
Supplementary for Emergence of Shape Bias in
Convolutional Neural Networks through Activation

Sparsity

1 Further Results of the impact of sparsity on Shape Bias Benchmark
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Figure 1: Additional Inference with Top-K results on ResNet-50 pretrained on ImageNet-1k and
ViT-B pretrained on ImageNet-21k. We utilize the sparsity operation proposed in Section 3.1 for
ResNet-50. For ViT, we also apply the spatial Top-K operation as described in the general response.
We can observe an increase in both ResNet-50 and ViT-B architectures, furthering closing the gap
between human and existing models.

We generalize section 4.2 in the main text to ResNet-50 and ViT-B architectures (Figure 1). The
ResNet-50’s sparsity definition is the same as AlexNet and VGG. For ViT-B, we reshape the inter-
mediate activation response from [n, h * w, d] to [n, d, h * w] and apply the Top-K selection over
dimension 2 before the activation is passed through the multiple head attention (Note that h and
w is the height and weight of the latent tensor after reshape it to 2d, for ViT-B with patch size 16
on the 224x224 images, h=w=14, n denotes the batch size). Please refer to our updated code for
precise implementation. We observe that the similar shape bias gain from applying Top-K operation
to ResNet-50 and ViT-B although ViT-B needs denser activation compared to the ConvNets.

Interestingly, our additional experiments in the Figure 1 indicates that ViT architectures seem to
require more dense activation, as we can observe that a moderate to high density (keep 50% - 80% of
the original ranking neurons) yield the best performance for most of the classes (best mean shape
score is achieved by keeping 60% of the original activation), however, the optimal sparsity rates in
AlexNet and VGG are around 5 - 10%.
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2 Top-K layers configurartion

We apply the Sparsity layer in a subset of the network. It is based on the intuition that the brain
utilizes sparsity for long range communication but can allow local dense computation. We divide
the networks into chunks where within each chunk the neuron’s activities are allowed to be dense
(keep original) but the communication across different chunks is set to be sparse. To be specific,
in the VGG Network, we divides the network into 5 chucks and apply the Top-K layer after each
MaxPooling layer. Specifically, across a total of 31 feature layers in VGG, we apply the Top-K layer
after the 5th, 10th, 17th, 23th, 31th original layers. In AlexNet, we also apply the Top-K layer after
the MaxPooling except adding 2 additional Top-K layers at the 8th and 10th layer to make the sparse
layer more evenly distributed. In the ResNet-18 training (Main Section 4.3), we only apply the Top-K
layer after the second layer to demonstrate the concept of sparse specialist code. We also apply the
Top-K layer only in the 4th layer of the GAN generator as we observe empirically that it induces the
best performance across other settings (such as applying multiple Top-K layers or the less severe
sparsity).

3 More qualitative results of image synthesis
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Figure 2: Qualitative comparison between our method and FastGAN [8] baseline.

We show more samples from our trained generator and the FastGAN baseline [8] and show a few
of them in Figure 2. As we can see that with the help of sparsity, the generated samples are more
structurally coherent comparing to the one without sparsity. We hypothesize that the improved
synthesis quality comes from the increased focus on the shape bias of the generator CNNs. By
excluding the activation of neurons outside the Top-K range, we effectively avoid the negative
impact of under-trained and poorly performing texture synthesis on the overall quality of synthesized
examples. This visual examination further supports that few-shot image synthesis is a good application
where a network with shape biased generator would be superior for achieving cohesive and appropriate
synthesis quality.

4 The Impact of sparsity on Top-K image synthesis

From Section 4.5 of the main manuscript, we can see that an individual sparsified feature channel is
encoding an object part. Thus, the optimal Top-K sparsity might depend on the complexity of the
object and the amount of data, and how it can be best decomposed into individual parts, as shown
in Figure 4. Insufficient K (too sparse) can force the breakup of a coherent part from one channel
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into multiple subchannels. Excessive K can lead to rigidity and interference of parts into the same
channels. Therefore, the optimal K might vary with the complexity of images in few-shot synthesis
performance. For example, Jeep-100 reaches the best performance at 5% sparsity with the mean FID
score of 38.7, whereas the best Table class synthesis (mean FID 60.9) is achieved at 15% sparsity.
The image synthesis performance results at different sparsity levels are shown in the Table.

Method
Jeep-100 Table-100

FID ↓ KID* ↓ FID ↓ KID* ↓
FastGAN [8] 49.0 ± 1.4 12.0 ± 1.9 67.2 ± 0.1 19.7 ± 0.3

FastGAN w. Top-K 2% (ours) 42.2 ± 1.5 8.2 ± 0.7 86.6 ± 0.4 36.1 ± 0.5
FastGAN w. Top-K 5% (ours) 38.7 ± 0.5 5.9 ± 0.7 80.1 ± 1.1 34.5 ± 0.9
FastGAN w. Top-K 7% (ours) 44.5 ± 0.8 8.1 ± 0.4 62.9 ± 0.6 20.0 ± 1.7

FastGAN w. Top-K 10% (ours) 45.3 ± 0.5 9.0 ± 1.8 61.7 ± 1.2 16.1 ± 1.0
FastGAN w. Top-K 15% (ours) 43.2 ± 1.2 9.6 ± 0.5 60.9 ± 0.3 15.3 ± 0.2
FastGAN w. Top-K 20% (ours) 52.1 ± 1.0 20.6 ± 1.3 64.9 ± 1.0 17.5 ± 0.9
FastGAN w. Top-K 50% (ours) 47.3 ± 0.9 13.6 ± 0.6 66.3 ± 0.7 17.3 ± 0.4

Table 1: Few-shot Image Synthesis ablation study. Image synthesis quality is measured in FID [5]
and KID [1] Note that KID * denotes KID scaled by a factor of 103 to demonstrate the difference.

5 Further experiments on Top-K training

We further expand the experiments for 4.3 to demonstrate more details of the improvements on
out-of-distribution test. We first test how the model behaves when we apply Top-K operation on
Non-Top-K trained models. As the choice of hyper-parameter K in the proposed Top-K operation
is critical to the model’s performance, we apply the same Top-K parameter setting for (2) and (4).
It can be observed that inference with Top-K with sub-optimal setting (2) would sometimes induce
performance deficit but the models’ performance will improve when applying the same Top-K sparsity
during training. Second, we test the hypothesis that whether other soft sparsity constraints like L1
regularization would have the same effect. We introduce a L1 term ( + λ |NeuronActivation|) during
training loss (we tried choice of λ = {10, 1, 0.1} and found λ = 1 works the best. We present this
form of sparsity results in (5). We can observe that (5) has similar performance as trained with
Top-K layers (4), suggesting that L1 regularization induced sparsity could also help for improve the
out-of-domain generalization of the model.

Top-1 Acc. (%) IN-S1 (↑) Stylized-IN-S1 (↑) IN-S2(↑) Stylized-IN-S2 (↑)

(1) ResNet-18 87.8 ± 0.5 49.3 ± 1.5 81.3 ± 1.7 52.4 ± 2.2
(2) ResNet-18 w. Top-K inference (parameter setting 1) 43.8 ± 0.8 23.4 ± 1.0 58.0 ± 1.6 42.3 ± 3.3
(3) ResNet-18 w. Best Top-K inference (parameter setting 2) 87.4 ± 0.4 53.2 ± 0.5 81.2 ± 1.2 56.8 ± 2.4
(4) ResNet-18 w. Top-K training (parameter setting 1) 89.4 ± 0.6 55.4 ± 0.8 83.4 ± 0.9 59.7 ± 0.6

(5) ResNet-18 w. L1 sparse activation regularization 89.8 ± 0.3 55.5 ± 0.5 82.6 ± 0.5 54.4 ± 1.1

(6) ResNet-18 w. Top_K_Mean_Rpl during training 84.9 ± 0.3 56.8 ± 1.7 75.5 ± 2.5 53.1 ± 1.0

Table 2: The effect of activation sparsity to both in-domain generalization and out-of-domain
generalization. (1) represents the baseline model of ResNet-18; (2) utilize the same sparse K
parameter setting as (4) but (4) trained with Top-K and (2) doesn’t; (3) uses an optimal Top-K sparsity
for inference; (5) L1 activation constraint during training is applied.

6 Details of experimental setup

6.1 Texture synthesis experiment

Dataset We utilize two images from the ImageNet dataset ( n03594945_3233.jpg and
n01440764_1764.jpg) to run the modified texture synthesis program we developed in the Section
3.2. The data can be found from the ImageNet ILSVRC 2012 challenge [2]. The data is available for
free to researchers for non-commercial use.
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Network Architecture and Optimization Parameters In this section, we modifed VGG16 [9]
to perform texture synthesis. In particular, we install Top-K control layers in relu1_1, pool1,
pool2, pool3 and pool4 layers and assigned an equal weight of 1e+09 when computing the
objectives for optimization. For all Top-K and non Top-K selection, we employ a sparsity of 5%
for both images. LBFGS optimization is used with learning rate of 1.0 and optimization steps
of 100. We observe that all optimizations eventually converge as the loss values reach plateau
at the end of the process. Our model is reproducible via the github repo provided at https:
//github.com/Crazy-Jack/nips2023_shape_vs_texture/README.md

Computation Our modified texture synthesis program can be found under https:
//github.com/Crazy-Jack/nips2023_shape_vs_texture/texture_synthesis_
visualization/README.md. We perform the optimization within half minutes for each
image, especially with the usage of early stopping to prevent overfitting. Our computations were run
on a NVIDIA A6000 machine.

6.2 Sparse CNNs on Shape Bias Benchmark

Dataset We performed the experiments under the dataset provided by [4, 3]. In particular, it
consists of 16 categories (airplane, bear, bicycle, bird, boat, bottle, car, cat, chair, clock, dog, elephant,
keyboard) of cue-conflict images with each class consists 80 different images. Each image is style
transferred with textures attributed to another categories. In order to correctly recognizing shape,
the network needs to rely on the shape of an image rather than the texture information to make
predictions. It pose additional challenge for the network as CNNs have the tendency to bias towards
textures. The dataset is under CC BY 2.0 license.

Network Architecture used for Inference In this section, we modifed VGG16 [9] and AlexNet [6]
architecture during inference. We added sparsity Top-K operation layer inside the intermediate
activation layers. The detailed architecture can be found at https://github.com/Crazy-Jack/
nips2023_shape_vs_texture/cnns-inference-top-k/network_architecture.txt. Our
model is reproducible by following the instructions in the github repo https://github.com/
Crazy-Jack/nips2023_shape_vs_texture/README.md

Computation We run the inference on a NVIDIA V100 machine. Each inference with / without
Top-K takes about 10s to run. The experiment can be reproduced through running the code inside
TopkInference folder of https://github.com/Crazy-Jack/nips2023_shape_vs_texture

6.3 Top-K bias training of the recognition networks

Dataset In this experiment, we utilize two non overlapping subsets of ImageNet-1k [2]. For each
class, we include all training and evaluation images. Here we documents the class names utilized for
the experiments:

• IN-S1: n01440764, n02102040, n02979186, n03000684, n03028079, n03394916,
n03417042, n03425413, n03445777, n03888257

• IN-S2: n01871265, n03063599, n03065424, n03100240, n03201208, n03208938,
n03216828, n03249569, n03443371, n03447721

The data is available for free to researchers for non-commercial use.

Network Design and Optimization Hyper-parameters We use conventional ResNet-18 as the
backbone for the encoder but we change the first 7x7 2D convolution to 3x3 2D convolution and
remove the first max pooling layer in the normal ResNet-18 (See code for details). This amplified the
texture bias and shows a larger improvement of Top-K operation for the stylized image classification
task, i.e. the shape bias test. Optimizations are handled via Stochastic Gradient Descent with a
Cosine-Anneling learning rate scheduler starting from initial learning rate of 0.1. All experiments
are run 3 times to produce the error bars. We install a 20% Top-K layer in the second layer of
the modified ResNet-18 (early layer). Our model is reproducible via the github repo provided at
https://github.com/Crazy-Jack/nips2023_shape_vs_texture/README.md
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Computation We run our experiments on NVIDIA A6000 machines. Each experiment took 3.5
hours to run 50 epochs. Each experiment is run 3 times to produced the error reported in the Table 1
in the main text. The experimental code is located under the TopkRecognitionTrain folder of the
github repository.

6.4 Towards Shape Biased Few Shot Image Synthesis

Dataset For better demonstrating the importance of the shape bias inside generator, we utilize
images from ImageNet-1k [2] and MSCOCO [7]. A sample of the image used can be found in main
text Figur 6(a). The full list of image name used are hosted at https://github.com/Crazy-Jack/
nips2023_shape_vs_texture/few-shot-img-syn/data/README.md. ImageNet data is avail-
able for free to researchers for non-commercial use. MSCOCO is under Creative Commons Attri-
bution 4.0 License which can be accessible at https://creativecommons.org/licenses/by/4.
0/legalcode.

Network Architecture and Optimization Hyper-parameters We utilize the FastGAN [8] ar-
chitecture, with a modification of the generator architecture. In particular, we install the Top-K
operation layer after the 32× 32 resolution layer (feat_32, see code for more detail). Various Top-K
hyper-parameters are adopted for different image sets as the best parameter for sparsity various
dataset by dataset. For Jeep-100, Fish-100, Train-100, we utilize a sparsity of 5% whereas for the
Table-100, the best sparsity resides in 15%. We further run ablation study for the influence of differ-
ent sparsity to the image synthesis performance and document the results in Section 4. Our model
is reproducible via the github repo provided at https://github.com/Crazy-Jack/nips2023_
shape_vs_texture/README.md

Computation We employ NVIDIA 4090 GPU for the computation. For 80,000 iteration steps, the
program took about 7 hours to run. We observe 1 hour speed up by employing the sparsity Top-K
operation. Further improvement was achieved by avoiding explicitly zero masks and multiplication
with the activation. We took the generator of best synthesizing quality throughout the entire training
period and report the FID and KID scores. Multiple run (3 times) are replicated to produce an error
bar of the quantitative evaluation shown in main text Table 2.
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