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Inversely Correlated on Real-world Datasets466

Appendix467

A Reviewers’ FAQ468

For transparency and to facilitate the reviewing process, we summarize questions and answers that469

arose during the review of an earlier version of this paper.470

The most significant update to this version is the inclusion of additional datasets, and experiments471

without a diversity-inducing method (Section 5 and Appendix C). Some reviewers previously472

commented that our findings are not surprising, yet we continually see misunderstandings of their473

implications in the literature. We added a discussion of such a recent case [20] (April 2023)474

in Section 8. Other improvements include a discussion of occurrences the existing literature475

(Section 5.1) and various clarifications throughout the text.476

Q: Isn’t the message of the paper unsurprising? Few would disagree that “focusing on ID477

performance alone may not lead to optimal OOD performance”.478

A: We also would like this to be self-evident. Yet, multiple papers precisely conclude that focusing479

exclusively on ID performance is a fine strategy:480

• “If practitioners want to make the model more robust on OOD data, the main focus should be to481

improve the ID classification error” [48]482

• “We see the following potential prescriptive outcomes: (...) the correlation between OOD and ID483

performance can simplify model development since we can focus on a single metric” [24]484

Many readers will clearly benefit from our exposition of the necessary caveats to such statements.485

Q: Past work on positive correlations is not a “for all” claim. Isn’t it merely pointing out that486

this correlation is surprisingly strong in many benchmarks?487

A: This is indeed what the experiments show in “accuracy on the line” for example. But the takeaways488

(in this and other papers) are over-generalized and much overblown (see the citations in the previous489

answer above). The issue is clear when subsequent works apply this message uncritically and use the490

phenomenon (“accuracy on the line”) as an unverified assumption on other datasets.491

When this assumption serves to justify an experimental design (e.g. model selection) there is often492

no more chance to verify its validity later on, nor to recover from this faulty choice of assumptions493

(because they serve as premises for the whole analysis). The risk of such methodological mistakes in494

future research is why this paper is important.495

Q: Why the focus on the Camelyon17 dataset?496

A: We have now added experiments on five other datasets. They show that the phenomenon is not an497

isolated case.498

Large-scale support for our message has also appeared after the release of a first version of this499

paper. Naganuma et al. [25] show that a re-evaluation of OOD benchmarks with a wider range of500

hyperparameters than previous studies leads to more diverse types of ID/OOD relations than the501

“linear trend”.502

Regarding the value of a large-scale evaluation of many datasets, note that this paper is in a very503

different situation from past studies claiming that positive correlations were widespread (cf. proof of504

existence vs. absence). The point of this paper is that “worst-case scenarios” (inverse correlation) are505

a possibility, hence the “best case” (positive correlation) cannot serve as an unverified assumption.506

Q: Why is the theoretical analysis restricted to linear models?507
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A: Its value is precisely in demonstrating the phenomenon in a hypothesis space as simple as linear508

models. High-capacity models would be less surprising in displaying complex performance patterns.509

Q: Why aren’t domain generalization (DG) methods investigated?510

A: Because the existence of predictors showing an inverse correlation is mostly relevant to the511

data and hypothesis space rather than learning methods. Using DG methods could have been a512

way to obtain a variety of models in the hypothesis space. We chose a less ad hoc solution with a513

general-purpose diversity-inducing method. This allows covering more of the ID/OOD spectrum514

than specific DG methods (i.e. we avoid the analysis to focus on the specific inductive biases of an515

arbitrary set of methods).516

B Additional results on Camelyon17517
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Figure 8: As in Figure 3, we show that higher OOD accuracy can be sometimes be traded off for
a lower ID accuracy. Each panel shows results from a different pretrained model (i.e. pretrained
with a different random seed). Each dot represents a linear classifier re-trained on features from this
pretrained model with standard ERM (red dots ) or with a diversity-inducing method [45] (gray
dots ). The latter set includes models with higher OOD / lower ID accuracies.
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Figure 9: Same as in Figure 8, but using val-ood (instead of test-ood) as the OOD evaluation set.
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Figure 10: Same as in Figure 9, zoomed-in on ERM models (red dots ).
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C Results on other datasets518

In addition to Camelyon17, we performed experiments on five other datasets. We selected these519

datasets from the current literature on OOD generalization with no a priori knowledge of particular520

patterns of ID vs. OOD performance. We find inverse patterns to different extent on four out of five.521

C.1 WildTime-arXiv522

Data. The WildTime-arXiv [53] dataset contains text abstracts from arXiv preprints. The task is to523

predict each paper’s category among 172 classes. The ID and OOD splits are made of data from524

different time periods.525

Methods. We fine-tune a standard BERT-tiny model with a new linear head, using any of these526

well-known methods: standard ERM, simple class balancing [12], mixup [58], selective mixup [54],527

and post hoc adjustment for label shift [19] (we did not use the diversification method from Section 3).528

We repeat every experiment with 10 seeds and record the ID and OOD accuracy at every training529

epoch. We then plot each of these points in Figure 11 and highlight the epoch of highest ID or OOD530

accuracy per run (method/seed combination).531

Results. As discussed in Section 5, there is a clear trade-off both within methods (i.e. across seeds532

and epochs) and across methods.533
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Figure 11: Results on WildTime-arXiv.
C.2 Waterbirds534

Data. The waterbirds dataset [36] is a synthetic dataset widely used for evaluating OOD generaliza-535

tion. The task is to classify images of birds into 2 classes. The image backgrounds are also of two536

types, and the correlation between birds and background is reversed across the training and test splits.537

The standard metric is the worst-group accuracy, where each group is any of the 4 combinations of538

bird/background.539

Methods. We follow the same procedure as described above. We experiment two classes of540

architectures: ResNet-50 models pretrained on ImageNet and fine-tuned on waterbirds, and linear541

classifiers trained of features from the same frozen (non-fine-tuned) ResNet-50.542

Results. We observe in Figure 12 patterns of inverse correlations in both cases.543
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Figure 12: Results on waterbirds with linear probing (left) and fine-tuned ResNet-50 models.
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C.3 CivilComments544

Data. The CivilComments dataset [15] is another widely-used dataset in OOD research. It contains545

text comments from internet forums to be classified as toxic or not. Each example is labeled with a546

topical attribute (e.g. Christian, male, LGBT, etc.) that is spuriously associated with ground truth547

labels in the training data. The target metric is again worst-group accuracy, where a group is any548

label/attribute combination.549

Methods. We follow the same procedure as described above. We experiment two classes of550

architectures: pretrained BERT-tiny fine-tuned on CivilComments, and linear classifiers trained of551

features from the same frozen BERT-tiny models (a.k.a. linear probing).552

Results. We observe in Figures 13–14 different patterns with the two classes of architectures. With553

linear probing, the ID vs. OOD trade-off is minimal, and the model of highest ID performance within554

a run as well as across methods is very similar to the model of highest OOD performance. With555

fine-tuning however, the trade-off is more pronounced. The ID and OOD performance usually peak556

then diminish at different epochs during the fine-tuning. This agrees with previous reports [2] of557

OOD robustness being progressively lost during fine-tuning.558
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Figure 13: Results on CivilComments with fine-tuned BERT.
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Figure 14: Results on CivilComments with linear probing on frozen BERT embeddings.

C.4 WildTime-MIMIC-Readmission559

Data. The WildTime-MIMIC-Readmission [53] dataset contains hospital records (sequences of560

codes representing diagnoses and treatments) to be classified into two classes, corresponding to the561

readmission of the patient within a short time. ID and OOD splits contain records from different time562

periods.563

Methods. We follow the same procedure as described above. We train a standard bag-of-embeddings564

architecture, which associate each diagnosis/treatment with a learned embedding, then summed and565

fed to a linear classifier. We train this model with standard ERM, and with a resampling to balance566

the classes in the training data [12], which is a standard approach for imbalanced datasets. We also567

train models with a “mild balancing”, where classes are sampled according to a distribution half-way568

between the original one of the training data, and a uniform (50%–50%) one.569
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Results. In Figure 15 we observe that ID and OOD performance are mostly positively correlated570

across methods. The best models are obtained with uniform balancing of classes, in which case model571

selection based on OOD performance could give a small advantage, but it is marginal compared to572

the improvement over the ERM baseline, which can be clearly detected on both the ID and OOD573

performance.574
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Figure 15: Results on WildTime-MIMIC-Readmission.

C.5 WildTime-Yearbook575

Data. The WildTime-Yearbook [53] dataset contains yearbook portraits. Each image is to be576

classified as male or female, and the ID and OOD splits contain images from different time periods.577

Methods. We follow the same procedure as described above. We train the simple CNN architecture578

described in [53]. We report in Figure 16 both the “average-group” accuracy (over the entire OOD579

test set) and the “worst-group” accuracy (where a group is any 5-year period within the OOD test580

period.581

Results. The patterns are slightly different in the two cases but similar conclusions can be drawn582

from both. There is a mostly-positive correlation, but at the highest accuracies (upper-right quadrant),583

some small trade-off exists. This suggests that fine-grained differences exist that are useful for either584

ID or OOD generalization, but not both. Although differences are small, this “pointy end” of the585

spectrum is where the state-of-the-art models compete, hence the relevance of this observation.586
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Figure 16: Results on WildTime-Yearbook (left: average-group accuracy, right: worst-group accu-
racy).
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D Proof of Theorem 1587

Theorem 1. Including an additional spurious feature leads to the following change in the risks:588

LID(Φd̂+1) − LID(Φd̂) = EID[y − Φd̂(x)
⊤βID

d̂
]2 − EID[y − Φd̂+1(x)

⊤βID
d̂+1

]2 < 0

LOOD(Φd̂+1) − LOOD(Φd̂) = EOOD[y − Φd̂(x)
⊤βOOD

d̂
]2 − EOOD[y − Φd̂+1(x)

⊤βOOD
d̂+1

]2 > 0

LOOD(Φd̂+1) − LOOD(Φd̂) = Q1 +Q2 +Q3

with Q1, Q2, Q3 defined as:589

Q1 = EOOD[y − Φd̂(x)
⊤βOOD

d̂ ]2 − E[y − Φd̂+1(x)
⊤βOOD

d̂+1 ]2

Q2 =
d̂∑

i=1

[ (
EOOD[Φd̂(x)y]

⊤vOOD,d̂
i

)2 (
λOOD,d̂
i

) ( 1

λID,d̂
i

− 1

λOOD,d̂
i

)2

−
(
EOOD[Φd̂(x)y]

⊤vOOD,d̂+1
i

)2 (
λOOD,d̂+1
i

) ( 1

λID,d̂+1
i

− 1

λOOD,d̂+1
i

)2
]

Q3 =
(
EOOD[Φd̂+1(x)y]

⊤vOOD,d̂+1

d̂+1

)2 ((αID
d̂+1

)2 − (αOOD
d̂+1

)2)2

(λID,d̂+1

d̂+1
)2 λOOD,d̂+1

d̂+1

> 0.

Further, if the new feature is sufficiently unstable in the test domain, i.e. if ((αID
d̂+1

)2− (αOOD
d̂+1

)2)2 is590

sufficiently large such that:591

|(αID
d̂+1)

2 − (αOOD
d̂+1 )2| >

√√√√√ (λID,d̂+1

d̂+1
)2λOOD,d̂+1

d̂+1(
EOOD[Φ(x)y]⊤vOOD,d̂+1

d̂+1

)2 |Q1 +Q2| ,

then we have Q3 > |Q1 +Q2| and therefore LOOD(Φd̂+1)− LOOD(Φd̂) > 0 .592

Let xd̂ := Φd̂(mx)[xinv,1, ..., xinv,d̂inv
, xspu,1, ..., xspu,d̂spu

] be the d̂ features already selected,593

xd̂+1 := Φd̂+1(mx) the features after adding a new spurious feature xspu,d̂spu+1 to xd̂,594

[λd̂
1, λ

d̂
2, ..., λ

d̂
d̂
] the eigenvalues of E[x⊤

d̂
xd̂] and [vd̂

1 ,v
d̂
2 , ...,v

d̂
d̂
] the corresponding eigenvectors.595

Assumption 1. The projection of E[x⊺
d̂
vd̂
i ] on each basis corresponding to feature is non zero, i.e.596 ∣∣Ee[x⊺

d̂
vd̂
i ]
∣∣ > 0, ∀ e∈{eID, eOOD}, i∈ [d].

This ensures that coefficients of a feature can not be always 0, otherwise we can simply remove it.597

Proof. Let βID and βOOD denote the solution of linear regression in the ID and OOD domains, i.e.,598

βID
d̂

=argmin
β

EID(y − x⊤
d̂
β)2 (2)

βOOD
d̂

=argmin
β

EOOD(y − x⊤
d̂
β)2 (3)

Now let us compare the OOD loss after we include xspu,d̂spu+1. In practice, we can only obtain βID599

and then apply it on both the ID and OOD domains, which elicits the following errors:600

LID(Φd̂) =EID(y − x⊤
d̂
βID) (4)

LOOD(Φd̂) =EOOD(y − x⊤
d̂
βID)

=EOOD(y − x⊤
d̂
βID)− EOOD(y − x⊤

d̂
βOOD)︸ ︷︷ ︸

ξd̂1

+EOOD(y − x⊤
d̂
βOOD)︸ ︷︷ ︸

ξd̂2

(5)

It is well known that the residual of the linear fitting y by xd̂ on the ID domain is601

LID(Φd̂) = EID
[
y − xd̂E

ID[x⊤
d̂
xd̂]

−1EID[xd̂y]
]2

= EID[y − Φd̂(x)
⊤βID

d̂
]2, (6)
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Similarly, we have602

LID(Φd̂+1) = EID[y − x⊤
d̂+1

βID
d̂+1

]2. (7)

Since xspu,d̂spu+1
does not lies in the space spaned by xd̂, so the space spanned by xd̂+1 is strictly603

larger than xd̂.604

Together with Assumption 1, we have605

LID(Φd̂)− LID(Φd̂+1) = EID[y − x⊤
d̂
βID
d̂
]2 − EID[y − x⊤

d̂+1
βID
d̂+1

]2 > 0, (8)

and also606

ξd̂2 − ξd̂+1
2 = EOOD[y − x⊤

d̂
βOOD
d̂

]2 − EOOD[y − x⊤
d̂+1

βOOD
d̂+1

]2 > 0. (9)

By the proof in Appendix B.6.3 (above Eq. 29) in [59], we have607

ξd̂1 =

d̂∑
i

(EOOD[x⊤
d̂
y]⊺vOOD,d̂

i )2λOOD
i (

1

λIID,d̂
i

− 1

λOOD,d̂
i

)2. (10)

By Eq. (20) in [59], we have608

λIID,d̂
i − λOOD,d̂

i = (αIID
i )2 − (αOOD

i )2. (11)
So we have:609

ξd̂+1
1 − ξd̂+1

1 =

d̂∑
i=1

[ (
EOOD[xd̂y]

⊤vOOD,d̂
i

)2 (
λOOD,d̂
i

) ( 1

λID,d̂
i

− 1

λOOD,d̂
i

)2

−
(
EOOD[xd̂+1y]

⊤vOOD,d̂+1
i

)2 (
λOOD,d̂+1
i

) ( 1

λID,d̂+1
i

− 1

λOOD,d̂+1
i

)2
]

+
(
EOOD[xd̂+1y]

⊤vOOD,d̂+1

d̂+1

)2 ((αID
d̂+1

)2 − (αOOD
d̂+1

)2)2

(λID,d̂+1

d̂+1
)2 λOOD,d̂+1

d̂+1

. (12)

From Eq. 10 and 12, we have the desired result.610
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