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Abstract

When deploying machine learning solutions, they must satisfy multiple require-
ments beyond accuracy, such as fairness, robustness, or safety. These requirements
are imposed during training either implicitly, using penalties, or explicitly, using
constrained optimization methods based on Lagrangian duality. Either way, speci-
fying requirements is hindered by the presence of compromises and limited prior
knowledge about the data. Furthermore, their impact on performance can often
only be evaluated by actually solving the learning problem. This paper presents a
constrained learning approach that adapts the requirements while simultaneously
solving the learning task. To do so, it relaxes the learning constraints in a way that
contemplates how much they affect the task at hand by balancing the performance
gains obtained from the relaxation against a user-defined cost of that relaxation.
We call this approach resilient constrained learning after the term used to describe
ecological systems that adapt to disruptions by modifying their operation. We
show conditions under which this balance can be achieved and introduce a practical
algorithm to compute it, for which we derive approximation and generalization
guarantees. We showcase the advantages of this resilient learning method in image
classification tasks involving multiple potential invariances and in heterogeneous
federated learning.

1 Introduction

Requirements are integral to engineering and of growing interest in machine learning (ML) [1].
This growing interest is evident in, e.g., the advancement towards designing ML systems that are
fair [2], robust [3], and safe [4], as well as numerous applications in which we want to attain good
performance with respect to more than one metric [5–24]. Two concrete applications that we will
use as examples (Section 5) are heterogeneous federated learning, where each client realizes a
different loss due to distribution shifts (as in, e.g., [18–20]) and invariant learning, where we seek to
achieve good performance even after the data has undergone a variety of transformations (as in, e.g.,
[15, 21–23]).

The goal in these settings is to strike a compromise between some top-line objective metric and
the requirements. To this end, an established approach is to combine the top-line and requirement
violation metrics in a single training loss. This leads to penalty methods that are ubiquitous in ML, as
attested by, e.g., fairness [25–28] and robustness [29, 30] applications. Another approach to balance
objective and requirements is formulating and solving constrained learning problems. Though less
typical in ML practice, they are not uncommon [5–18, 21, 24]. In particular, they have also been used
in fair [31–34] and robust [12, 35] learning, to proceed with a common set of applications. It is worth
noting that penalty and constrained methods are not unrelated. They are in fact equivalent in convex
optimization, in the sense that every constrained problem has an equivalent penalty-based formulation.
A similar result holds in non-convex ML settings for sufficiently expressive parametrizations [7, 8].

In either case, the compromise between objective and different requirements are specified by (hy-
per)parameters, be they penalty coefficients or constraint levels (Section 2). Finding penalties or
constraints specifications that yield reasonable trade-offs is particularly difficult in ML, which often
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involves statistical requirements, such as fairness and robustness, that have intricate dependencies
with the model and unknown data distributions. Case in point, consider invariant learning for image
classification [23]. While we know that invariance to rotations and translations is desirable, we do
not know how much invariance to these transformations is beneficial. This depends on the level of
invariance of the data distribution, its prevalence in the dataset, and the capability of the model to
represent invariant functions. The standard solution to this problem involves time consuming and
computationally expensive hyperparameter searches.

This paper addresses this issue by automating the specification of constraint levels during training.
To do so, it begins by interpreting constraints as nominal specifications that can be relaxed to find a
better compromise between objective and requirements (Section 3). We call this approach resilient
constrained learning after the term used to describe ecological systems that adapt to disruptions by
modifying their operation [36, 37]. Our first contribution is the following insight:

(C1) We relax constraints according to their relative difficulty, which we define as the sensitivity
of the objective to perturbations of the constraint (Section 3.1).

That difficult constraints should be relaxed more is a natural choice. The value of (C1) is in defining
what is a difficult constraint. We then seek constraint levels such that the objective loss is relatively
insensitive to changes in those levels. This relative insensitivity incorporates a user-defined cost that
establishes a price for relaxing nominal specifications.

The learning problem implied by (C1) seems challenging. Our next contribution is to show that it is
not:

(C2) We use duality and perturbation theory to present reformulations of the resilient learning
problem from (C1) (Section 3.2) that lead to a practical resilient learning algorithm (Sec-
tion 4) for which we derive statistical approximation bounds (Thm. 1).

Our final contribution is the experimental evaluation of the resilient learning algorithm:

(C3) We evaluate resilient formulations of federated learning and invariant learning (Section 5).

Our experiments show that (C1)–(C2) effectively relaxes constraints according to their difficulty,
leading to solutions that are less sensitive to the requirement specifications. It illustrates how
resilient learning constitutes an interpretable and flexible approach to designing requirements while
contemplating performance trade-offs.

2 Learning with Constraints

Let D0 be a distribution over data pairs (x, y) composed of the feature vector x ∈ X ⊂ Rd

and the corresponding output y ∈ Y ⊂ R. Let fθ : X → Rk be the function associated with
parameters θ ∈ Θ ⊂ Rp and ℓ0 : Rk × Y → [−B,B] be the loss that evaluates the fitness
of the estimate fθ(x) relative to y. Let Fθ = {fθ | θ ∈ Θ} be the hypothesis class induced
by these functions. Different from traditional (unconstrained) learning, we do not seek fθ that
simply minimizes E[ℓ0(ϕ(x), y)], but also account for its expected value with respect to additional
losses ℓi : Rk×Y → [−B,B] and distributionsDi, i = 1, . . . ,m. These losses/distributions typically
encode statistical requirements, such as robustness (where Di denote distribution shifts or adversarial
perturbations) and fairness (where Di are conditional distributions of protected subgroups).

Explicitly, the constrained statistical learning (CSL) problem is defined as

P⋆ = min
θ∈Θ

E(x,y)∼D0

[
ℓ0
(
fθ(x), y

)]
subject to E(x,y)∼Di

[
ℓi
(
fθ(x), y

)]
≤ 0, i = 1, . . . ,m.

(P)

Without loss of generality, we stipulate the nominal constraint specification to be zero. Other values
can be achieved by offsetting ℓi, i.e., E

[
ℓ̃(fθ(x), y)

]
≤ c is obtained using ℓi(·) = ℓ̃(·) − c in (P).

We also let P⋆ take values on the extended real line R ∪ {∞} by defining P⋆ =∞ whenever (P) is
infeasible, i.e., whenever for all θ ∈ Θ there exists i such that EDi

[
ℓi(fθ(x), y)

]
> 0.
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A challenge in formulating meaningful CSL problems lies in specifying the constraints, i.e., the ℓi.
Indeed, while a solution fθ⋆ always exists for unconstrained learning [m = 0 in (P)], there may
be no θ that satisfies the constraints in (P). This issue is exacerbated when solving the problem
using data: even arbitrarily good approximations of the expectations in (P) may introduce errors that
hinder the estimation of P⋆ (see Appendix A for a concrete example). In practice, landing on feasible
requirements may require some constraints to be relaxed relative to their initial specification. Then,
in lieu of (P), we would use the relaxed problem

P⋆(u) = min
θ∈Θ

E(x,y)∼D0

[
ℓ0
(
fθ(x), y

)]
subject to E(x,y)∼Di

[
ℓi
(
fθ(x), y

)]
≤ ui, i = 1, . . . ,m,

(Pu)

where u ∈ Rm
+ collects the relaxations ui ≥ 0. The value P⋆(u) is known as the perturbation function

of (P) since it describes the effect of the relaxation u on the optimal value. Given P⋆(0) = P⋆ and (P0)
is equivalent to (P), this abuse of notation should not lead to confusion.

It is ready that P⋆(u) is a componentwise non-increasing function, i.e., that for comparable argu-
ments vi ≤ wi for all i (denoted v ⪯ w), it holds that P⋆(v) ≥ P⋆(w). However, large relaxations u
drive (Pu) away from (P), the learning problem of interest. Thus, relaxing (P) too much can be as
detrimental as relaxing it too little (see example in Appendix A). The goal of this paper is to exploit
properties of P⋆(u) together with a relaxation cost to strike a balance between these conflicting
objectives. We call this balance a resilient version of (P).

3 Resilient Constrained Learning

We formulate resilient constrained learning using a functional form of (Pu). Explicitly, consider
a convex function class F ⊇ Fθ and define the relaxed functional problem

P̃⋆(u) = min
ϕ∈F

E(x,y)∼D0

[
ℓ0
(
ϕ(x), y

)]
subject to E(x,y)∼Di

[
ℓi
(
ϕ(x), y

)]
≤ ui, i = 1, . . . ,m.

(P̃u)

The difference between (Pu) and (P̃u) is that the latter does not rely on a parametric model. Instead,
its solutions take values on the convex space of functions F . Still, if Fθ is a sufficiently rich
parameterization of F (see Section 4 for details), then P⋆(u) and P̃⋆(u) are close [38, Sec. 3].
Throughout the rest of the paper, we use ∼ to identify these functional problems.

The advantage of working with (P̃u) is that under mild conditions the perturbation function P̃⋆ is
convex. This holds readily if the losses ℓi are convex (e.g., quadratic or cross-entropy) [39, chap. 5].
However, the perturbation function is also convex for a variety of non-convex programs, e.g., (P̃u)
with non-convex losses, non-atomic Di, and decomposable F (see Appendix B). For conciseness, we
encapsulate this hypothesis in an assumption.

Assumption 1 . The perturbation function P̃⋆(u) is a convex function of the relaxation u ∈ Rm
+ .

A consequence of Assumption 1 is that the perturbation function P̃⋆ has a non-empty subdifferential
at every point. Explicitly, let its subdifferential ∂P̃⋆(uo) at uo ∈ Rm

+ be defined as the set of vectors
describing supporting hyperplanes at uo of the epigraph of P̃⋆, i.e.,

∂P̃⋆(uo) =
{
p ∈ Rm

+

∣∣ P̃⋆(v) ≥ P̃⋆(uo) + pT (v − uo), for all v ∈ Rm
+

}
. (1)

The elements of ∂P̃⋆(uo) are called subgradients of P̃⋆ at uo. If P̃⋆ is differentiable at uo, then it has
a single subgradient that is equal to its gradient, i.e., ∂P̃⋆(uo) = {∇P̃⋆(uo)}. In general, however,
the subdifferential is a non-singleton set [40]. Further notice that since P̃⋆(u) is componentwise
nonpositive the subgradients are componentwise negative, pu ⪯ 0.

Next, we use this property to formalize resilient constrained learning as a compromise between
reducing P̃⋆(u) by increasing u and staying close to the original problem (P̃0).
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Figure 1: Resilient equilibrium from Def. 1 for h(u) = u2/2. The shaded area indicates infeasible
specifications: (a) nominal specification (u = 0) is feasible and easy to satisfy; (b) nominal specifica-
tion is feasible but difficult to satisfy (close to infeasible); (c) nominal specification is infeasible.

3.1 Resilient Equilibrium

Consider the effect of increasing the value of a specific relaxation ui in (P̃u) while keeping the rest
unchanged. The solution of (P̃u′) is allowed to suffer higher losses on the constraints (ℓi for i ≥ 1),
which may lead to a smaller objective loss (ℓ0). Hence, while larger relaxations are detrimental
because they violate more the requirements, they are also beneficial because they reduce the objective
loss. To balance these conflicting outcomes of constraint relaxations, we introduce a function h to
capture their costs. Then, since relaxing both increases the costs and decreases the objective value,
we conceptualize resilience as an equilibrium between these variations.

Definition 1 (Resilient Equilibrium). Let h : Rm
+ → R+ be a convex, differentiable,

normalized (i.e., h(0) = 0), and componentwise increasing (i.e., h(v) < h(w) for v ≺ w)
function. A resilient equilibrium of (P̃u) is a relaxation u⋆ satisfying

∇h(u⋆) ∈ −∂P̃⋆(u⋆). (2)

The resilient constrained learning problem amounts to solving (P̃u⋆), i.e., solving (P̃u) for a relax-
ation u⋆ that satisfies (2). We call this equilibrium resilient because it describes how far (P̃0) can
be relaxed before we start seeing diminishing returns. Indeed, u⋆ from (2) is such that relaxing by
an additional ϵ ≻ 0 would incur in a relaxation cost at least ∇h(u⋆)T ϵ larger, whereas tightening
to u⋆ − ϵ would incur in an optimal value increase of at least the same∇h(u⋆)T ϵ.

Notice that resilient constrained learning is defined in terms of sensitivity. Indeed, the resilient
equilibrium in Def. (1) specifies a learning task that is as sensitive to changes in its requirements as it
is sensitive to changes in the relaxation cost. This has the marked advantage of being invariant to
constant translations of ℓ0, as is also the case for solutions of (P̃u). Sensitivity also measures the
difficulty of satisfying a constraint, since ∂P̃⋆(u) quantifies the impact of each constraint specification
on the objective loss. Hence, the equilibrium in (2) has the desirable characteristic of affecting
stringent requirements more.

Two important properties of the equilibrium in Def. 1 are summarized next (proofs are provided in
appendices D.1 and D.2).
Proposition 1. Under Ass. 1, the resilient equilibrium (2) exists. If h is strictly convex, it is unique.
Proposition 2. Let v,w ∈ Rm

+ be such that [v]i = [w]i, for i ̸= j, and [v]j < [w]j . Under Ass. 1,
(i) [∇h(v)]j ≤ [∇h(w)]j and (ii) [−pv]j ≥ [−pw]j for all pv ∈ ∂P̃⋆(v) and pw ∈ ∂P̃⋆(w).

Prop. 1 shows that the equilibrium in (2) is well-posed. Prop. 2 states that, all things being equal,
relaxing the j-th constraint increases the sensitivity of the cost h to it, while simultaneously decreasing
its effect on the objective value P̃⋆. To illustrate these points better, Fig. 1 considers prototypical
learning problems with a single constraint [m = 1 in (P̃u)], differentiable P̃⋆(u), and relaxation
cost h(u) = u2/2. According to (2), the resilient relaxations are obtained at h′(u⋆) = u⋆ = P̃⋆′(u⋆),
where we let g′(u) = dg(u)/du denote the derivative of the function g. As per Prop. 2, h′ is increasing
and −P̃⋆′ is decreasing. Further observe that the sensitivity −P̃⋆′(u) diverges as u approaches the
value that makes the problem infeasible and vanishes as the constraint is relaxed. These two curves
must therefore intersect, claimed by Prop. 1.
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The illustrations in Fig. 1 represent progressively more sensitive/difficult problems. In Fig. 1a, the
nominal problem (u = 0) is easy to solve (small P̃⋆′(0)), making the resilient equilibrium u∗

a ≈ 0.
The original problem and the relaxed problem are essentially equivalent. In Fig. 1b, the nominal
problem is difficult to solve (large P̃⋆′(0)), inducing a significant change in the constraint and
objective losses. In Fig. 1c, the nominal problem is unsolvable, but the resilient relaxation recovers a
feasible problem.

Having motivated the resilient compromise in Def. 1 and proven that it is well-posed, we proceed
to obtain equivalent formulations that show it is also computationally tractable. These formulations
are used to show traditional learning tasks that can be seen as resilient learning problems (Sec. 3.3),
before deriving a practical algorithm to tackle the resilient learning problem (P̃u⋆ ) (Sec. 4).

3.2 Equivalent Formulations

While we have shown that the resilient relaxation from Def. 1 exists (Prop. 1), the equilibrium
in (2) does not provide a straightforward way to compute it. In this section, we show two more
computationally amenable reformulations of Def. 1 by relating u⋆ to the Lagrange multipliers of (P̃u)
and to the solution of a related optimization problem.

Let λ ∈ Rm
+ collect multipliers λi associated to the i-th constraint of (P̃u) and define the Lagrangian

L(ϕ,λ;u) = ED0

[
ℓ0
(
ϕ(x), y

)]
+

m∑
i=1

λi

[
EDi

[
ℓi
(
ϕ(x), y

)]
− ui

]
. (3)

Based on (3), define dual functions g(λ;u) and dual problems D̃⋆(u) for given constraint level u,

D̃⋆(u) = max
λ⪰0

g(λ;u) = max
λ⪰0

min
ϕ∈F

L(ϕ,λ;u). (D̃u)

While D̃⋆ ≤ P̃⋆ (weak duality) in general, there are cases in which D̃⋆ = P̃⋆ (strong duality), e.g., in
convex optimization. The constrained (P̃u) is then essentially equivalent to (D̃u) that can be tackled
by solving an unconstrained, penalized problem (minimizing (3) with respect to ϕ and u), while
adapting the weights λi of the penalties (maximizing (3) with respect to λ). This is, in fact, the basis
of operation of primal-dual constrained optimization algorithms [39, Chapter 5]. The penalties λ⋆(u)
that achieve this equivalence, known as Lagrange multipliers, are solutions of (D̃u) and subgradients
of the perturbation function. Strong duality also holds under the milder Assumption 1 and a constraint
qualification requirement stated next.
Assumption 2 . There exist a finite relaxation u ⪯ ∞ and a function ϕ ∈ F such that all constraints
are met with margin c > 0, i.e., EDi

[
ℓi(ϕ(x), y)

]
≤ ui − c, for all i = 1, . . . ,m.

Note that since u can be large, this requirement is mild. We can thus leverage strong duality to
provide an alternative definition of the resilient relaxation in (2).

Proposition 3. Let λ⋆(u) be a solution of (D̃u) for the relaxation u. Under Assumptions 1 and 2,
P̃⋆(u∗) = D̃⋆(u∗) and any u⋆ ∈ Rm

+ such that ∇h(u⋆) = λ⋆(u⋆) is a resilient relaxation of (P̃u).

See appendix D.3 for proof. Whereas Def. 1 specifies the resilience relaxation in terms of the marginal
performance gains ∂P̃⋆, Prop. 3 formulates it in terms of the penalties λ. Indeed, it establishes that
the penalty λ⋆(u⋆) that achieves the resilient relaxation of (P̃u) is encoded in the relaxation cost
as∇h(u⋆). That is not to say that h directly weighs the requirements as in fixed penalty formulations,
since the equilibrium in Prop. 3 also depends on the relative difficulty of satisfying those requirements.
Though Prop. 3 does not claim that all resilient relaxations satisfy the Lagrange multiplier relation,
this holds under additional continuity conditions on (P̃u) [40].

Prop. 3 already provides a more computationally amenable definition of resilient relaxation, given
that Lagrange multipliers are often computed while solving (P̃u), e.g., when using primal-dual
methods. Yet, an even more straightforward formulation of Def. 1 is obtained by rearranging (2)
as 0 ∈ ∂(P̃⋆ + h)(u⋆), as we did in the proof of Prop. 1, which suggests that u⋆ is related to the
minimizers of P̃⋆ + h. This is formalized in the following proposition (see proof in appendix D.4).
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Proposition 4. A relaxation u⋆ satisfies the resilient equilibrium (2) if and only if it is a solution of

P̃⋆
R = min

ϕ∈F,u∈Rm
+

E(x,y)∼D0

[
ℓ0
(
ϕ(x), y

)]
+ h(u)

subject to E(x,y)∼Di

[
ℓi
(
ϕ(x), y

)]
≤ ui, i = 1, . . . ,m.

(P̃-RES)

The corresponding minimizer ϕ⋆ is a resilient solution of the functional learning problem (P̃u).

Prop. 4 shows that it is possible to simultaneously find a resilient relaxation u⋆ and solve the
corresponding resilient learning problem. Indeed, a resilient solution of a constrained learning
problem can be obtained by incorporating the relaxation cost in its objective. This is reminiscent of
first-phase solvers found in interior-point methods used to tackle convex optimization problems [39,
Chap. 11]. Note, once again, that this is not the same as directly adding the constraints in the objective
as penalties or regularizations. Indeed, recall from Def. 1 that the resilient relaxation balances the
marginal effects of h on P̃⋆ and not ℓ0. Before using Prop. 4 to introduce a practical resilient learning
algorithm and its approximation and generalization properties (Sec. 4), we use these equivalent
formulations to relate resilient learning to classical learning tasks.

3.3 Relation to Classical Learning Tasks

(Un)constrained learning: Both traditional unconstrained and constrained learning can be seen as
limiting cases of resilient learning. Indeed, if h ≡ 0, u has no effect on the objective of (P̃-RES).
We can then take ui = B for i = 1, . . . ,m, which reduces (P̃-RES) to an unconstrained learning
problem (recall that all losses are [−B,B]-valued). On the other hand, if h is the indicator function
of the non-negative orthant (i.e., h(u) = 0 for u ⪯ 0 and h(u) = ∞, otherwise), then it must be
that u = 0 in (P̃-RES) as long as this specification is feasible. Neither of these relaxation costs
satisfy the conditions from Def. 1, since they are not componentwise increasing or differentiable,
respectively. Still, there exists valid relaxation costs that approximate these problems arbitrarily
well (see Appendix D.5).

Penalty-based methods: Rather than the constrained formulations in (P) or (P̃u), requirements are
often incorporated directly into the objective of learning tasks using fixed penalties as in

minimize
ϕ∈F

ED0

[
ℓ0
(
ϕ(x), y

)]
+

m∑
i=1

γiEDi

[
ℓi
(
ϕ(x), y

)]
, (4)

where the fixed γi > 0 represent the relative importance of the requirements. It is immediate from
Prop. 3 that resilient learning with a linear relaxation cost h(u) =

∑
i γiui is equivalent to (4) as long

as EDi

[
ℓi
(
ϕ⋆(x), y

)]
≥ 0. From Def. 1, this is the same as fixing the marginal effect of relaxations

on the perturbation function.

Soft-margin SVM: Linear relaxation costs are also found in soft-margin SVM formulations, namely

minimize
θ∈Θ,u∈Rm

+

1

2
∥θ∥2 + γ

m∑
i=1

ui

subject to 1− yiθ
Txi ≤ ui, i = 1, . . . ,m.

(PI)

Though written here in its parametrized form, the hypothesis class underlying (PI) (namely, linear
classifiers) is convex. It can therefore be seen as an instance of (P̃-RES) where each loss ℓi represent a
classification requirement on an individual sample. Soft-margin SVM is therefore a resilient learning
problem as opposed to its hard-margin version, where ui = 0 for i = 1, . . . ,m.

4 Resilient Constrained Learning Algorithm

We defined the resilient equilibrium u⋆ in (2) and the equivalent resilient learning problems (P̃u⋆)
and (P̃-RES) in the context of the convex functional space F . Contrary to (Pu), that are defined on
the finite dimensional Fθ, these problems are not amenable to numerical solutions. Nevertheless,
we have argued that as long as Fθ is a good approximation of F , the values of (Pu) and (P̃u) are
close. We use this idea to obtain a practical primal-dual algorithm (Alg. 1) to approximate solutions
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Algorithm 1 Resilient Constrained Learning (η, ηu, ηλ > 0; θ(0) ∈ Θ; λ(0),u(0) ∈ Rm
+ )

for t = 1, . . . , T :
θ1 = θ(t−1)

θn+1 = θn − η∇θ

[
ℓ0
(
fθn(xn,0), yn,0

)
+
∑m

i=1 λiℓi
(
fθn(xn,i), yn,i

)]
, n = 1, . . . , N

θ(t) = θN+1

u(t) =
[
u(t−1) − ηu

(
∇h
(
u(t−1)

)
− λ(t−1)

)]
+

λ
(t)
i =

[
λ
(t−1)
i + ηλ

(
1
N

∑N
n=1 ℓi

(
fθ(t−1)(xn,i), yn,i

)
− u

(t−1)
i

)]
+

, i = 1, . . . ,m

end

of (P̃-RES) (and thus (P̃u⋆)). The main result of this section (Thm. 1) establishes how good this
approximation can be when using only samples from the Di.

Explicitly, consider a set of N i.i.d. sample pairs (xn,i, yn,i) drawn from Di and define the
parametrized, empirical Lagrangian of the resilient learning problem (P̃-RES) as

L̂θ(θ,λ;u) = h(u) +
1

N

N∑
n=1

ℓ0
(
fθ(xn,0), yn,0

)
+

m∑
i=1

λi

(
1

N

N∑
n=1

ℓi
(
fθ(xn,i), yn,i

)
− ui

)
. (5)

The parametrized, empirical dual problem of (P̃-RES) is then given by

D̂⋆
R = max

λ∈Rm
+

min
θ∈Θ,u∈Rm

+

L̂θ(θ,λ;u). (D̂-RES)

The gap between D̂⋆
R and the optimal value P̃⋆

R of the original problem (Pu) can be bounded under
the following assumptions.
Assumption 3 . The loss functions ℓi, i = 0 . . .m, are M -Lipschitz continuous.
Assumption 4 . For every ϕ ∈ F , there exists θ† ∈ Θ such that EDi

[
|ϕ(x) − fθ†(x)|

]
≤ ν, for

all i = 0, . . . ,m.
Assumption 5 . There exists ξ(N, δ) ≥ 0 such that for all i = 0, . . . ,m and all θ ∈ Θ,∣∣∣∣EDi

[
ℓi(fθ(x), y)

]
− 1

N

N∑
n=1

ℓi
(
fθ(xn,i), yn,i

)∣∣∣∣ ≤ ξ(N, δ)

with probability 1− δ over draws of {(xn,i, yn,i)}.

Although the parameterized functional space Fθ can be non-convex, as is the case for neural networks,
Ass. 4 requires that it is rich in the sense that the distance to its convex hull is bounded. When ξ exists
for all δ > 0 and is a decreasing function of N , Ass. (5) describes the familiar uniform convergence
from learning theory. Such generalization bounds can be derived based on bounded VC dimension,
Rademacher complexity, or algorithmic stability, to name a few [41].

We can now state the main result of this section, whose proof is provided in Appendix C.

Theorem 1. Consider P̃⋆
R and u⋆ from (P̃-RES) and D̂⋆

R from (D̂-RES). Under Ass. 1–5, it
holds with probability of 1− (3m+ 2)δ that∣∣P̃⋆

R − D̂⋆
R

∣∣ ≤ h(u⋆ + 1 ·Mν)− h(u⋆) +Mν + (1 +∆)ξ(N, δ). (6)

Thm. 1 suggests that resilient learning problems can be tackled using (D̂-RES), which can be solved
using saddle point methods, as in Alg. 1. Even if the inner minimization problem is non-convex, dual
ascent methods can be shown to converge as long as its solution can be well approximated using
stochastic gradient descent [38, Thm. 2], as is often the case for overparametrized NNs [42–44].
A more detailed discussion on the algorithm can be found in Appendix E. Next, we showcase its
performance and our theoretical results in two learning tasks.
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5 Numerical Experiments

We now showcase the numerical properties of resilient constrained learning. As illustrative case
studies, we consider federated learning under class imbalance and invariance constrained learning.
Additional experimental results for both setups are included in Appendix F and H. We also include
ablations on the hyperparameters of the method, including dual and perturbation learning rates, and
the choice of the perturbation cost function h.

5.1 Heterogeneous Federated Learning

Federated learning [45] entails learning a common model in a distributed manner by leveraging data
samples from different clients. Usually, average performance across all clients is optimized under
the assumption that data from different clients is identically distributed. In practice, heterogeneity in
local data distributions can lead to uneven performance across clients [46, 47]. Since this may be
undesirable, a sensible requirement in this setting is that the loss of the model is similar for all clients.

Let Dc be the distribution of data pairs for Client c, and Rc(fθ) = E(x,y)∼Dc
[ℓ(fθ(x), y)] its

statistical risk. We denote the average performance as R(fθ) := (1/C)
∑C

i=1 Rc(fθ), where C is the
number of clients. As proposed in [18] heterogeneity issues can be tackled by imposing a proximity
constraint between the performance of each client Rc, and the loss averaged over all clients R. This
leads to the constrained learning problem

min
θ∈Θ

. R(fθ) (P-FL)

s. to Rc(fθ)−R(fθ)− ϵ ≤ 0, c = 1, . . . , C,

where ϵ > 0 is a small (fixed) positive scalar. It is ready to see that this problem is of the form in (P);
see Appendix F. Note that the constraint in (P-FL) is an asymmetric (and relaxed) version of the
equality of error rates common in fairness literature.

As shown by [18] this problem can be solved via a primal-dual approach in a privacy-preserving
manner and with a negligible communication overhead, that involves sharing dual variables. However,
because the heterogeneity of the data distribution across clients is unknown a priori, it can be
challenging to specify a single constraint level ϵ for all clients that results in a reasonable trade-off
between overall and individual client performance. In addition, the performance of all clients may be
significantly reduced by a few clients whose poor performance make the constraint hard to satisfy.
The heuristic adopted in [18] is to clip dual variables that exceed a fixed value.

In contrast, we propose to solve a resilient version of (P-FL) by including a relaxation uc, c =
1, . . . , C for each constraint and a quadratic relaxation cost h(u) = α∥u∥22. The resilient version of
problem (P-FL) can also be solved in a privacy preserving manner as long as h(u) is separable in
each of the constraint perturbations uc. In that case uc can be updated locally by client c.

Following the setup of [18], heterogeneity across clients is generated through class imbalance. More
specifically, samples from different classes are distributed among clients using a Dirichlet distribution.
Experimental and algorithmic details along with privacy considerations are presented in Appendix F.

Constraint relaxation and relative difficulty: Our approach relaxes constraints according to their
relative difficulty. In the context of class imbalance, the majority classes exert a stronger influence
on the overall objective (average performance). Therefore, the overall performance R tends to favor
smaller losses in the majority classes rather than in the minority ones. As a result, meeting the
proximity constraint in (P-FL) for clients whose datasets contain a higher fraction of training samples
from the minority classes can deteriorate performance. In Figure 2(left), we demonstrate that the
constraint is effectively relaxed more for these clients.

Controlling the performance vs. relaxation trade-off: Through the choice of the relaxation cost
function, we can control the trade-off between relaxing the equalization requirements from (P-FL) and
performance. To illustrate this, we perform an ablation on the coefficient α in the quadratic relaxation
cost h(u) = α∥u∥22. As sown in Figure 2(middle) smaller values of α enable better performance at
the cost of larger relaxations. As α increases, the relaxations vanish and the problem approaches the
original constrained problem. In this manner, the resilient approach enables navigating this trade-off
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Figure 2: (Left) Constraint relaxation and relative difficulty for federated learning under heteroge-
neous class imbalance across clients (crosses). We plot the perturbation uc against the fraction of
the dataset of client c from the minority class, which is associated to how difficult it is to satisfy
the constraint, since minority classes typically have higher loss. (Middle) Relaxation cost parame-
ter (h(u) = α∥u∥22) vs. final training loss and perturbation norm. (Right) Constraint violations on
train and test sets

by changing a single hyperparameter. Still, the optimal relaxation for each client is determined by
their local data distribution, i.e., the relative difficulty of the constraint. In Appendix F.4 we also
perform an ablation on the cost function by changing the perturbation norm.

Constraint violation and generalization: Relaxing stringent requirements not only makes the
empirical problem easier to solve, but it can also lead to a better empirical approximation of the
underlying statistical problem. As shown in Figure 2(right), the resilient approach has a smaller
fraction of clients that are infeasible at the end of training. In addition, when constraints are
evaluated on the test set, larger constraint violations are observed for some (outlier) clients in the hard
constrained approach (uc = 0). In Appendix F.4 we show that this holds across different problem
settings. In addition, we also illustrate the fact that this is partly due to generalization issues, i. e., that
overly stringent requirements can harm generalization. This observation is in line with the constrained
learning theory developed in [7, 8].

Comparing client performances: Our method should sacrifice the performance of outliers–which
represent hard to satisfy constraints–in order to benefit the performance of the majority of the clients.
In order to showcase this, we sort clients according to their test accuracy Acc[1] ≥ Acc[2] ≥ . . . ≥
Acc[c]. We report the fraction of clients in the resilient method that outperform equally ranked clients
for the constrained baseline [18] (Accres

[c] ≥ Accconst
[c] ), as well as the average and maximum increases

and decreases in performance. As shown in Table 1, the majority of clients achieve a small increase
in performance, while a small fraction experiences a larger decrease. In Appendix F.4 we include
plots of ordered accuracies to further illustrate this.

Dataset Imbalance Ratio Improved over constrained (%) Max Improvement Max Deterioration

10 77 1.5 10.0CIFAR10 20 79 2.1 9.1
10 92 4.8 23.3F-MNIST 20 94 2.6 19.4

Table 1: Changes in accuracy for equally ranked clients for the resilient method compared to the
constrained baseline [18]. We report the fraction of equally ranked clients which improved their
accuracy, along with the mean and maximum change across all clients that improve (imp.) and
decrease (dec.) their accuracy, respectively. Performance improves for most clients, although at the
cost of a decrease in performance for a few outliers

5.2 Invariance Constrained Learning

As in [21], we impose a constraint on the loss on transformed inputs, as a mean of achieving robustness
to transformations which may describe invariances or symmetries of the data. Explicitly,

min
θ∈Θ

. E(x,y)∼D [ℓ(fθ(x), y)] (P-IC)

s. to E(x,y)∼D

[
max
g∈Gi

ℓ(fθ(gx), y)

]
− ϵ ≤ 0, i = 1, . . . ,m,
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Figure 3: (Left) Constraint Relaxation and Relative difficulty for Synthetically invariant datasets.
Bars denote the perturbation ui associated with different transformations, and the x-axis shows the
synthetic invariance of the dataset. (Right) Sensitivity (Dual variables) for Synthetically invariant
datasets. Bars correspond to the values of dual variables (for all constraints) at the end of training.
We compare the resilient and constrained approach accross different synthetic datasets.

where Gi is a set of transformations g : X → X such as image rotations, scalings, or translations.
The constraint can be approximated by sampling augmentations using MCMC methods (see [12, 21]
for details). However, it is challenging to specify the transformation sets Gi and constraint levels ϵi
adequately, since they depend on the invariances of the unknown data distribution and whether the
function class is sufficiently expressive to capture these invariances. Therefore, we propose to solve a
resilient version of problem (P-IC) using h(u) = α∥u∥22 as a perturbation cost.

We showcase our approach on datasets with artificial invariances, following the setup of [23].
Explicitly, we generate the synthetic datasets, by applying either rotations, translations, or scalings, to
each sample in the MNIST [48] and FashionMNIST [49] datasets. The transformations are sampled
from uniform distributions over the ranges detailed in Appendix H.

Constraint relaxation and relative difficulty As shown in Figure 3(left) the relaxations (u) associ-
ated with synthetic invariances are considerably smaller than for other transformations. This indicates
that when the transformations in the constraint correspond to a true invariance of the dataset, the
constraint is easier to satisfy. On the other hand, when the transformations are not associated with
synthetic invariances of the dataset, they are harder to satisfy and thus result in larger relaxations.
This results in smaller dual variables, as shown in Figure 3 (right).

Resilience Improves Performance The resilient approach is able to handle the misspecification of
invariance requirements, outperforming in terms of test accuracy both the constrained and uncon-
strained approaches. We include results for MNIST in Table 2 and F-MNIST in Appendix H. In
addition, though it was not designed for that purpose, our approach shows similar performance to the
invariance learning method Augerino [22].

Dataset Method Rotated (180) Rotated (90) Translated Scaled Original
Augerino 97.78± 0.03 96.38± 0.00 94.65± 0.01 97.53± 0.00 98.44± 0.00

Unconstrained 94.49± 0.12 96.25± 0.13 94.64± 0.20 97.47± 0.03 98.45± 0.06
Constrained 94.55± 0.18 96.90± 0.07 93.74± 0.07 97.92± 0.15 98.74± 0.08

MNIST

Resilient 95.38± 0.18 97.19± 0.09 95.21± 0.15 98.20± 0.04 98.86± 0.02

Table 2: Classification accuracy for synthetically invariant MNIST. We use the same invariance con-
straint level ϵi = 0.1 for all transformations. We include the invariance learning method Augerino [22]
as a baseline.

6 Conclusion

This paper introduced a method to specify learning constraints by balancing the marginal decrease
in the objective value obtained from relaxation with the marginal increase in a relaxation cost. This
resilient equilibrium has the effect of prioritizing the relaxation of constraints that are harder to satisfy.
The paper also determined conditions under which this equilibrium exists and provided an algorithm
to automatically find it during training, for which approximation and statistical guarantees were
derived. Experimental validations showcased the advantages of resilient constrained learning for
classification with invariance requirements and federated learning. Future work includes exploring
different relaxation costs and applications to robustness against disturbances and outliers.
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A Constrained learnability and relaxations

In this section, we illustrate how constraints affect learnability, an issue that can be exacerbated by
relaxing their specification either too much or too little. Resilient constrained learning, on the other
hand, progressively adapts to the underlying problem, striking a balance between modifying the
learning task and improving the objective value that can overcome these issues.

Let us begin by stating what we mean by constrained learnability (see [38, Def. 4] for details).
Definition 2 (PACC). A hypothesis class Fθ is probably approximately correct constrained (PACC)
learnable with respect to the losses {ℓi}i=0,...,m if there exists an algorithm that, for every ϵ, δ ∈ (0, 1)
and every distribution Di, i = 0, . . . ,m, can obtain fθ ∈ Fθ using N(ϵ, δ,m) samples from each Di

that is, with probability 1− δ,

1) probably approximately optimal, i.e., for P⋆ as in (P),∣∣E(x,y)∼D0

[
ℓ0
(
fθ(x), y

)]
− P⋆

∣∣ ≤ ϵ, and (7)

2) probably approximately feasible, i.e.,

E(x,y)∼Di

[
ℓi
(
fθ(x), y

)]
≤ ϵ, for all i ≥ 1. (8)

Definition 2 is an extension of the probably approximately correct (PAC) framework from classical
learning theory to the problem of learning under requirements. Indeed, note that for unconstrained
learning problems [m = 0 in (P)], P⋆ ≤ ED0

[
ℓ0
(
fθ(x), y

)]
for all θ ∈ Θ. In that case, (7) reduces

to the classical definition of PAC learnability [41, Def. 2.14]. In general, however, a PACC learner
must also satisfy the approximate feasibility condition (8).

Constrained learning theory shows that, under mild conditions, the PAC learnability of Fθ with
respect to each individual loss ℓi implies its PACC learnability [38, Thm. 1]. This does not mean
that an empirical version of (P) is a PACC learner, i.e., approximates the value of P⋆. In fact, this is
typically not the the case.

Case in point, consider the learning problem

P⋆
e = min

θ∈Θ
J(θ) ≜ ED0

[
|θ⊤x|

]
subject to ED1

[
yθ⊤x

]
≤ −1, ED2

[
yθ⊤x

]
≤ 1,

(PII)

where D0 is the distribution of

(x, y) =

{(
[τ,−τ ]T ,−1

)
, with prob. 1/2(

[0, α]T , 1
)
, with prob. 1/2

,

D1 is such that (x, y) = ([−1, τ ], 1), and D2 is such that (x, y) = ([−τ, 1], 1), where α is drawn
uniformly at random from [0, 1/4] and τ is drawn uniformly at random from [−1/2, 1/2]. Notice that
the Di are correlated through the random variable τ . The parameters θ = [θ1, θ2] are taken from the
finite set Θ =

{
θa, θb, θc, θd

}
, described below together with their corresponding objective values:

J(θ) =


1/32, θ = θa ≜ [1/2, 1/2]T

1/16, θ = θb ≜ [1, 1]T

1/16 + 1/24, θ = θc ≜ [1, 1/3]T

1/8, θ = θd ≜ [1, 0]T

. (9)

Notice that under these distributions, the constraints in (PII) reduce to −θ1 ≤ −1 and θ2 ≤ 1. Hence,
all parameters expect for [1/2, 1/2]T are feasible for the statistical (PII). From (9), its optimal value
is therefore P⋆

e = 1/16 achieved for θ⋆ = θb.

In the sequel, we will show that (i) the empirical version of (PII) [as in (PIII)] recovers its solution
with exponentially small probability (Sec. A.1); (ii) relaxing the empirical problem [as in (PIV)] too
little or too much fails to mitigate this issue (Sec. A.2); and (iii) a resilient relaxation [as in (PV)]
allows the empirical version of (PII) to recover its solutions with high probability. In summary, the
empirical counterpart of (PII) can be relaxed into a PACC learner, but care must be taken when
choosing that relaxations.
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A.1 Empirical constrained risk minimization (ECRM)

Consider the empirical version of (9), which can be written as

P̂⋆
e = min

θ∈Θ
Ĵ(θ) ≜

1

N

N∑
n=1

|θ⊤xn|

subject to θ1 ≥ 1 + τ̄ θ2, θ2 ≤ 1 + τ̄ θ1,

(PIII)

where τ̄ =
1

N

∑N
n=1 τn is the empirical average of i.i.d. samples τn drawn uniformly at random

from [−1/2, 1/2]. Notice that

• for θa, the first constraint reduces to 1/2 ≥ 1 + τ̄ /2 and since τ̄ ≥ −1/2, it is violated
unless τ̄ = 0; and

• for θb, the constraints read 1 ≥ 1 + τ̄ and 1 ≤ 1 + τ̄ , so that at least one is violated
unless τ̄ = 0.

Since τ is a continuous distribution, τ̄ ̸= 0 almost surely. Immediately, we obtain that P̂⋆
e ≥

min(Ĵ(θc), Ĵ(θd)). Additionally, P̂⋆
e <∞ since θd is always feasible. Hence,

P
[
|P̂⋆

e − P⋆
e| ≤ 1/64

]
≤ P

[
|Ĵ(θc)− P⋆

e| ≤ 1/64 ∪ |Ĵ(θd)− P⋆
e| ≤ 1/64

]
≤ P

[
|Ĵ(θc)− P⋆

e| ≤ 1/64
]
+ P

[
|Ĵ(θd)− P⋆

e| ≤ 1/64
]

≤ P
[
|Ĵ(θc)− J(θc)| ≥ 1/24− 1/64

]
+ P

[
|Ĵ(θd)− J(θd)| ≥ 1/16− 1/64

]
≤ 4e−0.001N .

A.2 Relaxed ECRM

Consider now a relaxation of (PIII), namely

P̂⋆
x = min

θ∈Θ
Ĵ(θ) ≜

1

N

N∑
n=1

|θ⊤xn|

subject to θ1 ≥ 1 + τ̄ θ2 − u1, θ2 ≤ 1 + τ̄ θ1 + u2.

(PIV)

Problem (PIV) is the empirical version of (Pu) for the relaxation u = [u1, u2]
T . It is straightforward

to see that if u1, u2 < τ̄ , then we are in the situation of Sec. A.1 and once again P
[
|P̂⋆

e − P⋆
e| ≤

1/64
]
→ 0 as N →∞.

On the other hand, notice that the constraints always hold whenever u1 ≥ 1 + τ̄ θ2 − θ1 and u2 ≥
θ2 − τ̄ θ1 − 1:

• For θa, this reduces to u1 ≥ (τ̄ + 1)/2, since u2 ≥ −(τ̄ + 1)/2 is satisfied for all u ⪰ 0.
We therefore obtain that

0 ≤ P̂⋆
x ≤ Ĵ(θa), for u1 ≥

τ̄ + 1

2
.

In this case, recalling that τ̄ ̸= 0 almost surely yields

P
[
|P̂⋆

x − P⋆
e| ≤ 1/64

]
= P

[
|Ĵ(θa)− 1/16| ≤ 1/64 ∩ Ĵ(θa) ≤ Ĵ(θb) ∨ Ĵ(θc) ∨ Ĵ(θd)

)]
≤ P

[
|Ĵ(θa)− 1/16| ≤ 1/64

]
,

where we use x ∨ y = min(x, y). Using the fact that J(θa) = 1/32, we obtain

P
[
|P̂⋆

x − P⋆
e| ≤ 1/64

]
≤ P

[
|Ĵ(θa)− J(θa)− 1/32| ≤ 1/64

]
≤ P

[
|Ĵ(θa)− J(θa)| ≥ 1/64

]
≤ 2e−0.0001N .

• For θb, this becomes u1 ≥ τ̄ and u2 ≥ τ̄ . Hence,

Ĵ(θa) ̸= P̂⋆
x ≤ Ĵ(θb), for τ̄ ≤ u1 <

τ̄ + 1

2
and u2 ≥ τ̄ .
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Since P⋆
e = J(θb), we therefore get

P
[
|P̂⋆

x − P⋆
e| ≤ 1/64

]
= P

[
|Ĵ(θb)− J(θb)| ≤ 1/64 ∩ Ĵ(θb) ≤ Ĵ(θc) ∨ Ĵ(θd)

]
≥ P

[
Ĵ(θb) ≤ Ĵ(θc) ∨ Ĵ(θd)

]
− P

[
|Ĵ(θb)− J(θb)| ≥ 1/64

]
Notice that since Ĵ(θ) concentrates around J(θ) for θ ∈ Θ, for every ϵ > 0, there exists N0

such that P
[
Ĵ(θb) ≤ Ĵ(θc) ∨ Ĵ(θd)

]
≥ 1− ϵ. We therefore conclude that

P
[
|P̂⋆

x − P⋆
e| ≤ 1/64

]
≥ 1− ϵ− P

[
|Ĵ(θb)− J(θb)| ≥ 1/64

]
≥ 1− ϵ− 2e−0.0004N

In summary, we have that

P
[
|P̂⋆

x − P⋆
e| ≤ 1/64

]
=


≤ 4e−0.001N , u1, u2 < τ̄

≥ 1− 3e−Nt2 , τ̄ ≤ u1 <
τ̄ + 1

2
and u2 ≥ τ̄

≤ 2e−0.0001N , u1 ≥
τ̄ + 1

2

A.3 Resilient ECRM

Finally, consider the resilient version of (PIII)

P̂⋆
R = min

θ∈Θ,u∈Rm
+

Ĵ(θ) +
∥u∥2

2

subject to θ1 ≥ 1 + τ̄ θ2 − u1, θ2 ≤ 1 + τ̄ θ1 + u2

(PV)

and let θ̂⋆R be a solution of (PV). Notice that (PV) is an empirical version of the equivalent formulation
in Prop. 4. We consider the value of the problem for each possible element of Θ:

• For θa to be feasible, it must be that u1 ≥ (τ̄ + 1)/2 (u2, on the other hand, can be 0).
Hence, we have that

P̂⋆
R ≤ Ĵ(θa) +

(τ̄ + 1)2

8
.

• For θb to be feasible, it must be that u1 ≥ τ̄ and u2 ≥ τ̄ . Hence,

P̂⋆
R ≤ Ĵ(θb) + τ̄2.

• For θc to be feasible, it must be that u1 ≥ τ̄ /3 (once again the second constraint need not
be relaxed). Hence,

P̂⋆
R ≤ Ĵ(θc) +

2τ̄2

9
.

• Finally, θd is feasible for all u ∈ Rm
+ . Hence,

P̂⋆
R ≤ Ĵ(θd).

Putting together these conditions, we obtain that for θb to be optimal, i.e., for Ĵ(θ̂⋆R)→ P⋆
e , it must

be that

Ĵ(θb) + τ̄2 ≤ Ĵ(θa) +
(τ̄ + 1)2

8
∨ Ĵ(θc) +

2τ̄2

9
∨ Ĵ(θd) (10)

From the fact that Ĵ(θ) concentrates around J(θ) for θ ∈ Θ (e.g., by Hoeffding’s inequality) and
using the values of J from (9), it holds that there exists N0 such that θb is optimal for N ≥ N0 as
long as |τ̄ | ≤ 0.2. We therefore conclude that

P
[
|J(θ̂⋆R)− P⋆

e| ≤ 1/64
]
≥ P

[
θ̂⋆R = θb

]
≥ P

[
|τ̄ | ≤ 0.2

]
≥ 1− 2e−0.08N .
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B Convexity of the Perturbation Function for Nonconvex Losses

The definition of resilient equilibrium and all subsequent results in the paper require convexity of the
perturbation function P̃⋆(u) defined in (P̃u). This requisite is stated in Assumption 1.

Assumption 1 is well known to hold if the optimization problem (P̃u) is convex, for which it is
sufficient for the class F to be a convex set and the losses ℓi to be convex functions (see, e.g., [40]).
If the problem is not parametric, as is, e.g., (P), then assuming the hypothesis class F is convex is
mild. Consider, e.g., the set F to be the intersection of the space of Di-measurable functions. Overall,
it is not a significant restriction to assume that the losses are convex since this is the case for typical
losses, such as cross entropy and mean squared error1.

This convex losses requirement can be relaxed as long as the distributions are well-behaved and the
hypothesis class F is rich enough. We define these conditions in two technical assumptions. In what
follows, we consider the distributions Di are defined over the same probability space (X × Y,Σ,Pi)
for the sigma-algebra Σ and the measures Pi.
Assumption 6 (Non-atomic distributions). The set Y is finite and the conditional random vari-
ables x | y induced by the Di measures are non-atomic. That is, for every measurable event Z ∈ Σ
with strictly positive conditional measure Pi,x|y(Z) > 0, there exist an event Σ ∋ Z ′ ⊂ Z strictly
included in Z with positive conditional measure mbPi,x|y(Z

′) > 0.
Assumption 7 (Decomposable hypothesis class). The set F is decomposable in the sense that for all
pair of functions ϕ1, ϕ2 ∈ F and all measurable set Z ∈ Σ, it holds that ϕ̄ ∈ F for

ϕ̄(x) =

{
ϕ1(x), x ∈ Z

ϕ2(x), x /∈ Z

Assumption 6 requires data probability distributions in which all points have zero measure. Assump-
tion 7 requires hypothesis classes that are closed under “cutting and stitching” of functions.

In turns out that Assumptions 6 and 7 are enough to guarantee that the perturbation function is convex.
In particular, they imply the following result [38, Lemma A.1].
Lemma 1. Define the cost constraint epigraph of (P̃u) to be the set

C =
{
[s0; s] ∈ Rm+1 | ∃ϕ ∈ F such that EDi

[ℓi(ϕ(x), y)] ≤ si i = 0, . . . ,m
}
. (11)

Under Assumptions 6 and 7, the set C is convex.

Notice that Lemma 1 does not require the losses ℓi to be convex for the cost-constraint epigraph to be
convex. This is a significant fact since it implies that the perturbation function of (P̃u) is also convex,
as we show next.
Proposition 5. Consider the perturbation function P̃⋆(u) defined in (P̃u). Under Assumptions 6
and 7, P̃⋆(u) is convex.

Proof. Let v and w be two perturbations of (P̃u) and define the convex combination perturbation
ua = av + (1 − a)w for some a ∈ [0, 1]. To prove that P̃⋆(u) is convex we need to show that
P̃⋆(ua) ≤ aP̃⋆(v) + (1− a)P̃⋆(w) for all a.

If either v or w yield infeasible problems we have P̃⋆(v) = ∞ or P̃⋆(w) = ∞. In this case,
P̃⋆(ua) ≤ aP̃⋆(v) + (1 − a)P̃⋆(w) = ∞. In the more interesting case where v and w both yield
feasible problems, we have that

[P̃⋆(v);v] ∈ C and [P̃⋆(w);w] ∈ C, (12)

for C defined in (11). Indeed, any ϕ⋆
v that solves (P̃v) must satisfy EDi [ℓi(ϕ

⋆
v(x), y)] ≤ ui for i > 0

and ED0
[ℓ0(ϕ

⋆
v(x), y)] = P̃⋆(v). Likewise for a function ϕ⋆

w that solves (P̃w).

Under Assumptions 6 and 7, we can combine (12) and Lemma 1 to get that

a[P̃⋆(v);v] + (1− a)[P̃⋆(w);w] ∈ C, for all a ∈ [0, 1]. (13)
1It is only when dealing with the parametrized Fθ that the composition of the parametrization with the loss

may lead to a convex function of the decision variable θ.
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For this to hold, the definition of C in (11) implies that there exists a function ϕa ∈ F such that

E [ℓ0(ϕa(x), y)] ≤ aP̃⋆(v) + (1− a)P̃⋆(w) and (14a)
E [ℓi(ϕa(x), y)] ≤ aui + (1− a)vi, for i = 1, . . . ,m. (14b)

From (14b) we obtain that ϕa is feasible for (P̃ua ). Hence, it is a suboptimal solution of (P̃ua ), which
implies that

P̃⋆(ua) ≤ E [ℓ0(ϕa(x), y)] ≤ aP̃⋆(v) + (1− a)P̃⋆(w), (15)

thus concluding the proof. ■

Proposition 5 shows that the perturbation function P̃⋆(u) can be convex even when (P̃u) is defined
based on non-convex losses. In the context of resilient learning, this is important because it allows us
to quantify the variations of the perturbation function, which is the basis for the resilient equilibrium
from Def. 1.

The convexity of the perturbation function P̃⋆(u) is also relevant because, under a constraint qualifi-
cation such as the one stated in Assumption 2, it implies that the optimization problem is strongly
dual. We encapsulate this result in the next lemma since it will be used in subsequent derivations.

Lemma 2. Suppose P̃⋆(u) associated to (P̃u) is convex (Assumption 1) and there exists ϕ ∈ F
strictly feasible for (P̃0) (Assumption 2). Then, strong duality holds for (P̃u), i.e., P̃⋆ = D̃⋆.

Proof. The result follows from [50, Thm. 15] since the constraint qualification in Assumption (2)
implies that P̃⋆ is lower semi-continuous [50, Thm. 18(a)], i.e., that its epigraph is closed [51,
Prop. 1.1.2]. ■

C Proof of Thm. 1

The proof is divided in three steps that transform the resilient functional dual problem (P̃-RES)
into the resilient, parametrized, empirical dual problem (D̂-RES). Explicitly, define the Lagrangian
of (P̃-RES) as

L̃R(ϕ,λ;u) = ED0

[
ℓ0(ϕ(x), y)

]
+ h(u) +

m∑
i=1

λi

(
EDi

[
ℓi(ϕ(x), y)

]
− ui

)
(16)

and its dual problem as
D̃⋆

R = max
λ∈Rm

+

min
ϕ∈F,u∈Rm

+

L̃R(ϕ,λ;u). (D-RES)

First, from lemma 2 we have that if assumption 1 and assumption 2 hold then the problem is strongly
dual, i.e., P̃⋆

R = D̃⋆
R.

Then, to relate (D-RES) to its parametrized, empirical version (D̂-RES), we begin by approximatingF
by Fθ. Explicitly, we consider the difference between P̃⋆

R and

D̃⋆
θ = max

λ∈Rm
+

min
θ∈Θ,u∈Rm

+

L̃R(fθ,λ;u). (Dθ-RES)

This difference, which we call the approximation error, is bounded in the following proposition:

Proposition 6. Under Assumptions 1–2, it holds that

P̃⋆
R ≤ D̃⋆

θ ≤ P̃⋆
R + h(u⋆ + 1 ·Mν)− h(u⋆) +Mν, (17)

for P̃⋆
R and u⋆ as in (P̃-RES) and D̃⋆

θ as in (Dθ-RES).

The proof of Prop. 6 is deferred to Sec. C.1. We proceed by replacing the expectations in (Dθ-RES)
by empirical averages, leading to a generalization error bounded as follows:
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Proposition 7. Let D̃⋆
θ be the value of the parametrized dual problem (Dθ-RES) achieved for a

Lagrange multiplier λ⋆ and D̂⋆
R be the value of the empirical, parametrized dual problem (D̂-RES)

achieved for a Lagrange multiplier λ̂⋆. Under Assumption (5), it holds that∣∣D̃⋆
θ − D̂⋆

R

∣∣ ≤ (1 + ∆)ξ(N, δ) (18)

with probability 1− 2(m+ 1)δ, where ∆ = max
(
∥λ⋆∥1, ∥λ̂⋆∥1

)
.

A proof can be found in Sec. C.2. Combining the results in Prop. 6 and 7 using the triangle inequality
yields (6) and concludes the proof of Thm. 1.

C.1 Bounding the parametrization error: proof of Prop. 6

The lower bound stems directly from the definition of the dual problem in (Dθ-RES). Indeed, it is
immediate that

D̃⋆
θ ≥ min

θ∈Θ,u∈Rm
+

L̃R(fθ,λ;u), for all λ ∈ Rm
+ . (19)

In particular, (19) holds for a solution λ⋆ of the resilient functional dual problem D-RES. Explicitly,
we can write

D̃⋆
θ ≥ min

θ∈Θ,u∈Rm
+

L̃R(fθ,λ
⋆;u)

Since Fθ ⊆ F , it follows that

D̃⋆
θ ≥ min

θ∈Θ,u∈Rm
+

L̃R(fθ,λ
⋆;u) ≥ min

ϕ∈F,u∈Rm
+

L̃R(ϕ,λ
⋆;u) = D̃⋆

R = P̃⋆
R. (20)

The upper bound is obtained by relating the parameterized dual problem (Dθ-RES) to a tightened
version of (P̃-RES). Start by adding and subtracting L̃R(ϕ,λ;u) in (16) from the objective of the
parametrized dual problem (Dθ-RES) to get

L̃R(fθ,λ;u) = L̃R(ϕ,λ;u) +
[
L̃R(fθ,λ;u)− L̃R(ϕ,λ;u)

]
= L̃R(ϕ,λ;u) + ED0

[
ℓ0(fθ(x), y)− ℓ0(ϕ(x), y)

]
+

m∑
i=1

λiEDi

[
ℓi(fθ(x), y)− ℓi(ϕ(x), y)

]
,

(21)

where the relaxations ui and relaxation costs h(u) canceled out. To proceed, use the Lipschitz
continuity of the losses (Assumption 3) to bound the expected loss difference as∣∣∣EDi

[
ℓi
(
fθ(x), y

)
− ℓi(ϕ(x), y

)]∣∣∣ ≤ EDi

[∣∣ℓi(ϕ(x), y)− ℓi
(
fθ(x), y

)∣∣]
≤MEDi

[
|fθ − ϕ(x)|

]
, for i = 0, . . . ,m.

We can then bound (21) as

L̃R(fθ,λ;u) ≤ L̃R(ϕ,λ;u) +M

(
1 +

m∑
i=1

λi

)[
max

i∈{0,...,m}
EDi

[
|fθ − ϕ(x)|

]]
. (22)

Minimizing (22) over θ yields

min
θ∈Θ

L̃R(fθ,λ;u) ≤ L̃R(ϕ,λ;u) +M

(
1 +

m∑
i=1

λi

)[
min
θ∈Θ

max
i∈{0,...,m}

EDi

[
|fθ − ϕ(x)|

]]
. (23)

However, from the ν-approximation property of the parametrization (Assumption 4), for every ϕ ∈ F
there exists θ ∈ Θ such that EDi

[
|fθ − ϕ(x)|

]
≤ ν, for i = 0, . . . ,m. Hence, (23) simplifies to

min
θ∈Θ

L̃R(fθ,λ;u) ≤ L̃R(ϕ,λ;u) +

(
1 +

m∑
i=1

λi

)
Mν. (24)

Notice that (24) holds uniformly over ϕ ∈ F . Additionally, since the left-hand side does not
depend on ϕ, minimizing it over u and ϕ then maximizing with respect to λ recover the dual value
from (Dθ-RES). We immediately obtain the upper bound

D̃⋆
θ ≤ max

λ∈Rm
+

min
ϕ∈F,u∈Rm

+

L̃R(ϕ,λ;u) +

(
1 +

m∑
i=1

λi

)
Mν. (25)
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Expanding L̃R and rearranging the terms in (25), we recognize the Lagrangian of a perturbed version
of (P̃-RES), namely

P̃⋆
Mν = min

ϕ∈F,u∈Rm
+

ED0

[
ℓ0
(
ϕ(x), y

)]
+ h(u) +Mν

subject to E(x,y)∼Di

[
ℓi
(
ϕ(x), y

)]
≤ ui −Mν, i = 1, . . . ,m.

(PVI)

Hence, the right-hand side of (25) is the dual problem of (PVI). Since (PVI) is strongly dual (from
lemma 2), we obtain that D̃⋆

θ ≤ P̃⋆
Mν . To bound P̃⋆

Mν , note that we can construct a feasible pair
for (PVI) from any pair (ϕ⋆,u⋆) that solves the resilient functional learning problem (P̃-RES).
Explicitly, observe that the pair (ϕ⋆,u⋆ + 1 ·Mν) is a (suboptimal) feasible point of (PVI). Thus,

D̃⋆
θ ≤ P̃⋆

Mν ≤ ED0

[
ℓ0
(
ϕ⋆(x), y

)]
+ h(u⋆ + 1 ·Mν) +Mν

≤ P̃⋆
R − h(u⋆) + h(u⋆ + 1 ·Mν) +Mν

(26)

Combining (20) and (26) concludes the proof. ■

C.2 Bounding the generalization error: Proof of Prop. 7

Let λ⋆ and λ̂⋆ be solution pairs of (Dθ-RES) and (D̂-RES) respectively and consider the sets of dual
minimizers

M(λ) = argmin
θ∈Θ,u∈Rm

+

L̃R(fθ,λ;u) and M̂(λ) = argmin
θ∈Θ,u∈Rm

+

L̂θ(θ,λ;u).

Note that member of these set are pairs (θ,u). Since λ̂⋆ maximizes the minimum (with re-
spect to θ and u) of the empirical Lagrangian in (5), it holds that minθ∈Θ,u∈Rm

+
L̂θ(θ, λ̂

⋆;u) ≥
minθ∈Θ,u∈Rm

+
L̂θ(θ,λ;u) for all λ ∈ Rm

+ . In particular,

D̃⋆
θ − D̂⋆

R = min
θ∈Θ,u∈Rm

+

L̃R(fθ,λ
⋆;u)− min

θ∈Θ,u∈Rm
+

L̂θ(θ, λ̂
⋆;u)

≤ min
θ∈Θ,u∈Rm

+

L̃R(fθ,λ
⋆;u)− min

θ∈Θ,u∈Rm
+

L̂θ(θ,λ
⋆;u).

Since (θ̂†, û†) ∈ M̂(λ⋆) is suboptimal for L̃R(fθ,λ
⋆;u), we get

D̃⋆
θ − D̂⋆

R ≤ L̃R(fθ̂† ,λ
⋆; û†)− L̂θ(θ̂

†,λ⋆; û†).

Using a similar argument yields

D̃⋆
θ − D̂⋆

R ≥ L̃R(fθ† , λ̂⋆;u†)− L̂θ(θ
†, λ̂⋆;u†)

for (θ†,u†) ∈M(λ̂⋆). We thus obtain∣∣D̃⋆
θ − D̂⋆

R

∣∣ ≤ max

{∣∣∣L̃R(fθ̂† ,λ
⋆; û†)− L̂θ(θ̂

†,λ⋆; û†)
∣∣∣, ∣∣∣L̃R(fθ† , λ̂⋆;u†)− L̂θ(θ

†, λ̂⋆;u†)
∣∣∣}
(27)

Using the uniform convergence bound from Assumption 5, we obtain that∣∣∣L̃R(fθ,λ;u)− L̂θ(θ,λ;u)
∣∣∣ ≤ ξ(N, δ) +

m∑
i=1

λiξ(N, δ) ≤ (1 + ∥λ∥1)ξ(N, δ), (28)

holds uniformly over θ with probability 1− (m+ 1)δ. Combining (27) with (28) using the union
bound concludes the proof. ■

D Proofs from Main Text

D.1 Proof of Proposition 1

Proof. [Existence] To show there exists u⋆ ∈ Rm
+ satisfying Def. 1, notice that (2) is equivalent to

showing that there exists u⋆ such that 0 ∈ ∂f(u⋆) for f(u) = P̃⋆(u) + h(u). Notice that f is a
convex function, so that its subgradient is well-defined [see (1)].
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Start by noticing that the set of minimizers of f is not empty. Explicitly, let U⋆ = argminu∈Rm
+

f(u).

Observe that since the losses ℓi are bounded, P̃⋆(ū) = P̃⋆(v) for all v ⪰ ū = B · 1. Immediately,
we obtain that f(v) is a componentwise increasing function for v ⪰ ū, which implies that U⋆ =
argminu∈Ū f(u), where Ū = {u ∈ Rm

+ | u ⪯ ū}. Since Ū is compact and f is convex, its set of
minimizers U⋆ is compact and non-empty [51, Prop. B.10(b)].

For all u′ ∈ int(U⋆), where int(Z) denotes the interior of the set Z , it must be that 0 ∈ ∂f(u′) [52,
Prop. 5.4.7]. This is simply a statement of the first-order optimality condition for u′.

Suppose, now, that U⋆ has no interior and that for all u′ ∈ U⋆, [u′]j = 0 for some j. Then, it could
be that for all p ∈ ∂f(u′) are such that [p]j > 0. However, this would lead to a contradiction.
Indeed, since h is normalized, it holds that [∇h(u′)]j = 0, so that ∂f(u′) = ∂P̃⋆(u′). Thus, if
all p ∈ ∂f(u′) are such that [p]j > 0, then all p ∈ ∂P̃⋆(u′) are such that [p]j > 0. From the
convexity of P̃⋆, this would imply that P̃⋆(u′ + ej) ≥ P̃⋆(u′) + [p]j > P̃⋆(u′), where ej is the j-th
element of the canonical basis. This contradicts the fact that P̃⋆ is componentwise non-increasing. It
must therefore be that 0 ∈ ∂f(u′).

[Unicity] If h is strictly convex, then f is strictly convex. Then, its minimizer is unique [53, Chap.
27], i.e., U⋆ is a singleton. Suppose there exists u† /∈ U⋆ that satisfies the equilibrium in Def. 1.
Then, from (2), it holds that 0 ∈ ∂f(u†). Since f is convex, this implies that u† is a minimizer,
which violates the hypothesis that it is not in U⋆. ■

D.2 Proposition 2

Proof. From the definition of sub-differential, it holds for any pv ∈ ∂P̃⋆(v) and pw ∈ ∂P̃⋆(w) that

P̃⋆(v) ≥ P̃⋆(w) + pT
w(v −w) (29)

P̃⋆(w) ≥ P̃⋆(v) + pT
v (w − v) (30)

Adding (29) and (30), we can rearrange the terms to get

0 ≥ (pv − pw)
T (w − v) (31)

Then, since vi − ui > 0 if i = j and 0 otherwise, (31) implies that [pv]j − [pw]j ≤ 0, which yields
the desired result. Applying the same argument for h concludes the proof. ■

D.3 Proposition 3

Proof. The strong duality of (P̃-RES) under assumptions 1 and 2 holds due to Lemma 2. The proof
then follows the same steps used to prove that optimal Lagrange multipliers are subgradients of the
dual function in convex problems; see, e.g., [39, Section 5.6.2]. We just verify that the proof holds
despite the non-convexity of the problem as long as the problem is strongly dual.

By definition of the dual function we can write

P̃⋆(u) = D⋆(u) = g(λ∗;u) = min
ϕ
L
(
ϕ,λ∗(u);u

)
≤ L

(
ϕ,λ∗(u);u

)
(32)

where the inequality is true for any function ϕ. We particularize this inequality to a function ϕ∗(·;v)
that attains the minimum of (Pu) for relaxation v. We can therefore write

P̃⋆(u) ≤ L
(
ϕ∗(·;v),λ∗(u);u

)
, (33)

We now substitute the definition of the Lagrangian in (3) for the right hand side of (33) to write

P̃⋆(u) ≤ ED0

[
ℓ0(ϕ

∗(x;v), y)
]
+

m∑
i=1

λ∗
i (u)

[
EDi

[
ℓi(ϕ

∗(x;v), y)
]
− ui

]
. (34)

The important property to observe in (34) is that we consider perturbation u and corresponding dual
variable λ∗(u) while evaluating the Lagrangian at the function ϕ∗(x;v) that is primal optimal for
perturbation v. This latter fact implies that the following equality and inequalities are true

ED0

[
ℓ0(ϕ

∗(x;v), y)
]
= P̃⋆(v), EDi

[
ℓi(ϕ

∗(x;v), y)
]
≤ −vi. (35)
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Using the relationships in (35) and (34) we conclude that

P̃⋆(u) ≤ P̃⋆(v) +

m∑
i=1

λ∗
i (u)

[
vi − ui

]
. (36)

The two sums in the right hand side of (36) equal the inner product of multiplier λ⋆(u) with (v− u).
Implementing this substitution in (36) and reordering terms yields

P̃⋆(v) ≥ P̃⋆(u)− λ∗(u)
T
(v − u). (37)

Comparing (37) with (1) we see that λ∗(u) satisfies Definition 1. ■

D.4 Proposition 4

Proof. As we did in the proof of Prop. 1, we begin by showing that u⋆ is a minimizer of (P̃⋆+h)(u) =

P̃⋆(u) + h(u). Explicitly,
u⋆ ∈ argmin

u∈Rm
+

(P̃⋆ + h)(u). (P̃-RES′)

As shown in proposition 1, u⋆ minimizes P̃⋆ + h iff 0 ∈ ∂(P̃⋆ + h)(u⋆). Then 0 ∈ ∂(P̃⋆ + h)(u⋆)
is also equivalent to the resilient equilibrium definition (2).

In (P̃u), the function P̃⋆(u) is defined as the solution of (P̃u). To show that (P̃-RES′) and (P̃-RES)
are equivalent a nested minimization over variables ϕ and u is equivalent to a joint minimization over
ϕ and u. To confirm that this holds here recall the definition of u⋆ as the resilient relaxation and of
ϕ∗(x;u) as the minimizer of the relaxed problem (P̃u) – which holds for all u and u⋆ in particular.
Since u⋆ is the solution of (P̃-RES′). We therefore have that for all perturbations u

E(x,y)∼D0

[
ℓ0(ϕ

∗(x;u⋆), y)
]
+ h(u⋆) ≤ E(x,y)∼D0

[
ℓ0(ϕ

∗(x;u), y)
]
+ h(u). (38)

Further observe that ϕ∗(x;u) is the minimizer of the relaxed problem (Pu) associated with perturba-
tion u. We then have that for any feasible function ϕ we must have

E(x,y)∼D0

[
ℓ0(ϕ

∗(x;u), y)
]
+ h(u) ≤ E(x,y)∼D0

[
ℓ0(ϕ(x), y)

]
+ h(u). (39)

The bound in (39) is true for all ϕ and u. In particular, it is true for the solution ϕ∗,u∗ of (P̃-RES).
Particularizing (39) to this pair and combining the resulting inequality with the bound in (38) we
conclude that

E(x,y)∼D0

[
ℓ0(ϕ

∗(x;u⋆), y)
]
+ h(u⋆) ≤ E(x,y)∼D0

[
ℓ0(ϕ

∗(x), y)
]
+ h(u∗). (40)

On the other hand, given that ϕ∗,u∗ solve (P̃-RES) we have that for all feasible u and ϕ

E(x,y)∼D0

[
ℓ0(ϕ

∗(x), y)
]
+ h(u∗) ≤ E(x,y)∼D0

[
ℓ0(ϕ(x), y)

]
+ h(u). (41)

In particular, this is true if we make u = u⋆ and ϕ = ϕ∗(x;u⋆). We can then write,

E(x,y)∼D0

[
ℓ0(ϕ

∗(x), y)
]
+ h(u∗) ≤ E(x,y)∼D0

[
ℓ0(ϕ

∗(x;u⋆), y)
]
+ h(u⋆) (42)

For (40) and (42) to hold we must have that ϕ∗,u∗ is a solution of (P̃-RES) if and only if u⋆ and
ϕ = ϕ∗(x;u⋆) are a resilient perturbation and a corresponding resilient minimizer. ■

D.5 Proposition 8

Proposition 8. Let Φ⋆ = argminϕ∈F E(x,y)∼D0

[
ℓ0(ϕ(x;u

⋆), y)
]

denote the solution set of the

unconstrained problem and bi = minϕ∈Φ⋆ E(x,y)∼Di

[
ℓi(ϕ(x;u

⋆), y)
]
, i = 1, . . . ,m be the min-

imum constraint losses achieved. We show there exists costs such that
¯
u⋆
i ≤ ϵ and ū⋆

i ≥ bi − ϵ
for i = 1, . . . ,m.
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Proof.

First, we will show sufficient conditions for u⋆ ⪯ 1ϵ and u⋆ ⪰ b − 1ϵ, in terms of ∂P̃⋆ and ∇h
evaluated at 1ϵ and b− 1ϵ, respectively. For any u ∈ Rm

+ the strong duality of P̃⋆ (lemma 2) implies
that ∂P̃⋆(u) is non empty and bounded. Also, the convexity of P̃⋆ (assumption 1) implies that for all
pu ∈ ∂P̃⋆(u) and pu⋆ ∈ ∂P̃⋆(u⋆) by (31) from proposition (3) it holds that〈

pu⋆ − pu,u
⋆ − u

〉
≥ 0 (43)

Analogously, due to the convexity of h we have that〈
∇h(u⋆)−∇h(u),u⋆ − u

〉
≥ 0 (44)

Adding (43) and (44) we obtain〈
[pu⋆ +∇h(u⋆)]− [pu +∇h(u)] ,u⋆ − u

〉
≥ 0 (45)

(45) holds for any pu⋆ ∈ ∂P̃⋆(u⋆). Since u⋆ achieves the resilient equilibrium, by definition
−∇h(u⋆) = pu⋆ ∈ ∂P̃⋆(u⋆), which implies that for all pu ∈ ∂P̃⋆(u)〈

[pu +∇h(u)] ,u⋆ − u
〉
≤ 0 (46)

Finally, by choosing particular values of u in (46) we obtain the desired conditions.

(u⋆ ⪯ 1ϵ): Letting a = ϵ, (46) implies that if there exists

p1ϵ ∈ ∂P̃⋆(1ϵ) such that p(1ϵ) + h(1ϵ) ≻ 0 then u⋆ ⪯ 1ϵ. (47)

(u⋆ ⪰ 1b− 1ϵ ): Letting a = b− 1ϵ, (46) implies that if there exists

p(b−1ϵ)+ ∈ ∂P̃⋆((b− 1ϵ)+) such that p(b−1ϵ)+ + h((b− 1ϵ)+) ≺ 0 then u⋆ ⪰ (b− 1ϵ)+.
(48)

Let h(u) = α∥u∥22, α ∈ R+, which has ∇h(u) = 2αu. We will now show that there exist
coefficients ᾱ and

¯
α such that the associated costs h̄ and

¯
h satisfy the conditions (47) and (48).

(
¯
h): Let

¯
α > ∥p1ϵ∥∞

2ϵ , then

∇
¯
h(1ϵ)i = 2

¯
αϵ > [−p1ϵ]i for all i = 1, . . . ,m

which implies that
¯
h satisfies (47) and thus

¯
u⋆ ⪯ 1ϵ.

(h̄): Let ᾱ < mini
[−p(b−1ϵ)+

]i

2(bi−ϵ) , then

∇h̄((b− 1ϵ)+)i = 2ᾱ(ui − ϵ) < [p1(bi−ϵ)]i for all i = 1, . . . ,m

which implies that h̄ satisfies (48) and thus ū⋆ ⪰ b− 1ϵ. Since the definition of b and ϵ ensures that

mini
[−p(b−1ϵ)+

]i

2(bi−ϵ) > 0, there exists ᾱ > 0 that satisfies the above condition. ■

E Primal and Dual Updates

In section 4 we introduced the unconstrained problem (D̂-RES) that approximates our original
problem (Pu) as the saddle point of the empirical Lagrangian L̂θ:

L̂θ(θ,λ;u) = h(u) +
1

N

N∑
n=1

ℓ0
(
fθ(xn,0), yn,0

)
+

m∑
i=1

λi

(
1

N

N∑
n=1

ℓi
(
fθ(xn,i), yn,i

)
− ui

)
. (49)

As described in Algorithm 1 he saddle point can be obtained by alternating the minimization and the
maximization of the Lagrangian with respect to the primal variables and dual variables respectively.
We now describe the updates of both primal and dual variables in greater detail. For clarity, we
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describe the updates using gradient descent and sub-gradient ascent for primal and dual variables,
respectively. However, nothing precludes our method from using other optimization algorithms, such
as Adam [54] or SGD with nesterov momentum.

The optimization is done via gradient descent and u and stochastic gradient descent for the primal
variables θ

θ(t+1) = θ(t) − ηθd̂θ
(t)

u(t+1) = u(t) − ηudu
(t),

(50)

and stochastic subgradient ascent for the dual variables

λ(t+1) = λ(t) + ηλd̂λ
(t). (51)

In order to obtain the gradients of the Lagrangian with respect to the primal variables, observe that
the minimization of the Lagrangian can be separated into two parts that each depend on only one
primal variable.

L̂(θ,λ,u) = L̂θ(θ,λ) + L̂u(λ,u) (52)

where L̂ϕ(ϕ,λ) = L̂(ϕ,λ; 0) and L̂u(λ,u) is

L̂u(λ,u) = h(u)− λ⊤u. (53)

The gradient with respect to u is obtained from (53)

du =
∂L̂(λ,u)

∂u
= ∇h(u)− λ. (54)

Solving for the optimal θ is similar to solving a regularized empirical risk minimization problem.
The gradient with respect to θ is estimated from L̂(θ,λ; 0) using a minibatch of B samples as

d̂θ =
1

B

B∑
n=1

(
∇θℓ0(fθ(xn), yn) +

m∑
i=1

∇θℓi(fθ(xn), yn)

)
. (55)

The constraints evaluated at the optimal Lagrangian minimizers are supergradients of the corre-
sponding Lagrange multipliers [55]. In the same manner, stochastic supergradient ascent is done by
updating the dual variable λ with the super-gradient estimated using a batch of B samples.

d̂λi =
1

B

B∑
n=1

ℓi(fθ(xn), yn)− ui i = 1 . . .m. (56)

F Heterogenous Federated Learning Experiments

F.1 Formulation

In this section, we show that the constrained problem P -FL can be re-written as a constrained learning
problem of the form of P, and then introduce its resilient version,

Let Di be the distribution of data pairs for Client i, and Ri(fθ) = E(x,y)∼Di
[ℓ(fθ(x), y)] its

statistical risk. We denote the average performance as R(fθ) := (1/C)
∑C

i=1 Ri(fθ), where C is
the number of clients. As proposed in [18] heterogeneity issues in federated learning can be tackled
by imposing a proximity constraint between the performance of each client Ri, and the loss averaged
over all clients R. This leads to the constrained learning problem:

min
θ∈Θ

. R(fθ) (P -FL)

s. to Ri(fθ)−R(fθ)− ϵ ≤ 0, i = 1, . . . , C,

where C is the number of clients and Di is the distribution of data pairs for client i, and ϵ is a small
(fixed) positive scalar.

In order to show that problem P -FL can be re-written as a constrained learning problem of the form
of P, we introduce a random variable c uniformly distributed over client indices {1, . . . , C}, i.e.,

P (c = i) =
1

C
for all i = 1, . . . , C
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Then, we construct a mixture distribution D for data pairs such that
(x, y)|c = i ∼ Di.

Then we can re-write the average risk R(fθ) as the expected loss under D:

ED [ℓ(fθ(x), y)] =

C∑
i=1

1

C
EDi

[ℓ(fθ(x), y)]

= Ri(fθ),

where the first inequality holds by law of total expectation.

Let ℓi(fθ(x), y) = (C1(c = i) − 1)ℓ(fθ(x), y) − ϵ, where 1(c = i) is the indicator function for
client i.

In the same manner, we can re-write the i− th constraint Ri(fθ)−R(fθ)− ϵ as the expectation of
the loss ℓi under Di:

ED [ℓi(fθ(x), y)] = EDi
[ℓ(fθ(x), y)]− ϵ−

C∑
j=1

1

C
EDj

[ℓ(fθ(x), y)]

= Ri(fθ)−R(fθ)− ϵ.

Then, we can re-write (P -FL) as

P⋆ = min
θ∈Θ

ED

[
ℓ
(
fθ(x), y

)]
subject to ED

[
ℓi
(
fθ(x), y

)]
≤ 0, i = 1, . . . ,m.

(PC-FL′)

which is in the form of (P).

As motivated in section 5.1, we then propose to solve the resilient version of (P -FL):
P ⋆ = min

θ∈Θ
R(fθ) + h(u) (PR-FL)

s. to E(x,y)∼Di
[ℓ(fθ(x), y)−R(fθ)− ϵ] ≤ ui,

i = 1, . . . , C.

In the next section we derive the primal dual algorithm that enables us to tackle (PR-FL) in a
distributed, privacy preserving manner.

F.2 Resilient FL Algorithm

In this section we show that the resilient problem (PR-FL) can be tackled in a distributed and privacy
preserving manner, as long as h is additively separable in in each component. Explicitly, we assume
that

h(u) =
∑
i

hi(ui)

which holds for the quadratic cost used throughout the experimental section. We thus derive a
distributed version of the resilient primal-dual algorithm presented in Section 4 (Algorithm 1).

We begin by writing the empirical Lagrangian associated to problem (PR-FL):

L̂(θ,λ,u) = h(u) +
1

C

C∑
i=1

1

Ni

Ni∑
ni=1

[ℓ(fθ(xni
), yni

)] (57)

+ λi

[
1

Ni

Ni∑
ni=1

[ℓ(fθ(xni), yni)]− ui

]
(58)

=

C∑
i=1

1

C

(
1 + λi − λ̄

) 1

Ni

Ni∑
ni=1

[ℓ(fθ(xni
), yni

)]− λiui + hi(ui), (59)
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with λ̄ = 1
C

∑C
i=1 λi.

Note that in (59) we have used the assumption that the perturbation cost is additively separable.
This enables us to update the perturbation for each client locally, and thus the resilient formulation
does not incurr in any additional communication costs (with respect to the constrained problem
in [18]). That is, clients do not need to communicate ui during optimisation. The server need only
compute and communicate to all clients the average dual variable λ̄ and the average loss R(fθ).
Therefore, Homomorphic Encryption techniques can be leveraged to compute these averages without
revealing the values of individual dual variables λi and local losses to the server. In the same manner,
Homomorphic Encryption could be used to aggregate the relaxation cost h(u) =

∑X
i=1 hi(ui) at the

server without loss of privacy.

θ update. For a fixed λ and u, the minimization of L with respect to θ is equivalent to a re-weighted
version of the standard unconstrained FL objective:

min
θ∈Θ
L̂(θ,λ,u)⇐⇒ min

θ∈Θ

1

C

C∑
i=1

(
1 + λi − λ̄

) 1

Ni

Ni∑
ni=1

[ℓ(fθ(xni
), yni

)] .

Therefore, θ can be updated using any FL solver. We thus refer to the update on θ as a subroutine
ClientUpdate

(
{wi}Ci=1 , θ

t
)
→ θt+1, which can be implemented using, for example FedAVG [56]

or FedPD [57].

u update. For a fixed λ and θ, the minimization of L̂ with respect to u is can be carried independently
by each client, since the objective is additively separable:

min
u∈U
L̂(θ,λ,u)⇐⇒ min

u∈U

C∑
i=1

λiui + hi(ui)

We can thus employ gradient descent (or any other optimization algorithm) locally at each client.

λ update. For a fixed perturbation u and model θ, we perform dual update on λ by taking dual
ascent steps of the following equivalent objective,

max
λ∈RN

+

L̂(θ,λ,u)⇐⇒ max
λ∈RN

+

1

C

C∑
i=1

λi

(
1

Ni

Ni∑
ni=1

[ℓ(fθ(xni
), yni

)]−R(f(θ))− ui

)
.

If server then computes and communicates the average of the client’s losses R(f(θ)), the updates to
each multiplier λi can be made locally by each client as in 56.

As stated before, these update steps can be applied in alternated manner to find a solution of the
empirical dual problem, as as described in Algorithm 2.

Algorithm 2 Resilient Federated Learning

Initialize θ(0), λ(0), u(0), and 0 < η ≪ 1.
for t = 1 . . . T

Compute weights: for alli ∈ [N ], wi = 1 + λi − λ̄, with λ̄ = 1
N

∑N
i=1 λi;

Theta Update: θt ← ClientUpdate
(
{wi}Ni=1 , θ

t−1
)

;
Perturbation Update: ui(t) = [ui(t− 1)− ηudui(t− 1)]+

Dual Update: λi(t) =
[
λi(t− 1) + ηλ

[
1
Ni

∑Ni

j=1 ℓ(fθ(xj), yj)− ui(t− 1)
]]

+
end

F.3 Experimental Setup

As in [18] we create hetereogeneity between clients through class imbalance. Unless stated other-
wise, we use three minority classes (Class Labels {0, 2, 4}), and simulate the phenomenon of class
imbalance by keeping only ρ = 10% of the data data belonging to the minority classes in the training
set.
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We follow the implementation from [58], in which a Dirichlet prior (over the ten classes) is sampled
independently for each client. One client at a time, we sample without replacement according to each
client’s prior. Once a class runs out of samples, the subsequent clients do not own samples of that
class.

We also create a test set for each client with the same class balance as the train set. Test sets are then
sampled without replacement for each client (but with replacement among different clients, i.e., test
sets overlap accross clients).

We use the same small neural network architecture as in [18, 58]. Namely, a CNN model consisting
of 2 convolutional layers with 645× 5 filters followed by 2 fully connected layers with 384 and 192
neurons. For both the constrained and resilient formulations, we use FedAVG [56] to update θ, using
5 communication rounds for each primal update, as in [18].

In all experiments we use 100 clients, and all clients participate from each communication round.
We run 500 communication rounds in total. We set ϵ = 0.1, dual learning rate ηλ = 0.1, local
learning rate ηθ = 5× 10−2 and use no data augmentation in all experiments. In the resilient learning
formulation, unless stated otherwise, we use a quadratic penalty on the perturbation h(u) = ∥u∥22
and a perturbation learning rate ηu = 0.1.

All of the plots in section 5 correspond to CIFAR10 [59]. Results for FashionMNIST [49] can be
found on F.4.4.

F.4 Additional Results

F.4.1 Performance Relaxation trade off.

As we have already shown, through the choice of the relaxation cost function, we can control the trade-
off between relaxing requirements and performance. Figure 4 shows that changing the ablation on
the coefficient α in the quadratic relaxation cost h(u) = α∥u∥22 not only results in larger relaxations,
but that these larger relaxations effectively lead to clients with higher losses.
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Figure 4: Train loss for the worst client and averaged over all clients for different values of the
perturbation cost coefficient α.

F.4.2 Sensitivity to Problem Specification

The resilient approach is less sensitive to the specification of the constraints. Dual variables indicate
the sensitivity of the objective with respect to constraint perturbations. As shown by Figure 5 the
resilient approach yields smaller dual variables, irespectively of the tolerance ϵ in the constraint
specification. In this context, setting the constraint levels a priori requires knowledge about the
heterogeneity of the client local distributions, which in our setup depends on the imbalance of the
dataset. As shown by figure 6 the resilient approach yields smaller dual variables, irrespectively of
the tolerance irrespectively of the percentage of samples of minority classes that are kept, whereas
the dual variables grow for more imbalanced and thus harder to satisfy scenarios.
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Figure 5: Dual variables after training with respect to constraint specification ϵ.
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Figure 6: Dual variables at the end of training with respect to the percentage of minority samples ρ
kept in the dataset. Smaller ρ means more imbalance, and thus results in harder to satisfy requirements.

F.4.3 Constraint violation across setups.

Relaxing stringent requirements not only makes the empirical problem easier to solve, but it can
also lead to a better empirical approximation of the underlying statistical problem. That is, overly
stringent requirements can result not only in large dual variables, but can also harm generalization.
Figure 7 shows that more stringent constraint specifications can lead to poor constraint satisfaction in
the test set. This improvement in constraint satisfaction is associated with smaller generalization gaps
for the constraints were observed for the resilient approach, as shown in Figure 8.

F.4.4 Test Accuracy.

In this section we aim to give quantitative performance metrics. We include a constrained baseline [18]
and another method for federated learning under class imbalance [60] for comparison.

We first compare approaches in terms of the objective, by averaging the test accuracy over all clients.
As shown in Table 3, the average accuracy of the resilient approach is overall similar to the constrained
approach and the baseline [60].

In order to asses how the distribution o performance among clients varies we also report spread
metrics for the test accuracy across clients. As shown in Table 3, Resilient learning has (generally)
less spread in the interquartile range and higher maximum spread than its constrained counterpart.

F.4.5 Comparing client performances

We sort clients according to their test accuracy Acc[1] ≥ Acc[2] ≥ . . . ≥ Acc[c]. We plot the accuracy
of equally ranked clients for the constrained baseline [18] (Accres

[c] ≥ Accconst
[c] ). As shown in Figures 9

and 10, in all setups the majority of clients achieve a small increase in performance, while a small
fraction experiences a larger decrease. For higher imbalance ratios, this is more pronounced.
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Figure 7: Constraint violation (evaluated no the test set) for Resilient and constrained learning using
different (left) constraint specifications ϵ, and (right) fraction of minority classes.
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Figure 8: Largest generalization error across clients for different constraint specifications ϵ.

F.5 Ablation on perturbation cost function h.

In all experiments, we have used a quadratic perturbation cost function h = α∥u∥22 In order to
assess the impact of the choice of cost the function, we run our algorithm using as a cost ∥u∥β with
β = 1, 2, 4,∞, for fashion MNIST in both the federated and invariant setting.

As shown in Table 4, both the mean and spread statistics are similar for β = 1, 2, 4, i.e. our approach
is not overly sensitive to the choice of cost function in this experimental setup. However, β = ∞
does show a substantially different behaviour. Penalizing the only the largest perturbation results in a
smaller range while attaining a higher IQR and lower mean accuracy. That is, it reduces the worst
client test accuracy, but the performance of most clients deteriorates, both in terms of its average
and spread. The infinity norm is related to Rawlsian (i.e. minimax) formulations which have been
proposed in the context of fairness see e.g. [14].

G Ablation on dual and resilient learning rates

We also perform an ablation on ηu, ηλ, the perturbation and dual learning rates, over a small grid of
12 values. In this particular setup, we find that the performance of the algorithm is not overly sensitive
to this choice. We also observe that that the rates that were used in the paper (ηu = 0.1, ηλ = 2) are
not optimal in this case, and thus further improvements in performance could be obtained through

Dataset Imb. Ratio Mean IQR Range
[60] [18] Ours [60] [18] Ours [60] [18] Ours

10 92.5 92.6 93.4 2.2 3.5 2.4 64.1 28.6 50.6F-MNIST 20 94 93.8 94.4 2.2 2.7 1.7 50.2 28.6 45.8
10 81.3 81.5 81.5 8.1 8.7 8.7 49.4 35.8 46.4CIFAR10 20 83.4 82.4 82.6 8.6 8.4 7.9 44.5 32 41.1

Table 3: Client accuracy spread metrics for different setups. IQR denotes interquantile range and
range denotes the maximum minus the minimum accuracy, both computed across 100 clients.
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Figure 9: Test Accuracy for equally ranked clients for the resilient and constrained baseline [18] in
CIFAR10.
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Figure 10: Test Accuracy for equally ranked clients for the resilient and constrained baseline [18] in
CIFAR10.

more extensive hyperparameter tuning. However, the main aim of our numerical experiments is to
validate empirically the properties of our approach.

H Invariance Constrained Learning Experiments

H.1 Experimental setup.

We showcase our approach on datasets with artificial invariances, following the setup of [23].
Explicitly, we generate the synthetic datasets, by applying either rotations, translations or scalings, to
each sample in the MNIST [48] and FashionMNIST [49] datasets. The transformations are sampled
from uniform distributions over the ranges detailed in Table 6. We use the same MLP and CNN
architectures and hyperparameters as [23], except that we use only 6 augmentations per sample
instead of 31 during training.

For each transformation set (rotations, translations and scalings), we constraint the expected loss over
samples augmented with the transformations sampled from uniform distributions over the ranges
detailed in Table 7. Note that there is a mismatch between the distribution used to generate the

β Mean Acc. IQR Max Range

1.0 93.3 2.5 49.5
2.0 93.4 2.4 50.6
4.0 93.4 2.6 45.6
∞ 92.7 3.8 28.1

Table 4: Cost function ablation for the heterogeneous federated learning in fashion-MNIST using
100 clients, 3 minority classes, an imbalance ratio of ρ = 10 and dirichlet allocation with parameter
d = 0.3. We report the mean, interquartile range and range (maximum value minus minimum value)
test accuracy across clients.
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ηu\ηλ 0.1 0.5 1 2
0.1 81.4 81.6 81.8 81.8
0.5 81.4 80.9 81.4 81.1
1 81.6 81.6 81.6 81.7

Table 5: Dual and resilient learning rate ablation in Heterogenous federated learning setting. We
report mean Test Accuracy for CIFAR100 using 100 clients, 3 minority classes, an imbalance ratio of
ρ = 10 and dirichlet allocation with parameter d = 0.3.

data and that used in the constraints. That is, except for the fully rotated dataset, the constraints
are larger than the true transformation range used to construct the synthetic dataset (Table 6).The
purpose of this experiments is to showcase that the resilient approach can relax constraints associated
to transformation sets that do not describe symmetries or invariances of the data and can thus hinder
performance. We use the same transformation sets and constraint specification (ϵ) for all synthetic
datasets.

Synthetic invariance Parameter Distribution

Full Rotation Angle in radians. U
[
−π

2 ,
π
2

]
Partial Rotation Angle in radians. U [−π, π]
Translation Translation in pixels. U [−8, 8]2

Scale Exponential Scaling factor. U [−log(2), log(2)]

Table 6: Sampling parameters for transformations used to obtain synthetically invariant datasets,
from [23]

.

Constraint Set Parameter Range

Rotations Angle in radians. [−π, π]
Translation Translation in pixels. [−16, 16]2

Scale Exponential Scaling factor. [−1.5, 1.5]
Table 7: Transformation sets Gi used as invariance constraints. All sets are used simultanously, with
the same constraint level (ϵi) for all datasets (0.1).

H.2 Results

H.2.1 Ablation on perturbation cost.

As in the case of federated learning (presented in section 4) perform an ablation on the cost function
h using ∥u∥β with β = 1, 2, 4,∞.

As shown in table 8, β = 1 showed slightly better performance in terms of average test accuracy
across all invariant settings. As discussed in Section 3.3, β = 1 recovers penalty based methods, i.e.
it is equivalent to setting a fixed penalization coefficient. Nonetheless, the dynamics of our algorithm
are different and can thus lead to different solutions.

β Partially Rotated Translated Scaled
1.0 86.08± 0.38 86.85± 0.20 85.02± 0.46
2.0 85.37± 0.17 86.65± 0.25 84.92± 0.39
4.0 85.23± 0.20 86.64± 0.11 84.65± 0.68
∞ 82.94± 0.17 85.47± 0.19 83.35± 0.49

Table 8: Cost function ablation for invariant fashion-MNIST datasets. We compute the mean and
standard deviation in test accuracy across three independent runs.
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H.2.2 Performance on F-MNIST

The resilient approach is able to handle the misspecification of invariance requirements, outperforming
in terms of test accuracy both the constrained and unconstrained approaches. In addition, though it
was not designed for that purpose, our approach shows similar performance to the invariance learning
method Augerino [22].

Dataset Method Rotated (180) Rotated (90) Translated Scaled Original
Augerino 85.28± 0.54 81.48± 0.49 81.13± 0.77 83.17± 0.46 90.09± 0.20

Unconstrained 77.94± 0.06 81.57± 0.36 79.23± 0.17 82.99± 0.18 90.20± 0.23
Constrained 84.96± 0.12 85.66± 0.32 83.61± 0.10 86.49± 0.09 91.02± 0.02

F-MNIST

Resilient 85.57± 0.26 86.48± 0.15 85.06± 0.23 87.26± 0.14 91.55± 0.31

Table 9: Classification accuracy for synthetically invariant F-MNIST. We use the same invariance
constraint level ϵi = 0.1 for all datasets and transformations. We include the invariance learning
method Augerino [22] as a baseline.

32


	Introduction
	Learning with Constraints
	Resilient Constrained Learning
	Resilient Equilibrium
	Equivalent Formulations
	Relation to Classical Learning Tasks

	Resilient Constrained Learning Algorithm
	Numerical Experiments
	Heterogeneous Federated Learning
	Invariance Constrained Learning 

	Conclusion
	Constrained learnability and relaxations
	Empirical constrained risk minimization (ECRM)
	Relaxed ECRM
	Resilient ECRM

	Convexity of the Perturbation Function for Nonconvex Losses
	Proof of Thm. 1
	Bounding the parametrization error: proof of Prop. 6
	Bounding the generalization error: Proof of Prop. 7

	Proofs from Main Text
	Proof of Proposition 1
	Proposition 2
	Proposition 3
	Proposition 4
	Proposition 8

	Primal and Dual Updates
	Heterogenous Federated Learning Experiments
	Formulation
	Resilient FL Algorithm
	Experimental Setup
	Additional Results
	Performance Relaxation trade off.
	Sensitivity to Problem Specification
	Constraint violation across setups.
	Test Accuracy.
	Comparing client performances

	Ablation on perturbation cost function h.

	Ablation on dual and resilient learning rates
	Invariance Constrained Learning Experiments
	Experimental setup.
	Results
	Ablation on perturbation cost.
	Performance on F-MNIST



