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Abstract

Common statistical measures of uncertainty such as p-values and confidence inter-
vals quantify the uncertainty due to sampling, that is, the uncertainty due to not
observing the full population. However, sampling is not the only source of uncer-
tainty. In practice, distributions change between locations and across time. This
makes it difficult to gather knowledge that transfers across data sets. We propose
a measure of instability that quantifies the distributional instability of a statistical
parameter with respect to Kullback-Leibler divergence, that is, the sensitivity of
the parameter under general distributional perturbations within a Kullback-Leibler
divergence ball. In addition, we quantify the instability of parameters with respect
to directional or variable-specific shifts. Measuring instability with respect to
directional shifts can be used to detect under which kind of distribution shifts a
statistical conclusion might be reversed. We discuss how such knowledge can
inform data collection for transfer learning of statistical parameters under shifted
distributions. We evaluate the performance of the proposed measure on real data
and show that it can elucidate the distributional instability of a parameter with
respect to certain shifts and can be used to improve estimation accuracy under
shifted distributions.

1 Introduction

Test data sets collected in different locations or at different time points often are drawn from different
distributions, due to changing circumstances, changes in unmeasured confounders, time shifts in
distribution, or distributional shifts in covariates [44, 19, 16, 20]. This makes it difficult to gather
knowledge that transfers across data sets. Statistical estimands such as a regression coefficient or the
average treatment effect (ATE) may vary as the underlying distribution changes and hence, statistical
findings (such as that the treatment effect is positive) may not replicate across data sets [4, 22].

In causal inference, the rapidly growing field of sensitivity analysis [12, 40, 16, 53, 11] quantifies the
stability of an estimate with respect to unobserved confounding. Roughly speaking, this line of work
sees stability analysis as part of uncertainty quantification. Inspired by this line of work, we aim to
bring a similar type of stability analysis to a wider range of statistical procedures.

In this paper, we propose a measure of instability, called the s-value, to investigate the stability of
a given statistical parameter with respect to a shift in the underlying distribution (Figure 1). The
s-value quantifies the minimum shift in distribution required to tilt the parameter to a given value,
using Kullback-Leibler divergence. We also investigate the stability of parameters with respect to
directional or variable-specific shifts. The proposed measure can be used as an exploratory tool to
identify the kind of distribution shift that could reverse a statistical conclusion. We further discuss
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Figure 1: Distribution shift can change the parameter of interest.

how s-values can be used to obtain improved estimates of statistical parameters under a shifted
distribution with limited information about the new distribution.

1.1 Our contribution

We propose a measure of instability that quantifies the sensitivity of a one-dimensional statistical
parameter to changes in the underlying probability distribution. We focus on shifts in distributions
that are absolutely continuous with respect to the training distribution. Let P0 ∈ P be the training
distribution on the measure space (Z,A), where P is the set of probability measures, Z is a random
element of Z , and θ : P 7→ R is the one-dimensional statistical parameter of interest. We are
interested in the minimum amount of shift in distribution that changes the sign of the parameter. To
this end, we define the stability value (s-value) for θ as

s(θ, P0) = sup
P∈P

exp−DKL(P ∥ P0) s.t. θ(P ) = 0, (1)

where DKL is the Kullback-Leibler divergence between P and P0 given by

DKL(P ∥ P0) =

∫
log

(
dP

dP0

)
dP.

We provide some more discussion on the thought process that led to the proposed definition in
Appendix, Section A. Note that the s-value lies in [0, 1], with values close to 1 indicating that a
small shift in distribution may alter the findings, and hence, the finding is not distributionally stable.
S-values close to 0 indicate that the sign of the parameter is stable under distributional changes.
In Section 3, we discuss estimation of s-values for parameters that are linear in the distribution P .
The proposed procedure can be generalized to parameters defined via risk minimization, including
parameters in generalized linear models (see Appendix, Section D).

Considering overall distributional shift does not give information about what kind of distribution
shifts the parameter is sensitive to. Hence, we also quantify the instability of parameters with respect
to shifts in the distribution of certain exogenous or endogenous variables E, assuming that the
conditional distribution of the remaining variables given E is constant. Let E be a random variable
taking values in the space E . We define the directional or variable-specific s-value as

sE(θ, P0) = sup
P∈P:P (·|E=e)=P0(·|E=e) for all e∈E

exp−DKL(P ∥ P0) s.t. θ(P ) = 0. (2)

whereP denotes the set of probability distributions over joint random variable (Z,E). If a practitioner
discovers that a parameter is sensitive with respect to changes in the distribution of a certain variable
E, this knowledge can be used to update the parameter estimate. We discuss how our method can
be used to prioritize data collection about the new distribution in Section 4 and use the same to
re-estimate the parameter under shifted distribution. The proposed procedure shows promise for the
task of prioritizing data collection from the new distribution in the experiments.

2 Related work

Quantifying the uncertainty of statistical estimators is a crucial objective in statistics, typically
accomplished using classical statistical measures such as p-values and confidence intervals to quantify
sampling uncertainty. However, these methods typically rely on strong, potentially unjustified
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assumptions about fixed underlying distributions, which may lead to false discoveries. To improve
reliability and reproducibility in statistical estimation, Yu and Kumbier [52] propose the predictability,
computability, and stability (PCS) framework. While they investigate the stability of data results
under data and method perturbations, we focus specifically on evaluating the stability of statistical
parameters under distributional shifts.

Model misspecification can result in distributional instability. Buja et al. [6] highlight fundamental
issues with model misspecification or non-linearity in linear models. They propose reinterpreting
population slopes as statistical functionals of data generating distributions and develop diagnostic
tests for detecting model deviations. We introduce measures to illustrate coefficient instability under
various distributional shifts for parametric and semi-parametric estimators.

[34] introduce a novel framework to analyze the stability of decision policies and prediction models
under distribution shifts. Central to their approach is the notion of stability, characterized as the
minimal alteration in the underlying environment required to push a system’s performance beyond a
specified threshold. In contrast, we focus on understanding stability of parameters with respect to
shift in distribution.

In machine learning, there is much work on computing which data or features contribute to a
prediction, e.g. using Shapley values [33, 21]. In contrast, we are interested in how distributional
changes in features (or covariates) lead to parameter changes.

Sensitivity analyses in the causal inference literature aim to investigate the stability of causal estimates
with respect to unmeasured confounding [12, 40, 16, 53, 11]. Our proposal can be seen as a version
of sensitivity analysis for general estimands where we evaluate both the stability of an estimand with
respect to the overall shift in distribution and the stability with respect to directional distribution
shifts.

Classical robust statistics [24] addresses robustness against contaminations and outliers using mea-
sures like leverage scores and influence functions to construct estimators that are not unduly influenced
by such outliers. Influence functions play an important role in this work, since it corresponds to the
functional derivative of a parameter with respect to the distribution. Different from classical robust
statistics, in our case the perturbation is not a contamination but corresponds to an actual change in
the underlying population. Rather than robustifying estimators, our aim is to equip practitioners with
tools to detect sources of instability and facilitate the transfer of estimators across different settings.

There has been a resurgence of research addressing the challenges posed by distributional shifts. This
research has mostly focused on building distributionally robust estimators where more weight is
given to the outliers by considering worst-case distributional shifts in a neighborhood of the training
distribution [19, 45, 20, 43, 25, 7, 9, 8, 47]. In contrast, we quantify the stability of potentially
non-linear statistical parameters under both overall and variable-specific distributional shifts.

There is exciting empirical work by Devaux and Egami [15] who build a library of reference stability
values based on survey data sets. They recommend thresholds for s-values based on empirical
investigations of how data sets change between settings. This work allows for the contextualization
of distributional stability values.

Closely related to our work are empirical likelihoods [35]. In the empirical likelihood framework,
small overall distributional tilts are used to construct p-values and confidence intervals for a given
parameter. In our work, we use distributional shifts of various strengths to evaluate the (directional)
stability of an estimand with respect to distribution shifts.

3 S-value of the mean

In this section, we discuss estimation of the s-value of the mean of a one-dimensional real-valued
random variable followed by some examples. Estimation of s-values for more general settings,
including parameters defined via risk minimization, is discussed in Appendix, Section D. We first
focus on the special case of mean estimation as it allows us to develop procedures that will be helpful
in more general settings.
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3.1 Estimation of the s-value

Consider a one-dimensional real-valued random variable Z ∼ P0, where P0 ∈ P . We recall from (1)
that the s-value for the mean (µ(P0) = EP0 [Z]) is defined as

s(µ, P0) = sup
P

exp{−DKL(P ||P0)} s.t. EP [Z] = 0. (3)

In words, we are interested in finding the distribution closest to our training distribution P0 under
which the mean of the random variable is 0. At first sight, s-values might seem difficult to esti-
mate since the supremum in equation 3 is taken over the infinite-dimensional space of probability
distributions P . However, it turns out that the s-value of the mean can be obtained by solving a
one-dimensional convex optimization problem.
Theorem 1 (Theorem 5.2, Donsker and Varadhan [17]). Let Z ∼ P0 be a real-valued random
variable with mean µ(P0) = EP0 [Z] and finite moment generating function on R. Then, we have

s(µ, P0) = inf
λ

EP0
[eλZ ]. (4)

Further, if the infimum in (4) is attained at some λ∗ ∈ R then the infimum in (3) is attained at some
probability distribution Q given by

dQ(z) =
eλ

∗z

EP0 [e
λ∗Z ]

dP0(z) for all z ∈ R.

We note that MZ(λ) = E[eλZ ] is the moment generating function of Z. Since, MZ(0) = 1, we have
s(µ, P0) ∈ [0, 1]. In practice, we only have access to finitely many realizations of the data generating
distribution. Let Pn be the empirical distribution of Zi

i.i.d.∼ P0 for i ∈ [n], we obtain an estimator of
the s-value via the plugin estimator

ŝ(µ, Pn) = inf
λ

EPn
[eλZ ] = inf

λ

1

n

n∑
i=1

eλZi . (5)

Using classical results for M -estimators (see Chapter 5 of van der Vaart [48]), we show that ŝ(µ, Pn)
is consistent and asymptotically normal in Appendix C.1.

Directional s-values. The previous form of distributional stability might be very conservative. In
practice, we do not expect all aspects of distribution to change from setting to setting. To allow for
a more fine-grained evaluation of stability, we also consider directional shifts, which only change
certain aspects of the distribution. In the following, we will make this more precise.

Let P0 be the joint distribution of the multivariate random variable (Z,E) where Z takes values
in Z ⊆ R and E takes values in E ⊆ Rp for some positive integer p. E may be an exogenous or
endogenous variable. We consider a directional shift, i.e. a situation where the marginal distribution
of E may change while keeping the conditional distribution of Z given E constant. To be more
precise, we seek to estimate

sE(θ, P0) = sup
P∈P:P (·|E=e)=P0(·|E=e) for all e∈E

exp{−DKL(P ||P0)} s.t. θ(P ) = 0. (6)

We next show that sE is a solution to a one-dimensional convex optimization problem. The proof of
the following result can be found in Appendix I.2.
Theorem 2. Let P0 be the joint distribution function of the random variable (Z,E) taking values in
Z × E with µ = EP0 [Z] and finite moment generating function on R. Then,

sE(µ, P0) = inf
λ

EP0
[eλEP0

[Z|E]]. (7)

Further, if the infimum in (7) is attained at some λ∗ ∈ R then the infimum in (2) is attained at some
probability distribution Q given by

dQ(z, e) =
eλ

∗EP0
[Z|E=e]

EP0 [e
λ∗EP0

[Z|E]]
dP0(z, e) for all (z, e) ∈ Z × E .
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This result allows us to estimate the directional s-value. Let f̂n(E) be an estimator of E[Z | E].
Then, we can define a plug-in estimator by setting

ŝE(µ, Pn) = inf
λ

1

n

n∑
i=1

eλf̂n(Ei). (8)

We prove the consistency of ŝE(µ, Pn) in Appendix, Section C.1. In the Appendix, we also discuss
how to form a de-biased estimator of the directional s-value that is asymptotically normal.

3.2 Examples

Example 1 (Distribution with positive support). If Z is a random variable that has positive support
with probability 1, then s(µ, P0) = 0, which reflects the fact that for any distribution shift within the
KL-divergence ball, we will always have a positive mean.

Example 2 (Gaussian distribution). If Z ∼ N(µ, σ2), then s(µ, P0) = e−
µ2

2σ2 .

Thus, in the Gaussian case the stability measure s is a monotonous transformation of the signal-
to-noise ratio. High signal-to-noise ratio yields lower values of s indicating stronger distributional
stability.

Let us now develop some intuition for directional shifts. First, we derive conditions under which the
directional stability is zero, that is, conditions under which sE(µ, P0) = 0.
Example 3 (Directional stability). Let EP0

[Z|E] > 0. Then,

sE(µ, P0) = inf
λ

EP0
[e(λEP0

[Z|E])] = lim
λ→−∞

EP0
[e(λEP0

[Z|E])] = 0.

Example 4 (Average treatment effect). Here we consider estimating the causal effect of a treatment
via the potential outcome framework [46, 42]. We have a binary treatment random variable A ∈
{0, 1}, potential outcomes Y (1) and Y (0) corresponding to the potential outcome under treatment
and control respectively and some covariates X . Under the consistency assumption, we observe Y (1)
if A = 1 and Y (0) if A = 0, i.e. Y = AY (1) + (1−A)Y (0). One can write the average treatment
effect (ATE) as

τ = EX∼PX
E[Y (1)− Y (0) | X] = EX∼PX

[µ(1)(X)− µ(0)(X)],

where µ(a)(X) = E[Y (a) | X]. Hence, if we only consider shifts in marginal distribution of
covariates X keeping the conditional distribution of other variables given the covariates as fixed,
we obtain sX -values as above with Z = µ(1)(X)− µ(0)(X). In practice, µ(1)(X) and µ(0)(X) are
often unknown. We can use plug-in estimators µ̂(1)(X) and µ̂(0)(X) to form the estimator

ŝX(τ, P0) = inf
λ

1

n

n∑
i=1

eλ(µ̂(1)(Xi)−µ̂(0)(Xi)).

Consistency of this estimator can be shown with the same technique as Lemma C.3 in Appendix C.1.

In statistical analysis, risk minimization is often used to define various parameters, including regres-
sion coefficients and general M-estimators. However, unlike parameters that can be represented as
the mean of a random variable, these parameters lack a simple representation as they are not linear in
the underlying probability distribution. This makes the optimization problem involved in obtaining
s-values non-convex. To address this issue, we present methods for obtaining s-values for such
parameters in Section D of the Appendix.

4 Parameter transfer using s-values

In Section 3, we introduced s-values that measure the distributional stability of statistical parameters
with respect to various shifts. In this section, we discuss how we can use s-values to guide further
data collection. The above problem of re-estimating parameters under a shifted distribution is related
to the transfer learning literature that overlaps with various fields including robust machine learning,
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causal inference, and conformal inference [36, 51, 3]. Here, we discuss how s-values can guide
transfer learning.

If a parameter is unstable with respect to a shift in marginal distribution of certain covariates, then
knowledge about those covariates can be used to transfer parameters across distributions. As an
example, assume that we have collected some data on a job program in New York. We now want
to estimate how efficient this job program would be in Boston. We have not run this job program
in Boston yet, so we do not know all covariates of the participants. However, we can find that the
efficiency of the job program is likely unstable with respect to changes in the demographics of job
seekers in Boston. How can we use this knowledge to estimate the efficiency of the job program in
Boston, based on limited data about the population in Boston? In the following, we will discuss this
problem in a formal framework. We discuss another important case. Researchers are often interested
in a causal effect estimate for a new location. For some covariates such as age and education, partial
data is available via surveys such as American National Election Study (ANES) or Cooperative
Election Study (CES). Additional partial data can be cheaply obtained via Amazon Mechanical Turk.
However, some covariates are hard to collect, since they require running a study in the new location.
Our numerical results show that the proposed approach can help prioritize data collection. This may
drastically reduce the cost compared to running full-scale replication studies.

Assume that we want to estimate a parameter θ(Pshift) for Pshift ̸= P0, but we only have observa-
tions from P0. In addition, we may be able to collect some information about Pshift, for example,
observations of a subset of variables XS ∈ Rd. For example, one may know the age distribution of
job seekers in Boston. Intuitively, we’d like to re-weight P0 so that the distribution of age matches
the distribution of age in Boston. However, there may be infinitely many choices of weights. These
different choices of weights will correspond to different values of θ. Thus, in practice, it is crucial to
use a form of regularization when finding a re-weighted distribution (Pproj).

We can define Pproj as the solution of the following optimization problem:

Pproj = argmin
P ′

DKL(P
′|P0) such that P ′(XS = ·) = Pshift(XS = ·),

where DKL is the Kullback-Leibler divergence. The objective is similar to Hainmueller [23], where
the author proposes entropy balancing to achieve covariate balance between treated and control sets
for estimating the average treatment effect. This objective can be solved explicitly, leading to a
covariate shift setting [36]. More specifically, a short calculation shows that if the minimum is finite,
then

dPproj(z, xS) = dP0(z|xS)dPshift(xS).

Since data collection can be costly, one would like to prioritize collecting data that is relevant for the
transfer learning task. If sXS

(θ − c, P ) = 0 for all c ̸= θ(P ), then the parameter is constant under
shifts in the marginal distribution of XS . On the other hand, if sXS

(θ, P ) ≈ 1, then small changes in
the distribution of XS might induce a large change in the parameter θ(·). These heuristics motivate
the following approach:

1. Find variables XS with respect to which the parameter of interest is most sensitive to as
determined by directional s-values. Collect observations ofXS under the shifted distribution.

2. Estimate θ(Pproj).

There are several existing approaches to deal with part 2. In particular, it is possible to estimate
θ(Pproj) for a large range of estimands θ(•), with asymptotically normal and efficient estimators
[38, 32, 28]. We can leverage these existing estimators in our workflow so that we have statistical
guarantees for all steps in this pipeline.

We will investigate the empirical performance of this two-stage approach in Section 5.

5 Experiments

In this section, we consider real-world data to illustrate the effectiveness of the proposed methods in
elucidating the distributional instability of various statistical procedures. In addition, we evaluate the
two-stage transfer learning procedure described in Section 4.
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We note that s-values can be used to create sensitivity plots. Under various distribution shifts, the
parameter can attain a range of values. More concretely, for different choices of E and an upper
bound on the distribution shift c ∈ R we define upper and lower bounds for parameter values as
follows:

θupper-bound = sup θ(P ) such that
P ∈ P : P (·|E = e) = P0(·|E = e) for all e ∈ E and DKL(P∥P0) ≤ c

θlower-bound = inf θ(P ) such that
P ∈ P : P (·|E = e) = P0(·|E = e) for all e ∈ E and DKL(P∥P0) ≤ c.

(9)

In experiments, we plot estimated versions of these upper and lower bounds across c for different
choices of the variable E. Note that if θ(P0) > 0, then s(θ, P0) is the minimum c for which
θlower-bound = 0.

5.1 National supported work demonstration data (NSW)

Here, we analyze the stability of the average treatment effect estimator in the presence of covariate
shift using the NSW dataset [29], which consists of n = 722 participants randomly assigned to
a treatment or control group (variable A) in an employment program field experiment conducted
between January 1976 and July 1977. Covariates X include ‘age’, ‘education’, ‘black’, ‘hispanic’,
‘married’, ‘nodegree’, and ‘re75’, where ‘re75’ denotes pre-intervention earnings in 1975. The
outcome variable is ‘re78’, corresponding to post-intervention earnings in 1978. We apply augmented
inverse probability weighting (AIPW) using causal forests [50] to estimate the average treatment
effect, resulting in an estimate of 820 with a standard deviation of 492. We evaluate the performance
of the two-stage transfer learning procedure presented in Section 4.

Distributional stability of average treatment effect. We investigate the stability of the average
treatment effect estimator under distributional changes. Specifically, we examine how EP [τ(X)]
changes when there is a shift in the underlying distribution P of each predictor separately. We
measure the distributional stability of EP [τ(X)] while keeping the conditional distribution of the
other variables given the predictor constant. The study uses the NSW dataset [29], where the outcome
variable is ‘re78’, and the covariates X include ‘age’, ‘education’, ‘black’, ‘hispanic’, ‘married’,
‘nodegree’, and ‘re75’, where ‘re75’ denotes pre-intervention earnings in 1975. We estimate the
average treatment effect using augmented inverse probability weighting (AIPW) implemented with
causal forests [50], resulting in an estimate of 820 with a standard deviation of 492. Our findings show
that the s-values of average treatment effect conditional on ‘age’, ‘education’, ‘black’, ‘hispanic’, and
‘re75’ are non-zero. We also note that the average treatment effect is unstable with respect to changes
in the marginal distribution of ‘age’, ‘education’, and ‘re75’ indicating that the average treatment
effect can change its sign with a shift in the marginal distribution of these covariates (sX > 0.85).
We present the directional s-values in Table 1.

Table 1: S-values for NSW data set
Feature Age Education Black Hispanic Married Nodegree Re75

Directional s-value 0.97 0.91 0.52 0.54 0 0 0.96

Parameter transfer. In this section, we evaluate the two-stage transfer learning procedure described
in Section 4 using the DJW subset of the original Lalonde data extracted by Dehejia and Wahba [14]
to generate training and test datasets with different distributions. The remaining samples are referred
to as DJWC. The DJW subset includes 185 treated and 260 control observations and has additional
information on pre-interventional earnings in 1974. We present the pre-intervention characteristics of
the two subsets in Appendix J and find that they differ in distribution along several variables, which
are statistically significant. This split into training and test datasets allows us to evaluate the transfer
learning method in a setting with strong covariate shift. We estimate the average treatment effect
separately in the two subsets using causal forest [50]. The estimate on the DJW subset was 1636.7
with a standard deviation of 668.8, while on DJWC, it was -847.5 with a standard deviation of 657.2.

Next, we obtain our training set by adding some proportion α of randomly chosen samples from
the DJW subset to the DJWC subset, where α takes values in the set 0.05, 0.1, 0.2, 0.3, and use
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the remaining samples as the test set. We use the procedure described in Section 4 to obtain a
projection of the training distribution that closely approximates the test distribution. We use two
transfer methods: full transfer, where we use all the covariates for the transfer, and partial transfer,
where we use only the subset of covariates with which the ATE is most unstable, namely ‘age’,
‘education’, and ‘re75’. We display our results in Figure 3, where we find that both transfer methods
lead to lower ATE estimation error than the naive procedure. Further, we observe that there is not
much gain with the full transfer method that uses all the covariates over the partial transfer method.

Shift in marginal distribution of a given covariate with respect to KL divergence

Figure 2: The plot shows the estimated minimum and maximum value of the average treatment effect
for NSW data achievable when allowing for distribution shift in some covariate (cf. equation (9)).

|τ
(P
.)
−
τ
(P

te
st
)|

alpha
Figure 3: Parameter transfer on the NSW data set. The transfer procedure described in Section 4
compared to a naive procedure that uses only the training distribution, and a full transfer procedure
that uses data on all covariates from the new distribution. The green, red and blue bars represent
performance of transfer learning with partial, full new data, and naive method respectively. Error
bars show the range of error over 20 repetitions.

5.2 Wine Quality data set

We evaluate the effectiveness of our method using the wine quality dataset from the UCI Machine
Learning Repository [13, 18]. The dataset includes subgroups of red and white wines, each with 11
chemical properties used as predictors. The response is a continuous quality assessment measured on a
scale of 0 to 10. The dataset consists of 1599 red wines and 4898 white wines. We use all red wines as
the training set and randomly select a proportion α from the white wines, where α ∈ {0.01, 0.05, 0.1}.
The remaining observations are used for testing. We include a small proportion of white wines in the
red wine training set to ensure that the shifted distribution is absolutely continuous with respect to the
training distribution. This step is necessary to avoid making transfer learning very challenging when
datasets deviate from this assumption.

Distributional stability of regression coefficients. We use directional s-values to assess the
distributional stability of ordinary least-squares regression coefficients. We focus our analysis on the
predictors "pH" and "density," although similar results can be obtained for other variables. Figure 4
shows estimates of the minimum and maximum achievable value of a regression coefficient given
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a specific shift in the marginal distribution of a covariate (as defined in equation (9)). We observe
that the coefficient of "pH" is unstable with respect to shifts in "fixed.acidity," "chlorides," "pH,"
"sulphates," and "alcohol" (sX > 0.85). The coefficient of "density" is unstable with respect to shifts
in "volatile.acidity," "total.sulfur.dioxide," "sulphates," and "alcohol" (sX > 0.85). We present the
directional s-values in Tables 2 and 3.

Parameter transfer. We employ Jin and Rothenhäusler [28]’s transfer procedure to estimate the
parameter under shifted distributions. This transfer procedure combines a re-weighting step with a
bias-correction step for semi-parametrically efficient transfer. We compare three different estimators.
The first one uses only the training distribution, the second transfers the parameter using the covariates
found to be unstable in the previous step, and the third employs all covariates for transfer (full transfer).
Figure 5 displays the estimation error of the parameter under the projected and training distributions.
Both transfer learning methods have smaller errors than the naive estimator that uses only the training
distribution. However, the full transfer method that employs all covariates does not yield much
improvement over partial transfer. For α = 0.01, there is not much enhancement in the coefficient
of "density," which might be due to a partial violation of the assumption that the test distribution is
absolutely continuous with respect to the training distribution.

Table 2: Directional S-values for wine quality data set (parameter "pH")

f.a = fixed.acidity, v.a = volatile.acidity, c.a = citric.acid, f.so2 = free.sulfur.dioxide, t.so2 =
total.sulfure.dioxide, cl = chlorides, so4 = sulphates

Feature f.a v.a c.a r.s cl f.so2 t.so2 density pH so4 alcohol

s-value 0.86 0.81 0.65 0.83 0.94 0.55 0.8 0.83 0.97 0.97 0.88

Table 3: Directional S-values for wine quality data set (parameter "density")

f.a = fixed.acidity, v.a = volatile.acidity, c.a = citric.acid, f.so2 = free.sulfur.dioxide, t.so2 =
total.sulfure.dioxide, cl = chlorides, so4 = sulphates

Feature f.a v.a c.a r.s cl f.so2 t.so2 density pH so4 alcohol

s-value 0.80 0.94 0.83 0.81 0.78 0.81 0.93 0.84 0.79 0.9 0.98

6 Discussion

The generalizability and replicability of statistical findings are crucial in scientific research. However,
classical statistical measures only account for uncertainty due to sampling and not other sources of
variation, such as distributional shift. Since distributions are expected to vary between settings and
locations, it is essential to understand how statistical parameters are affected by such shifts to assess
the stability of a finding.

In this work, we propose stability measures to quantify the impact of distributional shifts on statistical
parameters at an overall and variable-specific level, respectively, enabling a more detailed evaluation
of instability. We expect that stability measures will be used in tandem with transfer learning
procedures. Initially, the stability of a conclusion can be assessed with respect to various shifts, and
then, once the sensitivities are determined, the data scientist can collect data from target distributions
for the most sensitive covariates and update the model accordingly. As an example, researchers are
often interested in a causal effect estimate for a new location. For some covariates such as age and
education, partial data is available via surveys such as American National Election Study (ANES)
or Cooperative Election Study (CES). Additional partial data can be cheaply obtained via Amazon
Mechanical Turk. However, some covariates are hard to collect, since they require running a study in
the new location. Our numerical results show that the proposed approach can help prioritize data
collection.

The proposed approach has several limitations. First, we consider worst-case shifts, which can be
somewhat pessimistic for situations where the distribution is expected to change due to random
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Shift in marginal distribution of a given covariate with respect to KL divergence
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Figure 4: The plot shows the estimated minimum and maximum value of the regression coefficient for
wine quality data set achievable under a distribution shift in one covariate (as defined in equation (9)).
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Figure 5: This figure shows the effectiveness of a two-stage transfer procedure for the wine quality
data set. The green, red and blue bars represent performance of transfer learning with partial, full new
data, and naive method respectively. Error bars show the range of error over 20 repetitions. Transfer
learning outperforms the naive method in almost all cases.

perturbations in background characteristics. Modelling distribution shift as random is an attractive
alternative [41, 26]. Secondly, the Kullback-Leibler divergence only allows for certain types of
distribution shift. The shifted distribution might have a different support than the training distribution.
In this case, it might be more appropriate to model the changes with the total variation distance or the
Wasserstein distance. Thirdly, in this paper we focus on distribution shift in the covariates X . There
is evidence that distributions shift not only in the covariates X , but also in Y |X [27, 31]. Developing
new tools to better understand distributional shifts in Y |X is an exciting research direction.
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