {1, . . . , n}. (36)

Proof. Under the given assumption of Corollary G.1, the assumption that vectors ∇θ, (1, . . . , 1),
∇wu for u ∈ U are linearly independent holds as otherwise we get a contradiction. Now, without
loss of generality, we assume that Zi’s are distinct and let E1 = E2 = . . . = Em = e1 for some
m < n. We show that

w1 = w2 = . . . = wm ∝ eλEP0
[M |E=e1].

We need to take the derivative of the Lagrangian (38). Without loss of generality, let the functions in
U corresponding to the pair wise equality of w1, w2, . . . , wm be given by

u1(w) = w1 − w2

u2(w) = w1 − w3

u3(w) = w1 − w3

...
um−1(w) = w1 − wm.

Other functions u ∈ U do not depend on any of w1, . . . , wm.

Hence, the Lagrangian now becomes

h(w, δ, µ) =

n∑
i=1

wi log (wi) + δ(θ (w)− c) + µ(

n∑
i=1

wi − 1) +

m−1∑
k=1

αi(w1 − wi+1) +
∑

u∈U−{u1,...,um−1}

αuu

for w ∈Wn, and δ, µ, αu ∈ R.
(37)

Taking partial derivatives of h with respect to w1, . . . , wm, we get

logw1 + 1 + δ∇1θ(w) + µ+ α1 + . . .+ αm−1 = 0

logw2 + 1 + δ∇2θ(w) + µ− α1 = 0

...
logwm + δ∇mθ(w) + µ− αm−1 = 0.

Now, invoking the constraint w1 = . . . = wm, and adding the above equations, the result follows
from Proposition 3.1.1 of Bertsekas [5].
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We next present the sufficient condition for a point to be local optima of (34) that again follows
from Proposition 3.2.1 of Bertsekas [5]. To that end, we introduce the Lagrangian function h :
Rn × R× R→ R that we define as

h(w, δ, µ) =

n∑
i=1

wi log (wi)+δ(θ (w)−c)+µ(
n∑
i=1

wi−1)+
∑
u∈U

αuu for w ∈Wn, and δ, µ, αu ∈ R.

(38)
Corollary G.2 (Second order sufficiency conditions). Assume that θ : int(Wn) → R is twice
continuously differentiable, and let w∗ ∈Wn, δ∗, µ∗ ∈ R and α∗ ∈ R|U | satisfy

∇wh(w∗, δ∗, µ∗, α∗) = 0, ∇δ,µ,αh(w∗, δ∗, µ∗, α∗) = 0,

γ′∇2
wwh(w

∗, δ∗, µ∗, α∗)γ > 0, for all γ ̸= 0 with

∇θ(w∗)′γ = 0,

n∑
i=1

γi = 0 and ∇u(w∗)′γ = 0 for all u ∈ U .

Then w∗ is a strict local optima of (34).

Next, we present a Majorization-minimization based algorithm to solve (34) that relies on this
characterization.

G.1 Algorithms to obtain directional s-values of general estimands

Here, we solve the optimization problem in (34). Following similar arguments as in Section F.1, we
solve the Lagrangian form given by

minimize
w1,...,wn,wi≥0,

∑
wi=1,P0,n(·|E)=Pw(·|E)

g(w) = δ(θ (w)− c) +
n∑
i=1

wi log (wi) . (39)

We solve (39) using Majorization-Minimization algorithm. We obtain the majorizer of the objective
function in (39) using (24) under Assumption 4 as follows

g(w′) ≤ GL(w′, w) := δ

(
θ(w)− c+ ⟨∇θ(w), w′ − w⟩+ L

n∑
i=1

w′
i log

w′
i

wi

)
+

n∑
i=1

w′
i logw

′
i

(40)

for w,w′ ∈Wn.

First we observe that ⟨∇θ(w), w′ −w⟩ = EQw′ [M ]−EQw
[M ]. Now we want to minimize the right

hand side of inequality (39) with respect to w′ under the additional constraint P0,n(· | E = ek) =
Pw′(· | E = ek) for all k ∈ [K] which gives

⟨∇θ(w), w′ − w⟩ = EQw′ [M ]− EQw
[M ]

= EQw′ [EQw′ [M | E]]− EQw
[M ]

= EQw′ [EQ0,n
[M | E]]− EQw

[M ].

Hence, under the additional constraint, the majorizer now becomes

g(w′) ≤ GL(w′, w) := δ

(
θ(w)− c+ EQw′ [EQ0,n

[M | E]]− EQw
[M ] + L

n∑
i=1

w′
i log

w′
i

wi

)

+

n∑
i=1

w′
i logw

′
i

(41)

for w,w′ ∈Wn.
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We next show that minimizing the majorizer GL(w′, w) actually involves solving a K-dimensional
convex optimization problem. The random variable E takes values in the set {e1, . . . , eK}. Suppose
out of the n realizations {Zi, Ei}ni=1, ek occurs nk times for k ∈ [K] and

∑K
k=1 nk = n. Now under

the constraint P0,n(· | E) = Pw′(· | E), it is equivalent to considering only probability distributions
on the set {e1, . . . , eK} as conditional on E = ek for any k ∈ [K], the corresponding samples are
equally likely to occur. Hence, now we can restrict our domain to K dimensional unit cube WK and
minimizing the majorizer in (41) is equivalent to solving the following optimization problem

minimize
v′∈WK ,

∑K
k=1 v

′
k=1

δ

(
K∑
k=1

v
′

kEQ0,n
[M | E = ek] + L

K∑
k=1

v
′

k log
v

′

k

vk

)
+

K∑
k=1

v
′

k log
v

′

k

nk
(42)

which is a K dimensional convex optimization problem. Hence, the convergence analysis follows as
in Section F.1.

If the variable E is continuous-valued, then we can discretize E to use the similar procedure as
outlined above or use any non-parametric estimator to approximate the conditional expectation
EQ0

[M | E].

H Confidence intervals

In this section, we prove a general theorem that contains the asymptotic normality results from
Section C as a special case. In particular, Lemma C.2 can be recovered with E = Z = ℓ(η, Z) and
f̂n(E) = E, f(E) = E. Lemma C.4 can be recovered with Z = ℓ(η, Z).

Theorem 3. Let f̂n(·) be an estimate of f(·) = EP0
[ℓ(η, Z)|E = ·]. We assume that f̂n and λ̂

are fit on a held-out portion of the data set, that is f̂n(·) and λ̂ are independent of (Zi, Ei), i =
1, . . . , n. We assume that supe∈E |f̂n(e) − f(e)| = oP (n

−1/4). Furthermore, we assume that the
moment generating function of ℓ(η, Zi) is finite on Rp and that E[f(E)f(E)⊺e(λ

∗)⊺f(E)] > 0. Let
λ̂ = argmin 1

n

∑n
i=1 e

λ⊺f̂n(Ei) and λ∗ = argminEP0 [e
(λ)⊺f(E)]. Then,

1

n

n∑
i=1

(1 + λ̂⊺ℓ(η, Zi)− λ̂⊺f̂n(Ei))eλ̂
⊺f̂n(Ei) − EP0 [e

(λ∗)⊺f(E)]
d
= N

(
0,
σ2

n

)
+ oP (1/n),

where
σ2 = VarP0

(eλ
∗f(E)) + VarP0

(e(λ
∗)⊺f(E)(λ∗)⊺(ℓ(η, Z)− f(E))).

Proof. Using Lemma C.3, we have λ̂→ λ∗ in probability. By definition of λ̂,

1

n

n∑
i=1

f̂n(Ei)e
λ̂⊺f̂n(Ei) = 0.

Using a Taylor expansion on the left,

1

n

n∑
i=1

f(Ei)e
λ̂⊺f(Ei) = oP (n

−1/4).

Thus, using another Taylor expansion,

(λ̂− λ∗)⊺ 1
n

n∑
i=1

f(Ei)f(Ei)
⊺e(λ

∗)⊺f(Ei) = OP (∥λ̂− λ∗∥22 +
1√
n
) + oP (n

−1/4).

Since λ̂− λ∗ → 0 and E[f(E)f(E)⊺e(λ
∗)⊺f(E)] > 0 we have

λ̂− λ∗ = oP (n
−1/4).
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To summarize, we know that λ̂ − λ∗ = oP (n
−1/4) and that supe∈E |f̂n(e) − f(e)| = oP (n

−1/4).
Thus,

1

n

n∑
i=1

eλ̂
⊺f̂n(Ei) − E[e(λ

∗)⊺f(E)] = (λ̂− λ0)⊺ 1
n

n∑
i=1

f(Ei)e
(λ∗)⊺f(Ei)

+
1

n

n∑
i=1

(λ̂)⊺(f̂n(Ei)− f(Ei))e(λ̂)
⊺f̂n(Ei)

+
1

n

n∑
i=1

e(λ
∗)⊺f(Ei) − EP0 [e

(λ∗)⊺f(E)] + oP (n
−1/2)

Using the CLT, the first term goes to zero at rate OP (n−3/4). The last term can be computed with a
CLT (since we assume that the moment generating function is finite, the variance is finite). Let us
focus on the second term. Note that the second term in the previous equation can be re-written:

1

n

n∑
i=1

(λ̂)⊺(f̂n(Ei)− f(Ei))e(λ̂)
⊺f̂n(Ei) =

1

n

n∑
i=1

(λ̂)⊺(ℓ(η, Zi)− f(Ei))e(λ̂)
⊺f̂n(Ei)

+
1

n

n∑
i=1

(λ̂)⊺(f̂n(Ei)− ℓ(η, Zi))e(λ̂)
⊺f̂n(Ei)

Using the last two equations,

1

n

n∑
i=1

(1 + λ̂⊺ℓ(η, Zi)− λ̂⊺f̂n(Ei))eλ̂
⊺f̂n(Ei) − EP0

[e(λ
∗)⊺f(E)]

=
1

n

n∑
i=1

(λ̂)⊺(ℓ(η, Zi)− f(Ei))e(λ̂)
⊺f̂n(Ei) +

1

n

n∑
i=1

e(λ
∗)⊺f(Ei) − EP0

[e(λ
∗)⊺f(E)] + oP (n

−1/2)

(43)

Using that
EP0

[(ℓ(η, Z)− f(E))|E] = 0,

by conditioning on the E1, . . . , En using a CLT we get

1

n

n∑
i=1

(ℓ(η, Zi)− f(Ei))e(λ̂)
⊺f̂n(Ei) =

1

n

n∑
i=1

(ℓ(η, Zi)− f(Ei))e(λ
∗)⊺f(Ei) + oP (1/

√
n).

Here we used that f̂n is computed on a separate data set and thus is independent of (Zi, Ei),
i = 1, . . . , n. Furthermore, we used that λ̂ depends on the (Zi, Ei) only through the Ei. Using this
in equation (43), we get

1

n

n∑
i=1

(1 + λ̂⊺ℓ(η, Zi)− λ̂⊺f̂n(Ei))eλ̂
⊺f̂n(Ei) − EP0

[e(λ
∗)⊺f(E)]

=
1

n

n∑
i=1

(λ∗)⊺(ℓ(η, Zi)− f(Ei))e(λ
∗)⊺f(Ei)

+
1

n

n∑
i=1

e(λ
∗)⊺f(Ei) − EP0

[e(λ
∗)⊺f(E)] + oP (1/

√
n)

Thus, asymptotically, we have that

1

n

n∑
i=1

(1 + λ̂⊺ℓ(η, Zi)− λ̂⊺f̂n(Ei))eλ̂
⊺f̂n(Ei) − EP0 [e

(λ∗)⊺f(E)]
d
= N (0, σ2) + oP (1/

√
n),

where
σ2 =

1

n
Var(e(λ

∗)⊺f(Ei)) +
1

n
Var(e(λ

∗)⊺f(Ei)(λ∗)⊺(ℓ(η, Z)− f(E))).
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I Other technical proofs and appendices

Theorem 4. [Theorem II.1, Andersen and Gill [1]] Let E be an open convex subset of Rp and let
F1, F2, . . . , be a sequence of random concave functions on E such that Fn(x)

P→ f(x) as n→∞
for every x ∈ E, where f is some real function on E. Then f is also concave and for all compact
A ⊂ E,

sup
x∈A
|Fn(x)− f(x)|

P→ 0 as n→∞.

Corollary I.1. [Corollary II.1, Andersen and Gill [1]] Let E be an open convex subset of Rp and let
F1, F2, . . . , be a sequence of random concave functions on E such that Fn(x)

P→ f(x) as n→∞
for every x ∈ E, where f is some real function on E. Suppose f has a unique maximum at x̂ ∈ E.
Let X̂n maximize Fn. Then X̂n

P→ x̂ as n→∞.
Corollary I.2. Let E be an open convex subset of Rp and let F1, F2, . . . , be a sequence of random
concave functions on E such that Fn(x)

P→ f(x) as n → ∞ for every x ∈ E, where f is some
real function on E. Suppose f has a unique maximum at x̂ ∈ E. Let X̂n maximize Fn. Then
Fn(X̂n)

P→ f(x̂) as n→∞.

Proof. We define a set B as B = {x : ∥x− x̂∥ ≤ γ} for some arbitrary small γ > 0 such that
B ⊆ E. Clearly, setB is compact. From Corollary I.1, we have X̂n

P→ x̂. Hence, there exists positive
integer N1 such that X̂n ∈ B for all n > N1 with probability at least 1− δ for some small δ > 0.

Since supx∈B |Fn(x)− f(x)|
P→ 0. Hence, for any ϵ > 0, there exists positive integer N2 such that

|Fn(x)− f(x)| < ϵ for all x ∈ B and n > N2 (44)

with probability at least 1 − δ. Let x0 ∈ B be such that f(x0) ≥ supx∈B f(x) − ϵ. Hence, using
(44), we have for all n > N2

sup
x∈B

f(x) ≤ f(x0) + ϵ ≤ Fn(x0) + 2ϵ ≤ sup
x∈B

Fn(x) + 2ϵ (45)

with probability at least 1− δ.

Now, we choose sequence xn ∈ B such that Fn(xn) ≥ supx∈B Fn(x)− ϵ. Using (44), we have for
all n > N2

sup
x∈B

f(x) + ϵ ≥ Fn(xn) ≥ sup
x∈B

Fn(x)− ϵ (46)

with probability at least 1− δ. Combining (45) and (46), we have for all n > N2,

| sup
x∈B

Fn(x)− sup
x∈B

f(x)| < 2ϵ (47)

with probability at least 1− δ. We choose N = max{N1, N2}. Since, X̂n ∈ B for all n > N with
probability at least 1− δ. We have for all n > N , with probability at least 1− 2δ,

|Fn(X̂n)− f(x̂)| < 2ϵ. (48)

Hence, the proof follows.

I.1 Proof of Lemma C.1

First, if Z ≥ 0 with probability 1 or if Z ≤ 0 with probability 1, the statement is immediate.
Thus, in the following we assume that Z > 0 with non-vanishing probability and that Z < 0 with
non-vanishing probability.

Let us now prove that the minimum is achieved for some unique λ∗ ∈ R∪{−∞,∞}. We will do the
proof by contradiction. If the minimum is attained for multiple λ∗, then by convexity there must exist
a nonempty open interval (λ1, λ2) of values λ∗ that attain the minimum. Using a second order Taylor
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expansion, one can show that in this case we must have Z ≡ c almost surely. However, we assumed
that Z is non-degenerate. Thus, the minimum is achieved for some unique λ∗ ∈ R ∪ {−∞,∞}.

Furthermore, if Z > 0 with probability > 0 then E[eλZ ]→∞ for λ→∞. Similarly if Z < 0 with
probability < 0 then E[eλZ ]→∞ for λ→ −∞. Thus, the minimum is achieved for λ∗ ∈ R.

The proof follows from Corollary I.2 and using the fact that the negative of a convex function is
concave.

I.2 Proof of Theorem 2

Proof. Any distribution P that satisfies P[·|E = e] = P0[·|E = e] for all e ∈ E satisfies

EP [Z] = EP [EP0
[Z|E]]. (49)

Thus,

sE(θ, P0) = exp{− min
P∈P:P (·|E=e)=P0(·|E=e) for alle∈E

DKL(P ||P0)} s.t. EP [Z] = 0.

= exp{− min
P∈P:P (·|E=e)=P0(·|E=e) for alle∈E

DKL(P ||P0)} s.t. EP [EP0
[Z|E]] = 0.

Since EP0
[Z|E] is a function of E, using the chain rule for KL divergence,

sE(θ, P0) = exp{− min
P∈P:P (·|E=e)=P0(·|E=e) for alle∈E

DKL(P ||P0)} s.t. EP [EP0
[Z|E]] = 0

= exp{−min
P∈P

DKL(P ||P0)} s.t. EP [EP0
[Z|E]] = 0.

Now we can use Theorem 1 for the random variable EP0 [Z|E], which completes the proof.

I.3 Proof of Lemma C.3

We will show that for any compact subset Λ ⊂ R,

sup
λ∈Λ
|EPn [e

λf̂n(E)]− EP0 [e
λEP0

[Z|E]]| P→ 0. (50)

Since EPn
[eλf̂n(E)] and EP0

[eλEP0
[Z|E]] are convex functions in λ, hence, the proof follows from

Corollary I.2. In order to show (50), it suffices to show the following:

sup
λ∈Λ
|EPn [e

λf̂n(E)]− EPn [e
λEP0

[Z|E]]| P→ 0 and (51)

sup
λ∈Λ
|EPn

[eλEP0
[Z|E]]− EP0

[eλEP0
[Z|E]]| P→ 0. (52)

(52) follows from Theorem 4. We next show (51). Since Z has finite moment generating function,
hence, the random variable EP0 [Z | E] also has finite moment generating function. Hence, for any
small ϵ > 0, we can choose a large M ∈ R such that the set R = {e ∈ Rd | |EP0

[Z | E = e]| ≤M}
satisfies P0(R) ≥ 1− ϵ. Now, from Assumption 1, we have

sup
λ∈Λ

sup
e∈R
|eλf̂n(e) − eλEP0

[Z|E=e]| P→ 0. (53)

Hence,

sup
λ∈Λ
|EPn [e

λf̂n(E)1{E ∈ R}]−EPn [e
λEP0

[Z|E]1{E ∈ R}]| ≤ sup
λ∈Λ

sup
e∈R
|eλf̂n(e)−eλEP0

[Z|E=e]| P→ 0.

(54)
Since we can choose the set R with an arbitrarily large probability, we have (51).
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I.4 Proof of Corollary D.1

Since L is convex and smooth in its first argument, hence, the minimizer in (10) is equivalently a
solution of EP [ℓ(θM , Z)] = 0. To obtain s-value in (11), we need to find the distribution P closest
to P0 such that EP [ℓ(η, Z)] = 0. Hence, s-value in (11) can be rewritten as

s(θM − η, P0) = exp{−min
P∈P

DKL(P ||P0)} s.t. EP [ℓ(η, Z)] = 0. (55)

This is the same problem as obtaining s-value for a multivariate mean of the random variable ℓ(η, Z).
Hence, following similar arguments as the proof for Theorem 1, we have the result.

I.5 Proof of Corollary D.2

Since L is convex and smooth in its first argument, hence, the minimizer in (10) is equivalently a
solution of EP [ℓ(θM , Z)] = 0. To obtain s-value in (13), we need to find the distribution P closest to
P0 such that P [• | E = e] = P0[• | E = e] for all e ∈ E and EP [ℓ(η, Z)] = 0. Hence, the s-value
in (13) can be rewritten as

s(θM − η, P0) = exp{− min
P∈P,P [•|E=e]=P0[•|E=e] for all e∈E

DKL(P ||P0)} s.t. EP [ℓ(η, Z)] = 0.

(56)
This is the same problem as obtaining directional s-value for the multivariate mean of the random
variable ℓ(η, Z). Hence, following similar arguments as the proof for Theorem 2, we have the result.

Lemma I.1. Let X ⊆ Rm be an open convex set and Y ⊂ Rd be a compact set. Let {fn}n≥1 be a
sequence of real valued functions defined on X × Y , where each of the function fn is convex in the
first variable and converges pointwise on X × Y to a function f , that is

f(x, y) = lim
n→∞

fn(x, y) for all (x, y) ∈ X × Y.

Suppose that

gn(x) = sup
y∈Y
|fn(x, y)− f(x, y)| → 0 for each x ∈ X as n→∞ (57)

and

sup
y∈Y
|f(x, y)| <∞ for each x ∈ X . (58)

Then supy∈Y |fn(x, y)− f(x, y)| → 0 uniformly on each compact S ⊂ X as n→∞.

Proof. The proof works along similar lines as the proof of Theorem 10.8 in Rockafellar [37]. First,
we observe that the collection {fn(·, y) | n ≥ 1 and y ∈ Y} is pointwise bounded on X using (57)
and (58). Hence, by Theorem 10.6 of Rockafellar [37] it is equi-Lipschitzian on each closed bounded
subset of X . Then there exists a real number α > 0 such that

|fn(x1, y)− fn(x2, y)| ≤ α|x1 − x2|, for all x1, x2 ∈ S, n ≥ 1 and y ∈ Y. (59)

Since S is compact, hence, there exists a finite subset C0 of S such that each point of S lies within
ϵ
3α distance of at least one point of C0. Since C0 is finite and the functions gn converge pointwise on
C0, there exists an integer N0 such that

|fn1
(x, y)− fn2

(x, y)| ≤ ϵ

3α
for all n1, n2 ≥ N0, x ∈ C0 and y ∈ Y. (60)

Given any x ∈ S, let z be one of the points of C0 such that |z − x| ≤ ϵ
3α . Then for all n1, n2 ≥ N0

and y ∈ Y , we have

|fn1
(x, y)− fn2

(x, y)| ≤ |fn1
(x, y)− fn1

(z, y)|+ |fn1
(z, y)− fn2

(z, y)|+ |fn2
(z, y)− fn2

(x, y)|

≤ α|x− z|+ ϵ

3
+ α|z − x| ≤ ϵ.

Hence, the sequence {fn}n≥1 is cauchy uniformly in x ∈ S and y ∈ Y . Hence, the proof follows.
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Lemma I.2. Let X ⊆ Rm be an open convex set and Y ⊂ Rd be a compact set. Let {Fn}n≥1 be a
sequence of real valued random functions defined on X ×Y , where each of the function Fn is convex
in the first variable.

Suppose that

gn(x) = sup
y∈Y
|Fn(x, y)− f(x, y)|

P→ 0 for each x ∈ X as n→∞ and (61)

sup
y∈Y
|f(x, y)| <∞ for each x ∈ X . (62)

Then supy∈Y |Fn(x, y)− f(x, y)|
P→ 0 uniformly on each compact S ⊂ X as n→∞.

Proof. The proof uses subsequence arguments very similar to that in the proof of Theorem II.1 of
Andersen and Gill [1]. Let x1, x2, . . . be a countable dense set of points in X . Since gn(x1)

P→ 0
as n → ∞ there exists a subsequence along which convergence holds almost surely. Along this
subsequence gn(x2)

P→ 0, hence, a further subsequence exists along which gn(x2)
a.s.→ 0. By

repeating the argument, along a subk sequence, gn(xj)
a.s.→ 0 for j = 1, . . . , k. By considering the

new subsequence formed by taking the first element of the first subsequence, the second element of
the second subsequence and so on, we have gn(xj)

a.s.→ 0 for each j = 1, 2, . . ..

Hence, by Lemma I.1, it follows that

sup
x∈S

gn(x)
a.s.→ 0 along this subsequence.

Since, for any subsequence, there exists a further subsequence along which supx∈S gn(x)
a.s.→ 0. It

then follows that supx∈S gn(x)
P→ 0 along the whole sequence.

I.6 Proof of Lemma D.1

By Assumption 2, it follows that supη∈Σ |EPn
[eλ

⊺ℓ(η,Z)]− EP0
[eλ

⊺ℓ(η,Z)]| P→ 0 (see Theorem 19.4
and Example 19.8 of van der Vaart [47]). Let Λ ⊂ Rp be a compact subset. Since eλ

⊺ℓ(η,Z) is convex
in λ, by Assumption 2 and Lemma I.2, we have supλ∈Λ supη∈Σ |EPn [e

λ⊺ℓ(η,Z)]−EP0 [e
λ⊺ℓ(η,Z)]| P→

0.

Let fn(λ, η) = EPn
[eλ

⊺ℓ(η,Z)] and f(λ, η) = EP0
[eλ

⊺ℓ(η,Z)]. Since supη supλ |fn(λ, η) −
f(λ, η)| P→ 0, for any ϵ > 0, there exists N such that

|fn(λ, η)− f(λ, η)| < ϵ for all λ ∈ Λ, η ∈ Σ and n > N (63)
with probability at least 1− δ for some small δ > 0. We first show that supη∈Σ | infλ∈Λ fn(λ, η)−
infλ f(λ, η)|

P→ 0.

For η ∈ Σ, let λ0 ∈ Λ be such that f(λ0, η) ≤ infλ f(λ, η) + ϵ. Hence, using (63), we have for all
n > N

inf
λ∈Λ

f(λ, η) ≥ f(λ0, η)− ϵ ≥ fn(λ0, η)− 2ϵ ≥ inf
λ
fn(λ, η)− 2ϵ (64)

with probability at least 1−δ. Now, for η ∈ Σ, we choose λn ∈ Λ such that fn(λn) ≤ infλ fn(λ, η)+
ϵ. Using (63), we have

inf
λ∈Λ

f(λ, η)− ϵ ≤ fn(λn, η) ≤ inf
λ∈Λ

fn(λ, η) + ϵ (65)

with probability at least 1− δ.

Combining (64) and (65), we have
| inf
λ∈Λ

fn(λ, η)− inf
λ∈Λ

f(λ, η)| < 2ϵ (66)

for all η and n > N with probability at least 1− δ.

Let gn(η) = infλ∈Λ fn(λ, η) and g(η) = infλ∈Λ f(λ, η), then supη |gn(η) − g(η)|
P→ 0. Now we

need to show supηk | supη1,...,ηk−1,ηk,...ηp
gn(η) − supη1,...,ηk−1,ηk,...ηp

g(η)| P→ 0, which follows
similarly as the proof of (66).
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I.7 Proof of Lemma D.2

We need to show that for any compact subset Λ ⊂ Rp,

sup
λ∈Λ

sup
η∈Σ
|EPn

[eλ
⊺Qn(η,E)]− EP0

[eλ
⊺EP0

[ℓ(η,Z)|E]]| P→ 0 (67)

and then the rest of the proof follows similarly as in the proof of Lemma D.1. In order to show (67),
it suffices to show the following:

sup
λ∈Λ

sup
η∈Σ
|EPn

[eλ
⊺Qn(η,E)]− EPn

[eλ
⊺EP0

[ℓ(η,Z)|E]]| P→ 0. (68)

sup
λ∈Λ

sup
η∈Σ
|EPn

[eλ
⊺EP0

[ℓ(η,Z)|E]]− EP0
[eλ

⊺EP0
[ℓ(η,Z)|E]]| P→ 0. (69)

(69) follows similarly as in the proof of Lemma D.1. hence, it remains to show show (68).

Since Λ is a compact set, there exists a real constant M such that ∥λ∥1 ≤M for all λ ∈ Λ. Hence,

|λ⊺Qn(η, e)− λ⊺EP0
[ℓ(η, Z) | E = e]| ≤ ∥λ∥1 ∥Qn(η, e)− EP0

[ℓ(η, Z) | E = e]∥∞
≤M ∥Qn(η, e)− EP0

[ℓ(η, Z) | E = e]∥∞ .
(70)

Now, for any fixed value of E = e, for some ψn,λ,e ∈ R such that λ⊺Qn(η, e) ≤ ψn,λ,e ≤
λ⊺EP0

[ℓ(η, Z) | E = e], we have by Taylor’s expansion

|eλ
⊺Qn(η,e) − eλ

⊺EP0
[ℓ(η,Z)|E=e]| ≤ eψn,λ,e |λ⊺Qn(η, e)− λ⊺EP0 [ℓ(η, Z) | E = e]|

≤ eλ
⊺EP0

[ℓ(η,Z)|E=e]eM∥Qn(η,e)−EP0
[ℓ(η,Z)|E=e]∥∞M ∥Qn(η, e)− EP0 [ℓ(η, Z) | E = e]∥∞

(71)

where the last inequality follows from (70).

Since by Assumption 3, we have supη supe ∥EP0
[ℓ(η, Z)|E = e]−Qn(η, e)∥∞ → 0. Hence,

in order to show (68), it suffices to show that supλ∈Λ supη∈Σ EPn
[eλ

⊺EP0
[ℓ(η,Z)|E]] ≤ C < ∞

for some numerical constant C independent of n with high probability. Now, by Assumption 2,
we have EP0

[supη∈Σ e
λ⊺ℓ(η,Z)] < ∞ for any λ ∈ Rp. Hence, by Jensen’s inequality, we have

EP0 [supη∈Σ e
λ⊺EP0

[ℓ(η,Z)|E]] < ∞ for any λ ∈ Rp. Also, λ → supη∈Σ e
λ⊺EP0

[ℓ(η,Z)|E=e] is a
convex function for any e. Hence, by Theorem 4, we have the result.

J Additional experimental details
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Table 5: National supported work demonstration (NSW) data. Table showing the sample means of
covariates for the subset extracted by Dehejia and Wahba [12] (DJW) and the subset containing the
remaining samples (DJWC) along with p-values for testing the difference of means between the two
treated and control groups respectively using Welch two sample t-test.
Age=age in years; Education=number of years of schooling; Black=1 if black, 0 otherwise; His-
panic=1 if Hispanic, 0 otherwise; Nodegree=1 if no high school degree, 0 otherwise; Married =1 if
married, 0 otherwise; RE75= Earnings in 1975.

Part

No. of Obs. Age Education Black Hispanic

Treated (DJW) 185 25.81 10.35 0.84 0.06
Treated (DJWC) 112 22.66 10.44 0.73 0.15

p-values for diff. in means 1.95e-05 0.6501 0.027 0.017
Control (DJW) 260 25.05 10.09 0.83 0.11
Control (DJWC) 165 23.49 10.35 0.76 0.12

p-values for diff. in means 0.0123 0.1111 0.09 0.6724

Table 6: National supported work demonstration (NSW) data. Table showing the sample means of
covariates for the subset extracted by Dehejia and Wahba [12] (DJW) and the subset containing the
remaining samples (DJWC) along with p-values for testing the difference of means between the two
treated and control groups respectively using Welch two sample t-test.
Age=age in years; Education=number of years of schooling; Black=1 if black, 0 otherwise; His-
panic=1 if Hispanic, 0 otherwise; Nodegree=1 if no high school degree, 0 otherwise; Married =1 if
married, 0 otherwise; RE75= Earnings in 1975.

Part

No. of Obs. Nodegree Married RE75

Treated (DJW) 185 0.19 0.71 1532.1
Treated (DJWC) 112 0.13 0.77 5600

p-values for diff. in means 0.2035 0.2539 5.42e-10
Control (DJW) 260 0.15 0.83 1266.9
Control (DJWC) 165 0.16 0.78 5799.66

p-values for diff. in means 0.7891 0.1841 6.967e-15
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