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Abstract

Stein discrepancies have emerged as a powerful tool for retrospective improvement
of Markov chain Monte Carlo output. However, the question of how to design
Markov chains that are well-suited to such post-processing has yet to be addressed.
This paper studies Stein importance sampling, in which weights are assigned to the
states visited by a Π-invariant Markov chain to obtain a consistent approximation
of P , the intended target. Surprisingly, the optimal choice of Π is not identical to
the target P ; we therefore propose an explicit construction for Π based on a novel
variational argument. Explicit conditions for convergence of Stein Π-Importance
Sampling are established. For ≈ 70% of tasks in the PosteriorDB benchmark, a
significant improvement over the analogous post-processing of P -invariant Markov
chains is reported.

1 Introduction

Stein discrepancies are a class of statistical divergences that can be computed without access to
a normalisation constant. Originally conceived as a tool to measure the performance of sampling
methods (Gorham and Mackey, 2015), these discrepancies have since found wide-ranging statistical
applications (see the review of Anastasiou et al., 2023). Our focus here is the use of Stein discrepancies
for retrospective improvement of Markov chain Monte Carlo (MCMC), and here two main techniques
have been proposed: (i) Stein importance sampling (Liu and Lee, 2017; Hodgkinson et al., 2020),
and (ii) Stein thinning (Riabiz et al., 2022). In Stein importance sampling (also called black box
importance sampling), the samples are assigned weights such that a Stein discrepancy between
the weighted empirical measure and the target P is minimised. Stein thinning constructs a sparse
approximation to this optimally weighted measure at a lower computational and storage cost. Together,
these techniques provide a powerful set of post-processing tools for MCMC, with subsequent authors
proposing a range of generalisations and extensions (Teymur et al., 2021; Chopin and Ducrocq, 2021;
Hawkins et al., 2022; Fisher and Oates, 2023; Bénard et al., 2023).

The consistency of these algorithms has been established in the setting of approximate, Π-invariant
MCMC, motivated by challenging inference problems where only approximate sampling can be
performed. In these settings, Π is implicitly an approximation to P that is as accurate as possible
subject to computational budget. However, the critical question of how to design Markov chains that
are well-suited to such post-processing has yet to be addressed. This paper provides a solution, in
the form of a specific construction for Π derived from a novel variational argument. Surprisingly,
we are able to demonstrate a substantial improvement using the proposed Π, compared to the case
where Π and P are equal. The paper proceeds as follows: Section 2 presents an abstract formulation
of the task and existing results for optimally-weighted empirical measures are reviewed. Section 3
derives our proposed choice of Π and establishes that Stein post-processing of samples from a
Π-invariant Metropolis-adjusted Langevin algorithm (MALA) provides a consistent approximation
of P . The approach is stress-tested using the recently released PosteriorDB suite of benchmark
tasks in Section 4, before concluding with a discussion in Section 5.
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2 Background

To properly contextualise our discussion we start with an abstract mathematical description of the
task. Let P be a probability measure on a measurable space X . Let P(X ) be the set of all probability
measures on X . Let DP : P(X ) → [0,∞] be a statistical divergence for measuring the quality of an
approximation Q to P , meaning that DP (Q) = 0 if and only if Q = P . In this work we consider
approximations whose support is contained in a finite set {x1, . . . , xn} ⊂ X , and in particular we
consider optimal approximations of the form

P ⋆
n =

n∑
i=1

w⋆
i δ(xi), w⋆ ∈ argmin

w≥0, 1⊤w=1

DP

(
n∑

i=1

wiδ(xi)

)
.

In what follows we restrict attention to statistical divergences for which such approximations can
be shown to exist and be well-defined. The question that we then ask is which states {x1, . . . , xn}
minimise the approximation error DP (P

⋆
n)? Before specialising to Stein discrepancies, it is helpful

to review existing results for some standard statistical divergences DP .

2.1 Wasserstein Divergence

Optimal quantisation focuses on the r-Wasserstein (r ≥ 1) family of statistical divergences DP (Q) =
infγ∈Γ(P,Q)

∫
∥x− y∥rdγ(x, y), where Γ(P,Q) denotes the set of all couplings1 of P,Q ∈ P(Rd),

and the divergence is finite whenever P and Q have finite r-th moment. Assuming the states
{x1, . . . , xn} are distinct, the corresponding optimal weights are w⋆

i = P (Ai) where Ai is the
Voronoi neighbourhood2 of xi in Rd. Optimal states achieve the minimal quantisation error for P ;

en,r(P ) = inf
x1,...,xn∈Rd

DP

(
n∑

i=1

w⋆
i δ(xi)

)
,

the smallest value of the divergence among optimally-weighted distributions supported on at most n
states. Though the dependence of optimal states on n and P can be complicated, we can broaden our
perspective to consider asymptotically optimal states, whose asymptotic properties can be precisely
characterised. To this end, for A ⊂ Rd, let U(A) denote the uniform distribution on A, and define
the universal constant Cr([0, 1]

d) = infn≥1 n
r/d en,r(U([0, 1]d)). Suppose that P admits a density

p on Rd. Then the rth quantisation coefficient of P on Rd, defined as

Cr(P ) = Cr([0, 1]
d)

(∫
p(x)d/(d+r) dx

)(d+r)/d

,

plays a central role in the classical theory of quantisation, being the rate constant in the asymptotic
convergence of the minimal quantisation error; limn→∞ nr/den,r(P ) = Cr(P ); see Theorem 6.2
of Graf and Luschgy (2007). This suggests a natural definition; a collection {x1, . . . , xn} is called
asymptotically optimal if

lim
n→∞

nr/dDP

(
n∑

i=1

w⋆
i δ(xi)

)
= Cr(P ),

which amounts to P ⋆
n asymptotically attaining the minimal quantisation error en,r(P ). The main

result here is that, if {x1, . . . , xn} are asymptotically optimal, then 1
n

∑n
i=1 δ(xi) → Πr, where

convergence is in distribution and Πr is the distribution whose density is πr(x) ∝ p(x)d/(d+r); see
Theorem 7.5 of Graf and Luschgy (2007). This provides us with a key insight; optimal states are
over-dispersed with respect to the intended distributional target. The extent of the over-dispersion
here depends both on r, a parameter of the statistical divergence, and the dimension d of the space on
which distributions are defined.

The r-Wasserstein divergence is, unfortunately, not well-suited for use in the motivating Bayesian
context. In particular, computing the optimal weights wi = P (Ai) requires knowledge of P , which
is typically not available when P is implicitly defined via an intractable normalisation constant. On

1A coupling γ ∈ Γ(P,Q) is a distribution γ ∈ P(Rd × Rd) whose marginal distributions are P and Q.
2The Voronoi neighbourhood of xi is the set Ai = {x ∈ Rd : ∥x− xi∥ = minj=1,...,n ∥x− xj∥}.
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the other hand, the optimal sampling distribution Π is explicit and can be sampled (for example using
MCMC); for discussion of random quantisers in this context see Graf and Luschgy (2007, Chapter 9),
Cohort (2004, p126) and Sonnleitner (2022, Section 4.5). The simple form of Π is a feature of the
classical approach to quantisation that we will attempt to mimic in the sequel.

2.2 Kernel Discrepancies

The theory of quantisation using kernels is less well-developed. A kernel is a measurable, symmetric,
positive-definite function k : X × X → R. From the Moore–Aronszajn theorem, there is a unique
Hilbert space H(k) for which k is a reproducing kernel, meaning that k(·, x) ∈ H(k) for all x ∈ X
and ⟨f, k(·, x)⟩H(k) = f(x) for all f ∈ H(k) and all x ∈ X . Assuming that H(k) ⊂ L1(P ), we can
define the weak (or Pettis) integral

µP (·) =
∫

k(·, x) dP (x), (1)

called the kernel mean embedding of P in H(k). The kernel discrepancy is then defined as the norm
of the difference between kernel mean embeddings

DP (Q) = ∥µQ − µP ∥H(k) =

√∫∫
k(x, y) d(Q− P )(x)d(Q− P )(y) (2)

where, to be consistent with our earlier notation, we adopt the convention that DP (Q) is infinite
whenever H(k) ̸⊂ L1(Q). The second equality in (2) follows immediately from the stated properties
of a reproducing kernel. To satisfy the requirement of a statistical divergence, we assume that
the kernel k is characteristic, meaning that µP = µQ if and only if P = Q. In this setting, the
properties of optimal states are necessarily dependent on the choice of kernel k, and are in general
not well-understood. Indeed, given distinct states {x1, . . . , xn}, the corresponding optimal weights
w⋆ = (w⋆

1 , . . . , w
⋆
n)

⊤ are the solution to the linearly-constrained quadratic program

argmin
w∈Rd

w⊤Kw − 2z⊤w s.t. w ≥ 0, 1⊤w = 1 (3)

where Ki,j = k(xi, xj) and zi = µP (xi). This program does not admit a closed-form solution, but
can be numerically solved. To the best of our knowledge, the only theoretical analysis of approxi-
mations based on (3) is due to Hayakawa et al. (2022), who established rates for the convergence
of P ⋆

n to P in the case where states are independently sampled from P . The question of an optimal
sampling distribution was not considered in that work.

Although few results are available concerning (3), relaxations of this program have been well-studied.
The simplest relaxation of (3) is to remove both the positivity (w ≥ 0) and normalisation (1⊤w = 1)
constraints, in which case the optimal weights have the explicit representation w∗ = K−1z. The
analysis of optimal states in this context has developed under the dual strands of kernel cubature
and Bayesian cubature, where it has been theoretically or empirically demonstrated that (i) if states
are randomly sampled, the optimal sampling distribution will be n-dependent (Bach, 2017) and
over-dispersed with respect to the distributional target (Briol et al., 2017), and (ii) space-filling
designs are asymptotically optimal for typical stationary kernels on bounded domains X ⊂ Rd (Briol
et al., 2019). Analysis of optimal states on unbounded domains appears to be more difficult; see
e.g. Karvonen et al. (2021). Relaxation of either the positivity or normalisation constraints results
in approximations that behave similarly to kernel cubature (see, respectively, Ehler et al., 2019;
Karvonen et al., 2018). However, relaxation of either constraint can result in the failure of P ⋆

n to be
an element of P(X ), limiting the relevance of these results to the posterior approximation task.

Despite relatively little being known about the character of optimal states in this context, kernel
discrepancy is widely used. The application of kernel discrepancies to an implicitly defined distribu-
tional target, such as a posterior distribution in a Bayesian analysis, is made possible by the use of a
Stein kernel; a P -dependent kernel k = kP for which µP (x) = 0 for all x ∈ X (Oates et al., 2017).
The associated kernel discrepancy

DP (Q) = ∥µQ∥H(kP ) =

√∫∫
kP (x, y) dQ(x)dQ(y) (4)
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is called a kernel Stein discrepancy (KSD) (Chwialkowski et al., 2016; Liu et al., 2016; Gorham and
Mackey, 2017), and this will be a key tool in our methodological development. The corresponding
optimally weighted approximation P ⋆

n is the Stein importance sampling method of Liu and Lee
(2017). To retain clarity of presentation in the main text, we defer all details on the construction of
Stein kernels to Appendix A.

2.3 Sparse Approximation

If the number n of states is large, computation of optimal weights can become impractical. This
has motivated a range of sparse approximation techniques, which aim to iteratively construct an
approximation of the form Pn,m = 1

m

∑m
i=1 δ(yi), where each yi is an element from {x1, . . . , xn}.

The canonical example is the greedy algorithm which, at iteration j, selects a state

yj ∈ argmin
y∈{x1,...,xn}

DP

(
1

j
δ(y) +

1

j

j−1∑
i=1

δ(yi)

)
(5)

for which the statistical divergence is minimised. In the context of kernel discrepancy, the greedy
algorithm (5) has computational cost O(m2n), which compares favourably3 with the cost of solving
(3) when m ≪ n. Furthermore, under appropriate assumptions, the sparse approximation converges
to the optimally weighted approximation; DP (Pn,m) → DP (P

⋆
n) as m → ∞ with n fixed. See

Teymur et al. (2021) for full details, where non-myopic and mini-batch extensions of the greedy
algorithm are also considered. The greedy algorithm can be viewed as a regularised version of the
Frank–Wolfe algorithm (also called herding, or the conditional gradient method), for which a similar
asymptotic result can be shown to hold (Chen et al., 2010; Bach et al., 2012; Chen et al., 2018).
Related work includes Dwivedi and Mackey (2021, 2022); Shetty et al. (2022); Hayakawa et al.
(2022). Since in what follows we aim to retrospectively improve MCMC output, where it is not
unusual to encounter n ≈ 104–106, sparse approximation will be important.

This completes our overview of background material. In what follows we seek to mimic classical
quantisation by deriving a choice for Π that is straight-forward to sample using MCMC and is
appropriately over-dispersed relative to P . This should be achieved while remaining in the framework
of kernel discrepancies, so that optimal weights can be explicitly computed, and coupled with a
sparse approximation that has low computational and storage cost.

3 Methodology

The methods that we consider first sample states {x1, . . . , xn} using Π-invariant MCMC, then post-
process these states using kernel discrepancies (Section 2.2) and sparse approximation (Section 2.3),
to obtain an approximation to the target P . A variational argument, which we present in Section 3.1,
provides a suitable n-independent choice for Π (which agrees with our intuition from Section 2.1 that
Π should be in some appropriate sense over-dispersed with respect to P ). Sufficient conditions for
strong consistency of the approximation are established in Section 3.3.

3.1 Selecting Π

Here we present a heuristic argument for a particular choice of Π; rigorous theoretical support for
Stein Π-Importance Sampling is then provided in Section 3.3. Our setting is that of Section 2.2, and
the following will additionally be assumed:

Assumption 1. It is assumed that

(A1) C2
1 := infx∈X k(x, x) > 0

(A2) C2 :=
∫ √

k(x, x) dP (x) < ∞.

3It is difficult to quantify the complexity of numerically solving (3), since this will depend on details of the
solver and the tolerance that are used. On the other hand, if we ignore the non-negativity and normalisation
constraints, then we can see that the computational cost of solving the n-dimensional linear system of equations
is O(n3).
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Note that (A2) implies that H(k) ⊂ L1(P ), and thus (1) is in fact a strong (or Bochner) integral.

A direct analysis of the optimal states associated to the optimal weights w⋆ appears to be challenging
due to the fact that the components of w⋆ are strongly inter-dependent. Our solution here is to instead
consider optimal states associated with weights that, while not optimal, can be expected to perform
much better than alternatives, with the advantage that their components are only weakly dependent.
Specifically, we will be assuming that P is absolutely continuous with respect to Π (denoted P ≪ Π),
and study convergence of self-normalised importance sampling (SNIS), i.e. the approximation
Pn =

∑n
i=1 wiδ(xi), wi ∝ (dP/dΠ)(xi), where x1, . . . , xn ∼ Π are independent. Since w ≥ 0

and 1⊤w = 1, from the optimality of w⋆ under these constraints we have that DP (P
⋆
n) ≤ DP (Pn).

It is emphasised that the SNIS weights are a theoretical device only, and will not be used for
computation; indeed, we can demonstrate that the SNIS weights w perform substantially worse than
w⋆ in general.

The analysis of SNIS weights w is tractable when viewed as approximation of the kernel mean
embedding µP in the Hilbert space H(k). Indeed, recall that DP (Pn) = ∥ξn/

√
n∥H(k) where

ξn =
√
n(µPn − µP ). Then, following Section 2.3.1 of Agapiou et al. (2017), we observe that

ξn =
√
n

(
n∑

i=1

wik(·, xi)− µP

)
=

1√
n

∑n
i=1

dP
dΠ (xi) [k(·, xi)− µP ]

1
n

∑n
i=1

dP
dΠ (xi)

. (6)

The idea is to seek Π for which the asymptotic variance of ξn is small. Supposing that∫
dP

dΠ
(x)2 dΠ(x) < ∞, (S1)

from the weak law of large numbers the denominator in (6) converges in probability to 1. Further
supposing that ∫ ∥∥∥∥dPdΠ(x)[k(·, x)− µP ]

∥∥∥∥2
H(k)

dΠ(x) < ∞, (S2)

from the Hilbert space central limit theorem the numerator in (6) converges in distribution to
a Gaussian 1√

n

∑n
i=1(dP/dΠ)(xi) [k(·, xi)− µP ]

d→ N (0, C) where C : H(k) → H(k) is the
covariance operator defined via

⟨f, Cg⟩H(k) =

∫ 〈
f,

dP

dΠ
(x)[k(·, x)− µP ]

〉
H(k)

〈
g,

dP

dΠ
(x)[k(·, x)− µP ]

〉
H(k)

dΠ(x),

see Section 10.1 of Ledoux and Talagrand (1991). Thus, from Slutsky’s lemma applied to (6),
we conclude that ξn

d→ N (0, C). Recalling that nDP (Pn)
2 = ∥ξn∥2H(k), and noting that the mean

square of the limiting Gaussian random variable is tr(C), a natural idea is to select the sampling
distribution Π such that tr(C) is minimised.

Fortunately, the trace of C can be explicitly computed. It simplifies presentation to restrict attention
to a Stein kernel k = kP , for which µP = 0, giving tr(C) =

∫
(dP/dΠ)(x)2kP (x) dΠ(x), where

for convenience we have let kP (x) := kP (x, x). Assuming that P and Π admit densities p and π on
X = Rd, the variational problem we wish to solve is

argmin
π∈Q

∫
p(x)2

π(x)
kP (x) dx s.t.

∫
π(x) dx = 1, (7)

where Q be the set of positive measures on Rd for which (S1-2) are satisfied. To solve this problem,
we first relax the constraints (S1-2) and solve the relaxed problem using the Euler–Lagrange equations,
which yield

π(x) ∝ p(x)
√
kP (x). (8)

Note that the normalisation constant of π is C2 from (1), whose existence we assumed. Then we
verify that (S1-2) in fact hold for this choice of Π. Indeed,

(S1) =
∫

dP

dΠ
(x)2 dΠ(x) = C2

∫
1

kP (x)
dΠ(x) ≤ C2

C2
1

< ∞

(S2) =
∫

dP

dΠ
(x)2kP (x) dΠ(x) = C2

∫ √
kP (x) dP (x) = C2

2 < ∞,
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(1.1) (1.2)

Figure 1: Illustrating our choice of Π in 1D. (a) The univariate target P (black), and our choice of Π
based on the Langevin–Stein kernel (purple), the KGM1–Stein kernel (green), and the KGM3–Stein
kernel (blue). (b) The mean kernel Stein discrepancy (KSD) for Stein Π-Importance Sampling using
the Stein kernels from (a); in each case, KSD was computed using the same Stein kernel used to
construct Π. Solid lines indicate the baseline case of sampling from P , while dashed lines indicate
sampling from Π. (The experiment was repeated 100 times and standard error bars are plotted.)

which shows that we have indeed solved (7). The sampling distribution Π we have obtained is
characterised up to a normalisation constant in (8), so just like P we can sample from Π using
techniques such as MCMC. It is interesting to note that Π is also optimal for standard importance
sampling (i.e. without self-normalisation); see Lemma 1 of Adachi et al. (2022). The Stein kernel kP
determines the extent to which Π differs from P , as we illustrate next.

3.2 Illustration

For illustration, consider the univariate target P (black curve) in Figure 1.1, a 3-component Gaussian
mixture model. Our recommended choice of Π in (8) is shown for both the Langevin–Stein kernel
(purple curve) and the KGMs–Stein kernels with s ∈ {1, 3} (green and blue curves). The Stein
discrepancy corresponding to the Langevin–Stein kernel provides control over weak convergence (i.e.
convergence of integrals of functions that are continuous and bounded), while the KGMs–Stein kernel
provides additional control over the convergence of polynomial moments up to order s; full details
about the construction of Stein kernels are contained in Appendix A. The Langevin and KGM1–Stein
kernels have kP (x) ≍ x2, while the KGM3–Stein kernel has kP (x) ≍ x6, in each case as |x| → ∞,
and thus greater over-dispersion results from use of the KGM3–Stein kernel. This over-dispersion is
less pronounced4 in higher dimensions; see Appendix D.1.

To illustrate the performance of Stein Π-Importance Sampling, we generated a sequence (xn)n∈N of
independent samples from Π. For each n ∈ {1, . . . , 100}, the samples {x1, . . . , xn} were assigned
optimal weights w⋆ by solving (3), and the associated KSD was computed. As a baseline, we
performed the same calculation using independent samples from P . Figure 1.2 indicates that, for
both Stein kernels, substantial improvement results from the use of samples from Π compared to the
use of samples from P . Interestingly, the KGM3–Stein kernel demonstrated a larger improvement
compared to the Langevin–Stein kernel, suggesting that the choice of Π may be more critical in
settings where KSD enjoys a stronger form of convergence control.

To illustrate a posterior approximation task, consider a simple regression model yi = fi(x) + ϵi
with fi(x) = x1(1 + tix2), ti = i− 5, i = 1, . . . , 10, with ϵi independent N (0, 1). The parameter
x = (x1, x2) was assigned a prior N (0, I). Data were simulated using x = (0, 0). The posterior
distribution P is depicted in the leftmost panel of Figure 2, while our choice of Π corresponding to
the Langevin (centre left), KGM3 (centre right) and Riemann–Stein kernels (right) are also displayed.
For the Langevin and KGM3 kernels, the associated Π target their mass toward regions where P
varies the most. The reason for this behaviour is clearly seen for the Langevin–Stein kernel since

4The same holds for classical quantisation; c.f. Section 2.1.
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Figure 2: Illustrating our choice of Π in 2D. The bivariate target P (left), together with our choice of
Π based on the Langevin–Stein kernel (centre left), the KGM3–Stein kernel (centre right), and the
Riemann–Stein kernel (right).

Algorithm 1 Π-Invariant Metropolis-Adjusted Langevin Algorithm (MALA)
Require: x0 (initial state), ϵ (step size), M (preconditioner matrix), n (chain length), kP (Stein kernel)

1: for i = 1, . . . , n do
2: x′ ← xi−1 + ϵM−1∇ log p(xi−1) +

ϵ
2
M−1∇ log kP (xi−1)︸ ︷︷ ︸

=:ν(xi−1)

+
√
2ϵM−1/2Zi ▷ Zi

IID∼ N (0, I)

3: L← log
(

p(x′)
p(xi−1)

)
+ 1

2
log

(
kP (x′)

kP (xi−1)

)
− 1

4ϵ
∥xi−1 − ν(x′)∥2M−1 + 1

4ϵ
∥x′ − ν(xi−1)∥2M−1

4: if log(Ui) < L then xi ← x′; else xi ← xi−1; end if ▷ Ui
IID∼ U([0, 1])

5: end for

Algorithm 2 Stein Π-Importance Sampling (SΠIS-MALA)
Require: {x1, . . . , xn} from Algorithm 1, kP (Stein kernel)

1: w⋆ ∈ argminw∈Rd{⟨w,KPw⟩ : w ≥ 0, 1⊤w = 1} ▷ [KP ]i,j = kP (xi, xj)

kP (x) = c1 + c2∥∇ log p(x)∥2 for some c1, c2 > 0; see Appendix C for detail. The Riemann–Stein
kernel can be viewed as a preconditioned form of the Langevin–Stein kernel which takes into account
the geometric structure of P ; see Appendix A for full detail5. Results in Figure S2 demonstrate that
Stein Π-Importance Sampling improves upon the default Stein importance sampling method (i.e.
with Π and P equal) for all choices of kernel.

An additional illustration involving a GARCH model with d = 4 parameters is presented in Ap-
pendix D.4, where the effect of varying the order s of the KGM–Stein kernel is explored.

3.3 Theoretical Guarantees

The aim of this section is to establish when post-processing of Π-invariant MCMC produces a strongly
consistent approximation of P , for our recommended choice of Π in (8). Our analysis focuses on
MALA (Roberts and Stramer, 2002), leveraging the recent work of Durmus and Moulines (2022)
to present explicit and verifiable conditions on P for our results to hold. In fact, we consider the
more general preconditioned form of MALA, where the symmetric positive definite preconditioner
matrix M is to be specified. Our results also allow for (optional) sparse approximation, to circumvent
direct solution of (3) (c.f. Section 2.3). The resulting algorithms, which we call Stein Π-Importance
Sampling (SΠIS-MALA) and Stein Π-Thinning (SΠT-MALA), are quite straight-forward and
contained, respectively, in Algorithms 2 and 3. The linearly-constrained quadratic programme in
Algorithm 2 was solved using the Python v3.10.4 packages qpsolvers v3.4.0 and proxsuite
v0.3.7. While it is difficult to analyse the computational complexity associated with these methods,
we believe they are at worst O(n3).

5The use of geometric information may be beneficial, in the sense that the associated diffusion process
may mix more rapidly, and rapid mixing leads to sharper bounds from the perspective of convergence control
(Gorham et al., 2019). However, the Riemann–Stein kernel is associated with a prohibitive computational cost; it
is included here only for academic interest.
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Algorithm 3 Stein Π-Thinning (SΠT-MALA)
Require: {x1, . . . , xn} from Algorithm 1, m (number of samples to retain), kP (Stein kernel)

1: for i = 1, . . . ,m do
2: yi ← argminy∈{x1,...,xn}

1
2
kP (y) +

∑i−1
j=1 kP (y, yj)

3: end for

Let A ⪯ B indicate that A−B is a positive semi-definite matrix for A,B ∈ Rn×n. For a symmetric
positive definite matrix A let ∥z∥A :=

√
z⊤A−1z for z ∈ Rd. Let Cs(Rd) denote the set of s-times

continuously differentiable real-valued functions on Rd.
Theorem 1 (Strong consistency of SΠIS- and SΠT-MALA). Let Assumption 1 hold where k = kP
is a Stein kernel, and let DP : P(X ) → [0,∞] denote the associated KSD. Assume also that

(A1) ∇ log p ∈ C2(Rd) with supx∈Rd ∥∇2 log p(x)∥ < ∞

(A2) ∃ b1 > 0, B1 ≥ 0 such that −∇2 log p(x) ⪰ b1I for all ∥x∥ ≥ B1

(A3) kP ∈ C2(Rd).

(A4) ∃ 0 < b2 < 2b1C
2
1 , B2 ≥ 0 such that ∇2kP (x) ⪯ b2I for all ∥x∥ ≥ B2

Let P ⋆
n =

∑n
i=1 w

⋆
i δ(xi) be the result of running Algorithm 2 and let Pn,m = 1

m

∑m
i=1 δ(yi) be

the result of running Algorithm 3. Let m ≤ n and m = Ω((log n)δ) for some δ > 2. Then
there exists ϵ0 > 0 such that, for all step sizes ϵ ∈ (0, ϵ0) and all initial states x0 ∈ Rd,
DP (P

⋆
n) → 0, DP (Pn,m) → 0 almost surely as m,n → ∞.

The proof is in Appendix B. Compared to earlier authors6, such as Chen et al. (2019); Riabiz et al.
(2022), a major novelty here is that our assumptions are explicit and can often be verified (see also
Hodgkinson et al., 2020). (A2) is strong log-concavity of P when B1 = 0, while for B1 > 0 this
condition is slightly stronger than the related distant dissipativity condition assumed in earlier work
(Gorham and Mackey, 2017; Riabiz et al., 2022). (A4) holds for the Langevin–Stein kernel (i.e. weak
convergence control) and for the KGM1–Stein kernel (i.e. weak convergence control + control over
first moments), but not for the higher-order KGM–Stein kernels. Extending our proof strategy to the
higher-order KGM–Stein kernels would require further research into the convergence properties of
MALA, and this is expected to be difficult.

4 Benchmarking on PosteriorDB

The area of Bayesian computation has historically lacked a common set of benchmark problems,
with classical examples being insufficiently difficult and case-studies being hand-picked (Chopin
and Ridgway, 2017). To introduce objectivity into our assessment, we exploited the recently re-
leased PosteriorDB benchmark (Magnusson et al., 2022). This project is an attempt toward
standardised benchmarking, consisting of a collection of posteriors to be numerically approxi-
mated. Here, we systematically compared the performance of SΠIS-MALA against the default
Stein importance sampling algorithm (i.e. Π = P ; denoted SIS-MALA), and also against un-
processed P -invariant MALA (i.e. uniform weights), reporting results across the breadth of
PosteriorDB. The test problems in PosteriorDB are defined in the Stan probabilistic pro-
gramming language, and so BridgeStan (Roualdes et al., 2023) was used to directly access
posterior densities and their gradients as required. For all instances of MALA, an adaptive
algorithm was used to learn a suitable preconditioner matrix M during the warm-up period;
see Appendix D.3. All experiments that we report can be reproduced using code available at
https://github.com/congyewang/Stein-Pi-Importance-Sampling.

Results are reported in Table 1 for n = 3× 103 samples from MALA. These focus on the Langevin–
Stein kernel, for which our theory holds, and the KGM3–Stein kernel, for which it does not. There
was a significant improvement of SΠIS-MALA over SIS-MALA in 73% of test problems for
the Langevin–Stein kernel and in 65% of test problems for the KGM3–Stein kernel. Compared to

6These earlier results required high-level assumptions on the convergence of MCMC, for which explicit
sufficient conditions had yet to be derived.
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Langevin–Stein Kernel KGM3–Stein Kernel

Task d MALA SIS -
MALA

SΠIS -
MALA MALA SIS -

MALA
SΠIS -
MALA

earnings-earn_height 3 1.41 0.0674 0.0332 5.33 0.656 0.181
gp_pois_regr-gp_regr 3 0.298 0.0436 0.0373 1.22 0.385 0.223

kidiq-kidscore_momhs 3 1.04 0.109 0.0941 4.66 0.848 0.476
kidiq-kidscore_momiq 3 5.03 0.516 0.358 25.3 4.86 1.55

mesquite-logmesquite_logvolume 3 1.10 0.179 0.156 4.97 1.70 0.844
arma-arma11 4 4.47 1.09 1.01 26.0 8.91 6.03

earnings-logearn_logheight_male 4 9.46 1.96 1.59 53.9 15.4 8.65
garch-garch11 4 0.543 0.159 0.130 4.70 1.16 1.01

kidiq-kidscore_momhsiq 4 5.21 0.982 0.897 29.3 7.25 5.05
earnings-logearn_interaction_z 5 3.09 1.36 1.33 19.3 10.4 8.94

kidiq-kidscore_interaction 5 7.74 1.65 1.79 47.8 13.2 10.1
kidiq_with_mom_work-kidscore_interaction_c 5 1.35 0.659 0.711 7.92 4.05 4.17

kidiq_with_mom_work-kidscore_interaction_c2 5 1.38 0.689 0.699 8.09 4.24 4.25
kidiq_with_mom_work-kidscore_interaction_z 5 1.11 0.500 0.499 6.62 2.63 3.25
kidiq_with_mom_work-kidscore_mom_work 5 1.07 0.507 0.545 6.70 2.63 3.04

low_dim_gauss_mix-low_dim_gauss_mix 5 5.51 1.87 1.76 37.5 14.7 11.3
mesquite-logmesquite_logva 5 1.83 0.821 0.818 12.6 5.73 5.59

hmm_example-hmm_example 6 1.99 0.578 0.523 11.6 4.13 3.40
sblrc-blr 6 479 154 134 3300 1100 854
sblri-blr 6 201 66.7 60.3 1340 514 595
arK-arK 7 6.87 3.39 3.16 60.4 26.4 23.0

mesquite-logmesquite_logvash 7 1.89 1.18 1.23 15.5 8.88 10.1
bball_drive_event_0-hmm_drive_0 8 1.15 0.679 0.698 8.55 4.72 3.99
bball_drive_event_1-hmm_drive_1 8 42.9 11.9 12.4 285 85.6 67.8
hudson_lynx_hare-lotka_volterra 8 4.62 2.29 2.15 47.4 18.8 18.9

mesquite-logmesquite 8 1.46 1.00 1.06 13.3 8.28 9.14
mesquite-logmesquite_logvas 8 2.02 1.31 1.35 19.2 10.8 12.2

mesquite-mesquite 8 0.429 0.268 0.235 3.71 2.17 2.42
eight_schools-eight_schools_centered 10 0.526 0.100 0.182 7.53 2.15 215

eight_schools-eight_schools_noncentered 10 0.210 0.137 0.137 43.6 28.7 27.5
nes1972-nes 10 6.16 3.89 3.45 72.9 36.2 34.4
nes1976-nes 10 6.67 3.86 3.53 77.5 35.5 34.4
nes1980-nes 10 4.34 2.68 2.57 49.8 25.4 25.7
nes1984-nes 10 6.18 3.75 3.43 71.3 34.9 33.6
nes1988-nes 10 7.40 3.70 3.27 81.4 34.6 32.4
nes1992-nes 10 7.52 4.32 3.84 89.1 39.7 37.3
nes1996-nes 10 6.44 3.87 3.53 74.1 36.4 34.3
nes2000-nes 10 3.35 2.22 2.20 38.6 21.3 22.8

diamonds-diamonds 26 196 157 143 5120 2990 2620
mcycle_gp-accel_gp 66 11.3 8.25 9.79 960 623 815

Table 1: Benchmarking on PosteriorDB. Here we compared raw output from MALA with the
post-processed output provided by the default Stein importance sampling method of Liu and Lee
(2017) (SIS-MALA) and the proposed Stein Π-Importance Sampling method (SΠIS-MALA). Here
d = dim(P ) and the number of MALA samples was n = 3× 103. The Langevin and KGM3–Stein
kernels were used for SIS-MALA and SΠIS-MALA and the associated KSDs are reported. Ten
replicates were computed and statistically significant improvement is highlighted in bold.

unprocessed MALA, a significant improvement occurred in 100% and 97% of cases, respectively
for each kernel. However, the extent of improvement decreased when the dimension d of the
target increased, supporting the intuition that we set out earlier and in Appendix D.1. An in-depth
breakdown of results, including varying the number n of samples that were used, and the performance
SΠT-MALA, can be found in Appendices D.5 and D.6.

If P and its gradients are cheap to evaluate, the computational cost of MALA is lower than that of
SIS-MALA, and one could run more iterations of MALA for an equivalent computational cost. But
for more complex P , the computational cost of all algorithms will be gated by the number of times P
and its gradients need to be evaluated, making the direct comparison in Table 1 meaningful. Further,
if we aim for a compressed representation of P , then some form of post-processing of MALA would
be required, which would then entail an additional computational cost.

Our focus is on the development of algorithms for minimisation of KSDs; the properties of KSDs
themselves are out of scope for this work7. Nonetheless, there is much interest in better understanding
the properties of KSDs, and we therefore also report performance of SΠIS-MALA in terms of
1-Wasserstein divergence in Appendix D.7. The main contrast between these results and the results in
Table 1 is that, being score-based, KSDs suffer from the blindness to mixing proportions phenomena
which has previously been documented in Wenliang and Kanagawa (2021); Koehler et al. (2022); Liu
et al. (2023). Caution should therefore be taken when using algorithms based on Stein discrepancies

7The interested reader is referred to Gorham and Mackey (2017); Barp et al. (2022b); Kanagawa et al. (2022).
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in the context of posterior distributions with multiple high probability regions that are spatially
separated. This is also a failure mode for MCMC algorithms such as MALA, and yet there are still
many problems for which MALA has been successfully used.

The alternative choice Π1, with π1(x) ∝ p(x)d/(d+1), which provides a generic form of over-
dispersion and is optimal for approximation in 1-Wasserstein divergence (c.f. Section 2.1), was also
considered. Results in Appendix D.8 indicate that, while Π1 yields an improvement compared to the
baseline of using P itself, Π1 may be less effective than our proposed Π when P is skewed.

5 Discussion

This paper presented Stein Π-Importance Sampling; an algorithm that is simple to implement, admits
an end-to-end theoretical treatment, and achieves a significant improvement over existing post-
processing methods based on KSD. On the negative side, second order derivatives of the statistical
model are required, and we are ultimately bound to the performance of the KSD on which Stein
Π-Importance Sampling is based. Our analysis focused on MALA, but there is in principle no barrier
to deriving sufficient conditions for consistent approximation that are applicable to other sampling
algorithms, such as the unadjusted Langevin algorithm. Of course, it remains to be seen whether
SIS-MALA or any of its variants will stand the test of time compared to continued development in
MCMC methodology, but we believe this line of research merits further investigation. For models for
which access to second order derivatives is impractical, our methodology and theoretical analysis are
directly applicable to gradient-free KSD (Fisher and Oates, 2023), and this would be an interesting
direction for future work. Similarly, alternatives to KSD that are better-suited to high-dimensional P
could be considered, such as the sliced KSD of Gong et al. (2021a,b).
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Appendices
These appendices contains supporting material for the paper Stein Π-Importance Sampling. The
mathematical background on Stein kernels is contained in Appendix A. The proof of Theorem 1
is contained in Appendix B. For implementation of Stein Π-Importance Sampling without the aid
of automatic differentiation, various explicit derivatives are required; the relevant calculations can
be found in Appendix C. The empirical protocols and additional empirical results are presented in
Appendix D.

A Mathematical Background

This appendix contains mathematical background on reproducing kernels and Stein kernels, as used
in the main text. Appendix A.1 introduces matrix-valued reproducing kernels, while Appendix A.2
specialises to Stein kernels by application of a Stein operator to a matrix-valued kernel. A selection
of useful Stein kernels are presented in Appendix A.3.

A.1 Matrix-Valued Reproducing Kernels

A matrix-valued kernel is a function K : Rd × Rd → Rd×d, that is both

1. symmetric; K(x, y) = K(y, x) for all x, y ∈ Rd, and

2. positive semi-definite;
∑n

i=1

∑n
j=1⟨ci,K(xi, xj)cj⟩ ≥ 0 for all x1, . . . , xn ∈ Rd and

c1, . . . , cn ∈ Rd.

Let Kx = K(·, x). For vector-valued functions g, g′ : Rd → Rd, defined by g =
∑n

i=1 Kxi
ci and

g′ =
∑m

j=1 Kx′
j
c′i, define an inner product

⟨g, g′⟩H(K) =

n∑
i=1

m∑
j=1

⟨ci,K(xi, x
′
j)c

′
j⟩. (9)

There is a unique Hilbert space of such vector-valued functions associated to K, denoted H(K); see
Proposition 2.1 of Carmeli et al. (2006). This space is characterised as

H(K) = span{Kxc : x, c ∈ Rd}
where here the closure is taken with respect to the inner product in (9). It can be shown that H(K) is
in fact a reproducing kernel Hilbert space (RKHS) which satisfies the reproducing property

⟨g,Kxc⟩H(K) = ⟨g(x), c⟩

for all g ∈ H(K) and x, c ∈ Rd. Matrix-valued kernels are the natural starting point for construction
of KSDs, as described next.

A.2 Stein Kernels

A general construction for Stein kernels is to first identify a matrix-valued RKHS H(K) and an
operator SP : H(K) → L1(P ) for which

∫
Sph dP = 0 for all h ∈ H(K). Such an operator will

be called a Stein operator. The collection {Sph : h ∈ H(K)} inherits the structure of an RKHS,
whose reproducing kernel

kP (x, y) = ⟨SPKx, SPKy⟩H(K) (10)

is a Stein kernel, meaning that µP = 0 where µP is the kernel mean embedding from (1); see Barp
et al. (2022b). Explicit calculations for the Stein kernels considered in this work can be found in
Appendix C.

For univariate distributions, Barbour (1988) proposed to obtain Stein operators from infinitessimal
generators of P -invariant continuous-time Markov processes; see also Barbour (1990); Gotze (1991).
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The approach was extended to multivariate distributions in Gorham and Mackey (2015). The starting
point is the P -invariant Itô diffusion

dXt =
1

2

1

p(Xt)
∇ · [p(Xt)M(Xt)]dt+M(Xt)

1/2dWt, (11)

where p is the density of P , assumed to be positive, M : Rd → Rd×d is a symmetric matrix called
the diffusion matrix, and Wt is a standard Wiener process (Kent, 1978; Roberts and Stramer, 2002).
Here the notation [∇ ·A]i = ∇ · (A⊤

i,·) indicates the divergence operator applied to each row of the
matrix A(x) ∈ Rd×d. The infinitessimal generator is

(APu)(x) =
1

2

1

p(x)
∇ · [p(x)M(x)∇u(x)].

Substituting h(x) for 1
2∇u(x), we obtain a Stein operator

(SPh)(x) =
1

p(x)
∇ · [p(x)M(x)h(x)] (12)

called the diffusion Stein operator (Gorham et al., 2019). This is indeed a Stein operator, since
under mild integrability conditions on K, the divergence theorem gives that

∫
Sph dP = 0 for all

h ∈ H(K); for full details and a proof see Barp et al. (2022b).

A.3 Selecting a Stein Kernel

There are several choices for a Stein kernel, and which we should use depends on what form of
convergence we hope to control (Gorham and Mackey, 2017; Gorham et al., 2019; Hodgkinson et al.,
2020; Barp et al., 2022b; Kanagawa et al., 2022). Appendix A.3.1 describes the Langevin–Stein
kernel for weak convergence control, Appendix A.3.2 describes the KGM–Stein kernels for additional
control over moments, and Appendix A.3.3 presents the Riemann–Stein kernel, whose convergence
properties have to-date been less well-studied.

All of the kernels that we consider have length scale parameters that need to be specified, and some
also have location parameters to be specified. As a reasonably automatic default we define

x⋆ ∈ argmax p(x), Σ−1 = −∇2 log p(x⋆)

as a location and a matrix of characteristic length scales for P that will be used throughout. These
values can typically be obtained using gradient-based optimisation, which is usually cheaper to
perform compared to full approximation of P . It is assumed that ∇2 log p(x⋆) is positive definite in
the sequel.

A.3.1 Weak Convergence Control with Langevin–Stein Kernels

The first kernel we consider, which we called the Langevin–Stein kernel in the main text, was
introduced by Gorham and Mackey (2017). This Stein kernel was developed for the purpose of
controlling the weak convergence of a sequence (Qn)n∈N ⊂ P(Rd) to P . Recall that a sequence
(Qn)n∈N is said to converge weakly (or in distribution) to P if

∫
fdQn →

∫
fdP for all continuous

bounded functions f : Rd → R. This convergence is denoted Qn
d→ P in shorthand.

The problem considered in Gorham and Mackey (2017) was how to select a combination of matrix-
valued kernel K (and, implicitly, a diffusion matrix M ) such that the Stein kernel kP in (10) generates
a KSD DP (Q) in (4) for which DP (Qn) → 0 implies Qn

d→ P . Their solution was to combine the
inverse multi-quadric kernel with an identity diffusion matrix;

K(x, y) = (1 + ∥x− y∥2Σ)−βI, M(x) = I

for β ∈ (0, 1). Provided that P has a density p for which ∇ log p(x) is Lipschitz, and that P is
distantly dissipative (see Definition 4 of Gorham and Mackey, 2017), the associated KSD enjoys
weak convergence control. Technically, the results in Gorham and Mackey (2017) apply only when
Σ = I , but Theorem 4 in Chen et al. (2019) demonstrated that they hold also for any positive definite
Σ. Following the recommendation of several previous authors, including Chen et al. (2018, 2019);
Riabiz et al. (2022), we take β = 1

2 throughout.
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A.3.2 Moment Convergence Control with KGM–Stein Kernels

Despite its many elegant properties, weak convergence can be insufficient for applications where we
are interested in integrals

∫
f dP for which the integrand f : Rd → R is unbounded. In particular,

this is the case for moments of the form f(x) = xα1
1 . . . xαd

d , 0 ̸= α ∈ Nd
0. In such situations, we

may seek also the stronger property of moment convergence control. The development of KSDs for
moment convergence control was recently considered by Kanagawa et al. (2022), and we refered to
their construction as the KGM–Stein kernels in the main text. (For convenience, we have adopted the
initials of the authors in naming the KGM–Stein kernel.)

A sequence (Qn)n∈N ⊂ P(Rd) is said to converge to P in the sth order moment if
∫
∥x∥sdQn(x) →∫

∥x∥sdP (x). To establish convergence of moments, we need an additional condition on top of weak
convergence control: uniform integrability control. A sequence of measures (Qn)n∈N is said to have
uniformly integrable sth moments if for any ε > 0, we can take r > 0 such that

sup
n∈N

∫
∥x∥>r

∥x∥s dQn(x) < ε.

This condition essentially states that the tail decay of the measures is well-controlled (so that it has a
convergent moment). The KSD convergence DP (Qn) → 0 implies uniform integrability if for any
ε > 0, we can take rε > 0 and fε ∈ H(K) such that

SP fε(x) ≥ ∥x∥s1{∥x∥ > rε} − ε, (13)

i.e., the Stein-modified RKHS can approximate the (norm-weighted) indicator function arbitrarily well.
Such a function fε can be explicitly constructed (while not guaranteed to be a member of the RKHS).
Specifically, the choice fε = (1 − ιε)g satisfies (13) under an appropriate dissipativity condition,
where ιε is a differentiable indicator function vanishing outside a ball, and g(x) = −x/

√
1 + ∥x∥2.

This motivated Kanagawa et al. (2022) to introduce the sth order KGM–Stein kernel, which is based
on the matrix-valued kernel and diffusion matrix

K(x, y) = [ϕ(∥x− y∥Σ) + κlin(x, y)] I, M(x) = (1 + ∥x− x⋆∥2Σ)
s−1
2 I,

where (x, y) 7→ ϕ(∥x− y∥Σ) is a C1
0 universal kernel (see Barp et al., 2022b, Theorem 4.8). For

comparability of our results, we take ϕ to be the inverse multi-quadric ϕ(r) = (1 + r2)−1/2, and

κlin(x, y) =
1 + (x− x⋆)

⊤Σ−1(y − x⋆)√
1 + ∥x− x⋆∥2Σ

√
1 + ∥y − x⋆∥2Σ

.

Here the normalised linear kernel κlin ensures g ∈ H(K), while the C1
0 universal kernel ϕ allows

approximation of SP ιεg; see Kanagawa et al. (2022).

A.3.3 Exploiting Geometry with Riemann–Langevin–Stein Kernels

For academic interest only, here we describe the Riemann–Stein kernel that featured in Figure 2 of
the main text. This Stein kernel is motivated by the analysis of Gorham et al. (2019), who argued that
the use of rapidly mixing Itô diffusions in Stein operators can lead to sharper convergence control.
The Riemann–Stein kernel is based on the class of so-called Riemannian diffusions considered
in Girolami and Calderhead (2011), who proposed to take the diffusion matrix M in (11) to be
M = (Iprior + IFisher)

−1, the inverse of the Fisher information matrix, IFisher, regularised using the
Hessian of the negative log-prior, Iprior. For the two-dimensional illustration in Section 3.2, this leads
to the diffusion matrix

M(x) =

(
I +

n∑
i=1

[∇fi(x)][∇fi(x)]
⊤
)−1

,

where we recall that yi = fi(x) + ϵi, where the ϵi are independent with ϵi ∼ N (0, 1), and the prior
is x ∼ N (0, 1). For the presented experiment we paired the above diffusion matrix with the inverse
multi-quadric kernel K(x, y) = (1 + ∥x− y∥2Σ)−β for β = 1

2 . The Riemann–Stein kernel extends
naturally to distributions P defined on Riemannian manifolds X ; see Barp et al. (2022a) and Example
1 of Hodgkinson et al. (2020).

Unfortunately, the Riemann–Stein kernel is prohibitively expensive in most real applications, since
each evaluation of M requires a full scan through the size-n dataset. The computational complexity
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of Stein Π-Thinning with the Riemann–Stein kernel is therefore O(m2n2), which is unfavourable
compared to the O(m2n) complexity in the case where the Stein kernel is not data-dependent. Fur-
thermore, the convergence control properties of the Riemann–Stein kernel have yet to be established.
For these reasons we included the Riemann–Stein kernel for illustration only; further groundwork
will be required before the Riemann-Stein kernel can be practically used.

B Proof of Theorem 1

This appendix is devoted to the proof of Theorem 1. The proof is based on the recent work of Durmus
and Moulines (2022), on the geometric convergence of MALA, and on the analysis of sparse (greedy)
approximation of kernel discrepancies performed in Riabiz et al. (2022); these existing results are
recalled in Appendix B.1. An additional technical result on preconditioned MALA is contained in
Appendix B.2. The proof of Theorem 1 itself is contained in Appendix B.3.

B.1 Auxiliary Results

To precisely describe the results on which our analysis is based, we first need to introduce some
notation and terminology. Let V : X → [1,∞) and, for a function f : X → R and a measure µ on
X , let

∥f∥V := sup
x∈X

|f(x)|
V (x)

, ∥µ∥V := sup
∥f∥V ≤1

∣∣∣∣∫
X
fdµ

∣∣∣∣ .
Recall that a Q-invariant Markov chain (xi)i∈N ⊂ X with nth step transition kernel Qn is V -uniformly
ergodic (see Theorem 16.0.1 of Meyn and Tweedie, 2012) if and only if ∃R ∈ [0,∞), ρ ∈ (0, 1)
such that

∥Qn(x, ·)−Q∥V ≤ RρnV (x) (14)

for all initial states x ∈ X and all n ∈ N.

Although MALA (Algorithm 1) is classical (Roberts and Stramer, 2002), until recently explicit
sufficient conditions for ergodicity of MALA had not been obtained. The first result we will need
is due Durmus and Moulines (2022), who presented the first explicit conditions for V -uniform
convergence of MALA. It applies only to standard MALA, meaning that the preconditioning matrix
M appearing in Algorithm 1 is the identity matrix. The extension of this result to preconditioned
MALA will be handled in Appendix B.2.

Theorem 2. Let Q ∈ P(Rd) admit a density, q, such that

(DM1) there exists x0 with ∇ log q(x0) = 0

(DM2) q is twice continuously differentiable with supx∈Rd ∥∇2 log q(x− x0)∥ < ∞

(DM3) there exists b > 0 and B ≥ 0 such that −∇2 log q(x− x0) ⪰ bI for all ∥x− x0∥ ≥ B.

Then there exists ϵ0 > 0 such that for all step sizes ϵ ∈ (0, ϵ0), standard Q-invariant MALA (i.e.
with M = I) is V -uniformly ergodic for V (x) = exp

(
b
16∥x− x0∥2

)
.

Proof. This is Theorem 1 of Durmus and Moulines (2022).

The next result that we will need establishes consistency of the greedy algorithm applied to samples
from a Markov chain that is Q-invariant.

Theorem 3. Let P,Q ∈ P(X ) with P ≪ Q. Let kP : X × X → R be a Stein kernel and let
DP : X × X → [0,∞] denote the associated KSD. Consider a Q-invariant, time-homogeneous
Markov chain (xi)i∈N ⊂ X such that

(R+1) (xi)i∈N is V -uniformly ergodic, such that V (x) ≥ dP
dQ (x)

√
kP (x)

(R+2) supi∈N E
[
dP
dQ (xi)

√
kP (xi)V (xi)

]
< ∞
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(R+3) there exists γ > 0 such that supi∈N E
[
exp

{
γmax

(
1, dP

dQ (xi)
2
)
kP (xi)

}]
< ∞.

Let Pn,m be the result of running the greedy algorithm in (5). If m ≤ n and log(n) = O(mγ/2) for
some γ < 1, then DP (Pn,m) → 0 almost surely as m,n → ∞.

Proof. This is Theorem 3 of Riabiz et al. (2022).

B.2 Preconditioned MALA

In addition to the auxiliary results in Appendix B.1, which concern standard MALA (i.e. with
M = I), we require an elementary fact about MALA, namely that preconditioned MALA is
equivalent to standard MALA under a linear transformation of the state variable. Recall that the
M -preconditioned MALA algorithm is a Metropolis–Hastings algorithm whose proposal is the
Euler–Maruyama discretisation of the Itô diffusion (11).
Proposition 1. Let M(x) ≡ M for a symmetric positive definite and position-independent matrix
M ∈ Rd×d. Let Q ∈ P(Rd) admit a probability density function (PDF) q for which the Q-invariant
diffusion (Xt)t≥0, given by setting p = q in (11), is well-defined. Then under the change of variables
Yt := M1/2Xt,

dYt =
1

2
(∇ log q̃)(Yt)dt+ dWt, (15)

where q̃(x) ∝ q(M−1/2x) for all x ∈ Rd.

Proof. From the chain rule,

(∇ log q̃)(y) = ∇y log q(M
−1/2y) = M−1/2(∇ log q)(M−1/2y),

and thus, substituting Yt = M1/2Xt, (15) is equal to

dXt = M−1/2

[
1

2
M−1/2(∇ log q)(M−1/2M1/2Xt) + dWt

]
=

1

2
M−1(∇ log q)(Xt) +M−1/2dWt,

which is identical to (11) in the case where M(x) = M is constant.

Let Q and Q̃ be the distributions referred to in Proposition 1, whose PDFs are respectively q(x)
and q̃(x) ∝ q(M−1/2x). Proposition 1 then implies that the M -preconditioned MALA algorithm
applied to Q (i.e. Algorithm 1 for Π = Q) is equivalent to the standard MALA algorithm (i.e.
M = I) applied to Q̃. This fact allows us to generalise the result of Theorem 2 as follows:
Corollary 1. Consider a symmetric positive definite matrix M ∈ Rd×d. Assume that conditions
(DM1-3) in Theorem 2 are satisfied. Then there exists ϵ′0 > 0 and b′ > 0 such that for all step
sizes ϵ ∈ (0, ϵ′0), the M -preconditioned Q-invariant MALA is V -uniformly ergodic for V (x) =

exp
(

b′

16∥x− x0∥2
)

.

Proof. From Theorem 2 and Proposition 1, the result follows if we can establish (DM1-3) for Q̃, since
M -preconditioned MALA is equivalent to standard MALA applied to Q̃. For a matrix A ∈ Rd×d,
let λmin(A) and λmax(A) respectively denote the minimum and maximum eigenvalues of A. For
(DM1) we set y0 = M1/2x0 and observe that

(∇ log q̃)(y0) = M−1/2(∇ log q)(x0) = 0.

For (DM2) we have that

sup
y∈Rd

∥∇2(log q̃)(y − y0)∥ = sup
y∈Rd

∥M−1/2(∇2 log q)(M−1/2(y − y0))M
−1/2∥

≤ λmin(M)−1 sup
x∈Rd

∥(∇2 log q)(x− x0)∥ < ∞.
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For (DM3) we have that

−(∇2 log q̃)(y − y0) = −M−1/2(∇2 log q)(M−1/2(y − y0))M
−1/2

= −M−1/2(∇2 log q)(x− x0)M
−1/2 ⪰ M1/2(bI)M1/2 = bM−1 ⪰ b′I

where b′ = bλmax(M)−1, which holds for all ∥x−x0∥ ≥ B, and in particular for all ∥y− y0∥ ≥ B′

where B′ = Bλmax(M)1/2. Thus (DM1-3) are established for Q̃.

Remark 1. The choice M = Σ−1, which sets the preconditioner matrix M equal to the inverse of
the length scale matrix Σ used in the specification of the kernel K (c.f. Appendix A.3), leads to the
elegant interpretation that Stein Π-Importance Sampling applied to M -preconditioned MALA is
equivalent to the Stein Π-Importance Sampling applied to standard MALA (i.e. with M = I) for the
whitened target P̃ with PDF p̃(x) ∝ p(M−1/2x). For our experiments, however, the preconditioner
matrix M was learned during a warm-up phase of MALA, since in general the curvature of P
(captured by Σ) and the curvature of Π (captured by M−1) may be different.

B.3 Proof of Theorem 1

The route to establishing Theorem 1 has three parts. First, we establish (DM1-3) of Theorem 2 with
Q = Π, to deduce from Corollary 1 that Π-invariant M -preconditioned MALA is V -uniformly
ergodic. This in turn enables us to establish conditions (R+1-3) of Theorem 3, again for Q = Π,
from which the strong consistency DP (Pn,m)

a.s.→ 0 of SΠT-MALA is established. Finally, we note
that 0 ≤ DP (P

⋆
n) ≤ DP (Pn,m), since the support of Pn,m is contained in the support of P ⋆

n , and
the latter is optimally weighted, whence also the strong consistency of SΠIS-MALA.

Establish (DM1-3) First we establish (DM1-3) for Q = Π. Fix x0 ∈ Rd. For (DM2), first recall
that the range of kP is [C2

1 ,∞) where C1 > 0, from Assumption 1. Since log(·) has bounded second
derivatives on [C2

1 ,∞), there is a constant C > 0 such that

∀x ∈ Rd, ∥∇2 log kP (x)∥ ≤ C∥∇2kP (x)∥.
Thus, using compactness of the set {x : ∥x− x0∥ ≤ B2},

sup
x∈Rd

∥∇2 log kP (x)∥ ≤ Cmax

(
sup

∥x−x0∥≤B2

∥∇2kP (x)∥︸ ︷︷ ︸
<∞ by (A3)

, sup
∥x−x0∥≥B2

∥∇2kP (x)∥︸ ︷︷ ︸
<b2∥I∥ by (A4)

)
< ∞. (16)

Now, π is twice differentiable as it is the product of twice differentiable functions p and k
1/2
P from

(A1) and (A3), and moreover

sup
x∈Rd

∥∇2 log π(x− x0)∥ ≤ sup
x∈Rd

∥∇2 log p(x)∥︸ ︷︷ ︸
<∞ by (A1)

+
1

2
sup
x∈Rd

∥∇2 log kP (x)∥︸ ︷︷ ︸
<∞ by (16)

< ∞,

so (DM2) is satisfied. For (DM3), first note from the chain and product rules that for all ∥x∥ ≥ B2

∇2 log kP (x− x0) =
∇2kP (x− x0)

kP (x− x0)︸ ︷︷ ︸
⪯(b2/C2

1 )I by (A4)

− [∇kP (x− x0)][∇kP (x− x0)]
⊤

kP (x− x0)2︸ ︷︷ ︸
⪰0

⪯ b2
C2

1

I. (17)

Thus, for all ∥x− x0∥ ≥ B := ∥x0∥+max(B1, B2),

−∇2 log π(x− x0) = −∇2 log p(x− x0)︸ ︷︷ ︸
⪰b1I by (A2)

−1

2
∇2 log kP (x− x0)︸ ︷︷ ︸

⪯(b2/C2
1 )I by (17)

⪰
(
b1 −

b2
2C2

1

)
︸ ︷︷ ︸

=:b>0

I (18)

as required. The same argument establishes (DM1); from (18) we have lim∥x∥→∞ π(x) = 0, and
since π is a continuously differentiable density there must exist an x0 at which π is locally minimised.
Thus we have established (DM1-3) for Q = Π and we may conclude from Corollary 1 that there
is an ϵ′0 > 0 and b′ > 0 such that, for all ϵ ∈ (0, ϵ′0), the Π-invariant M -preconditioned MALA
chain (xi)i∈N is V -uniformly ergodic for V (x) = C2 exp

(
b′

16∥x− x0∥2
)

(since if a Markov chain
is V -uniformly ergodic, then it is also CV -uniformly ergodic).
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Establish (R+1-3) The aim is now to establish conditions (R+1-3) of Theorem 3 for Q = Π. By
construction dP/dΠ = C2/

√
kP (x) < C2/C1 < ∞, where C1 and C2 were defined in Assump-

tion 1, so that P ≪ Π. It has already been established that (xi)i∈N is V -uniformly ergodic, and
further

V (x) = C2 exp

(
b′

16
∥x− x0∥2

)
≥ C2 =

dP

dΠ
(x)
√

kP (x)

for all x, which establishes (R+1). Let R and ρ denote constants for which the V -uniform ergodicity
property (14) is satisfied. From V -uniform ergodicity, the integral

∫
V dΠ exists and∣∣∣∣E [dPdΠ(xi)

√
kP (xi)V (xi)

]
− C2

∫
V dΠ

∣∣∣∣ = C2

∣∣∣∣E[V (xi)]−
∫

V dΠ

∣∣∣∣
≤ C2RρnV (x0) → 0

which establishes (R+2). Fix γ > 0. By construction dP/dΠ ≤ C2/C1, and thus

exp

{
γmax

(
1,

dP

dΠ
(x)2

)
kP (x)

}
< exp {γ̃kP (x)}

where γ̃ = max(1, C2/C1)γ. Since we have assumed that kP is continuous with, from (A4),

b3 := lim sup
∥x∥→∞

kP (x)

∥x∥2 < ∞,

we may take γ such that γ̃b3 < b′/16, so that ∥x 7→ exp{γ̃kP (x)}∥V < ∞ and in particular∣∣∣∣E [exp{γ̃kP (xi)}]−
∫

exp{γ̃kP (x)} dΠ(x)

∣∣∣∣ ≤ ∥x 7→ exp{γ̃kP (x)}∥V ×RρnV (x0) → 0

which establishes (R+3). Thus we have established (R+1-3) for Q = Π, so from Theorem 3
we have strong consistency of SΠT-MALA (i.e. DP (Pn,m)

a.s.→ 0) provided that m ≤ n with
log(n) = O(mγ/2) for some γ < 1. The latter condition is equivalent to m = Ω((log n)δ) for some
δ > 2, which we used for the statement. Since 0 ≤ DP (P

⋆
n) ≤ DP (Pn,m), the strong consistency of

SΠIS-MALA is also established.

C Explicit Calculation of Stein Kernels

This appendix contains explicit calculations for the Langevin–Stein and KGM–Stein kernels kP ,
which are sufficient to implement Stein Π-Importance Sampling and Stein Π-Thinning. These
calculations can also be performed using automatic differentiation, but comparison to the analytic
expressions is an important step in validation of computer code.

To proceed, we observe that the diffusion Stein operator SP in (12) applied to a matrix-valued kernel
K is equivalent to the Langevin–Stein operator applied to the kernel C(x, y) = M(x)K(x, y)M(y)⊤.
In the case of the Langevin–Stein and KGM–Stein kernels we have K(x, y) = κ(x, y)I for some
κ(x, y) and M(x) = (1+∥x−x⋆∥2Σ)(s−1)/2I for some s ∈ {0, 1, 2, . . . }. Thus C(x, y) = c(x, y)I
where

c(x, y) := (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2κ(x, y)

and

kP (x, y) = ∇x · ∇yc(x, y) + [∇xc(x, y)] · [∇y log p(y)] + [∇yc(x, y)] · [∇x log p(x)]

+ c(x, y)[∇x log p(x)] · [∇y log p(y)],

20



following the calculations in Oates et al. (2017). To evaluate the terms in this formula we start by
differentiating c(x, y), to obtain

∇xc(x, y) = (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2

×
[
(s− 1)κ(x, y)Σ−1(x− x⋆)

1 + ∥x− x⋆∥2Σ
+∇xκ(x, y)

]
∇yc(x, y) = (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2

×
[
(s− 1)κ(x, y)Σ−1(y − x⋆)

1 + ∥y − x⋆∥2Σ
+∇yκ(x, y)

]
∇x · ∇yc(x, y) = (1 + ∥x− x⋆∥2Σ)(s−1)/2(1 + ∥y − x⋆∥2Σ)(s−1)/2

×
[
(s− 1)2κ(x, y)(x− x⋆)

⊤Σ−2(y − x⋆)

(1 + ∥x− x⋆∥2Σ)(1 + ∥y − x⋆∥2Σ)
+

(s− 1)(y − x⋆)
⊤Σ−1∇xκ(x, y)

(1 + ∥y − x⋆∥2Σ)

+
(s− 1)(x− x⋆)

⊤Σ−1∇yκ(x, y)

(1 + ∥x− x⋆∥2Σ)
+∇x · ∇yκ(x, y)

]
.

These expressions involve gradients of κ(x, y), and explicit formulae for these are presented for the
choice of κ(x, y) corresponding to the Langevin–Stein kernel in Appendix C.1, and to the KGM–Stein
kernel in Appendix C.2.

To implement Stein Π-Thinning we require access to both kP (x) and ∇kP (x), the latter for use in the
proposal distribution and acceptance probability in MALA. These quantities will now be calculated.
In what follows we assume that κ(x, y) is continuously differentiable, so that partial derivatives with
respect to x and y can be interchanged. Then

c0(x) := c(x, x)

= (1 + ∥x− x⋆∥2Σ)s−1κ(x, x)

c1(x) := ∇xc(x, y)|y→x

= (1 + ∥x− x⋆∥2Σ)s−1

[
(s− 1)κ(x, x)Σ−1(x− x⋆)

(1 + ∥x− x⋆∥2Σ)
+ ∇xκ(x, y)|y→x

]
c2(x) := ∇x · ∇yc(x, y)|y→x

= (1 + ∥x− x⋆∥2Σ)s−1

[
(s− 1)2κ(x, x)(x− x⋆)

⊤Σ−2(x− x⋆)

(1 + ∥x− x⋆∥2Σ)2

+
2(s− 1)(x− x⋆)

⊤Σ−1 ∇xκ(x, y)|y→x

(1 + ∥x− x⋆∥2Σ)
+ ∇x · ∇yκ(x, y)|y→x

]

so that

kP (x) := kP (x, x) = c2(x) + 2c1(x) · ∇x log p(x) + c0(x)∥∇x log p(x)∥2. (19)

Let [∇xc1(x)]i,j = ∂xi [c1(x)]j and [∇2
x log p(x)]i,j = ∂xi∂xj log p(x). Now we can differentiate

(19) to get

∇xkP (x) = ∇xc2(x) + 2[∇xc1(x)][∇x log p(x)] + 2[∇2
x log p(x)]c1(x)

+ [∇xc0(x)]∥∇x log p(x)∥2 + 2c0(x)[∇2
x log p(x)][∇x log p(x)]. (20)

In what follows we also derive explicit formulae for c0(x), c1(x) and c2(x), and hence for ∇xc0(x),
∇xc1(x) and ∇xc2(x), for the case of the Langevin–Stein kernel in Appendix C.1, and the KGM–
Stein kernel in Appendix C.2.
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C.1 Explicit Formulae for the Langevin–Stein Kernel

The Langevin–Stein kernel from Appendix A.3.1 corresponds to the choice s = 1 and κ(x, y) the
inverse multi-quadric kernel, so that

κ(x, y) = (1 + ∥x− y∥2Σ)−β

∇xκ(x, y) = −2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

∇yκ(x, y) = 2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

∇x · ∇yκ(x, y) = −4β(β + 1)(1 + ∥x− y∥2Σ)−β−2(x− y)⊤Σ−2(x− y)

+ 2βtr(Σ−1)(1 + ∥x− y∥2Σ)−β−1.

Evaluating on the diagonal:

κ(x, x) = 1

∇xκ(x, y)|y→x = ∇yκ(x, y)|y→x = 0

∇x · ∇yκ(x, y)|y→x = 2βtr(Σ−1),

so that c0(x) = 1, c1(x) = 0, c2(x) = 2βtr(Σ−1). Differentiating these formulae, ∇xc0(x) = 0,
∇xc1(x) = 0, ∇xc2(x) = 0.

C.2 Explicit Formulae for the KGM–Stein Kernel

The KGM kernel of order s from Appendix A.3.2 corresponds to the choice

κ(x, y) = (1 + ∥x− y∥2Σ)−β +
1 + (x− x⋆)

⊤Σ−1(y − x⋆)

(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2
,

for which we have

∇xκ(x, y) = −2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

+
Σ−1(y − x⋆)− s[1 + (x− x⋆)

⊤Σ−1(y − x⋆)]Σ
−1(x− x⋆)(1 + ∥x− x⋆∥2Σ)−1

(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2
∇yκ(x, y) = 2β(1 + ∥x− y∥2Σ)−β−1Σ−1(x− y)

+
Σ−1(x− x⋆)− s[1 + (x− x⋆)

⊤Σ−1(y − x⋆)]Σ
−1(y − x⋆)(1 + ∥y − x⋆∥2Σ)−1

(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2
∇x · ∇yκ(x, y) = −4β(β + 1)(1 + ∥x− y∥2Σ)−β−2(x− y)⊤Σ−2(x− y) + 2βtr(Σ−1)(1 + ∥x− y∥2Σ)−β−1

+


tr(Σ−1)− s(1 + ∥x− x⋆∥2Σ)−1(x− x⋆)

⊤Σ−2(x− x⋆)
−s(1 + ∥y − x⋆∥2Σ)−1(y − x⋆)

⊤Σ−2(y − x⋆)
+s2[1 + (x− x⋆)

⊤Σ−1(y − x⋆)](1 + ∥x− x⋆∥2Σ)−1(1 + ∥y − x⋆∥2Σ)−1

×(x− x⋆)
⊤Σ−2(y − x⋆)


(1 + ∥x− x⋆∥2Σ)s/2(1 + ∥y − x⋆∥2Σ)s/2

.

Evaluating on the diagonal:

κ(x, x) = 1 + (1 + ∥x− x⋆∥2Σ)−s+1

∇xκ(x, y)|y→x = ∇yκ(x, y)|y→x = −(s− 1)Σ−1(x− x⋆)(1 + ∥x− x⋆∥2Σ)−s

∇x · ∇yκ(x, y)|y→x = 2βtr(Σ−1) + tr(Σ−1)(1 + ∥x− x⋆∥2Σ)−s

+ s(s− 2)(1 + ∥x− x⋆∥2Σ)−s−1(x− x⋆)
⊤Σ−2(x− x⋆)

so that

c0(x) = 1 + (1 + ∥x− x⋆∥2Σ)s−1

c1(x) = (s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1(x− x⋆)

c2(x) =
[(s− 1)2(1 + ∥x− x⋆∥2Σ)s−1 − 1](x− x⋆)

⊤Σ−2(x− x⋆)

(1 + ∥x− x⋆∥2Σ)2
+

tr(Σ−1)[1 + 2β(1 + ∥x− x⋆∥2Σ)s]
(1 + ∥x− x⋆∥2Σ)

.
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Differentiating these formulae:

∇xc0(x) = 2(s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1(x− x⋆)

∇xc1(x) = 2(s− 1)(s− 2)(1 + ∥x− x⋆∥2Σ)s−3[Σ−1(x− x⋆)][Σ
−1(x− x⋆)]

⊤

+ (s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1

∇xc2(x) = 2(s− 1)2(s− 3)(1 + ∥x− x⋆∥2Σ)s−4[(x− x⋆)
⊤Σ−2(x− x⋆)]Σ

−1(x− x⋆)

+ 2(s− 1)2(1 + ∥x− x⋆∥2Σ)s−3Σ−2(x− x⋆)

+ 4βtr(Σ−1)(s− 1)(1 + ∥x− x⋆∥2Σ)s−2Σ−1(x− x⋆)

− 2(1 + ∥x− x⋆∥2Σ)−2[Σ−2(x− x⋆) + tr(Σ−1)Σ−1(x− x⋆)]

+ 4(1 + ∥x− x⋆∥2Σ)−3[(x− x⋆)
⊤Σ−2(x− x⋆)]Σ

−1(x− x⋆).

These complete the analytic calculations necessary to compute the Stein kernel kP and its gradient.

D Empirical Assessment

This appendix contains full details of the empirical protocols that were employed and the additional
empirical results described in the main text. Appendix D.1 discusses the effect of dimension on
our proposed Π. Additional illuatrative results from Section 3.2 are contained in Appendix D.2.
The full details for how MALA was implemented are contained in Appendix D.3. An additional
illustration using a generalised auto-regressive moving average (GARCH) model is presented in
Appendix D.4. The full results for SΠIS-MALA are contained in Appendix D.5, and in Appendix D.6
the convergence of the sparse approximation provided by SΠT-MALA to the optimal weighted
approximation is investigated. Finally, the performance of KSDs is quantified using the 1-Wasserstein
divergence in Appendix D.7.

D.1 The Effect of Dimension on Π

The improvement of Stein Π-Importance Sampling over the default Stein importance sampling
algorithm (i.e. Π = P ) can be expected to reduce as the dimension d of the target P is increased. To
see this, consider the Langevin–Stein kernel

kP (x) = c1 + c2∥∇ log p(x)∥2Σ (21)

for some c1, c2 > 0; see Appendix C. Taking P = N (0, Id×d), for which the length scale matrix Σ
appearing in Appendix A.3 is Σ = Id×d, we obtain

kP (x) = c1 + c2∥x∥2.

However, the sampling distribution Π defined in (8) depends on kP only up to an unspecified
normalisation constant; we may therefore equally consider the asymptotic behaviour of k̃P (x) :=
kP (x)/d. Let X ∼ P . Then E[k̃P (X)] = c2 is a d-independent constant, and∥∥∥k̃P − E[k̃P (X)]

∥∥∥2
L2(P )

=

∫ [
kP (x)− (c1 + c2d)

d

]2
dP (x) =

2c22
d

→ 0

as d → ∞. This shows that k̃P converges to a constant function in L2(P ), and thus for “typical”
values of x in the effective support of P ,

π(x) ∝ p(x)

√
k̃P (x)

≈∝ p(x),

so that Π ≈ P in the d → ∞ limit. This intuition is borne out in simulations involving both the
Langevin–Stein kernel (as just discussed) and also the KGM3–Stein kernel. Indeed, Figure S1 shows
that as the dimension d is increased, the marginal distributions of Π become increasingly similar to
those of P .
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Figure S1: The effect of dimension on Π: Here P was taken to be the standard Gaussian distribution
N (0, Id×d) in Rd and the proposed distribution Π was computed. The marginal distribution of the
first component of Π is plotted for d ∈ {1, 2, 10}, for both (a) the Langevin–Stein kernel and (b) the
KGM3–Stein kernel.

Figure S2: Assessing the performance of the sampling distributions Π shown in Figure 2. The mean
kernel Stein discrepancy (KSD) for computation performed using the Langevin–Stein kernel (purple),
the KGM3–Stein kernel (blue), and the Riemann–Stein kernel (red); in each case, KSD was computed
using the same Stein kernel used to construct Π. Solid lines indicate the baseline case of sampling
from P , while dashed lines indicate the proposed approach of sampling from Π. (The experiment
was repeated 10 times and standard error bars are plotted.)

D.2 2D Illustration from the Main Text

Section 3.2 of the main text contained a 2-dimensional illustration of Stein Π-Importance Sampling
and presented the distributions Π corresponding to different choices of Stein kernel. Here, in
Figure S2, we present the mean KSDs for Stein Π-Importance Sampling performed using the
Langevin–Stein kernel (purple), the KGM3–Stein kernel (blue), and the Riemann–Stein kernel (red),
corresponding to the sampling distributions Π displayed in Figure 2 of the main text.

For this experiment, exact sampling from both P and Π was performed using a fine grid on which all
probabilities were calculated and appropriately normalised. Results are in broad agreement with the
1-dimensional illustration contained in the main text, in the sense that in all cases Stein Π-Importance
Sampling provides a significant improvement over the default Stein importance sampling method
with Π equal to P .
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Algorithm 4 Adaptive MALA
Require: x0,0 (initial state), ϵ0 (initial step size), M0 (initial preconditioner matrix), {ni}h−1

i=0 (epoch lengths),
{αi}h−1

i=1 (learning schedule), h (number of epochs), kP (Stein kernel)
1: {x0,1 . . . , x0,n0} ← MALA(x0,0, ϵ0,M0, n0, kP )
2: for i = 1, . . . , h− 1 do
3: xi,0 ← xi−1,ni−1

4: ρi−1 ← 1
ni−1

∑ni−1

j=1 1xi−1,j ̸=xi−1,j−1 ▷ Average acceptance rate for chain i

5: ϵi ← ϵi−1 exp(ρi−1 − 0.57) ▷ Update step size
6: Mi ← αiMi + (1− αi)cov({xi−1,1 . . . , xi−1,ni−1}) ▷ Update preconditioner matrix
7: {xi,1 . . . , xi,ni} ← MALA(xi,0, ϵi,Mi, ni, kP )
8: end for

D.3 Implementation of MALA

For implementation of MALA in Algorithm 4 we are required to specify a step size ϵ and a
preconditioner matrix M . In general, suitable values for both of these parameters will be problem-
dependent. Standard practice is to perform some form of manual or automated tuning to arrive at
parameter values for which the average acceptance rate is close to 0.57, motivated by the asymptotic
analysis of Roberts and Rosenthal (1998). Adaptive MCMC algorithms, which seek to optimise the
parameters of MCMC algorithms such as MALA during the warm-up period, provide an appealing
solution, and was the approach taken in this work.

The adaptive MALA algorithm which we used is contained in Algorithm 4, where we have let
MALA(x, ϵ,M, n, kP ) denote the output from the preconditioned MALA with initial state x, step
size ϵ, preconditioner matrix M , and chain length n, described in Algorithm 1. In Algorithm 4, we
use cov(·) to denote the sample covariance matrix. The algorithm monitors the average acceptance
rate and increases or decreases it according to whether it is below or above, respectively, the
0.57 target. For the preconditioner matrix, the sample covariance matrix of samples obtained
from the penultimate tuning run of MALA is used. For all experiments that we report using
MALA, we set ϵ0 = 1, M0 = Id, h = 10, and α1 = · · · = α9 = 0.3. The warm-up epoch
lengths were n0 = · · · = n8 = 1, 000 and the final epoch length was n9 = 105. The samples
{xh−1,1, . . . , xh−1,ni−1

} from the final epoch are returned, and constituted output from MALA for
our experimental assessment.

To sample from P instead of Π, we used Algorithm 4 we formally set kP (x) = 1 for all x ∈ Rd,
which recovers Π = P as the target.

D.4 Illustration on a GARCH Model

This appendix contains an additional illustrative experiment, concerning a GARCH model that is a
particular instance of a model from the PosteriorDB database discussed in Section 4. The purpose
of this illustration is to facilitate an empirical investigation in a slightly higher dimension (d = 4) and
to explore the effect of changing the order s of the KGM–Stein kernel defined in Appendix A.3.2.

First we describe the GARCH model that was used. These models are widely-used in econometrics to
describe time series data {yt}nt=1 in settings where the volatility process is assumed to be time-varying
(but stationary). In particular, we consider the GARCH(1,1) model

yt = ϕ1 + at,

at = σtϵt, ϵt ∼ N (0, 1),

σ2
t = ϕ2 + ϕ3a

2
t−1 + ϕ4σ

2
t−1,

where ϕ2 > 0, ϕ3 > 0, ϕ4 > 0, and ϕ3+ϕ4 < 1 are the model parameters, constrained to a subset of
R4. For ease of sampling, a change of variables τ : (ϕ1, ϕ2, ϕ3, ϕ4) 7→ θ is performed in such a way
that the parameter θ ∈ R4 is unconstrained. Assuming an improper flat prior on θ, the log-posterior
density for θ is given up to an additive constant by

log p(θ | y1, . . . , yn) +C
=

n∑
t=1

[
−1

2
log
(
σ2
t

)
− y2t

2σ2
t

]
+ log |Jτ−1(θ)|,

where |Jτ−1(θ)| is the Jacobian determinant of τ−1.
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Figure S3: Illustrating the shape of Π based on the KGMs–Stein kernel for a GARCH(1,1) model,
controlling convergence of moments up to order s ∈ {2, 3, 4}. The marginal density functions of
each distribution were approximated using one-million samples obtained using MCMC.

For this illustration, real data were provided within the model description of PosteriorDB, for
which the estimated maximum a posteriori parameter is ϕ̂ = (5.04, 1.36, 0.53, 0.31). The marginal
distributions of Π corresponding to the KGM–Stein kernels of orders s ∈ {2, 3, 4} are compared
to the marginals of P in Figure S3. It can be seen that higher orders s correspond to greater over-
dispersion of Π; this makes intuitive sense since larger s corresponds to a more stringent KSD
(controlling the convergence of moments up to order s) which places greater emphasis on how the
tails of P are approximated. Further, for the final skewed marginal of P , we note that the distribution
Π exaggerates the skew, placing more of its mass in the tail of the direction which is positively
skewed. Further discussion of skewed targets is contained in Appendix D.8.

D.5 Stein Π-Importance Sampling for PosteriorDB

To introduce objectivity into our assessment, we exploited the PosteriorDB benchmark (Magnusson
et al., 2022). This ongoing project is an attempt toward standardised benchmarking, consisting
of a collection of posteriors to be numerically approximated. The test problems in PosteriorDB
are defined in the Stan probabilistic programming language, and so BridgeStan (Roualdes et al.,
2023) was used to directly access posterior densities and their gradients as required. The ambition
of PosteriorDB is to provide an extensive set of benchmark tasks; at the time we conducted our
research, PosteriorDB was at Version 0.4.0 and contained 149 models, of which 47 came equipped
with a gold-standard sample of size n = 103, generated from a long run of Hamiltonian Monte Carlo
(the No-U-Turn sampler in Stan). Of these 47 models, a subset of 40 were found to be compatible
with BridgeStan, which was at Version 1.0.2 at the time this research was performed. The version
of Stan that we used was Stanc3 Version 2.31.0 (Unix). Thus we used a total of 40 test problems
for our empirical assessment.
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For each test problem, a total of 10 replicate experiments were performed and standard errors were
computed. A sampling method was defined as being significantly better for approximation of a given
target, compared to all other methods considered, if had lower mean KSD and the standard error bar
did not overlap with the standard error bar of any other method. Table 1 in the main text summarises
the performance of SΠIS-MALA, fixing the number of samples to be n = 3× 103. In this appendix,
full empirical results are provided.

For sampling from MALA, we used the adaptive algorithm described in Appendix D.3 with a
final epoch of length nmax = 105. Then, whenever a set of n ≪ nmax consecutive samples from
MALA are required for our experimental assessment, these were obtained by selecting at random a
consecutive sequence of length n from the total chain of length 105. This ensures that the performance
of unprocessed MALA that we report is not negatively affected by burn-in, in so far as is practical to
control.

Full results are presented in Figure S4. These results broadly support the interpretation that SΠIS-
MALA usually outperforms SIS-MALA, or otherwise both methods provide a similar level of
performance, for the sufficiently large sample sizes n considered. The sample size threshold at which
SΠIS-MALA outperforms SIS-MALA appears to be dimension-dependent. A notable exception is
panel 29 of Figure S4, a d = 10 dimensional task for which SΠIS-MALA provided a substantially
worse approximation in KSD for the range of values of n considered.

Figure S4: Benchmarking on PosteriorDB. Here we compared raw output from MALA (dotted
lines) with the post-processed output provided by the default Stein importance sampling method of
Liu and Lee (2017) (SIS-MALA; solid lines) and the proposed Stein Π-Importance Sampling method
(SΠIS-MALA; dashed lines). The Langevin (purple) and KGM3–Stein kernels (blue) were used for
SIS-MALA and SΠIS-MALA and the associated KSDs are reported as the number n of iterations
of MALA is varied. Ten replicates were computed and standard errors were plotted. The name of each
model is shown in the title of the corresponding panel, and the dimension d of the parameter vector is
given in parentheses. [Langevin–Stein kernel: MALA, SIS-MALA, SΠIS-
MALA. KGM3–Stein kernel: MALA, SIS-MALA, SΠIS-MALA.]
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D.6 Stein Π-Thinning for PosteriorDB

The results presented in the main text concerned n = 3×103 samples from MALA, which is near the
limit at which the optimal weights w⋆ can be computed in a few seconds on a laptop PC. For larger
values of n, sparse approximation methods are likely to required. In the main text we presented Stein
Π-Thinning, which employs a greedy optimisation perspective to obtain a sparse approximation to the
optimal weights at cost O(m2n), where m are the number of greedy iterations performed. Explicit
and verifiable conditions for the strong consistency of the resulting SΠT-MALA algorithm were
established in Section 3.3. The purpose of this appendix is to empirically explore the convergence of
SΠT-MALA using the PosteriorDB test bed.

In the experiments we report the number of MALA samples was fixed to n = 103 and the number
of greedy iterations was varied from m = 1 to m = 103. The results, in Figure S5, indicate that
for most models in PosteriorDB the minimum value of KSD is approximately reached when m is
anywhere from n

10 to n
2 , representing a modest but practically significant reduction in computational

cost compared to SΠIS-MALA. This agrees with the qualitative findings reported in the original
Stein thinning paper of Riabiz et al. (2022).
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Figure S5: Benchmarking on PosteriorDB. Here we investigate the convergence of the sparse
approximation provided by the proposed Stein Π-Thinning method (SΠT-MALA). The Langevin
(purple) and KGM3–Stein kernels (blue) were used for SΠT-MALA and the associated KSDs are
reported as the number m of iterations of Stein thinning is varied. Ten replicates were computed
and standard errors were plotted. The name of each model is shown in the title of the corresponding
panel, and the dimension d of the parameter vector is given in parentheses. [Langevin–Stein
kernel: SΠT-MALA. KGM3–Stein kernel: SΠT-MALA.]
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D.7 Performance of Stein Discrepancies

The properties of Stein discrepancies was out of scope for this work. Nonetheless, there is much
interest in better understanding the properties of KSDs, and in this appendix the performance of
SΠIS-MALA in terms of 1-Wasserstein divergence is reported. This was made possible since
PosteriorDB supplies a set of posterior samples obtained from a long run of Hamiltonian Monte
Carlo (the No-U-Turn sampler in Stan) which we treat as a gold standard.

Full results are presented in Figure S6 and Table 2. Broadly speaking, in most cases the minimisation
of KSD seems to be associated with minimisation of 1-Wasserstein distance, and in particular a
significant improvement of SΠIS-MALA over SIS-MALA is reported for ≈ 63% of tasks in the
PosteriorDB benchmark. However there are some scenarios for which minimisation of KSD is
loosely, if at all, related to minimisation of 1-Wasserstein divergence. In these cases, we attribute this
performance to a combination of two factors: First, the blindness to mixing proportions phenomena,
described in Wenliang and Kanagawa (2021); Koehler et al. (2022); Liu et al. (2023), which is a
pathology of KSDs in general. Second, the Langevin–Stein kernel cannot be expected to control
convergence in 1-Wasserstein, since convergence in 1-Wasserstein is equivalent to weak convergence
plus convergence of the first moment. Focusing therefore on the KGM3–Stein kernel only, it is
encouraging to note that SΠIS-MALA outperforms SIS-MALA on 83% of tasks in PosteriorDB
in the 1-Wasserstein metric, as shown in Table 2. However, it is interesting to observe that MALA
performed well in the 1-Wasserstein sense across the PosteriorDB test bed.

The development of improved Stein discrepancies is an active area of research, and we emphasise
that the methodology developed in this work can be applied to any KSDs, including potentially KSDs
with better or more direct control over standard notions of convergence (such as 1-Wasserstein) that
in the future may be developed.
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Figure S6: Performance of Stein discrepancies on PosteriorDB. Here we compared raw output
from MALA (dotted lines) with the post-processed output provided by the default Stein importance
sampling method of Liu and Lee (2017) (SIS-MALA; solid lines) and the proposed Stein Π-
Importance Sampling method (SΠIS-MALA; dashed lines). The Langevin (purple) and KGM3–
Stein kernels (blue) were used for SIS-MALA and SΠIS-MALA, and the 1-Wasserstein divergence
is reported as the number n of iterations of MALA is varied. Ten replicates were computed and
standard errors were plotted. The name of each model is shown in the title of the corresponding
panel, and the dimension d of the parameter vector is given in parentheses. [Legend: Raw
MALA. Langevin–Stein kernel: SIS-MALA, SΠIS-MALA. KGM3–Stein kernel:

SIS-MALA, SΠIS-MALA.]
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D.8 Investigation for a Skewed Target

This final appendix contrasts the 1-Wasserstein optimal sampling distribution Π1 (c.f. Section 2.1),
with the choice of Π that we recommended in (8). In particular, we focus on the KGM3–Stein kernel
under a heavily skewed P , for which Π1 and Π can be markedly different.

For this investigation a bivariate skew-normal target was constructed, where the density is given
by p(x1, x2) = 4ϕ(x1)Φ(6x1)ϕ(x2)Φ(−3x2), with ϕ and Φ respectively denoting the density and
distribution functions of a standard Gaussian. The density p of P , together with the marginal densities
of Π1 and Π, are plotted in Figure S7. It can be seen that, while both Π1 and Π are over-dispersed
with respect to P , our recommended Π assigns proportionally more mass to the tail that is positively
skewed.

The performance of Stein Π-Importance Sampling based on Π1 and Π is compared in Figure S8.
Though both choices lead to an improvement relative to Stein importance sampling algorithm with
Π = P , the use of Π leads to a significant further reduction (on average) in KSD compared to
Π1. Based on our investigations, this finding seems general; the use of Π1 does not realise the full
potential of Stein Π-Imporance sampling when the target is skewed.
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Langevin–Stein Kernel KGM3–Stein Kernel

Task d MALA SIS -
MALA

SΠIS -
MALA MALA SIS -

MALA
SΠIS -
MALA

earnings-earn_height 3 6420.0 7230.0 9440.0 6420.0 7280.0 7390.0
gp_pois_regr-gp_regr 3 0.0779 0.0758 0.0724 0.0779 0.0865 0.0778

kidiq-kidscore_momhs 3 0.282 0.581 0.508 0.282 0.950 0.604
kidiq-kidscore_momiq 3 0.826 2.19 2.01 0.826 2.53 1.82

mesquite-logmesquite_logvolume 3 0.0236 0.0253 0.0238 0.0236 0.0311 0.0234
arma-arma11 4 0.0127 0.0132 0.0131 0.0127 0.0144 0.0133

earnings-logearn_logheight_male 4 1.46 1.75 1.34 1.46 1.56 0.725
garch-garch11 4 0.260 0.241 0.243 0.260 0.365 0.263

kidiq-kidscore_momhsiq 4 1.86 2.39 1.72 1.86 2.51 1.54
earnings-logearn_interaction_z 5 0.0245 0.0240 0.0240 0.0245 0.0252 0.0251

kidiq-kidscore_interaction 5 13.9 14.5 15.3 13.9 14.4 20.4
kidiq_with_mom_work-kidscore_interaction_c 5 0.289 0.251 0.237 0.289 0.584 0.371

kidiq_with_mom_work-kidscore_interaction_c2 5 0.258 0.269 0.252 0.258 0.638 0.430
kidiq_with_mom_work-kidscore_interaction_z 5 0.914 0.904 0.889 0.914 1.46 1.17
kidiq_with_mom_work-kidscore_mom_work 5 1.01 1.05 1.06 1.01 1.74 1.43

low_dim_gauss_mix-low_dim_gauss_mix 5 0.0215 0.0206 0.0207 0.0215 0.0214 0.0212
mesquite-logmesquite_logva 5 0.0715 0.0672 0.0681 0.0715 0.0833 0.0775

hmm_example-hmm_example 6 0.0708 0.102 0.105 0.0708 0.161 0.12
sblrc-blr 6 0.0613 0.0614 0.0581 0.0613 0.0613 0.0605
sblri-blr 6 0.0729 0.0733 0.0843 0.0729 0.0722 0.0926
arK-arK 7 0.0544 0.0533 0.0525 0.0544 0.0618 0.0557

mesquite-logmesquite_logvash 7 0.165 0.158 0.161 0.165 0.180 0.171
bball_drive_event_0-hmm_drive_0 8 0.203 0.183 0.186 0.203 0.242 0.216
bball_drive_event_1-hmm_drive_1 8 0.812 0.825 0.811 0.812 0.814 0.754
hudson_lynx_hare-lotka_volterra 8 0.113 0.112 0.111 0.113 0.135 0.120

mesquite-logmesquite 8 0.212 0.204 0.209 0.212 0.214 0.212
mesquite-logmesquite_logvas 8 0.197 0.192 0.196 0.197 0.208 0.203

mesquite-mesquite 8 123.0 122.0 114.0 123.0 123.0 121.0
eight_schools-eight_schools_centered 10 9.17 9.50 8.14 9.17 7.00 10.3

eight_schools-eight_schools_noncentered 10 16.8 16.7 16.7 16.8 16.7 16.7
nes1972-nes 10 0.193 0.189 0.172 0.193 0.198 0.172
nes1976-nes 10 0.190 0.189 0.179 0.190 0.202 0.177
nes1980-nes 10 0.229 0.228 0.222 0.229 0.256 0.233
nes1984-nes 10 0.202 0.198 0.197 0.202 0.210 0.184
nes1988-nes 10 0.212 0.210 0.185 0.212 0.214 0.185
nes1992-nes 10 0.172 0.169 0.159 0.172 0.182 0.168
nes1996-nes 10 0.191 0.187 0.173 0.191 0.199 0.179
nes2000-nes 10 0.275 0.273 0.274 0.275 0.306 0.284

diamonds-diamonds 26 0.648 0.647 0.643 0.648 0.648 0.658
mcycle_gp-accel_gp 66 15.5 15.5 15.6 15.5 15.5 15.8

Table 2: Benchmarking on PosteriorDB. Here we compared raw output from MALA with the
post-processed output provided by the default Stein importance sampling method of Liu and Lee
(2017) (SIS-MALA) and the proposed Stein Π-Importance Sampling method (SΠIS-MALA). Here
d = dim(P ) and the number of MALA samples was n = 3× 103. The Langevin and KGM3–Stein
kernels were used for SIS-MALA and SΠIS-MALA and the associated 1-Wasserstein distances are
reported. Ten replicates were computed and statistically significant improvement is highlighted in
bold.
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Figure S7: Comparing the proposed distribution Π (KGM3; based on the KGM3–Stein kernel) to
Π1 (1Wass.; the optimal choice for 1-Wasserstein quantisation from Section 2.1) for a bivariate
skew-normal target (d = 2). The marginal density functions of each distribution were approximated
using 106 samples from MCMC.
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Figure S8: Comparing the performance of using the proposed distribution Π (KGM3; based on
the KGM3–Stein kernel) to Π1 (1Wass.; the optimal choice for 1-Wasserstein quantisation from
Section 2.1) for a bivariate skew-normal target (d = 2). The mean kernel Stein discrepancy (KSD) for
Stein Π-Importance Sampling was estimated; in each case, the KSD based on the KGM3–Stein kernel
was computed. Solid lines indicate the baseline case of sampling from P , while dashed lines indicate
sampling from Π. (The experiment was repeated 10 times and standard error bars are plotted.)
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