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Abstract

Cohen et al. (2021) empirically study the evolution of the largest eigenvalue
of the loss Hessian, also known as sharpness, along the gradient descent (GD)
trajectory and observe the Edge of Stability (EoS) phenomenon. The sharpness
increases at the early phase of training (referred to as progressive sharpening),
and eventually saturates close to the threshold of 2/(step size). In this paper, we
start by demonstrating through empirical studies that when the EoS phenomenon
occurs, different GD trajectories (after a proper reparameterization) align on a
specific bifurcation diagram independent of initialization. We then rigorously
prove this trajectory alignment phenomenon for a two-layer fully-connected linear
network and a single-neuron nonlinear network trained with a single data point.
Our trajectory alignment analysis establishes both progressive sharpening and EoS
phenomena, encompassing and extending recent findings in the literature.

1 Introduction
It is widely believed that implicit bias or regularization of gradient-based methods plays a key role in
generalization of deep learning (Vardi, 2022). There is a growing literature (Gunasekar et al., 2017,
2018; Soudry et al., 2018; Arora et al., 2018, 2019; Ji and Telgarsky, 2019a; Woodworth et al., 2020;
Chizat and Bach, 2020; Yun et al., 2021) studying how the choice of optimization methods induces an
implicit bias towards specific solutions among the many global minima in overparameterized settings.

Cohen et al. (2021) identify a surprising implicit bias of gradient descent (GD) towards global minima
with a certain sharpness1 value depending on the step size η. Specifically, for reasonable choices of η,
(a) the sharpness of the loss at the GD iterate gradually increases throughout training until it reaches
the stability threshold2 of 2/η (known as progressive sharpening), and then (b) the sharpness saturates
close to or above the threshold for the remainder of training (known as Edge of Stability (EoS)). These
findings have sparked a surge of research aimed at developing a theoretical understanding of the
progressive sharpening and EoS phenomena (Arora et al., 2022; Lyu et al., 2022; Wang et al., 2022;
Ahn et al., 2023; Chen and Bruna, 2023; Zhu et al., 2023). In this paper, we study these phenomena
through the lens of bifurcation theory, both empirically and theoretically.

Motivating observations: Figure 1 illustrates the GD trajectories with different initializations
and fixed step sizes trained on three types of two-dimensional functions: (a) log(cosh(xy)),
(b) 1

2 (tanh(x)y)
2, and (c) 1

2 (ELU(x)y)2, where x and y are scalars. The functions L : R2 → R
have sharpness y2 at the global minimum (0, y) for all three models. These toy models can be viewed
as examples of single-neuron models, where (a) represents a linear network with log-cosh loss, while
(b) and (c) represent nonlinear networks with squared loss. These simple models can capture some
interesting aspects of neural network training in the EoS regime, which are summarized below:

1Throughout this paper, the term “sharpness” means the maximum eigenvalue of the training loss Hessian.
2For quadratic loss, GD becomes unstable if the sharpness is larger than a threshold of 2/(step size).
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Figure 1: GD trajectories align on the bifurcation diagram at the Edge of Stability. We run GD
on toy models with step size η = 2/25 in (a), and η = 2/400 in (b) and (c). Distinct colors indicate
independent runs of GD with varying initializations. Top row: GD trajectories closely follow the
bifurcation diagram of the map x 7→ x−η ∂

∂xL(x, y) and asymptotically reaches the bifurcation point
(0,
√
2/η). Bottom row: the sharpness reaches 2/η, and xt typically shows 2-period oscillating

dynamics. The theoretical prediction λ̃(qt) (dashed lines, defined in Theorems 4.4 and C.4) in (a) and
(b) approximates the sharpness along the GD trajectory and demonstrates progressive sharpening.

• EoS phenomenon: GD converges to a global minimum near the point (0,
√

2/η) with sharpness
close to 2/η. During the convergence phase, the training dynamics exhibit period-2 oscillations.

• For different initializations, GD trajectories for a given step size align on the same curve. For
example, Figure 1a shows that GD trajectories with different initializations closely follow a
specific U-shaped curve until convergence. We call this phenomenon trajectory alignment.

• In Figures 1b and 1c, GD trajectories are aligned on a curve with a fractal structure that qual-
itatively resembles the bifurcation diagram of a typical polynomial map, such as the logistic
map. Particularly, Figure 1c demonstrates a period-halving phase transition in the GD dynamics,
shifting from period-4 oscillation to period-2 oscillation.

• Surprisingly, the curve that GD trajectories approach and follow coincides with the bifurcation
diagram of a one-dimensional map x 7→ x − η ∂

∂xL(x, y) with a fixed “control parameter” y.
The stability of its fixed point x = 0 changes at the bifurcation point (x, y) = (0,

√
2/η), where

period-doubling bifurcation occurs. Note that this point is a global minimum with sharpness 2/η.

Interestingly, such striking behaviors can also be observed in more complex models, up to a proper
reparameterization, as we outline in the next subsection.

1.1 Our contributions

In this paper, we discover and study the trajectory alignment behavior of (reparameterized) GD
dynamics in the EoS regime. To our best knowledge, we are the first to identify such an alignment
with a specific bifurcation diagram independent of initialization. Our empirical findings are rigorously
proven for both two-layer fully-connected networks and single-neuron nonlinear networks. Our main
contributions are summarized below:

• In Section 2, we introduce a novel canonical reparameterization of training parameters, which
incorporates the data, network, and GD step size. This reparameterization allows us to study the
trajectory alignment phenomenon in a unified framework. Through empirical study, Section 3
demonstrates that the alignment property of GD trajectories is not limited to toy models but also
occurs in wide and deep networks trained on real-world dataset. Furthermore, we find that the
alignment trend becomes more pronounced as the network width increases.
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• In Section 4, we use our canonical reparameterization to establish the trajectory alignment
phenomenon for a two-layer fully-connected linear network trained with a single data point. Our
theoretical analysis rigorously proves both progressive sharpening and the EoS phenomenon,
extending the work of Ahn et al. (2023) to a much broader class of networks and also providing
more accurate bounds on the limiting sharpness.

• Our empirical and theoretical analyses up to Section 4 are applicable to convex Lipschitz losses,
hence missing the popular squared loss. In Section 5, we take a step towards handling the squared
loss. Employing an alternative reparameterization, we prove the same set of theorems as Section 4
for a single-neuron nonlinear network trained with a single data point under squared loss.

1.2 Related works

The Edge of Stability (EoS) phenomenon has been extensively studied in recent years, with many
works seeking to provide a deeper understanding of the evolution of sharpness and the oscillating
dynamics of GD. Jastrzębski et al. (2019) and Jastrzebski et al. (2020) observe that step size affects
the sharpness along the optimization trajectory. Cohen et al. (2021) first formalize EoS through
empirical study, and subsequent works have built on their findings. Ahn et al. (2022) analyze EoS
through experiments and identify the relations between the behavior of loss, iterates, and sharpness.
Ma et al. (2022) suggest that subquadratic growth of the loss landscape is the key factor of oscillating
dynamics. Arora et al. (2022) show that (normalized) GD enters the EoS regime, by verifying the
convergence to some limiting flow on the manifold of global minimizers. Wang et al. (2022) divide
GD trajectory into four phases and explain progressive sharpening and EoS by using the norm of
output layer weight as an indicator of sharpness. Lyu et al. (2022) prove that normalization layers
encourage GD to reduce sharpness. Damian et al. (2023) use the third-order Taylor approximation of
the loss to theoretically analyze EoS, assuming the existence of progressive sharpening. Lee and Jang
(2023) propose a new sharpness measure using batch gradient distribution and characterize EoS for
SGD. Concurrent to our work, Wu et al. (2023) study the logistic regression problem with separable
dataset and establish that GD exhibits an implicit bias toward the max-margin solution in the EoS
regime, extending prior findings in the small step size regime (Soudry et al., 2018; Ji and Telgarsky,
2019b).

Some recent works rigorously analyze the full GD dynamics for some toy cases and prove that the
limiting sharpness is close to 2/η. Zhu et al. (2023) study the loss (x, y) 7→ 1

4 (x
2y2 − 1)2 and prove

that the sharpness converges close to 2/η with a local convergence guarantee. Notably, Ahn et al.
(2023) study the function (x, y) 7→ ℓ(xy) where ℓ is convex, even, and Lipschitz, and provide a
global convergence guarantee. The authors prove that when ℓ is log-cosh loss or square root loss, the
limiting sharpness in the EoS regime is between 2/η −O(η) and 2/η. Our theoretical results extend
their results on a single-neuron linear network to a two-layer fully-connected linear network and
provide an improved characterization on the limiting sharpness, tightening the gap between upper
and lower bounds to only O(η3).

The trajectory alignment phenomenon is closely related to Zhu et al. (2023) which shows empirical
evidence of bifurcation-like oscillation in deep neural networks trained on real-world data. However,
their empirical results do not show the alignment property of GD trajectory. In comparison, we
observe that GD trajectories align on the same bifurcation diagram, independent of initialization.

Very recently, Kreisler et al. (2023) observe a similar trajectory alignment phenomenon for scalar
linear networks, employing a reparameterization based on the sharpness of the gradient flow solution.
However, their empirical findings on trajectory alignment are confined to scalar linear networks,
and do not provide a theoretical explanation. In contrast, our work employs a novel canonical
reparameterization and offers empirical evidence for the alignment phenomenon across a wide range
of networks. Moreover, we provide theoretical proofs for two-layer linear networks and single-neuron
nonlinear networks.

2 Preliminaries
Notations. For vectors u and v, we denote the ℓp norm of u by ∥u∥p , their tensor product as u⊗v,
and u⊗ u by u⊗2. For a matrix A, we denote the spectral norm by ∥A∥2. Given a function L and
a parameter Θ, we use λmax(Θ) := λmax(∇2

ΘL(Θ)) to denote the sharpness (i.e., the maximum
eigenvalue of the loss Hessian) at Θ. We use asymptotic notations with subscripts (e.g., Oℓ(·),
Oδ,ℓ(·)) in order to hide constants that depend on the parameters or functions written as subscripts.
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2.1 Problem settings

We study the optimization of neural network f( · ;Θ) : Rd → R parameterized by Θ. We focus on a
simple over-parameterized setting trained on a single data point {(x, y)}, where x ∈ Rd and y ∈ R.
We consider the problem of minimizing the empirical risk

L(Θ) = ℓ(f(x;Θ)− y),

where ℓ is convex, even, and twice-differentiable with ℓ′′(0) = 1. We minimize L using GD with
step size η: Θt+1 = Θt − η∇ΘL(Θt). The gradient and the Hessian of the function are given by

∇ΘL(Θ) = ℓ′(f(x;Θ)− y)∇Θf(x;Θ),

∇2
ΘL(Θ) = ℓ′′(f(x;Θ)− y)(∇Θf(x;Θ))⊗2 + ℓ′(f(x;Θ)− y)∇2

Θf(x;Θ).

Suppose that Θ∗ be a global minimum of L, i.e., f(x;Θ∗) = y. In this case, the loss Hessian and
the sharpness at Θ∗ are simply characterized as

∇2
ΘL(Θ∗) = (∇Θf(x;Θ∗))⊗2, and λmax(Θ

∗) = ∥∇Θf(x;Θ∗)∥22. (1)

2.2 Canonical reparameterization

Definition 2.1 (canonical reparameterization). For given step size η, the canonical reparameterization
of Θ is defined as

(p, q) :=

(
f(x;Θ)− y,

2

η∥∇Θf(x;Θ)∥22

)
. (2)

Under the canonical reparameterization, p = 0 represents global minima, and Eq. (1) implies that
the point (p, q) = (0, 1) is a global minimum with sharpness 2/η. Note that (p, q) alone does not,
in general, uniquely determine the value of Θ. Rather, the motivation for this reparameterization
technique is to effectively analyze the complex GD dynamics in the high-dimensional parameter
space by reducing it to a 2-dimensional representation. The update of p can be written as

pt+1 = f(x;Θt+1)− y = f
(
x;Θt − ηℓ′(f(x;Θt)− y)∇Θf(x;Θt)

)
− y

≈ f(x;Θt)−∇Θf(x;Θt)
⊤ (ηℓ′(f(x;Θt)− y)∇Θf(x;Θt))− y

= (f(x;Θt)− y)− ηℓ′(f(x;Θt)− y)∥∇Θf(x;Θ)∥22

= pt −
2ℓ′(pt)

qt
, (3)

which can be obtained by first-order Taylor approximation on f for small step size η.3

2.3 Bifurcation analysis

Motivated from the approximated 1-step update rule given by Eq. (3), we conduct the bifurcation
analysis on this one-dimensional map, considering qt as a control parameter. We first review some
basic notions used in bifurcation theory (Strogatz, 1994).
Definition 2.2 (stability of fixed point). Let z0 be a fixed point of a differentiable map f : R → R,
i.e., f(z0) = z0. We say z0 is a stable fixed point of f if |f ′(z)| < 1, and we say z0 is an unstable
fixed point of f if |f ′(z)| > 1.
Definition 2.3 (stability of periodic orbit). A point z0 is called a period-p point of a map f : R → R
if z0 is the fixed point of fp and f j(z0) ̸= z0 for any 1 ≤ j ≤ p − 1. The orbit of z0, given by
{zj = f j(z0) | j = 0, 1, . . . , p − 1} is called the period-p orbit of f . A period-p orbit is stable
(unstable) if its elements are stable (unstable) fixed points of fp, i.e.,

∏p−1
j=0 |f ′(zj)| < 1 (> 1).

Now we analyze the bifurcation of the one-parameter family of mappings fq : R → R given by

fq(p) := p

(
1− 2r(p)

q

)
, (4)

where q is a control parameter and r is a differentiable function satisfying Assumption 2.4 below.

3The approximation is used just to motivate Lemma 2.1; in our theorems, we analyze the exact dynamics.
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(a) α = 5 (b) α = 10 (c) qt
r(pt)

and p vs. t

Figure 2: (a), (b) GD trajectories of two-layer fully-connected linear networks trained with different
initialization scale α. Each color corresponds to a single run of GD. Smaller initialization scale falls
into the gradient flow regime, whereas larger initialization falls into the EoS regime. (c) In the EoS
regime, qt

r(pt)
approaches 1 in the early phase of training, whereas pt converges to 0 relatively slowly.

Assumption 2.4. A function r : R → R is even, continuously differentiable, r(0) = 1, r′(0) = 0,
r′(p) < 0 for any p > 0, and limp→∞ r(p) = limp→−∞ r(p) = 0. In other words, r is a smooth,
symmetric bell-shaped function with the maximum value r(0) = 1.

We note that Eq. (3) can be rewritten as pt+1 = fqt(pt) if we define r by r(p) := ℓ′(p)
p for p ̸= 0 and

r(0) := 1. Below are examples of ℓ for which the corresponding r’s satisfy Assumption 2.4. These
loss functions were previously studied by Ahn et al. (2023) to explain EoS for (x, y) 7→ ℓ(xy).

• log-cosh loss: ℓlog-cosh(p) := log(cosh(p)). Note ℓ′log-cosh(p) = tanh(p).

• square-root loss: ℓsqrt(p) :=
√

1 + p2. Note ℓ′sqrt(p) =
p√
1+p2

.

If r satisfies Assumption 2.4, then for any 0 < q ≤ 1, there exists a nonnegative number p such that
r(p) = q, and the solution is unique which we denote by r̂(q). In particular, r̂ : (0, 1] → R≥0 is a
function satisfying r(r̂(q)) = r(−r̂(q)) = q for any q ∈ (0, 1].

Lemma 2.1 (period-doubling bifurcation of fq). Suppose that r is a function satisfying Assump-
tion 2.4. Let p∗ = sup{p ≥ 0 | xr′(x)

r(x) > −1 for any |x| ≤ p} and c = r(p∗). If p∗ = ∞, we choose
c = 0. Then, the one-parameter family of mappings fq : R → R given by Eq. (4) satisfies

(i) If q > 1, p = 0 is the stable fixed point.

(ii) If q ∈ (c, 1), p = 0 is the unstable fixed point and {±r̂(q)} is the stable period-2 orbit.

Proof. The map fq has the unique fixed point p = 0 for any q > 0. Since |f ′
q(0)| = |1− 2

q |, p = 0 is
a stable fixed point if q > 1 and p = 0 is an unstable fixed point if 0 < q < 1. Now suppose that
q ∈ (c, 1). Then, we have fq(r̂(q)) = −r̂(q) and fq(−r̂(q)) = r̂(q), which implies that {±r̂(q)} is a

period-2 orbit of fq . Then, |f ′
q(r̂(q))| = |f ′

q(−r̂(q))| =
∣∣∣1 + 2r̂(q)r′(r̂(q))

q

∣∣∣ < 1 implies that {±r̂(q)}
is a stable period-2 orbit.

According to Lemma 2.1, the stability of the fixed point p = 0 undergoes a change at q = 1, resulting
in the emergence of a stable period-2 orbit. The point (p, q) = (0, 1) is referred to as the bifurcation
point, where a period-doubling bifurcation occurs. A bifurcation diagram illustrates the points
asymptotically approached by a system as a function of a control parameter. In the case of the map
fq, the corresponding bifurcation diagram is represented by p = 0 for q ≥ 1 and p = ±r̂(q) (or
equivalently, q = r(p)) for q ∈ (c, 1).

It is worth noting that the period-2 orbit {±r̂(p)} becomes unstable for q ∈ (0, c). If we choose r to
be r(p) = ℓ′(p)

p for p ̸= 0 and r(0) = 1, then 1 + pr′(p)
r(p) = ℓ′′(p)

r(p) > 0 for all p, assuming ℓ is convex.
Consequently, for log-cosh loss and square root loss we have c = 0, indicating that the period-2 orbit
of fq remains stable for all q ∈ (0, 1). However, in Section 5, we will consider r with c > 0, which
may lead to additional bifurcations.
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(a) m = 64, L = 3 (b) m = 256, L = 3 (c) m = 256, L = 10

Figure 3: GD trajectories of tanh-activated neural networks with varying width and depth. Each
color corresponds to a single run of GD. We observe that the wider network (m = 256) exhibits a
stronger trajectory alignment phenomenon compared to the narrower network (m = 64). Figure 3c
depicts the trajectories for a deeper network (L = 10), which also shows the trajectory alignment
phenomenon.

3 Trajectory Alignment of GD: An Empirical Study

In this section, we conduct experimental studies on the trajectory alignment phenomenon in GD
dynamics under the canonical reparameterization proposed in Section 2.

We consider a fully-connected L-layer neural network f( · ;Θ) : Rd → R written as

f(x;Θ) = w⊤
Lϕ(WL−1ϕ(· · ·ϕ(W2ϕ(W1x)) · · · )),

where ϕ is an activation function, W1 ∈ Rm×d, Wl ∈ Rm×m for 2 ≤ l ≤ L − 1, and wL ∈ Rm.
All L layers have the same width of m. We minimize the empirical risk L(Θ) = ℓ(f(x;Θ) − y).
We visualize GD trajectories under the canonical parameterization, where each plot shows five
different randomly initialized weights using Xavier initialization multiplied with a rescaling factor of
α. For this analysis, we fix the training data point and hyperparameters as x = e1 = (1, 0, . . . , 0),
y = 1, η = 0.01, d = 10, and focus on the log-cosh loss for ℓ, with either ϕ(t) = t (linear) or
ϕ(t) = tanh(t). We note that the trajectory alignment phenomenon is consistently observed in other
settings, including square root loss, different activations (e.g., ELU), and various hyperparameters, in
particular for sufficiently wide networks (additional experimental results are provided in Appendix A).

The effect of initialization scale. In Figures 2a and 2b, we examine the effect of the initialization
scale α on GD trajectories in a two-layer fully-connected linear network with a width of m = 256. In
Figure 2a, when the weights are initialized with a smaller scale (α = 5), the initial value of q is greater
than 1, and it converges towards the minimum with only a small change in qt until convergence. In
this case, the limiting sharpness is relatively smaller than 2/η, and the EoS phenomenon does not
occur. This case is referred to as the gradient flow regime (Ahn et al., 2023). On the other hand,
in Figure 2b, when the weights are initialized with a larger scale (α = 10), the initial value of q is
less than 1, and we observe convergence towards the point (close to) (p, q) = (0, 1). This case is
referred to as the EoS regime. We note that choosing larger-than-standard scale α is not a necessity
for observing EoS; we note that even with α = 1, we observe the EoS regime when η is larger.

Trajectory alignment on the bifurcation diagram. In order to investigate the trajectory alignment
phenomenon on the bifurcation diagram, we plot the bifurcation diagram q = r(p) = ℓ′(p)

p and
observe that GD trajectories tend to align with this curve, which depends solely on ℓ. Figure 2b
clearly demonstrates this alignment phenomenon. Additionally, we analyze the evolution of qt

r(pt)

and pt in Figure 2c. We observe that the evolution of qt
r(pt)

follows two phases. In Phase I, qt
r(pt)

approaches to 1 quickly. In Phase II, the ratio remains close to 1. Notably, the convergence speed
of qt

r(pt)
towards 1 is much faster than the convergence speed of pt towards 0. In Sections 4 and 5,

we will provide a rigorous analysis of this behavior, focusing on the separation between Phase I and
Phase II.

The effect of width and depth. In Figure 3, we present the GD trajectories of tanh-activated
networks with different widths and depths (α = 5). All three cases belong to the EoS regime, where
GD converges to a point close to (p, q) = (0, 1), resulting in a limiting sharpness near 2/η. However,
when comparing Figures 3a and 3b, we observe that the trajectory alignment phenomenon is not
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(a) P (z) = 1
n

∑n
i=1 zi (b) P (z) = ∥z∥2 (c) Loss and q vs. t

Figure 4: Training on a subset of CIFAR-10. The GD trajectories trained on a 50 example subset of
CIFAR-10 under the generalized canonical reparameterization (5) with different choices of P and
network architecture. Each color corresponds to a single run of GD. Top row: fully-connected neural
network with tanh activation. Bottom row: CNN with tanh activation. Full implementation details
and further experimental results are given in Appendix A.4.

observed for the narrower network with m = 64, whereas the GD trajectories for the wider network
with m = 256 are clearly aligned on the bifurcation diagram. This suggests that network width plays
a role in the trajectory alignment phenomenon, which is reasonable since wide networks are well
approximated by their linearized models, hence Eq. (3) is more accurate. Furthermore, we note that
the trajectory alignment phenomenon is also observed for a deeper network with L = 10, as depicted
in Figure 3c.

Multiple training data points. In our trajectory alignment analysis, we have primarily focused on
training with a single data point. However, it is important to explore the extension of this phenomenon
to scenarios with multiple training data points.

To investigate this, we train a neural network on a dataset {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ R,
by minimizing the empirical risk L(Θ) := 1

n

∑n
i=1 ℓ(f(xi;Θ)− yi). Defining X ∈ Rn×d as the

data matrix and y ∈ Rn as the label vector, we introduce a generalized canonical reparameterization:

(p, q) :=

(
P (f(X;Θ)− y) ,

2n

η ∥
∑n

i=1(∇Θf(xi;Θ))⊗2∥
2

)
, (5)

where P : Rn → R can be a function such as a mean value or a specific vector norm.

In Figure 4, we consider training on a 50 example subset of CIFAR-10 with only 2 classes and vary
the network architecture. We use three-layer fully-connected network with tanh activation and convo-
lutional network (CNN) with tanh activation. Under the generalized canonical reparameterization (5)
for various choices of P , including the mean and the ℓ2 norm, we observe the trajectory alignment
phenomenon throughout all settings, indicating a common alignment property of the GD trajectories.
However, unlike the single data point case, the alignment does not happen on the curve q = ℓ′(p)

p .
The precise characterization of the coinciding curve is an interesting direction for future research.

4 Trajectory Alignment of GD: A Theoretical Study
In this section, we study a two-layer fully-connected linear network defined as f(x;Θ) := v⊤Ux,
where U ∈ Rd×m, v ∈ Rm, and Θ denote the collection of all parameters (U ,v). We consider
training this network with a single data point {(x, 0)}, where x ∈ Rd and ∥x∥2 = 1. We run GD
with step size η on the empirical risk

L(Θ) := ℓ(f(x;Θ)− 0) = ℓ(v⊤Ux),
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where ℓ is a loss function satisfying Assumption 4.1. We note that our assumptions on ℓ is motivated
from the single-neuron linear network analysis (d = m = 1) by Ahn et al. (2023).

Assumption 4.1. The loss ℓ is convex, even, 1-Lipschitz, and twice differentiable with ℓ′′(0) = 1.

The canonical reparameterization (Definition 2.1) of Θ = (U ,v) is given by

(p, q) :=

(
v⊤Ux,

2

η(∥Ux∥22 + ∥v∥22)

)
.

Under the canonical reparameterization, the 1-step update rule of GD can be written as

pt+1 =

[
1− 2r(pt)

qt
+ η2p2t r(pt)

2

]
pt, qt+1 =

[
1− η2p2t r(pt)(2qt − r(pt))

]−1
qt, (6)

where we define the function r by r(p) := ℓ′(p)
p for p ̸= 0 and r(0) := 1. Note that the sequence

(qt)
∞
t=0 is monotonically increasing if q0 ≥ 1

2 , which is the case our analysis will focus on.

We have an additional assumption on ℓ as below, motivated from Lemma 2.1.

Assumption 4.2. The function r(p) = ℓ′(p)
p corresponding to the loss ℓ satisfies Assumption 2.4.

We now present our theoretical results on this setting, and defer the proofs to Appendix B.

4.1 Gradient flow regime

We first consider the gradient flow regime, where q is initialized with q0 > 1.

Theorem 4.1 (gradient flow regime). Let η ∈ (0, 2
33 ) be a fixed step size and ℓ be a loss function

satisfying Assumptions 4.1 and 4.2. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1 and

q0 ∈
(

2
2−η ,min

{
1

16η ,
r(1)
2η

})
. Consider the GD trajectory characterized in Eq. (6). Then, the GD

iterations (pt, qt) converge to the point (0, q∗) such that

q0 ≤ q∗ ≤ exp(Cη2)q0 ≤ 2q0,

where C = 8q0

[
min

{
2(q0−1)

q0
, r(1)
2q0

}]−1

> 0.

Theorem 4.1 implies that in gradient flow regime, GD with initialization Θ0 = (U0,v0) and step
size η converges to Θ∗ which has the sharpness bounded by:

(1− Cη2)(∥U0x∥22 + ∥v0∥22) ≤ λmax(Θ
∗) ≤ (∥U0x∥22 + ∥v0∥22).

Hence, for small step size η, if the initialization satisfies ∥U0x∥22 + ∥v0∥22 < 2
η − 1, then the limiting

sharpness is slightly below ∥U0x∥22+∥v0∥22. Note that we assumed the bound |p0| ≤ 1 for simplicity,
but our proof also works with the assumption |p0| ≤ K for any positive constant K modulo some
changes in numerical constants. Moreover, our assumption on the upper bound of q0 is 1/η up to a
constant factor, which covers most realistic choices of initialization.

4.2 EoS regime

We now provide rigorous results in the EoS regime, where the GD trajectory aligns on the bifurcation
diagram q = r(p). To establish these results, we introduce additional assumptions on the loss ℓ.

Assumption 4.3. The function r(z) = ℓ′(z)
z is C4 on R and satisfies

(i) z 7→ r′(z)
r(z)2 is decreasing on R,

(ii) z 7→ zr′(z)
r(z) is decreasing on z > 0 and increasing on z < 0,

(iii) z 7→ zr(z)
r′(z) is decreasing on z > 0 and increasing on z < 0.

We note that both the log-cosh loss and the square root loss satisfy Assumptions 4.1, 4.2, and 4.3.
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Theorem 4.2 (EoS regime, Phase I). Let η be a small enough step size and ℓ be a loss function
satisfying Assumptions 4.1, 4.2, and 4.3. Let z0 := supz{

zr′(z)
r(z) ≥ − 1

2} and c0 := max{r(z0), 1
2}.

Let δ ∈ (0, 1− c0) be any given constant. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1
and q0 ∈ (c0, 1 − δ). Consider the reparameterized GD trajectory characterized in Eq. (6). We
assume that for all t ≥ 0 such that qt < 1, we have pt ̸= 0. Then, there exists a time step
ta = Oδ,ℓ(log(η

−1)), such that for any t ≥ ta,

qt
r(pt)

= 1 + h(pt)η
2 +Oδ,ℓ(η

4),

where h(p) := − 1
2

(
pr(p)3

r′(p) + p2r(p)2
)

for p ̸= 0 and h(p) := − 1
2r′′(0) for p = 0.

One can check that for log-cosh and square-root losses, the ranges of h are (0, 3/4] and (0, 1/2],
respectively. Theorem 4.2 implies that in the early phase of training (t ≤ ta = O(log(η−1))), GD
iterates (pt, qt) approach closely to the bifurcation diagram r(p) = q, which we called Phase I in
Section 3. In Phase II, GD trajectory aligns on this curve in the remaining of the training (t ≥ ta).
Theorem 4.3 provides an analysis on Phase II stated as below.

Theorem 4.3 (EoS regime, Phase II). Under the same settings as in Theorem 4.2, there exists a time
step tb = Ω((1− q0)η

−2) such that qtb ≤ 1 and qt > 1 for any t > tb. Moreover, the GD iterates
(pt, qt) converge to the point (0, q∗) such that

q∗ = 1− η2

2r′′(0)
+Oδ,ℓ(η

4).

Theorem 4.3 implies that in EoS regime, GD with step size η converges to Θ∗ with sharpness

λmax(Θ
∗) =

2

η
− η

|r′′(0)|
+Oδ,ℓ(η

3).

Note that Ahn et al. (2023) study the special case d = m = 1 and prove that the limiting sharpness is
between 2/η −O(η) and 2/η. Theorem 4.3 provides tighter analysis on the limiting sharpness in
more general settings, reducing the gap between the upper bound and lower bound to only O(η3).
Also, our result is the first to prove that the limiting sharpness in the EoS regime is bounded away
from 2/η by a nontrivial margin.

We also study the evolution of sharpness along the GD trajectory and prove that progressive sharpening
(i.e., sharpness increases) occurs during Phase II.

Theorem 4.4 (progressive sharpening). Under the same setting as in Theorem 4.2, let ta denote the
obtained iteration. Define the function λ̃ : R>0 → R given by

λ̃(q) :=


(
1 + r̂(q)r′(r̂(q))

q

)
2
η if q ≤ 1, and

2
η otherwise.

Then, the sequence
(
λ̃(qt)

)∞
t=0

is monotonically increasing. Moreover, for any t ≥ ta, the sharpness
at GD iterate Θt closely follows the sequence

(
λ̃(qt)

)∞
t=0

by satisfying∣∣∣λmax(Θt)− λ̃ (qt)
∣∣∣ ≤ 1 +Oℓ(η).

The gap between λmax(Θt) and λ̃(qt) is bounded by a numerical constant, which becomes negligible
compared to 2/η for small η. In Figure 1a, we perform numerical experiments on a single-neuron
case and observe that λ̃(qt) closely approximates the sharpness.

Note that Cohen et al. (2021) observe an increase in sharpness during training in the gradient flow
regime, while our work reveals that sharpness increases when exhibiting oscillations in the EoS
regime. This distinction may be linked to the selection of the loss function, as our study focuses on
Lipschitz convex losses, while Cohen et al. (2021) examine the squared loss.
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5 EoS in Squared Loss: Single-neuron Nonlinear Network

Our canonical reparameterization has a limitation in explaining the EoS phenomenon under squared
loss ℓ(p) = 1

2p
2, as the function r(p) = ℓ′(p)

p = 1 does not satisfy Assumption 2.4. However,
empirical studies by Cohen et al. (2021) have observed the EoS phenomenon in GD training with
squared loss. In this section, we analyze a simple toy model to gain insight into the EoS phenomenon
and trajectory alignment of GD under squared loss.

We study the GD dynamics on a two-dimensional function L(x, y) := 1
2 (ϕ(x)y)

2, where x, y are
scalars and ϕ is a nonlinear activation satisfying Assumption 5.1 below.

Assumption 5.1 (sigmoidal activation). The activation function ϕ : R → R is odd, increasing, 1-
Lipschitz and twice continuously differentiable. Moreover, ϕ(0) = 0, ϕ′(0) = 1, limx→∞ ϕ(x) = 1,
and limx→−∞ ϕ(x) = −1.

One good example of ϕ satisfying Assumption 5.1 is tanh. For this section, we use an alternative
reparameterization defined as below.

Definition 5.2. For given step size η, the (p, q) reparameterization of (x, y) ∈ R2 is defined as

(p, q) :=

(
x,

2

ηy2

)
.

Under the reparameterization, the 1-step update rule can be written as

pt+1 =

(
1− 2r(pt)

qt

)
pt, qt+1 = (1− ηϕ(pt)

2)−2qt, (7)

where the function r is given by r(z) := ϕ(z)ϕ′(z)
z for z ̸= 0 and r(0) := 1.

We can observe a notable resemblance between Eq. (7) and Eq. (6). Indeed, our theoretical findings
for a single-neuron nonlinear network closely mirror those of the two-layer linear network discussed
in Section 4. Due to lack of space, we summarize our theorems in this setting as the following:

Theorem 5.1 (informal). Under suitable assumptions on ϕ, step size, and initialization, GD trained
on the squared loss L(x, y) := 1

2 (ϕ(x)y)
2 exhibits the same gradient flow, EoS (Phase I, II), and

progressive sharpening phenomena as shown in Section 4.

In Theorem C.3, we prove that in the EoS regime, the limiting sharpness is 2
η − 2

|r′′(0)| +O(η). For
formal statements of the theorems and the proofs, we refer the reader to Appendix C.

6 Conclusion

In this paper, we provide empirical evidence and rigorous analysis to demonstrate the interesting
phenomenon of GD trajectory alignment in the EoS regime. Importantly, we show that different GD
trajectories, under the canonical reparameterization, align on a bifurcation diagram independent of
initialization. This discovery is notable due to the intricate and non-convex nature of neural network
optimization, where the algorithm trajectory is heavily influenced by initialization choices. Our
theoretical analysis not only characterizes the behavior of limiting sharpness but also establishes pro-
gressive sharpening of GD. One immediate future direction is to understand the trajectory alignment
behavior when trained on multiple data points. Lastly, it will be interesting to extend our analysis to
encompass squared loss for general neural network, going beyond the toy single-neuron example.
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A Additional Experiments

In this section, we present additional empirical evidence demonstrating the phenomenon of trajectory
alignment, which supports the findings discussed in Section 3 of our main paper.

A.1 Experimental setup

Objective function. We run gradient descent (GD) to minimize the objective function defined as

L(Θ) = ℓ(f(x;Θ)− y),

where Θ represents the parameters, ℓ : R → R is a loss function, f : Rd → R is a neural network,
and {(x, y)} denotes a single data point with x ∈ Rd and y ∈ R. We also consider training on
multiple data points {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ R for each 1 ≤ i ≤ n, where we minimize
the objective function

L(Θ) :=
1

n

n∑
i=1

ℓ(f(xi;Θ)− yi).

In our experiments, we primarily focus on the log-cosh loss function ℓlog-cosh(p) = log(cosh(p)),
but we also investigate the square root loss ℓsqrt(p) =

√
1 + p2.

Model architecture. We train a fully-connected L-layer neural network, denoted as f( · ;Θ) :
Rd → R. The network is defined as follows:

f(x;Θ) = w⊤
Lϕ(WL−1ϕ(· · ·ϕ(W2ϕ(W1x)) · · · )),

where ϕ : R → R is an activation function applied entry-wise, W1 ∈ Rm×d, Wl ∈ Rm×m for
2 ≤ l ≤ L− 1, and wL ∈ Rm. All L layers have the same width of m, and the biases of all layers
are fixed to 0.4 We consider three activations: hyperbolic tangent ϕ(t) = tanh(t), exponential linear
unit ϕ(t) = ELU(t), and linear ϕ(t) = t.

Weight initialization. We perform gradient descent (GD) using five different randomly initialized
sets of weights. The weights are initialized using Xavier initialization, and each layer is multiplied by
a rescaling factor (gain) of α. In the plots presented throughout this section, we mark the initialization
points with an ‘x’ to distinguish them from other points on the trajectories.

Canonical reparameterization. We plot GD trajectories after applying the canonical reparameteri-
zation introduced in Definition 2.1:

(p, q) :=

(
f(x;Θ)− y,

2

η∥∇Θf(x;Θ)∥22

)
,

where η denotes the step size. For training on multiple data points, we employ the generalized
canonical reparameterization as defined in Eq. (5):

(p, q) :=

(
P (f(X;Θ)− y) ,

2n

η ∥
∑n

i=1(∇Θf(xi;Θ))⊗2∥
2

)
,

where P : Rn → R can represent the mean value or vector norms. Specifically, we mainly focus
on the mean value P (z) = 1

n

∑n
i=1 zi, but we also examine vector norms such as P (z) = ∥z∥1,

P (z) = ∥z∥2, and P (z) = ∥z∥∞, where z = (z1, z2, . . . , zn) ∈ Rn.

For large networks, explicitly calculating the ℓ2 matrix norm
∥∥∑n

i=1(∇Θf(xi;Θ))⊗2
∥∥
2

is infeasible.
Therefore, we adopt a fast and efficient matrix-free method based on power iteration, as proposed
by Yao et al. (2020). This method allows us to numerically compute the ℓ2 norm of large-scale
symmetric matrices.

4While we fix the biases of all layers to 0 to maintain consistency with our theory, the trajectory alignment
phenomenon is consistently observed even for neural networks with bias. In Appendix A.4, we consider training
networks with bias.
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(a) α = 0.5 (b) α = 1.0 (c) α = 2.0 (d) α = 4.0

Figure 5: GD trajectories (1000 iterations) of 3-layer fully connected neural networks with tanh
activation and a width of m = 256. The plots depict the trajectories for different initialization
scales: α = 0.5, 1.0, 2.0, 4.0. Smaller initialization scales (α = 0.5, 1.0) lead to trajectories in the
gradient flow regime, while larger initialization scales (α = 2.0, 4.0) result in trajectories in the EoS
regime.

A.2 Training on a single data point

Training data. We conduct experiments on a synthetic single data point (x, y), where x = e1 =
(1, 0, . . . , 0) ∈ Rd and y ∈ R. Throughout the experiments in this subsection, we keep the data
dimension fixed at d = 10, the data label at y = 1, and the step size at η = 0.01.

The effect of initialization scale. We investigate the impact of the initialization scale α while
keeping other hyperparameters fixed. We vary the initialization scale across {0.5, 1.0, 2.0, 4.0}.
Specifically, in Figure 5, we train a 3-layer fully connected neural network with tanh activation. We
observe that smaller initialization scales (α = 0.5, 1.0) lead to trajectories in the gradient flow regime,
while larger initialization scales (α = 2.0, 4.0) result in trajectories in the EoS regime. This behavior
is primarily due to the initial value of q being smaller than 1 for larger initialization scales, which
causes the trajectory to fall into the EoS regime.

The effect of network width. We investigate the impact of network width on the trajectory
alignment phenomenon. While keeping other hyperparameters fixed, we control the width m with
values of {64, 128, 256, 512}. In Figure 6, we train 3-layer fully connected neural networks with
tanh activation and an initialization scale of α = 4. Additionally, in Figure 7, we examine the same
setting but with different depth, training 10-layer fully connected neural networks.

It is commonly observed that the alignment trend becomes more pronounced as the network width
increases. In Figures 6 and 7, all trajectories are in the EoS regime. However, narrower networks
(m = 64, 128) do not exhibit the trajectory alignment phenomenon, while wider networks (m =
256, 512) clearly demonstrate this behavior. These results indicate that network width plays a
significant role in the trajectory alignment property of GD.

The effect of loss and activation functions. The trajectory alignment phenomenon is consistently
observed in various settings, including those with square root loss and different activation functions.
In Figure 8, we investigate a 3-layer fully connected neural network with a width of m = 256 and an
initialization scale of α = 2. We explore different activation functions, including tanh, ELU, and
linear, and consider both log-cosh loss and square-root loss. Across all these settings, we observe the
trajectory alignment phenomenon, where the GD trajectories align on a curve q = ℓ′(p)

p .
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(a) m = 64 (b) m = 128 (c) m = 256 (d) m = 512

Figure 6: GD trajectories (1000 iterations) of 3-layer fully connected neural networks with tanh
activation and an initialization scale of α = 4. The plots depict the trajectories for different
network widths: m = 64, 128, 256, 512. Narrower networks (m = 64, 128) do not exhibit trajectory
alignment, while wider networks (m = 256, 512) clearly demonstrate the trajectory alignment
phenomenon.

(a) m = 64 (b) m = 128 (c) m = 256 (d) m = 512

Figure 7: GD trajectories (1000 iterations) of 10-layer fully connected neural networks with tanh
activation and an initialization scale of α = 4. The plots depict the trajectories for different network
widths: m = 64, 128, 256, 512. Similar to Figure 6, narrower networks (m = 64, 128) do not
exhibit trajectory alignment, while wider networks (m = 256, 512) clearly demonstrate the trajectory
alignment phenomenon.

A.3 Training on multiple synthetic data Points

Training data. We consider training on a synthetic dataset consisting of n data points, denoted as
(xi, yi)

n
i=1. The input vectors xi are sampled from a standard Gaussian distribution N (0, I), where

xi ∈ Rd, and the corresponding target values yi are sampled from a Gaussian distribution N (0, 1),
where yi ∈ R. Throughout our experiments in this subsection, we use a fixed data dimension of
d = 10 and a step size of η = 0.01.

The effect of function P . To investigate the impact of different choices of the function P , we train
a 3-layer fully connected neural network with tanh activation. The network has a width of m = 256
and is initialized with a scale of α = 4. The training is performed on a dataset consisting of n = 10
data points. Figure 9 displays the trajectories of GD trajectories under the generalized canonical
reparameterization defined in Eq. (5) for various choices of the function P . These choices include
the mean, ℓ1 norm, ℓ2 norm, and ℓ∞ norm.

We observe that GD trajectories exhibit alignment behavior across different choices of the function P .
Notably, when P is selected as the mean, the trajectories align on the curve q = ℓ′(p)

p . However, when
P is based on vector norms, the alignment occurs on different curves. The precise characterization of
these curves remains as an interesting open question for further exploration.

The effect of the number of data points. We examine how the size of the training dataset, denoted
by n, influences the trajectory alignment behavior of GD. While keeping other hyperparameters
constant, we vary n with values {2, 4, 8, 16, 32, 64, 128, 512, 1024}. In Figure 10, we train a 3-layer
fully connected neural network with tanh activation, a width of m = 256, and an initialization scale
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(a) log-cosh, tanh (b) log-cosh, ELU (c) log-cosh, linear

(d) square-root, tanh (e) square-root, ELU (f) square-root, linear

Figure 8: GD trajectories (1000 iterations) of 3-layer fully connected neural networks with different
loss and activation functions. The networks have a width of m = 256 and an initialization scale of
α = 2. The plots illustrate the trajectories for various combinations of activation functions (tanh,
ELU, and linear) and loss functions (log-cosh and square-root loss). In all these settings, the trajectory
alignment phenomenon is observed, where GD trajectories align on a curve q = ℓ′(p)

p . Top row:
trajectories with log-cosh loss. From left to right: tanh, ELU, and linear activations. Bottom row:
trajectories with square-root loss. From left to right: tanh, ELU, and linear activations.

(a) P (z) = 1
n

∑n
i=1 zi (b) P (z) = ∥z∥1 (c) P (z) = ∥z∥2 (d) P (z) = ∥z∥∞

Figure 9: GD trajectories (500 iterations) under the generalized canonical reparameterization (Eq. (5))
for different choices of the function P . The plots depict the training of a 3-layer fully connected
neural network with tanh activation, a width of m = 256, and an initialization scale of α = 4. Each
plot corresponds to a different parameterization, including the mean, ℓ1 norm, ℓ2 norm, and ℓ∞ norm.
GD trajectories commonly exhibit alignment behavior, with the mean parameterization aligning on
the curve q = ℓ′(p)

p .

of α = 4. Additionally, in Figure 11, we investigate the same setting but with a different activation
function, training ELU-activated fully connected neural networks. The GD trajectories are plotted
under the generalized canonical reparameterization using the mean function P (z) = 1

n

∑n
i=1 zi.

We observe a consistent trajectory alignment phenomenon across different choices of the number of
data points. Interestingly, for small values of n, the trajectories clearly align on the curve q = ℓ′(p)

p .
However, as the number of data points n increases, it seems that the trajectories no longer align on this
curve but different “narrower” curves. Understanding the underlying reasons for this phenomenon
poses an intriguing open question.
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(a) n = 2 (b) n = 4 (c) n = 8

(d) n = 16 (e) n = 32 (f) n = 64

(g) n = 128 (h) n = 256 (i) n = 512

(j) n = 1024

Figure 10: GD trajectories (500 iterations) under the generalized canonical reparameterization
(Eq. (5)) for different choices of the number of data points n. The plots depict the training of a
3-layer fully connected neural network with tanh activation, a width of m = 256, and an initialization
scale of α = 4. The function P is chosen to be the mean P (z) = 1

n

∑n
i=1 zi. The trajectories exhibit

alignment behavior, where the curves followed by the trajectories change depending on the value of
n. For small values of n, the trajectories align on the curve q = ℓ′(p)

p , while for large values of n,
they align on a distinct curve.
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(a) n = 2 (b) n = 4 (c) n = 8

(d) n = 16 (e) n = 32 (f) n = 64

(g) n = 128 (h) n = 256 (i) n = 512

(j) n = 1024

Figure 11: GD trajectories (500 iterations) under the generalized canonical reparameterization
(Eq. (5)) for different choices of the number of data points n. The plots depict the training of a
3-layer fully connected neural network with ELU activation, a width of m = 256, and an initialization
scale of α = 4. The function P is chosen to be the mean P (z) = 1

n

∑n
i=1 zi. The trajectories exhibit

alignment behavior, where the curves followed by the trajectories change depending on the value of
n. For small values of n, the trajectories align on the curve q = ℓ′(p)

p , while for large values of n,
they align on a distinct curve.
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A.4 Training on real-world dataset

Training data. In this subsection, we investigate a binary classification problem using a subset of
the CIFAR-10 image classification dataset. Our dataset consists of 50 samples, with 25 samples from
class 0 (airplane) and 25 samples from class 1 (automobile). We assign a label of +1 to samples from
class 0 and a label of −1 to samples from class 1. This dataset was used in the experimental setup by
Zhu et al. (2023).

Architectures. In Figure 4, we examine the training of two types of network architectures: (top
row) fully-connected tanh network and (bottom row) convolutional tanh network. The PyTorch
code for the fully-connected tanh network is provided as follows:

nn.Sequential(
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(3072, 500, bias=True),
nn.Tanh(),
nn.Linear(500, 500, bias=True),
nn.Tanh(),
nn.Linear(500, 1, bias=True)

)

Similarly, the PyTorch code for the convolutional tanh network is as follows:

nn.Sequential(
nn.Flatten(start_dim=1, end_dim=-1),
nn.Unflatten(dim=1, unflattened_size=(3, 32, 32)),
nn.Conv2d(3, 500, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=True),
nn.Tanh(),
nn.Conv2d(500, 500, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=True),
nn.Tanh(),
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(512000, 1, bias=True)

)

Note that we consider networks with bias. We use a step size of η = 0.01 for the fully-connected
network and η = 0.001 for the CNN. The default PyTorch initialization (Paszke et al., 2019) is
applied to all these networks.

In this subsection, we further explore the (reparameterized) GD trajectories of fully-connected
networks with different activation functions, network widths, and the choice of function P in (5).

The effect of function P . We investigate the impact of different choices of the function P on the
GD trajectories. We train a 3-layer fully connected neural network with ELU activation, a width of
m = 256, and an initialization scale of α = 1. Figure 12 illustrates the GD trajectories under the
generalized canonical reparameterization defined in Eq. (5) for various choices of the function P ,
including the mean, ℓ1 norm, ℓ2 norm, and ℓ∞ norm.

We observe that the GD trajectories exhibit alignment behavior, which is more pronounced when
P is chosen to be the mean or ℓ1 norm, but less evident for the ℓ∞ norm. Unlike in Figure 9, the
trajectories do not align on the curve q = ℓ′(p)

p when P is selected as the mean P (z) = 1
n

∑n
i=1 zi.

The effect of network width. We investigate how the width of the network influences the trajectory
alignment phenomenon. We vary the width m using values from {64, 128, 256, 512} while keeping
other hyperparameters constant. In Figure 13, we train 3-layer fully connected neural networks with
tanh activation and an initialization scale of α = 1. Similarly, in Figure 14, we conduct experiments
using the same configuration but with ELU activation, training ELU-activated fully connected neural
networks.

Consistent with the observations from Figures 6 and 7 in the single data point setting, we commonly
find that as the network width increases, the alignment trend becomes more pronounced. In both
Figure 13 and Figure 14, all trajectories fall within the EoS regime. However, narrower networks
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(a) P (z) = 1
n

∑n
i=1 zi (b) P (z) = ∥z∥1 (c) P (z) = ∥z∥2 (d) P (z) = ∥z∥∞

Figure 12: GD trajectories (1000 iterations) under the generalized canonical reparameterization
(Eq. (5)) for different choices of the function P trained on a small subset of CIFAR-10 image dataset.
The plots depict the training of a 3-layer fully connected neural network with ELU activation, a width
of m = 256, and an initialization scale of α = 1. The function P is varied to be the mean, ℓ1 norm,
ℓ2 norm, and ℓ∞ norm. The alignment behavior of the trajectories is more prominent when P is
chosen as the mean or ℓ1 norm, but less evident for the ℓ∞ norm.

(a) m = 64 (b) m = 128 (c) m = 256 (d) m = 512

Figure 13: GD trajectories (1000 iterations) under the generalized canonical reparameterization
(Eq. (5)) for different network widths trained on a small subset of CIFAR-10 image dataset. The
plots depict the training of 3-layer fully connected neural networks with tanh activation and an
initialization scale of α = 1. The trajectories are shown for network widths of m = 64, m = 128,
m = 256, and m = 512.

(a) m = 64 (b) m = 128 (c) m = 256 (d) m = 512

Figure 14: GD trajectories (1000 iterations) under the generalized canonical reparameterization
(Eq. (5)) for different network widths trained on a small subset of CIFAR-10 image dataset. The
plots depict the training of 3-layer fully connected neural networks with ELU activation and an
initialization scale of α = 1. The trajectories are shown for network widths of m = 64, m = 128,
m = 256, and m = 512.

(m = 64) show less evidence of the trajectory alignment phenomenon, while wider networks
(m = 256, 512) clearly demonstrate this behavior. These findings emphasize the significant impact
of network width on the trajectory alignment property of GD.

The effect of data label. In our previous experiments, we assigned labels of +1 and −1 to the
dataset. However, in this particular experiment, we investigate the training process on a dataset with
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zero labels. This means that all samples in the dataset are labeled as zero (yi = 0 for all 1 ≤ i ≤ n).
Figure 15 visualizes the training of 3-layer fully connected neural networks with tanh activation
and an initialization scale of α = 1. The network widths m are varied from {256, 512, 1024}.
Interestingly, the GD trajectories align with the curve q = ℓ′(p)

p , in contrast to our observations in
Figures 13 and 14. These results suggest that the data label distribution also influences the alignment
curve of GD trajectories. As a future research direction, it would be intriguing to investigate why
setting the labels as zero leads to alignment towards the curve q = ℓ′(p)

p , which aligns with our
theoretical findings in the single data point setting.

(a) m = 256 (b) m = 512 (c) m = 1024

Figure 15: GD trajectories (1000 iterations) of the training for 3-layer fully connected neural networks
with tanh activation and an initialization scale of α = 1. The networks are trained on a small subset
of the CIFAR-10 dataset, where all labels are set to zero. The network widths m are varied, including
values of 256, 512, and 1024. GD trajectories exhibit alignment behavior, aligning on the curve
q = ℓ′(p)

p .
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B Proofs for the Two-Layer Fully-Connected Linear Network

B.1 Proof of Theorem 4.1

We give the proof of Theorem 4.1, restated below for the sake of readability.
Theorem 4.1 (gradient flow regime). Let η ∈ (0, 2

33 ) be a fixed step size and ℓ be a loss function
satisfying Assumptions 4.1 and 4.2. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1 and

q0 ∈
(

2
2−η ,min

{
1

16η ,
r(1)
2η

})
. Consider the GD trajectory characterized in Eq. (6). Then, the GD

iterations (pt, qt) converge to the point (0, q∗) such that

q0 ≤ q∗ ≤ exp(Cη2)q0 ≤ 2q0,

where C = 8q0

[
min

{
2(q0−1)

q0
, r(1)
2q0

}]−1

> 0.

We note that in the given interval
(

2
2−η ,min

{
1

16η ,
r(1)
2η

})
, it is possible that the interval is empty,

depending on the value of r(1). However, this does not impact the correctness of the theorem.

Proof. By Proposition B.1, pt converges to 0 as t → ∞, and for all t ≥ 0, we have

q0 ≤ qt ≤ exp(Cη2)q0.

Since the sequence (qt)∞t=0 is monotonic increasing and bounded, it converges. Suppose that qt → q∗

as t → ∞. Then, we can obtain the inequality

q0 ≤ q∗ ≤ exp(Cη2)q0,

as desired.

Proposition B.1. Suppose that η ∈ (0, 2
33 ), |p0| ≤ 1 , and q0 ∈

(
2

2−η ,min
{

1
16η ,

r(1)
2η

})
. Then for

any t ≥ 0, we have

|pt| ≤
[
1−min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]t
≤ 1,

and

q0 ≤ qt ≤ exp

(
8η2q0

[
min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]−1
)
q0 ≤ 2q0.

Proof. We give the proof by induction; namely, if

|pt| ≤
[
1−min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]t
, q0 ≤ qt ≤ exp

(
8η2q0

[
min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]−1
)
q0 ≤ 2q0

are satisfied for time steps 0 ≤ t ≤ k for some k, then the inequalities are also satisfied for the next
time step k + 1.

For the base case, the inequalities are satisfied for t = 0 by assumptions. For the induction step, we
assume that the inequalities hold for any 0 ≤ t ≤ k. We will prove that the inequalities are also
satisfied for t = k + 1.

By induction assumptions, q0 ≤ qk ≤ 2q0 and |pk| ≤ 1, so that we have

1− 2

q0
≤ pk+1

pk
= 1− 2r(pk)

qk
+ η2p2kr(pk)

2 ≤ 1− r(1)

q0
+ η2,

where we used r(1) ≤ r(pk) ≤ r(0) = 1. Since q0 ≤ r(1)
2η ≤ r(1)

2η2 , we have∣∣∣∣pk+1

pk

∣∣∣∣ ≤ max

{
2

q0
− 1, 1− r(1)

q0
+ η2

}
= 1−min

{
2(q0 − 1)

q0
,
r(1)

q0
− η2

}
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≤ 1−min

{
2(q0 − 1)

q0
,
r(1)

2q0

}
.

This implies that

|pk+1| ≤
(
1−min

{
2(q0 − 1)

q0
,
r(1)

2q0

})
|pk| ≤

[
1−min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]k+1

,

which is the desired bound for |pk+1|.
For any t ≤ k, we also have

1− 4η2p2t q0 ≤ qt
qt+1

= 1− η2p2t r(pt)(2qt − r(pt)) ≤ 1,

where we used the induction assumptions to deduce 4q0 ≥ 2qt−r(pt) ≥ 2q0−1 ≥ 4
2−η−1 > 0. This

gives qk+1 ≥ qk ≥ q0. Furthermore, note that 4η2p2t q0 ≤ 4η2 · 1
16η ≤ 1

4 , so the ratio qt
qt+1

∈ [ 34 , 1].
From this, we have∣∣∣∣log( q0

qk+1

)∣∣∣∣ ≤ k∑
t=0

∣∣∣∣log( qt
qt+1

)∣∣∣∣ ≤ 2
k∑

t=0

∣∣∣∣ qt
qt+1

− 1

∣∣∣∣
≤ 8η2q0

k∑
t=0

p2t

≤ 8η2q0

k∑
t=0

[
1−min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]2t
≤ 8η2q0

[
min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]−1

,

where the second inequality holds since |log(1 + z)| ≤ 2|z| if |z| ≤ 1
2 . Moreover, this implies that

qk+1 ≤ exp

(
8η2q0

[
min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]−1
)
q0.

Since q0 ∈
(

2
2−η ,

r(1)
2η

)
, we have

min

{
2(q0 − 1)

q0
,
r(1)

2q0

}
≥ η.

Therefore, since q0 ≤ 1
16η , we can conclude that

q0 ≤ qk+1 ≤ exp

(
8η2q0

[
min

{
2(q0 − 1)

q0
,
r(1)

2q0

}]−1
)
q0 ≤ exp(8ηq0)q0 ≤ 2q0,

the desired bounds for qk+1.

B.2 Proof of Theorem 4.2

In this subsection, we prove Theorem 4.2. From here onwards, we use the following notation:

st :=
qt

r(pt)
.

All the lemmas in this subsection are stated in the context of Theorem 4.2.

Lemma B.2. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1 and q0 ∈ (c0, 1− δ). Then for
any t ≥ 0 such that qt ≤ 1, it holds that

|pt| ≤ 4, and qt ≤ qt+1 ≤ (1 +O(η2))qt.
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Proof. We prove by induction. We assume that for some t ≥ 0, it holds that |pt| ≤ 4 and 1
2 ≤ qt ≤ 1.

We will prove that |pt+1| ≤ 4 and 1
2 ≤ qt ≤ qt+1 ≤ (1 +O(η2))qt. For the base case, |p0| ≤ 1 ≤ 4

and 1
2 ≤ c0 < qt ≤ 1 holds by the assumptions on the initialization. Now suppose that for some

t ≥ 0, it holds that |pt| ≤ 4 and 1
2 ≤ qt ≤ 1. Then for small step size η, we have∣∣∣∣2ℓ′(pt)qt

∣∣∣∣ ≥ 2|ℓ′(pt)| ≥
1

2
ℓ′(pt)

2|pt| ≥ η2ℓ′(pt)
2|pt|.

Consequently, by Eq. (6),

|pt+1| =
∣∣∣∣(1 + η2ℓ′(pt)

2)pt −
2ℓ′(pt)

qt

∣∣∣∣ ≤ max

{
|pt|,

2

qt

}
≤ 4.

where we used 1-Lipshitzness of ℓ. Moreover,

1− 8η2 ≤ 1− 2|pt|η2 ≤ qt
qt+1

= 1− η2p2t r(pt)(2qt − r(pt)) ≤ 1,

where we used qt ∈ [ 12 , 1] and |ptr(pt)| = |ℓ′(pt)| ≤ 1 from 1-Lipschitzness of ℓ. Hence, qt ≤
qt+1 ≤ (1 +O(η2))qt, as desired.

Lemma B.2 implies that pt is bounded by a constant throughout the iterations, and qt monotonically
increases slowly, where the increment for each step is O(η2). Hence, there exists a time step
T = Ω(δη−2) = Ωδ(η

−2) such that for any t ≤ T , it holds that qt ≤ 1 − δ
2 . Through out this

subsection, we focus on these T early time steps. Note that for all 0 ≤ t ≤ T , it holds that
qt ∈ (c0, 1− δ

2 ).

Intuition on Theorem 4.2. Before we dive in to the rigorous proofs, we provide an intuition on
Theorem 4.2. Lemma B.2 establishes that pt is bounded and qt monotonically increases slowly, with
an increment of O(η2) per step. Lemma 2.1 shows that the map fqt(p) =

(
1− 2r(pt)

qt

)
pt has a

stable 2-period orbit {±r̂(qt)} when qt ∈ (0, 1). Consequently, when qt is treated as a fixed value, pt
converges to the orbit {±r̂(qt)}, leading to st converging to 1. In the (early) short-term dynamics, qt
is nearly fixed for small step size η, and hence st converges to 1. In long-term dynamics perspective,
qt gradually increases and at the same time, st stays near the value 1. In Theorem 4.2, we prove that
it takes only ta = Oδ,ℓ(log(η

−1)) time steps for st to converge close to 1 (Phase I, t ≤ ta), and after
that, st stay close to 1 for the remaining iterations (Phase II, t > ta).

We informally summarize the lemmas used in the proof of Theorem 4.2. Lemma B.3 states that in
the early phase of training, there exists a time step t0 where st0 becomes smaller or equal to 2

2−r(1) ,
which is smaller than 2(1 + η2)−1. Lemma B.5 demonstrates that if st is smaller than 2(1 + η2)−1

and |pt| ≥ r̂(1 − δ
4 ), then |st − 1| decreases exponentially. For the case where |pt| < r̂(1 − δ

4 ),
Lemma B.6 proves that |pt| increases at an exponential rate. Moreover, Lemma B.4 shows that if
st < 1 at some time step, then st+1 is upper bounded by 1 + O(η2). Combining these findings,
Proposition B.7 establishes that in the early phase of training, there exists a time step t∗a such that
st∗a = 1+Oδ,ℓ(η

2). Lastly, Lemma B.8 demonstrates that if st = 1+Oδ,ℓ(η
2), then |st−1−h(pt)η

2|
decreases exponentially.

Now we prove Theorem 4.2, starting with the lemma below.

Lemma B.3. There exists a time step t0 = Oδ,ℓ(1) such that st0 ≤ 2
2−r(1) .

Proof. We start by proving the following statement: for any 0 ≤ t ≤ T , if 2
2−r(1) < st < 2r(1)−1,

then st+1 < 2r(1)−1 and |pt+1| ≤ (1− r(1)
2 )|pt|. Suppose that 2

2−r(1) < st < 2r(1)−1. Then from
Eq. (6), it holds that∣∣∣∣pt+1

pt

∣∣∣∣ = ∣∣∣∣1− 2

st
+ η2p2t r(pt)

2

∣∣∣∣ ≤ ∣∣∣∣1− 2

st

∣∣∣∣+ η2 ≤ 1− r(1) + η2 ≤ 1− r(1)

2
,
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for small step size η. Hence, |pt+1| ≤ (1− r(1)
2 )|pt|. Now we prove st+1 < 2r(1)−1. Assume the

contrary that st+1 ≥ 2r(1)−1. Then, r(pt+1) =
qt+1

st+1
< qt+1 < 1− δ

2 so that |pt+1| ≥ r̂(1− δ
2 ). By

Mean Value Theorem, there exists p∗t ∈ (|pt+1|, |pt|) such that (recall that r′(p)
r(p)2 < 0 for p > 0)

1

r(pt+1)
=

1

r(|pt| − (|pt| − |pt+1|))
=

1

r(pt)
+

r′(p∗t )

r(p∗t )
2
(|pt| − |pt+1|)

≤ 1

r(pt)
+

r′(|pt+1|)
r(|pt+1|)2

(
r(1)|pt|

2

)
≤ 1

r(pt)
−

|r′(r̂(1− δ
2 ))|

(1− δ
2 )

2

(
r(1)r̂(1− δ

2 )

2

)

=
1

r(pt)
− Ωδ,ℓ(1),

where we used Assumption 4.3 (i) and r̂(1− δ
2 ) ≤ |pt+1| ≤ (1− r(1)

2 )|pt| ≤ |pt|. Consequently,

st+1 =
qt+1

r(pt+1)
= (1 +O(η2))qt

(
1

r(pt)
− Ωδ,ℓ(1)

)
≤ qt

r(pt)
= st < 2r(1)−1,

for small step size η. This gives a contradiction to our assumption that st+1 ≥ 2r(1)−1. Hence, we
can conclude that st+1 < 2r(1)−1, as desired.

We proved that for any 0 ≤ t ≤ T , if 2
2−r(1) < st < 2r(1)−1, it holds that st+1 < 2r(1)−1 and

|pt+1| ≤ (1− r(1)
2 )|pt|. At initialization, |p0| ≤ 1 and q0 < 1, so that s0 < r(1)−1. If s0 ≤ 2

2−r(1) ,
then t0 = 0 is the desired time step. Suppose that s0 > 2

2−r(1) . Then, we have s1 < 2r(1)−1 and

|p1| ≤ (1− r(1)
2 )|p0| ≤ 1− r(1)

2 . Then we have either s1 ≤ 2
2−r(1) , or 2

2−r(1) < s1 < 2r(1)−1. In
the previous case, t0 = 1 is the desired time step. In the latter case, we can repeat the same argument
and obtain s2 < 2r(1)−1 and |p2| ≤ (1− r(1)

2 )2. By inductively repeating the same argument, we
can obtain a time step t0 ≤ log(r̂(1− δ

2 ))/ log(1−
r(1)
2 ) = Oδ,ℓ(1) such that either st0 ≤ 2

2−r(1) , or
|pt0 | ≤ r̂(1− δ

2 ). In the latter case, r(pt0) ≥ 1− δ
2 > qt0 , and hence st0 < 1 < 2

2−r(1) . Therefore,
t0 = Oδ,ℓ(1) is the desired time step satisfying st0 ≤ 2

2−r(1) .

According to Lemma B.3, there exists a time step t0 = Oδ,ℓ(1) such that st0 ≤ 2
2−r(1) < 2(1+η2)−1

for small step size η. Now we prove the lemma below.
Lemma B.4. Suppose that st ≤ 1. Then, it holds that st+1 ≤ 1 +O(η2).

Proof. For any p ∈ (0, r̂( qt2 )), we have r(p) ≥ qt
2 so that |fqt(p)| = (−1 + 2r(p)

qt
)p. Hence,

∂

∂p
|fqt(p)| =

2r(p)

qt

(
1 +

pr′(p)

r(p)

)
− 1,

for any p ∈ (0, r̂( qt2 )). By Assumption 4.3 (ii) and convexity of ℓ, both r(p) and 1 + pr′(p)
r(p) = ℓ′′(p)

r(p)

are positive, decreasing function on (0, r̂( qt2 )). Consequently, ∂
∂p |fqt(p)| is a decreasing function on

(0, r̂( qt2 )).

Now note that qt
2 < qt < 1, which means r̂(1) = 0 < r̂(qt) < r̂( qt2 ) by the definition of r̂. Note that

∂
∂p |fqt(p)| at p = r̂(qt) evaluates to

∂

∂p
|fqt(r̂(qt))| = 1 +

2r̂(qt)r
′(r̂(qt))

r(r̂(qt))
≥ 1 +

2r̂(c0)r
′(r̂(c0))

r(r̂(c0))
≥ 0,

where the first inequality used Assumption 4.3 (ii) and r̂(qt) < r̂(c0), which comes from qt > c0 :=

max{r(z0), 1
2}. The second inequality holds because qt > c0 ≥ r(z0) where z0 := supz{

zr′(z)
r(z) ≥

− 1
2}, from the statement of Theorem 4.2.
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Therefore, since ∂
∂p |fqt(p)| is decreasing on (0, r̂( qt2 )) and is nonnegative at r̂(qt), for any p ∈

(0, r̂(qt)), it holds that ∂
∂p |fqt(p)| ≥ 0. In other words, |fqt(p)| is an increasing function on (0, r̂(qt)).

Since 0 ≤ st ≤ 1, we have |pt| ≤ r̂(qt) and it holds that

|pt+1| =
(
−1 +

2

st
− η2p2t r(pt)

2

)
|pt| ≤

(
−1 +

2

st

)
|pt| = |fqt(pt)| ≤ |fqt(r̂(qt))| = r̂(qt).

Therefore, with this inequality and Lemma B.2, we can conclude that

st+1 =
qt+1

r(pt+1)
=

qt
r(pt+1)

(1 +O(η2)) ≤ qt
r(r̂(qt))

(1 +O(η2)) = 1 +O(η2).

Using Lemma B.4, we prove the following lemma.

Lemma B.5. For any 0 ≤ t ≤ T , if st < 2(1 + η2)−1, |st − 1| > η2

2 , and r(pt) ≤ 1− δ
4 , then

|st+1 − 1| ≤ (1− d)|st − 1|+O(η2),

where d ∈ (0, 1
2 ] is a constant which depends on δ and ℓ.

Proof. By Eq. (6) and 1-Lipschitzness of ℓ,
pt+1

pt
= 1− 2

st
+ η2p2t r(pt)

2 < 1− (1 + η2) + η2 = 0,

so that pt and pt+1 have opposite signs. By Mean Value Theorem, there exists θt between −1 and
(1− 2

st
+ η2p2t r(pt)

2) satisfying
1

r(pt+1)
=

1

r
(
−pt +

(
2(st−1)

st
+ η2p2t r(p

2
t )
)
pt

)
=

1

r(−pt)
− r′(θtpt)

r(θtpt)2

(
2(st − 1)

st
+ η2p2t r(pt)

2

)
pt

=
1

r(pt)
− |r′(θtpt)|

r(θtpt)2

(
2(st − 1)

st
+ η2p2t r(pt)

2

)
|pt|, (8)

where the last equality used the fact that pt and θtpt have opposite signs and r′(z) and z have opposite
signs. Note that |θtpt| is between |pt| and |pt+1|. Consequently, the value |r′(θtpt)|

r(θtpt)2
is between |r′(pt)|

r(pt)2

and |r′(pt+1)|
r(pt+1)2

by Assumption 4.3 (i). We will prove the current lemma based on Eq. (8). We divide
into following three cases: (1) st ≥ 1 and st+1 ≥ 1, (2) st ≥ 1 and st < 1, and (3) st < 1.

Case 1. Suppose that st ≥ 1 and st+1 ≥ 1. Here, we have |pt| ≥ r̂(qt) ≥ r̂(1− δ
2 ) and similarly

|pt+1| ≥ r̂(1− δ
2 ). By Assumption 4.3 (i), |r′(θtpt)|

r(θtpt)2
≥ |r′(r̂(1− δ

2 ))|
(1− δ

2 )
2 . Hence, Eq. (8) gives

1

r(pt+1)
≤ 1

r(pt)
−

|r′(r̂(1− δ
2 ))|

(1− δ
2 )

2

(
2(st − 1)

st

)
r̂

(
1− δ

2

)
.

Consequently, by Lemma B.2,

st+1 =
qt(1 +O(η2))

r(pt+1)
=

qt
r(pt+1)

+O(η2) ≤ st −
|r′(r̂(1− δ

2 ))|
(1− δ

2 )
2

(
2(st − 1)

st

)
r̂

(
1− δ

2

)
qt +O(η2)

≤ st −
|r′(r̂(1− δ

2 ))|
(1− δ

2 )
2

(st − 1)r̂

(
1− δ

2

)
1

2
+O(η2)

≤ st −
r̂(1− δ

2 )|r
′(r̂(1− δ

2 ))|
2(1− δ

2 )
2

(st − 1) +O(η2),

where we used qt > c0 ≥ 1
2 and st < 2(1 + η2)−1 < 2. Therefore, we can obtain the following

inequality:

0 ≤ st+1 − 1 ≤

(
1−

r̂(1− δ
2 )|r

′(r̂(1− δ
2 ))|

2(1− δ
2 )

2

)
(st − 1) +O(η2).
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Case 2. Suppose that st ≥ 1 and st+1 < 1. Here, we have r(pt+1) > qt+1 ≥ qt ≥ r(pt), so that
|pt+1| < |pt|. Consequently, |r′(θtpt)|

r(θtpt)2
≤ |r′(pt)|

r(pt)2
by Assumption 4.3 (i). Hence, we can deduce from

Eq. (8) that

1

r(pt+1)
≥ 1

r(pt)
− |r′(pt)|

r(pt)2

(
2(st − 1)

st
+ η2p2t r(pt)

2

)
|pt|

=
1

r(pt)
− 2|ptr′(pt)|

r(pt)qt
(st − 1)− η2|p3t r′(pt)|

≥ 1

r(pt)
− 2|ptr′(pt)|

r(pt)qt
(st − 1)− η2p2t r(pt)

=
1

r(pt)
+

2ptr
′(pt)

r(pt)qt
(st − 1)−O(η2),

where we used |ptr′(pt)| ≤ r(pt) since 1 + ptr
′(pt)

r(pt)
= ℓ′′(pt)

r(pt)
> 0 and |pt| ≤ 4 by Lemma B.2.

Consequently, by Lemma B.2 (qt ≤ qt+1) and Assumption 4.3 (ii),

st+1 ≥ qt
r(pt+1)

≥ st +
2ptr

′(pt)

r(pt)
(st − 1)−O(η2) ≥ st +

8r′(4)

r(4)
(st − 1)−O(η2).

Note that 1 > 1+ 4r′(4)
r(4) = ℓ′′(4)

r(4) > 0 holds by convexity of ℓ. Therefore, we can obtain the following
inequality:

0 ≤ 1− st+1 ≤ −
(
1 +

8r′(4)

r(4)

)
(st − 1) +O(η2),

where −1 < 1 + 8r′(4)
r(4) < 1.

Case 3. Suppose that st < 1. By Lemma B.4, it holds that st+1 ≤ 1 + O(η2). Moreover, we
assumed r(pt) ≤ 1− δ

4 , so that |pt| ≥ r̂(1− δ
4 ). We also have

|pt+1| =
(
−1 +

2

st
− η2p2t r(p

2
t )

)
|pt| ≥

(
−1 +

2

1− η2

2

− η2

)
|pt| > |pt| ≥ r̂

(
1− δ

4

)
,

where we used the assumption |st − 1| > η2

2 , and |pr(p)| = |ℓ′(p)| ≤ 1 due to 1-Lipschitzness of ℓ.

Consequently, by Assumption 4.3 (i), it holds that |r′(θtpt)|
r(θtpt)2

≥ |r′(r̂(1− δ
4 ))|

(1− δ
4 )

2 . Hence, by Eq. (8), we
have

1

r(pt+1)
≥ 1

r(pt)
+

|r′(r̂(1− δ
4 ))|

(1− δ
4 )

2

(
2(1− st)

st

)
r̂

(
1− δ

4

)
≥ 1

r(pt)
+

|r′(r̂(1− δ
4 ))|

(1− δ
4 )

2
2(1− st)r̂

(
1− δ

4

)
=

1

r(pt)
+

2r̂(1− δ
4 )|r

′(r̂(1− δ
4 ))|

(1− δ
4 )

2
(1− st),

and hence, by Lemma B.2 (qt ≤ qt+1) and qt > c0 ≥ 1
2 , we get

st+1 ≥ qt
r(pt+1)

≥ st +
r̂(1− δ

4 )|r
′(r̂(1− δ

4 ))|
(1− δ

4 )
2

(1− st).

Therefore, we can obtain the following inequality:

−O(η2) ≤ 1− st+1 ≤

(
1−

r̂(1− δ
4 )|r

′(r̂(1− δ
4 ))|

(1− δ
4 )

2

)
(1− st),

where we used Lemma B.4 to obtain the first inequality.

29



Combining the three cases, we can finally conclude that if we choose

d := min

{
1

2
,
r̂(1− δ

2 )|r
′(r̂(1− δ

2 ))|
2(1− δ

2 )
2

, 2

(
1 +

4r′(4)

r(4)

)
,
r̂(1− δ

4 )|r
′(r̂(1− δ

4 ))|
(1− δ

4 )
2

}
∈
(
0,

1

2

]
,

then |st+1 − 1| ≤ (1− d)|st − 1|+O(η2).

Lemma B.5 implies that if st < 2(1 + η2)−1 and |pt| ≥ r̂(1 − δ
4 ), then |st − 1| exponentially

decreases. We prove Lemma B.6 to handle the regime |pt| < r̂(1− δ
4 ), which is stated below.

Lemma B.6. For any 0 ≤ t ≤ T , if r(pt) ≥ 1− δ
4 , it holds that∣∣∣∣pt+1

pt

∣∣∣∣ ≥ 4

4− δ
.

Proof. If r(pt) ≥ 1 − δ
4 , then st = qt

r(pt)
<

1− δ
2

1− δ
4

= 4−2δ
4−δ , where we used qt < 1 − δ

2 for any
0 ≤ t ≤ T . Consequently,∣∣∣∣pt+1

pt

∣∣∣∣ = 2

st
− 1− η2p2t r(p

2
t ) ≥

2(4− δ)

4− 2δ
− 1− η2 =

2

2− δ
− η2 ≥ 4

4− δ
,

for small step size η.

Now we prove Proposition B.7, which proves that st reaches close to 1 with error bound of O(η2).
Proposition B.7. There exists a time step t∗a = Oδ,ℓ(log(η

−1)) satisfying

st∗a = 1 +Oδ,ℓ(η
2). (9)

Proof. By Lemma B.3, there exists a time step t0 = Oδ,ℓ(1) such that st0 ≤ 2
2−r(1) . Here, we divide

into two possible cases: (1) st0 < 1, and (2) 1 ≤ st0 ≤ 2
2−r(1) .

Case 1. Suppose that st0 < 1. By Lemma B.6, if r(pt0) ≥ 1− δ
4 (or equivalently, |pt0 | ≤ r̂(1− δ

4 )),

then there exists a time step t1 ≤ t0 + log(
r̂(1− δ

4 )

|pt0
| )/ log( 4

4−δ ) = Oδ,ℓ(1) such that |pt1 | ≥ r̂(1− δ
4 ).

We denote the first time step satisfying |pt1 | ≥ r̂(1− δ
4 ) and t1 ≥ t0 by t1 = Oδ,ℓ(1). By Lemma B.4,

it holds that st1 ≤ 1+O(η2) since st1−1 < 1. Consequently, if st1 ≥ 1− η2

2 , then |st1 −1| ≤ O(η2)

so that t∗a = t1 is the desired time step. Hence, it suffices to consider the case when st1 < 1− η2

2 .
Here, we can apply Lemma B.5 which implies that

|st1+1 − 1| ≤ (1− d)|st1 − 1|+O(η2),

where d is a constant which depends on δ and ℓ. Then, there are two possible cases: either |st1 − 1| ≤
O(η2d−1), or |st1+1 − 1| ≤ (1 − d

2 )|st1 − 1|. It suffices to consider the latter case, suppose that

|st1+1−1| ≤ (1− d
2 )|st1 −1|. Since we are considering the case st1 < 1− η2

2 , again by Lemma B.4,
we have st1+1 ≤ 1 +O(η2). Since |pt1+1

pt1
| = 2

st1
− 1−O(η2), |pt1+1| ≥ |pt1 | ≥ r̂(1− δ

4 ) must be

satisfied unless st1 = 1+O(η2) already holds. If st1+1 ≥ 1− η2

2 , then |st1+1 − 1| ≤ O(η2) so that
t∗a = t1 + 1 is the desired time step; if not, we can again apply Lemma B.5 and repeat the analogous
argument. Hence, there exists a time step t2 ≤ t1 + log( η2

1−st1
)/ log(1− d

2 ) = Oδ,ℓ(log(η
−1)), such

that |st2 − 1| ≤ O(η2d−1) = Oδ,ℓ(η
2).

Case 2. Suppose that 1 ≤ st0 ≤ 2
2−r(1) . Then, r(pt0) ≤ qt0 ≤ 1− δ

2 , so we can apply Lemma B.5.
There are two possible cases: either |st0+1 − 1| ≤ O(η2d−1) = Oδ,ℓ(η

2), or |st0+1 − 1| ≤
(1− d

2 )|st0−1|. It suffices to consider the latter case. If st0+1 ≥ 1, we can again apply Lemma B.5 and

repeat the analogous argument. Hence, we can obtain a time step t′0 ≤ t0+log( η2

1−st0
)/ log(1− d

2 ) =

Oδ,ℓ(log(η
−1)) such that either st′0 < 1 or |st′0 − 1| = Oδ,ℓ(η

2) is satisfied. If st′0 < 1, we proved
in Case 1 that there exists a time step t′2 = t′0 +Oδ,ℓ(log(η

−1)) such that |st′2 − 1| ≤ Oδ,ℓ(η
2), and

this is the desired bound.
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Now we carefully handle the error term O(η2) obtained in Proposition B.7 and a provide tighter
bound on st by proving Lemma B.8 stated below.

Lemma B.8. If |st − 1| = Oδ,ℓ(η
2), then it holds that

|st+1 − 1− h(pt+1)η
2| ≤

(
1 +

2ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η

2|+Oδ,ℓ(η
4p2t ),

where h(p) := − 1
2

(
pr(p)3

r′(p) + p2r(p)2
)

for p ̸= 0 and h(p) := − 1
2r′′(0) for p = 0.

Proof. Suppose that st = 1 + Oδ,ℓ(η
2). Then, |pt+1| =

∣∣∣1− 2
st

+ η2p2t r(pt)
2
∣∣∣ · |pt| = (1 +

Oδ,ℓ(η
2))|pt|. By Eq. (8) proved in Lemma B.5, there exists ϵt = Oδ,ℓ(η

2) which satisfies the
following:

1

r(pt+1)
=

1

r(pt)
+

r′((1 + ϵt)pt)

r((1 + ϵt)pt)2

(
2(st − 1)

st
+ η2p2t r(pt)

2

)
pt

=
1

r(pt)
+

(
r′(pt)

r(pt)2
+Oδ,ℓ(η

2pt)

)(
2(st − 1)

st
+ η2p2t r(pt)

2

)
pt

=
1

r(pt)
+

r′(pt)

r(pt)2

(
2(st − 1)

st
+ η2p2t r(pt)

2

)
pt +Oδ,ℓ(η

4p2t ),

where we used the Taylor expansion on r′(p)
r(p)2 with the fact that d

dp

(
r′(p)
r(p)2

)
is bounded on [−4, 4] and

that |pt| ≤ 4 to obtain the second equality. Note that qt+1 = (1− η2p2t r(pt)(2qt − r(pt)))
−1qt by

Eq. (6). Consequently,

st+1 = (1− η2p2t r(pt)(2qt − r(pt)))
−1

(
st +

2ptr
′(pt)

r(pt)
(st − 1) + η2p3t r

′(pt)qt

)
+Oδ,ℓ(η

4p2t )

= (1 + η2p2t r(pt)(2qt − r(pt)))st +
2ptr

′(pt)

r(pt)
(st − 1) + η2p3t r

′(pt)qt +Oδ,ℓ(η
4p2t )

= 1 +

(
1 +

2ptr
′(pt)

r(pt)

)
(st − 1) + η2p2t r(pt)(2qt − r(pt))st + η2p3t r

′(pt)qt +Oδ,ℓ(η
4p2t ).

Here, since st = 1 +Oδ,ℓ(η
2), we can rewrite

η2p2t r(pt)(2qt − r(pt))st + η2p3t r
′(pt)qt

= η2p2t r(pt)
2(2st − 1)st + η2p3t r

′(pt)r(pt)st

= η2p2t r(pt)
2 + η2p3t r

′(pt)r(pt) +Oδ,ℓ(η
4p2t ),

which results in

st+1 = 1 +

(
1 +

2ptr
′(pt)

r(pt)

)
(st − 1) + η2p2t r(pt)

2 + η2p3t r(pt)r
′(pt) +Oδ,ℓ(η

4p2t ).

Note that h is even, and twice continuously differentiable function by Lemma B.9. Consequently,
h′(0) = 0 and h′(p) = Oℓ(p), since h′′ is bounded on closed interval. Consequently, h(pt+1) =
h((1 +Oδ,ℓ(η

2))pt) = h(pt) +Oδ,ℓ(η
2p2t ). Hence, we can obtain the following:

st+1 − 1− h(pt+1)η
2 = st+1 − 1− h(pt)η

2 +Oδ,ℓ(η
4p2t )

= st+1 − 1 +
1

2

(
ptr(pt)

3

r′(pt)
+ p2t r(pt)

2

)
η2 +Oδ,ℓ(η

4p2t )

=

(
1 +

2ptr
′(pt)

r(pt)

)(
st − 1 +

1

2

(
ptr(pt)

3

r′(pt)
+ p2t r(pt)

2

)
η2
)
+Oδ,ℓ(η

4p2t )

=

(
1 +

2ptr
′(pt)

r(pt)

)
(st − 1− h(pt)η

2) +Oδ,ℓ(η
4p2t ).
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Note that r(pt) = (1 +Oδ,ℓ(η
2))qt ≥ (1 +Oδ,ℓ(η

2))q0 ≥ c0 ≥ r(z0) for small step size η, where
z0 = sup{ zr′(z)

r(z) ≥ −1
2}. Consequently, it holds that 1 + 2ptr

′(pt)
r(pt)

≥ 0. Therefore, we have the
desired inequality:

|st+1 − 1− h(pt+1)η
2| ≤

(
1 +

2ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η

2|+Oδ,ℓ(η
4p2t ).

We now provide the proof of Theorem 4.2, restated below for the sake of readability.
Theorem 4.2 (EoS regime, Phase I). Let η be a small enough step size and ℓ be a loss function
satisfying Assumptions 4.1, 4.2, and 4.3. Let z0 := supz{

zr′(z)
r(z) ≥ − 1

2} and c0 := max{r(z0), 1
2}.

Let δ ∈ (0, 1− c0) be any given constant. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1
and q0 ∈ (c0, 1 − δ). Consider the reparameterized GD trajectory characterized in Eq. (6). We
assume that for all t ≥ 0 such that qt < 1, we have pt ̸= 0. Then, there exists a time step
ta = Oδ,ℓ(log(η

−1)), such that for any t ≥ ta,

qt
r(pt)

= 1 + h(pt)η
2 +Oδ,ℓ(η

4),

where h(p) := − 1
2

(
pr(p)3

r′(p) + p2r(p)2
)

for p ̸= 0 and h(p) := − 1
2r′′(0) for p = 0.

Proof of Theorem 4.2. By Proposition B.7, there exists a time step t∗a = Oδ,ℓ(log(η
−1)) which

satisfies:

|st∗a − 1| =
∣∣∣∣ qt∗a
r(pt∗a)

− 1

∣∣∣∣ = Oδ,ℓ(η
2).

By Lemma B.8, there exists a constant D > 0 which depends on δ, ℓ such that if |st − 1| = Oδ,ℓ(η
2),

then

|st+1 − 1− h(pt+1)η
2| ≤

(
1 +

2ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η

2|+Dη4p2t . (10)

Hence, if |st − 1| = Oδ,ℓ(η
2) and |st − 1− h(pt)η

2| ≥
(
−ptr(pt)

r′(pt)

)
Dη4, then

|st+1 − 1− h(pt+1)η
2| ≤

(
1 +

ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η

2|. (11)

For any t ≤ T , we have qt < 1− δ
2 so that if |st − 1| = Oδ,ℓ(η

2), then r(pt) ≤ (1 +Oδ,ℓ(η
2))qt <

1− δ
4 for small step size η. From Eq. (11) with t = t∗a, we have either

|st∗a − 1− h(pt∗a)η
2| <

(
−
pt∗ar(pt∗a)

r′(pt∗a)

)
Dη4,

or

|st∗a+1 − 1− h(pt∗a+1)η
2| ≤

(
1 +

r̂(1− δ
4 )r

′(r̂(1− δ
4 ))

(1− δ
4 )

)
|st∗a − 1− h(pt∗a)η

2|,

where we used Assumption 4.3 (ii) and |pt| > r̂(1 − δ
4 ). In the later case, |st∗a+1 − 1| = Oδ,ℓ(η

2)
continues to hold and we can again use Eq. (11) with t = t∗a + 1. By repeating the analogous
arguments, we can obtain the time step

ta ≤ t∗a +
log
(
− Dη4

r′′(0)|st∗a−1−h(pt∗a )η
2|

)
log
(
1 +

r̂(1− δ
4 )r

′(r̂(1− δ
4 ))

(1− δ
4 )

) = Oδ,ℓ(log(η
−1)),

which satisfies: either

|sta − 1− h(pta)η
2| <

(
−ptar(pta)

r′(pta)

)
Dη4,
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or

|sta − 1− h(pta)η
2| ≤

(
− 1

r′′(0)

)
Dη4 ≤

(
−ptar(pta)

r′(pta)

)
Dη4 ≤

(
−4r(4)

r′(4)

)
Dη4,

where we used |pt| ≤ 4 from Lemma B.2 and − zr(z)
r′(z) ≥ − 1

r′′(0) for any z by Assumption 4.3 (iii).

By Eq. (10), if |st − 1− h(pt)η
2| ≤

(
− 4r(4)

r′(4)

)
Dη4 is satisfied for any time step t, then

|st+1 − 1− h(pt+1)η
2| ≤

(
1 +

2ptr
′(pt)

r(pt)

)(
−4r(4)

r′(4)

)
Dη4 +Dη4p2t ≤

(
−4r(4)

r′(4)

)
Dη4,

by |pt| ≤ 4 from Lemma B.2 and Assumption 4.3 (iii).

Hence, by induction, we have the desired bound as following: for any t ≥ ta,

|st − 1− h(pt)η
2| ≤

(
−4r(4)

r′(4)

)
Dη4 = Oδ,ℓ(η

4),

by |pt| ≤ 4 from Lemma B.2 and Assumption 4.3 (iii).

B.3 Proof of Theorem 4.3

In this subsection, we prove Theorem 4.3. We start by proving Lemma B.9 which provides a useful
property of h defined in Theorem 4.2.
Lemma B.9. Consider the function h defined in Theorem 4.2, given by

h(p) :=

− 1
2

(
pr(p)3

r′(p) + p2r(p)2
)

if p ̸= 0, and

− 1
2r′′(0) if p = 0.

Then, h is a positive, even, and bounded twice continuously differentiable function.

Proof. It is clear that h is even. We first prove that h is positive. For any p ̸= 0, it holds that

h(p) = −pr(p)3

2r′(p)

(
1 +

pr′(p)

r(p)

)
> 0,

since pr(p)
r′(p) < 0 and 1 + pr′(p)

r(p) = ℓ′′(p)
r(p) > 0 by Assumption 4.2 and convexity of ℓ. The function h is

continuous since limp→0 h(p) = h(0). Continuous function on a compact domain is bounded, so h
is bounded on the closed interval [−1, 1]. We can rewrite h as

h(p) =
1

2
p2r(p)2

(
− r(p)

pr′(p)
− 1

)
.

Note that p2r(p)2 = ℓ′(p)2 ≤ 1, and
(
− r(p)

pr′(p) − 1
)

is positive, decreasing function on p > 0 by
Assumption 4.3 (ii). Hence, h is bounded on [1,∞). Since h is even, h is bounded on (−∞, 1].
Therefore, h is a bounded function on R.

We finally prove that h is twice continuously differentiable. Since r is even and C4 on R, we can
check that

h′(p) :=

{
− 1

2

[
r(p)3(r′(p)−pr′′(p))

r′(p)2 + pr(p)(5r(p) + 2pr′(p))
]

if p ̸= 0, and

0 if p = 0.
Moreover, for any p ̸= 0,

h′′(p) =− 1

2

(
2r(p)2r′′(p)(pr′′(p)− r′(p))

r′(p)3
− pr(p)3r(3)(p)

r′(p)2
− 3pr(p)2r′′(p)

r′(p)

)
− 4r(p)2 − 7pr(p)r′(p)− p2(r(p)r′′(p) + r′(p)2),

and

h′′(0) =
r(4)(0)

6r′′(0)2
− 5

2
.

Since limp→0 h
′′(p) = h′′(0), we can conclude that h is a twice continuously differentiable function.
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We now give the proof of Theorem 4.3, restated below for the sake of readability.
Theorem 4.3 (EoS regime, Phase II). Under the same settings as in Theorem 4.2, there exists a time
step tb = Ω((1− q0)η

−2) such that qtb ≤ 1 and qt > 1 for any t > tb. Moreover, the GD iterates
(pt, qt) converge to the point (0, q∗) such that

q∗ = 1− η2

2r′′(0)
+Oδ,ℓ(η

4).

Proof. We first prove that there exists a time step tb ≥ 0 such that qtb > 1. Assume the contrary that
qt ≤ 1 for all t ≥ 0. Let ta be the time step obtained in Theorem 4.2. Then for any t ≥ ta, we have

r(pt) = (1− h(pt)η
2 +Oδ,ℓ(η

4))qt ≤ 1− h(pt)η
2

2
,

for small step size η. The function g(p) := r(p)−1+ h(p)η2

2 is even, continuous, and has the function

value g(0) = η2

4|r′′(0)| > 0. Consequently, there exists a positive constant ϵ > 0 such that g(p) > 0

for all p ∈ (−ϵ, ϵ). Then, we have |pt| ≥ ϵ for all t ≥ ta, since g(pt) ≤ 0. Moreover, st ≥ 3
4 for any

t ≥ ta by Theorem 4.2 for small step size η. This implies that for any t ≥ ta,

qt
qt+1

= 1− η2p2t r(pt)
2(2st − 1) ≤ 1− 1

2
η2ℓ′(pt)

2 ≤ 1− 1

2
η2ℓ′(ϵ)2,

so qt grows exponentially, which results in the existence of a time step t′b ≥ ta such that qt′b > 1, a
contradiction.

Therefore, there exists a time step tb such that qtb ≤ 1 and qt > 1 for any t > tb, i.e., qt jumps across
the value 1. This holds since the sequence (qt) is monotonically increasing. For any t ≤ tb, we have
qt+1 ≤ qt +O(η2) by Lemma B.2, and this implies that tb ≥ Ω((1− q0)η

−2), as desired.

Lastly, we prove the convergence of GD iterates (pt, qt). Let t > tb be given. Then, qt ≥ qtb+1 > 1
and it holds that ∣∣∣∣pt+1

pt

∣∣∣∣ = 2r(pt)

qt
− 1− η2p2t r(pt)

2 ≤ 2

qtb+1
− 1 < 1.

Hence, |pt| is exponentially decreasing for t > tb. Therefore, pt converges to 0 as t → ∞. Since
the sequence (qt)

∞
t=0 is monotonically increasing and bounded (due to Theorem 4.2), it converges.

Suppose that (pt, qt) converges to the point (0, q∗). By Theorem 4.2, we can conclude that∣∣∣∣q∗ − 1 +
η2

2r′′(0)

∣∣∣∣ = Oδ,ℓ(η
4),

which is the desired bound.

B.4 Proof of Theorem 4.4

In this subsection, we prove Theorem 4.4. We first prove a useful lemma which bounds the Hessian
of the function (U ,v) 7→ v⊤Ux, stated below.

Lemma B.10. For any Θ = (U ,v) with U ∈ Rm×d, v ∈ Rm, and x ∈ Rd with ∥x∥2 = 1, the
following equality holds: ∥∥∥∇2

(U ,v)(v
⊤Ux)

∥∥∥
2
≤ 1.

Moreover, if λ is an eigenvalue of ∇2
(U ,v)(v

⊤Ux), then −λ is also an eigenvalue of ∇2
(U ,v)(v

⊤Ux).

Proof. We first define the notations. We use the operator ⊗ to represent tensor product, or Kronecker
product between matrices. For example, for any given two matrices A = (aij) ∈ Rm×n and B, we
define A⊗B by

A⊗B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 .
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We use 0m×n to denote a m by n matrix with all entries filled with zero, and In denotes n by n
identity matrix. Now we provide the proof of the original problem.

Let U = (uij) ∈ Rm×d, v = (vi) ∈ Rm, and x = (xj) ∈ Rd be given. Then,

v⊤Ux =
∑
i,j

viUijxj .

We vectorize the parameter Θ = (U ,v) by (v1, . . . , vm, U11, . . . , Um1, . . . , U1d, . . . , Umd) ∈
Rm+md. Then, we can represent the Hessian as

∇2
(U ,v)(v

⊤Ux) =

(
0 x⊤

x 0d×d

)
⊗ Im. (12)

For any given c ∈ R and y ∈ Rd with c2 + ∥y∥22 = 1, we have∥∥∥∥(0 x⊤

x 0d×d

)(
c
y

)∥∥∥∥
2

=

∥∥∥∥( x⊤y
cx

)∥∥∥∥
2

≤ ∥x∥2 = 1.

Hence, by definition of matrix operator norm, we have∥∥∥∥(0 x⊤

x 0d×d

)∥∥∥∥
2

≤ 1.

Therefore, we can conclude that∥∥∥∇2
(U ,v)(v

⊤Ux)
∥∥∥
2
=

∥∥∥∥(0 x⊤

x 0d×d

)
⊗ Im

∥∥∥∥
2

=

∥∥∥∥(0 x⊤

x 0d×d

)∥∥∥∥
2

≤ 1.

Now suppose that λ is an eigenvalue of ∇2
(U ,v)(v

⊤Ux). We note that for any given matrices A and
B, if λa is an eigenvalue of A with the corresponding eigenvector ua and λb is an eigenvalue of B
with the corresponding eigenvector ub, then λaλb is an eigenvalue of A⊗B with the corresponding
eigenvector ua ⊗ ub. Moreover, any eigenvalue of A⊗B arises as such a product of eigenvalues of
A and B. Hence, using Eq. (12), we have

λ is an eigenvalue of the matrix
(
0 x⊤

x 0d×d

)
.

We denote the corresponding eigenvector by (c,y⊤)⊤ where c ∈ R and y ∈ Rd, i.e., it holds that(
0 x⊤

x 0d×d

)(
c
y

)
=

(
x⊤y
cx

)
= λ

(
c
y

)
.

Consequently, we have(
0 x⊤

x 0d×d

)(
−c
y

)
=

(
x⊤y
−cx

)
= −λ

(
−c
y

)
,

and this implies that

−λ is an eigenvalue of the matrix
(
0 x⊤

x 0d×d

)
.

Therefore, by Eq. (12), −λ is an eigenvalue of ∇2
(U ,v)(v

⊤Ux).

Using Lemma B.10, we prove an important bound on the sharpness value provided by the Proposi-
tion B.11 stated below.

Proposition B.11. For any Θ = (U ,v) with U ∈ Rm×d, v ∈ Rm, and x ∈ Rd with ∥x∥2 = 1, the
following bound holds: ∣∣λmax(Θ)− ℓ′′(v⊤Ux)

(
∥Ux∥22 + ∥v∥22

)∣∣ ≤ 1
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Proof. The loss Hessian at Θ = (U ,v) can be characterized as:

∇2
ΘL(Θ) = ℓ′′(v⊤Ux)

(
∇Θ(v⊤Ux)

)⊗2
+ ℓ′(v⊤Ux)∇2

Θ(v⊤Ux). (13)

We first prove that λmax(∇2
ΘL(Θ)) =

∥∥∇2
ΘL(Θ)

∥∥
2
. Note that the largest absolute value of

the eigenvalue of a symmetric matrix equals to its spectral norm. Hence,
∥∥∇2

ΘL(Θ)
∥∥
2

=

max{λmax(∇2
ΘL(Θ)),−λmin(∇2

ΘL(Θ))}, so it suffices to prove that λmax(∇2
ΘL(Θ)) ≥

−λmin(∇2
ΘL(Θ)). Let w denote the eigenvector of ∇2

ΘL(Θ) corresponding to the smallest eigen-
value λmin(∇2

ΘL(Θ)) with ∥w∥2 = 1. Then, using Eq. (13), we have

λmin(∇2
ΘL(Θ)) = w⊤∇2

ΘL(Θ)w = ℓ′′(v⊤Ux)w⊤ (∇Θ(v⊤Ux)
)⊗2

w + ℓ′(v⊤Ux)w⊤∇2
Θ(v⊤Ux)w

≥ ℓ′(v⊤Ux)w⊤∇2
Θ(v⊤Ux)w

≥ −|ℓ′(v⊤Ux)|∥∇2
Θ(v⊤Ux)∥2,

where we used Lemma B.10 to obtain the last inequality. Note that the matrix
ℓ′′(v⊤Ux)

(
∇Θ(v⊤Ux)

)⊗2
is PSD, so that λmax(∇2

ΘL(Θ)) ≥ λmax(ℓ
′(v⊤Ux)∇2

Θ(v⊤Ux)) =

|ℓ′(v⊤Ux)|∥∇2
Θ(v⊤Ux)∥2 ≥ −λmin(∇2

ΘL(Θ)). Therefore, λmax(∇2
ΘL(Θ)) =

∥∥∇2
ΘL(Θ)

∥∥
2
.

Now, we have the following triangle inequality:∣∣λmax(Θ)− ℓ′′(v⊤Ux)
(
∥Ux∥22 + ∥v∥22

)∣∣ = ∣∣∣∥∥∇2
ΘL(Θ)

∥∥
2
−
∥∥∥ℓ′′(v⊤Ux)

(
∇Θ(v⊤Ux)

)⊗2
∥∥∥
2

∣∣∣
≤
∥∥ℓ′(v⊤Ux)∇2

Θ(v⊤Ux)
∥∥
2

=
∣∣ℓ′(v⊤Ux)

∣∣ ∥∥∥∇2
(U ,v)(v

⊤Ux)
∥∥∥
2

≤ 1,

where the last inequality holds by Lemma B.10 and 1-Lipschitzness of ℓ.

We now give the proof of Theorem 4.4, restated below for the sake of readability.
Theorem 4.4 (progressive sharpening). Under the same setting as in Theorem 4.2, let ta denote the
obtained iteration. Define the function λ̃ : R>0 → R given by

λ̃(q) :=


(
1 + r̂(q)r′(r̂(q))

q

)
2
η if q ≤ 1, and

2
η otherwise.

Then, the sequence
(
λ̃(qt)

)∞
t=0

is monotonically increasing. Moreover, for any t ≥ ta, the sharpness
at GD iterate Θt closely follows the sequence

(
λ̃(qt)

)∞
t=0

by satisfying∣∣∣λmax(Θt)− λ̃ (qt)
∣∣∣ ≤ 1 +Oℓ(η).

Proof. By Proposition B.11, we can bound the sharpness λmax(Θt) at time step t by∣∣∣∣λmax(Θt)−
2ℓ′′(pt)

ηqt

∣∣∣∣ ≤ 1.

Since ℓ′′(z) = r(z) + zr′(z), we can rewrite as following:∣∣∣∣λmax(Θt)−
(
s−1
t +

ptr
′(pt)

qt

)
2

η

∣∣∣∣ ≤ 1. (14)

By Theorem 4.2 and since h is a bounded function by Lemma B.9, we have st = 1 +Oℓ(η
2) for any

t ≥ ta. Consequently, |s−1
t − 1| = Oℓ(η

2) and |r(pt)− qt| = Oℓ(η
2). Moreover, for any 0 < q < 1,

d

dq

(
r̂(q)r′(r̂(q))

q

)
=

r̂′(q)(r′(r̂(q)) + r̂(q)r′′(r̂(q)))

q
− r̂(q)r′(r̂(q))

q2

=
1

q

(
1 +

r̂(q)r′′(r̂(q))

r′(r̂(q))

)
− r̂(q)r′(r̂(q))

q2
,
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so that

lim
q→1−

(
d

dq

(
r̂(q)r′(r̂(q))

q

))
= lim

p→0+

(
1 +

pr′′(p)

r′(p)

)
= 2.

Therefore, d
dq

(
r̂(q)r′(r̂(q))

q

)
is bounded on [ 14 , 1) and Taylor’s theorem gives∣∣∣∣ptr′(pt)r(pt)
− r̂(qt)r

′(r̂(qt))

qt

∣∣∣∣ = Oℓ(|r(pt)− qt|) = Oℓ(η
2),

for any time step t with qt < 1. Hence, if qt < 1, we have the following bound:∣∣∣∣λ̃(qt)− (s−1
t +

ptr
′(pt)

qt

)
2

η

∣∣∣∣ ≤ ∣∣∣∣1− s−1
t +

r̂(qt)r
′(r̂(qt))

qt
− ptr

′(pt)

r(pt)

∣∣∣∣ 2η +Oℓ(η) = Oℓ(η),

(15)

where we used ptr
′(pt)
qt

= ptr
′(pt)

r(pt)
(1+Oℓ(η

2)) = ptr
′(pt)

r(pt)
+Oℓ(η

2), since 1+ ptr
′(pt)

r(pt)
= ℓ′′(pt)

r(pt)
> 0

implies |ptr′(pt)| ≤ r(pt) ≤ 1. Now let t be any given time step with qt ≥ 1. Then, r(pt) =
1−Oℓ(η

2), and since r(z) = 1 + r′′(0)z2 +Oℓ(z
4) for small z, we have |pt| = Oℓ(η). Hence,∣∣∣∣λ̃(qt)− (s−1

t +
ptr

′(pt)

qt

)
2

η

∣∣∣∣ ≤ ∣∣∣∣1− s−1
t − ptr

′(pt)

r(pt)

∣∣∣∣ 2η +Oℓ(η) = Oℓ(η), (16)

for any t with qt ≥ 1. By Eqs. (14), (15), and (16), we can conclude that for any t ≥ ta, we have∣∣∣λmax(Θt)− λ̃(qt)
∣∣∣ ≤ 1 +Oℓ(η).

Finally, we can easily check that the sequence (λ̃(qt))
∞
t=0 is monotonically increasing, since z 7→

zr′(z)
r(z) is a decreasing function by Assumption 4.3 (ii) and the sequence (qt) is monotonically

increasing.
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C Proofs for the Single-neuron Nonlinear Network

C.1 Formal statements of Theorem 5.1

In this subsection, we provide the formal statements of Theorem 5.1. We study the GD dynamics
on a two-dimensional function L(x, y) := 1

2 (ϕ(x)y)
2, where x, y are scalars and ϕ is a nonlinear

activation satisfying Assumption 5.1. We consider the reparameterization given by Definition 5.2,
which is (p, q) :=

(
x, 2

ηy2

)
.

We emphasize that the results we present in this subsection closely mirror those of the Section 4. In
particular,

• Assumption C.1 mirrors Assumption 4.2,
• Assumption C.2 mirrors Assumption 4.3,
• (gradient flow regime) Theorem C.1 mirrors Theorem 4.1.
• (EoS regime, Phase I) Theorem C.2 mirrors Theorem 4.2,
• (EoS regime, Phase II) Theorem C.3 mirrors Theorem 4.3, and
• (progressive sharpening) Theorem C.4 mirrors Theorem 4.4.

The proof strategies are also similar. This is mainly because the 1-step update rule Eq. (7) resembles
Eq. (6) for small step size η. We now present our rigorous results contained in Theorem 5.1.

Inspired by Lemma 2.1, we have an additional assumption on ϕ as below.

Assumption C.1. Let r be a function defined by r(z) := ϕ(z)ϕ′(z)
z for z ̸= 0 and r(0) := 1. The

function r satisfies Assumption 2.4.

In contrast to the function r defined in Section 4, the expression 1 + pr′(p)
r(p) can be negative, which

implies that the constant c defined in Lemma 2.1 is positive. As a result, the dynamics of pt may
exhibit a period-4 (or higher) oscillation or even chaotic behavior (as illustrated in Figure 1b).

We first state our results on the gradient flow regime.

Theorem C.1 (gradient flow regime). Let η ∈ (0, r(1)
2(r(1)+2) ) be a fixed step size and ϕ be a sigmoidal

function satisfying Assumptions 5.1 and C.1. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1

and q0 ∈
(

1
1−2η ,

r(1)
4η

)
. Consider the reparameterized GD trajectory characterized in Eq. (7). Then,

the GD iterations (pt, qt) converge to the point (0, q∗) such that

q0 ≤ q∗ ≤ exp

(
2η

[
min

{
2(q0 − 1)

q0
,
r(1)

q0

}]−1
)
q0 ≤ 2q0.

Theorem C.1 implies that in gradient flow regime, GD with initialization (x0, y0) and step size η
converges to (0, y∗) which has the sharpness bounded by:(

1− 2η

[
min

{
2(q0 − 1)

q0
,
r(1)

q0

}]−1
)
y20 ≤ λmax(∇2L(0, y∗)) ≤ y20 .

Now we provide our results on the EoS regime with an additional assumption below.
Assumption C.2. Let r be a function defined in Assumption C.1. Then r is C4 on R and satisfies:

(i) z 7→ r′(z)
r(z)2 is decreasing on R,

(ii) z 7→ zr′(z)
r(z) is decreasing on z > 0 and increasing on z < 0,

(iii) z → zr(z)
r′(z) is decreasing on z > 0 and increasing on z < 0, and

(iv) r̂( 12 )r
′(r̂( 12 )) > − 1

2 .
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Note that the function r that arise from the activation ϕ = tanh satisfies Assumptions 5.1, C.1,
and C.2.
Theorem C.2 (EoS regime, Phase I). Let η > 0 be a small enough constant and ϕ be an ac-
tivation function satisfying Assumptions 5.1, C.1, and C.2. Let z0 := supz{

zr′(z)
r(z) ≥ − 1

2},

z1 := supz{
zr′(z)
r(z) ≥ −1}, and c0 := max{r(z0), r(z1) + 1

2} ∈ ( 12 , 1). Let δ ∈ (0, 1 − c0) be
any given constant. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1 and q0 ∈ (c0, 1 − δ).
Consider the reparameterized GD trajectory characterized in Eq. (7). We assume that for all t ≥ 0
such that qt < 1, we have pt ̸= 0. Then, there exists a time step ta = Oδ,ϕ(log(η

−1)) such that for
any t ≥ ta,

qt
r(pt)

= 1 + h(pt)η +Oδ,ϕ(η
2)

where h : R → R is a function defined as

h(p) :=

−ϕ(p)2r(p)
pr′(p) if p ̸= 0, and

− 1
r′′(0) if p = 0.

The main difference between Theorem C.2 and Theorem 4.2 is the error term which is O(η2) in the
former and O(η4) in the latter. This is because the 1-step update rule of qt in Theorem C.2 is given
by qt+1 = (1 +O(η))qt, while in Theorem 4.2 we have qt+1 = (1 +O(η2))qt.
Theorem C.3 (EoS regime, Phase II). Under the same settings as in Theorem C.2, there exists a time
step tb = Ω((1− q0)η

−1), such that qtb ≤ 1 and qt > 1 for any t > tb. Moreover, the GD iterates
(pt, qt) converge to the point (0, q∗) such that

q∗ = 1− η

r′′(0)
+Oδ,ϕ(η

2).

Theorem C.3 implies that in the EoS regime, GD with step size η converges to (0, y∗) which has the
sharpness approximated as:

λmax(∇2L(0, y∗)) = 2

η
− 2

|r′′(0)|
+Oδ,ϕ(η).

Theorem C.4 proves that progressive sharpening (i.e., sharpness increases) occurs during Phase II.
Theorem C.4 (progressive sharpening). Under the same setting as in Theorem C.2, let ta denote the
obtained time step. Define the function λ̃ : R>0 → R given by

λ̃(q) :=


(
1 + r̂(q)r′(r̂(q))

q

)
2
η if q ≤ 1, and

2
η otherwise.

Then, the sequence
(
λ̃ (qt)

)∞
t=0

is monotonically increasing. For any t ≥ ta, the sharpness at GD

iterate (xt, yt) closely follows the sequence
(
λ̃ (qt)

)∞
t=0

satisfying the following:

λmax(∇2L(xt, yt)) = λ̃ (qt) +Oϕ(1).

In Figure 1b, we conduct numerical experiments on single neuron model with tanh-activation,
demonstrating that λ̃(qt) provides a close approximation of the sharpness.

C.2 Proof of Theorem C.1

We give the proof of Theorem C.1, restated below for the sake of readability.

Theorem C.1 (gradient flow regime). Let η ∈ (0, r(1)
2(r(1)+2) ) be a fixed step size and ϕ be a sigmoidal

function satisfying Assumptions 5.1 and C.1. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1
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and q0 ∈
(

1
1−2η ,

r(1)
4η

)
. Consider the reparameterized GD trajectory characterized in Eq. (7). Then,

the GD iterations (pt, qt) converge to the point (0, q∗) such that

q0 ≤ q∗ ≤ exp

(
2η

[
min

{
2(q0 − 1)

q0
,
r(1)

q0

}]−1
)
q0 ≤ 2q0.

Theorem C.1 directly follows from Proposition C.5 stated below.

Proposition C.5. Suppose that η ∈ (0, r(1)
2(r(1)+2) ), |p0| ≤ 1 and q0 ∈

(
1

1−2η ,
r(1)
4η

)
. Then for any

t ≥ 0, we have

|pt| ≤
[
1−min

{
2(q0 − 1)

q0
,
r(1)

q0

}]t
≤ 1,

and

q0 ≤ qt ≤ exp

(
2η

[
min

{
2(q0 − 1)

q0
,
r(1)

q0

}]−1
)
q0 ≤ 2q0.

Proof. We give the proof by induction; namely, if

|pt| ≤
[
1−min

{
2(q0 − 1)

q0
,
r(1)

q0

}]t
, q0 ≤ qt ≤ exp

(
2η

[
min

{
2(q0 − 1)

q0
,
r(1)

q0

}]−1
)
q0 ≤ 2q0

are satisfied for time steps 0 ≤ t ≤ k for some k, then the inequalities are also satisfied for the next
time step k + 1.

For the base case, the inequalities are satisfied for t = 0 by assumptions. For the induction step, we
assume that the inequalities hold for any 0 ≤ t ≤ k. We will prove that the inequalities are also
satisfied for t = k + 1.

By induction assumptions, we have r(1) ≤ r(pk) ≤ 1 and q0 ≤ qk ≤ 2q0. From Eq. (7), we get∣∣∣∣pk+1

pk

∣∣∣∣ = ∣∣∣∣1− 2r(pk)

qk

∣∣∣∣ ≤ max

{
1− 2r(1)

2q0
,−1 +

2

q0

}
= 1− min{2(q0 − 1), r(1)}

q0
.

Due to the induction assumption, we obtain the desired bound on |pk+1| as following:

|pk+1| ≤
[
1−min

{
2(q0 − 1)

q0
,
r(1)

q0

}]k+1

.

Moreover, for any 0 ≤ t ≤ k, by Eq. (7) we have

1− 2ηp2t ≤ (1− ηp2t )
2 ≤ qt

qt+1
= (1− ηϕ(pt)

2)2 ≤ 1,

where the second inequality comes from the fact that ϕ is 1-Lipschitz and ϕ(0) = 0 (Assumption 5.1).
Hence, we have qk+1 ≥ qk ≥ q0. Note that qt

qt+1
∈ [ 12 , 1] for small η. Consequently, we have∣∣∣∣log( q0

qk+1

)∣∣∣∣ ≤ k∑
t=0

∣∣∣∣log( qt
qt+1

)∣∣∣∣ ≤ 2

k∑
t=0

∣∣∣∣ qt
qt+1

− 1

∣∣∣∣
≤ 2η

k∑
t=0

p2t

≤ 2η

k∑
t=0

[
1−min

{
2(q0 − 1)

q0
,
r(1)

q0

}]2t
≤ 2η

[
min

{
2(q0 − 1)

q0
,
r(1)

q0

}]−1

,
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where the second inequality holds since |log(1 + z)| ≤ 2|z| if |z| ≤ 1
2 . Therefore, we obtain the

desired bound on qk+1 as following:

q0 ≤ qk+1 ≤ exp

(
2η

[
min

{
2(q0 − 1)

q0
,
r(1)

q0

}]−1
)
q0.

Since q0 ≥ 1
1−2η and q0 ≤ r(1)

4η , we have

min

{
2(q0 − 1)

q0
,
r(1)

q0

}
≥ 4η.

This implies that qk+1 ≤ exp( 12 )q0 ≤ 2q0, as desired.

C.3 Proof of Theorem C.2

In this subsection, we prove Theorem C.2. We use the following notation:

st :=
qt

r(pt)
.

All the lemmas in this subsection are stated in the context of Theorem C.2. The proof structure resem-
bles that of Theorem 4.2. We informally summarize the lemmas used in the proof of Theorem C.2.
Lemma C.6 proves that pt is bounded by a constant and qt increases monotonically with the increment
bounded by O(η). Lemma C.7 states that in the early phase of training, there exists a time step t0
where st0 becomes smaller or equal to 2

2−r(1) , which is smaller than 2. Lemma C.9 demonstrates that
if st is smaller than 2 and |pt| ≥ r̂(1− δ

4 ), then |st − 1| decreases exponentially. For the case where
|pt| < r̂(1− δ

4 ), Lemma C.10 proves that |pt| increases at an exponential rate. Moreover, Lemma C.8
shows that if st < 1 at some time step, then st+1 is upper bounded by 1 +O(η). Combining these
findings, Proposition C.11 establishes that in the early phase of training, there exists a time step
t∗a such that st∗a = 1 +Oδ,ϕ(η). Lastly, Lemma C.12 demonstrates that if st = 1 +Oδ,ϕ(η), then
|st − 1− h(pt)η| decreases exponentially.

Lemma C.6. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1 and q0 ∈ (c0, 1− δ). Then
for any t ≥ 0 such that qt ≤ 1, it holds that

|pt| ≤ 4, and qt ≤ qt+1 ≤ (1 +O(η))qt.

Proof. We prove by induction. We assume that for some t ≥ 0, it holds that |pt| ≤ 4 and 1
2 ≤ qt ≤ 1.

We will prove that |pt+1| ≤ 4 and 1
2 ≤ qt ≤ qt+1 ≤ (1 +O(η))qt. For the base case, |p0| ≤ 1 ≤ 4

and 1
2 ≤ c0 < qt ≤ 1 holds by the assumptions on the initialization. Now suppose that for some

t ≥ 0, it holds that |pt| ≤ 4 and 1
2 ≤ qt ≤ 1. By Eq. (7),

|pt+1| =
∣∣∣∣pt − 2ϕ(pt)ϕ

′(pt)

qt

∣∣∣∣ ≤ max

{
|pt|,

2

qt

}
≤ 4.

where we used Assumption 5.1 to bound |ϕ(pt)ϕ′(pt)| ≤ 1. Moreover,

1− 2η ≤ (1− η)2 ≤ qt
qt+1

= (1− ηϕ(pt)
2)2 ≤ 1,

since |ϕ| is bounded by 1. Hence, qt ≤ qt+1 ≤ (1 +O(η))qt, as desired.

Lemma C.6 implies that pt is bounded by a constant throughout the iterations, and qt monotonically
increases slowly, where the increment for each step is O(η). Hence, there exists a time step
T = Ω(δη−1) = Ωδ(η

−1) such that for any t ≤ T , it holds that qt ≤ 1 − δ
2 . Through out this

subsection, we focus on these T early time steps. Note that for all 0 ≤ t ≤ T , it holds that
qt ∈ (c0, 1− δ

2 ).

Lemma C.7. There exists a time step t0 = Oδ,ϕ(1) such that st0 ≤ 2
2−r(1) .
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Proof. We start by proving the following statement: for any 0 ≤ t ≤ T , if 2
2−r(1) < st < 2r(1)−1,

then st+1 < 2r(1)−1 and |pt+1| ≤ (1− r(1))|pt|. Suppose that 2
2−r(1) < st < 2r(1)−1. Then from

Eq. (7), it holds that ∣∣∣∣pt+1

pt

∣∣∣∣ = ∣∣∣∣1− 2

st

∣∣∣∣ ≤ 1− r(1).

Hence, |pt+1| ≤ (1 − r(1))|pt|. Now we prove st+1 < 2r(1)−1. Assume the contrary that
st+1 ≥ 2r(1)−1. Then, r(pt+1) =

qt+1

st+1
< qt+1 < 1− δ

2 so that |pt+1| ≥ r̂(1− δ
2 ). By Mean Value

Theorem, there exists p∗t ∈ (|pt+1|, |pt|) such that

1

r(pt+1)
=

1

r(|pt| − (|pt| − |pt+1|))
=

1

r(pt)
+

r′(p∗t )

r(p∗t )
2
(|pt| − |pt+1|)

≤ 1

r(pt)
+

r′(|pt+1|)
r(pt+1)2

(r(1)|pt|)

≤ 1

r(pt)
−

|r′(r̂(1− δ
2 ))|

(1− δ
2 )

2

(
r(1)r̂

(
1− δ

2

))
=

1

r(pt)
− Ωδ,ϕ(1),

where we used Assumption C.2 (i) and r̂(1− δ
2 ) ≤ |pt+1| ≤ (1− r(1))|pt|. Consequently,

st+1 =
qt+1

r(pt+1)
= (1 +O(η))qt

(
1

r(pt)
− Ωδ,ϕ(1)

)
≤ qt

r(pt)
= st < 2r(1)−1,

for small step size η. This gives a contradiction to our assumption that st+1 ≥ 2r(1)−1. Hence, we
can conclude that st+1 < 2r(1)−1, as desired.

We proved that for any 0 ≤ t ≤ T , if 2
2−r(1) < st < 2r(1)−1, it holds that st+1 < 2r(1)−1 and

|pt+1| ≤ (1− r(1))|pt|. At initialization, |p0| ≤ 1 and q0 < 1, so that s0 < r(1)−1. If s0 ≤ 2
2−r(1) ,

then t0 = 0 is the desired time step. Suppose that s0 > 2
2−r(1) . Then, we have s1 < 2r(1)−1 and

|p1| ≤ (1− r(1))|p0| ≤ 1− r(1). Then we have either s1 ≤ 2
2−r(1) , or 2

2−r(1) < s1 < 2r(1)−1. In
the previous case, t0 = 1 is the desired time step. In the latter case, we can repeat the same argument
and obtain s2 < 2r(1)−1 and |p2| ≤ (1− r(1))2. By inductively repeating the same argument, we
can obtain a time step t0 ≤ log(r̂(1− δ

2 ))/ log(1−r(1)) = Oδ,ϕ(1) such that either st0 ≤ 2
2−r(1) , or

|pt0 | ≤ r̂(1− δ
2 ). In the latter case, r(pt0) ≥ 1− δ

2 > qt0 , and hence st0 < 1 < 2
2−r(1) . Therefore,

t0 = Oδ,ϕ(1) is the desired time step satisfying st0 ≤ 2
2−r(1) .

According to Lemma C.7, there exists a time step t0 = Oδ,ϕ(1) such that st0 ≤ 2
2−r(1) < 2(1+η2)−1

for small step size η. Now we prove the lemma below.
Lemma C.8. Suppose that st ≤ 1. Then, it holds that st+1 ≤ 1 +O(η).

Proof. For any p ∈ (0, r̂( qt2 )), we have r(p) ≥ qt
2 so that |fqt(p)| = (−1 + 2r(pt)

qt
)pt. Hence,

∂

∂p
|fqt(p)| =

2r(p)

qt

(
1 +

pr′(p)

p

)
− 1,

for any p ∈ (0, r̂( qt2 )). By Assumption C.2 (ii), (iv) and qt ≥ c0 ≥ r(z1) +
1
2 ≥ 2r(z1) where

z1 = supz{
zr′(z)
r(z) ≥ −1}, both r(p) and (1 + pr′(p)

r(p) ) are positive, decreasing function on (0, r̂( qt2 )).
Consequently, ∂

∂p |fqt(p)| is a decreasing function on (0, r̂( qt2 )).

Now note that qt
2 < qt < 1, which means r̂(1) = 0 < r̂(qt) < r̂( qt2 ) by the definition of r̂. Note that

∂
∂p |fqt(p)| at p = r̂(qt) evaluates to

∂

∂p
|fqt(r̂(qt))| = 1 +

2r̂(qt)r
′(r̂(qt))

r(r̂(qt))
≥ 1 +

2r̂(c0)r
′(r̂(c0))

r(r̂(c0))
≥ 0,
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where the inequalities used Assumption C.2 (ii) and qt > c0 ≥ r(z0) where z0 := supz{
zr′(z)
r(z) ≥

− 1
2}, from the statement of Theorem C.2.

Therefore, since ∂
∂p |fqt(p)| is decreasing on (0, r̂( qt2 )) and is nonnegative at r̂(qt), for any p ∈

(0, r̂(qt)), it holds that ∂
∂p |fqt(p)| ≥ 0. In other words, |fqt(p)| is an increasing function on (0, r̂(qt)).

Since 0 ≤ st ≤ 1, we have |pt| ≤ r̂(qt) and it holds that

|pt+1| =
(
−1 +

2

st

)
|pt| = |fqt(pt)| ≤ |fqt(r̂(qt))| = r̂(qt).

Therefore, with this inequality and Lemma C.6, we can conclude that

st+1 =
qt+1

r(pt+1)
=

(1 +O(η))qt
r(pt+1)

≤ qt
r(r̂(qt))

+O(η) = 1 +O(η).

Using Lemma C.8, we prove the following lemma.

Lemma C.9. For any 0 ≤ t ≤ T , if st < 2 and r(pt) ≤ 1− δ
4 , then

|st+1 − 1| ≤ (1− d)|st − 1|+O(η),

where d ∈ (0, 1
2 ] is a constant which depends on δ and ϕ.

Proof. From Eq. (7) it holds that

pt+1

pt
= 1− 2

st
< 0,

so that pt and pt+1 have opposite signs. By Mean Value Theorem, there exists θt between −1 and
(1− 2

st
) satisfying

1

r(pt+1)
=

1

r
(
−pt +

(
2(st−1)

st

)
pt

)
=

1

r(−pt)
− r′(θtpt)

r(θtpt)2

(
2(st − 1)

st

)
pt

=
1

r(pt)
− |r′(θtpt)|

r(θtpt)2

(
2(st − 1)

st

)
|pt|. (17)

where the last equality used the fact that pt and θtpt have opposite signs and r′(z) and z have opposite
signs. Note that |θtpt| is between |pt| and |pt+1|. Consequently, the value |r′(θtpt)|

r(θtpt)2
is between |r′(pt)|

r(pt)2

and |r′(pt+1)|
r(pt+1)2

by Assumption C.2 (i). We will prove the current lemma based on Eq. (17). We divide
into following three cases: (1) st ≥ 1 and st+1 ≥ 1, (2) st ≥ 1 and st < 1, and (3) st < 1.

Case 1. Suppose that st ≥ 1 and st+1 ≥ 1. Here, we have |pt| ≥ r̂(qt) ≥ r̂(1− δ
2 ) and similarly

|pt+1| ≥ r̂(1− δ
2 ). By Assumption C.2 (i), |r′(θtpt)|

r(θtpt)2
≥ |r′(r̂(1− δ

2 ))|
(1− δ

2 )
2 . Hence, Eq. (17) gives

1

r(pt+1)
≤ 1

r(pt)
−

|r′(r̂(1− δ
2 ))|

(1− δ
2 )

2

(
2(st − 1)

st

)
r̂

(
1− δ

2

)
.

Consequently, by Lemma C.6,

st+1 =
qt(1 +O(η))

r(pt+1)
=

qt
r(pt+1)

+O(η) ≤ st −
|r′(r̂(1− δ

2 ))|
(1− δ

2 )
2

(
2(st − 1)

st

)
r̂

(
1− δ

2

)
qt +O(η)

≤ st −
|r′(r̂(1− δ

2 ))|
(1− δ

2 )
2

(st − 1)r̂

(
1− δ

2

)
1

2
+O(η)
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≤ st −
r̂(1− δ

2 )|r
′(r̂(1− δ

2 ))|
2(1− δ

2 )
2

(st − 1) +O(η),

where we used qt > c0 > 1
2 and st < 2. Therefore, we can obtain the following inequality:

0 ≤ st+1 − 1 ≤

(
1−

r̂(1− δ
2 )|r

′(r̂(1− δ
2 ))|

2(1− δ
2 )

2

)
(st − 1) +O(η).

Case 2. Suppose that st ≥ 1 and st+1 < 1. Here, we have r(pt+1) > qt+1 ≥ qt ≥ r(pt), so that
|pt+1| < |pt|. Consequently, |r′(θtpt)|

r(θtpt)2
≤ |r′(pt)|

r(pt)2
by Assumption C.2 (i). Hence, we can deduce from

Eq. (17) that

1

r(pt+1)
≥ 1

r(pt)
− |r′(pt)|

r(pt)2

(
2(st − 1)

st

)
|pt|

=
1

r(pt)
− 2|ptr′(pt)|

r(pt)qt
(st − 1)

=
1

r(pt)
+

2ptr
′(pt)

r(pt)qt
(st − 1).

Consequently, by Assumption C.2 (ii),

st+1 ≥ qt
r(pt+1)

≥ st +
2ptr

′(pt)

r(pt)
(st − 1) ≥ st +

2r̂( c02 )r
′(r̂( c02 ))

r(r̂( c02 ))
(st − 1),

where we used r(pt) ≥ qt
2 > c0

2 . Therefore, we can obtain the following inequality:

0 ≤ 1− st+1 ≤ −
(
1 +

4r̂( c02 )r
′(r̂( c02 ))

c0

)
(st − 1),

where −1 <
r̂(

c0
2 )r′(r̂(

c0
2 ))

r(r̂(
c0
2 ))

=
2r̂(

c0
2 )r′(r̂(

c0
2 ))

c0
< 0, since c0 ≥ r(z1) +

1
2 ≥ 2r(z1) with z1 =

supz{
zr′(z)
r(z) ≥ −1}, and r(z1) ≤ 1

2 holds by Assumption C.2 (iv).

Case 3. Suppose that st < 1. By Lemma C.8, it holds that st+1 ≤ 1 + O(η). Moreover, we
assumed r(pt) ≤ 1− δ

4 , so that |pt| ≥ r̂(1− δ
4 ). We also have

|pt+1| =
(
−1 +

2

st

)
|pt| > |pt| ≥ r̂

(
1− δ

4

)
.

Consequently, by Assumption C.2 (i), it holds that |r′(θtpt)|
r(θtpt)2

≥ |r′(r̂(1− δ
4 ))|

(1− δ
4 )

2 . Hence, by Eq. (17), we
have

1

r(pt+1)
≥ 1

r(pt)
+

|r′(r̂(1− δ
4 ))|

(1− δ
4 )

2

(
2(1− st)

st

)
r̂

(
1− δ

4

)
≥ 1

r(pt)
+

|r′(r̂(1− δ
4 ))|

(1− δ
4 )

2
2(1− st)r̂

(
1− δ

4

)
=

1

r(pt)
+

2r̂(1− δ
4 )|r

′(r̂(1− δ
4 ))|

(1− δ
4 )

2
(1− st),

and hence,

st+1 ≥ qt
r(pt+1)

≥ st +
r̂(1− δ

4 )|r
′(r̂(1− δ

4 ))|
(1− δ

4 )
2

(1− st),

where we used qt >
1
2 . Therefore, we can obtain the following inequality:

−O(η) ≤ 1− st+1 ≤

(
1−

r̂(1− δ
4 )|r

′(r̂(1− δ
4 ))|

(1− δ
4 )

2

)
(1− st),
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where the first inequality is from Lemma C.8.

Combining the three cases, we can finally conclude that if we choose

d := min

{
1

2
,
r̂(1− δ

2 )|r
′(r̂(1− δ

2 ))|
2(1− δ

2 )
2

, 2

(
1 +

2r̂( c02 )r
′(r̂( c02 ))

c0

)
,
r̂(1− δ

4 )|r
′(r̂(1− δ

4 ))|
(1− δ

4 )
2

}
∈
(
0,

1

2

]
,

then |st+1 − 1| ≤ (1− d)|st − 1|+O(η), as desired.

Lemma C.9 implies that if st < 2 and |pt| ≥ r̂(1− δ
4 ), then |st − 1| exponentially decreases. We

prove Lemma C.10 to handle the regime |pt| < r̂(1− δ
4 ), which is stated below.

Lemma C.10. For any 0 ≤ t ≤ T , if r(pt) ≥ 1− δ
4 , it holds that∣∣∣∣pt+1

pt

∣∣∣∣ ≥ 2

2− δ
.

Proof. If r(pt) ≥ 1 − δ
4 , then st = qt

r(pt)
<

1− δ
2

1− δ
4

= 4−2δ
4−δ , where we used qt < 1 − δ

2 for any
0 ≤ t ≤ T . Consequently, ∣∣∣∣pt+1

pt

∣∣∣∣ = 2

st
− 1 ≥ 2(4− δ)

4− 2δ
− 1 =

2

2− δ
.

Now we prove Proposition C.11, which proves that st reaches close to 1 with error bound of O(η).
Proposition C.11. There exists a time step t∗a = Oδ,ϕ(log(η

−1)) satisfying

st∗a = 1 +Oδ,ϕ(η). (18)

Proof. By Lemma C.7, there exists a time step t0 = Oδ,ϕ(1) such that st0 ≤ 2
2−r(1) . Here, we divide

into two possible cases: (1) st0 < 1, and (2) 1 ≤ st0 ≤ 2
2−r(1) .

Case 1. Suppose that st0 < 1. By Lemma C.10, if r(pt0) ≥ 1− δ
4 (or equivalently, |pt0 | ≤ r̂(1− δ

4 )),

then there exists a time step t1 ≤ t0 + log(
r̂(1− δ

4 )

|pt0
| )/ log( 2

2−δ ) = Oδ,ϕ(1) such that |pt1 | ≥ r̂(1− δ
4 ).

We denote the first time step satisfying |pt1 | ≥ r̂(1− δ
4 ) and t1 ≥ t0 by t1 = Oδ,ϕ(1). By Lemma C.8,

it holds that st1 ≤ 1 +O(η) since st1−1 < 1. Consequently, if st1 ≥ 1, then |st1 − 1| ≤ O(η) so
that t∗a = t1 is the desired time step. Hence, it suffices to consider the case when st1 < 1. Here, we
can apply Lemma C.9 which implies that

|st1+1 − 1| ≤ (1− d)|st1 − 1|+O(η),

where d is a constant which depends on δ and ϕ. Then, there are two possible cases: either
|st1 −1| ≤ O(ηd−1), or |st1+1−1| ≤ (1− d

2 )|st1 −1|. It suffices to consider the latter case, suppose
that |st1+1−1| ≤ (1− d

2 )|st1−1|. Since we are considering the case st1 < 1, again by Lemma C.8, we
have st1+1 ≤ 1+O(η). Since |pt1+1

pt1
| = 2

st1
−1 > 1, we have |pt1+1| ≥ |pt1 | ≥ r̂(1− δ

4 ). This means
that we can again apply Lemma C.9 and repeat the analogous argument. Hence, there exists a time
step t2 ≤ t1+log( η

1−st1
)/ log(1− d

2 ) = Oδ,ϕ(log(η
−1)), such that |st2 −1| ≤ O(ηd−1) = Oδ,ϕ(η).

Case 2. Suppose that 1 ≤ st0 ≤ 2
2−r(1) . Then, r(pt0) ≤ qt0 ≤ 1− δ

2 , so we can apply Lemma C.9.
There are two possible cases: either |st0+1 − 1| ≤ O(ηd−1) = Oδ,ϕ(η), or |st0+1 − 1| ≤ (1 −
d
2 )|st0 − 1|. It suffices to consider the latter case. If st0+1 ≥ 1, we can again apply Lemma C.9 and
repeat the analogous argument. Hence, we can obtain a time step t′0 ≤ t0+log( η

1−st0
)/ log(1− d

2 ) =

Oδ,ϕ(log(η
−1)) such that either st′0 < 1 or |st′0 − 1| = Oδ,ϕ(η) is satisfied. If st′0 < 1, we proved in

Case 1 that there exists a time step t′2 = t′0 +Oδ,ϕ(log(η
−1)) such that |st′2 − 1| ≤ Oδ,ϕ(η), and this

is the desired bound.
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Now we carefully handle the error term O(η) obtained in Proposition C.11 and a provide tighter
bound on st by proving Lemma C.12 stated below.

Lemma C.12. If |st − 1| ≤ Oδ,ϕ(η), then it holds that

|st+1 − 1− h(pt+1)η| ≤
(
1 +

2ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η|+Oδ,ϕ(η

2p2t ),

where

h(p) :=

−ϕ(p)2r(p)
pr′(p) if p ̸= 0, and

− 1
r′′(0) if p = 0.

Proof. Suppose that |st − 1| ≤ Oδ,ϕ(η). Then, |pt+1| =
∣∣∣1− 2

st

∣∣∣ |pt| = (1 + Oδ,ϕ(η))|pt|. By
Eq. (17) proved in Lemma C.9, there exists ϵt = Oδ,ϕ(η) such that

1

r(pt+1)
=

1

r(pt)
+

r′((1 + ϵt)pt)

r((1 + ϵt)pt)2

(
2(st − 1)

st

)
pt

=
1

r(pt)
+

(
r′(pt)

r(pt)2
+Oδ,ϕ(ηpt)

)(
2(st − 1)

st

)
pt

=
1

r(pt)
+

r′(pt)

r(pt)2

(
2(st − 1)

st

)
pt +Oδ,ϕ(η

2p2t ),

where we used the Taylor expansion on r′(p)
r(p)2 with the fact that d

dp

(
r′(p)
r(p)2

)
is bounded on [−4, 4] and

that |pt| ≤ 4 to obtain the second equality. Note that qt+1 = (1−ηϕ(pt)
2)−2qt = (1+2ηϕ(pt)

2)qt+
O(η2) by Eq (7). Consequently,

st+1 = (1 + 2ηϕ(pt)
2)

(
st +

r′(pt)

r(pt)2

(
2(st − 1)

st

)
ptqt

)
+Oδ,ϕ(η

2p2t )

= (1 + 2ηϕ(pt)
2)st +

2ptr
′(pt)

r(pt)
(st − 1) +Oδ,ϕ(η

2p2t )

= 1 +

(
1 +

2ptr
′(pt)

r(pt)

)
(st − 1) + 2ηϕ(pt)

2 +Oδ,ϕ(η
2p2t ).

Note that h is even, and twice continuously differentiable function by Lemma C.13. Consequently,
h′(0) = 0 and h′(p) = Oϕ(p), since h′′ is bounded on closed interval. Consequently, h(pt+1) =
h((1 +Oδ,ϕ(η))pt) = h(pt) +Oδ,ϕ(ηp

2
t ). Hence, we can obtain the following:

st+1 − 1− h(pt+1)η = st+1 − 1− h(pt)η +Oδ,ϕ(η
2p2t )

= st+1 − 1 +
ϕ(pt)

2r(pt)

ptr′(pt)
η +Oδ,ϕ(η

2p2t )

=

(
1 +

2ptr
′(pt)

r(pt)

)(
st − 1 +

ϕ(pt)
2r(pt)

ptr′(pt)
η

)
+Oδ,ϕ(η

2p2t )

=

(
1 +

2ptr
′(pt)

r(pt)

)
(st − 1− h(pt)η) +Oδ,ϕ(η

2p2t )

Note that r(pt) = (1 + Oδ,ϕ(η))qt ≥ (1 + Oδ,ϕ(η))q0 ≥ c0 ≥ r(z0) for small step size η, where
z0 = sup{ zr′(z)

r(z) ≥ − 1
2}. Consequently, it holds that 1 + 2ptr

′(pt)
r(pt)

≥ 0. Therefore, we can conclude
that

|st+1 − 1− h(pt+1)η| ≤
(
1 +

2ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η|+Oδ,ϕ(η

2p2t ),

as desired.

Now we give the proof of Theorem C.2, restated below for the sake of readability.
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Theorem C.2 (EoS regime, Phase I). Let η > 0 be a small enough constant and ϕ be an ac-
tivation function satisfying Assumptions 5.1, C.1, and C.2. Let z0 := supz{

zr′(z)
r(z) ≥ − 1

2},

z1 := supz{
zr′(z)
r(z) ≥ −1}, and c0 := max{r(z0), r(z1) + 1

2} ∈ ( 12 , 1). Let δ ∈ (0, 1 − c0) be
any given constant. Suppose that the initialization (p0, q0) satisfies |p0| ≤ 1 and q0 ∈ (c0, 1 − δ).
Consider the reparameterized GD trajectory characterized in Eq. (7). We assume that for all t ≥ 0
such that qt < 1, we have pt ̸= 0. Then, there exists a time step ta = Oδ,ϕ(log(η

−1)) such that for
any t ≥ ta,

qt
r(pt)

= 1 + h(pt)η +Oδ,ϕ(η
2)

where h : R → R is a function defined as

h(p) :=

−ϕ(p)2r(p)
pr′(p) if p ̸= 0, and

− 1
r′′(0) if p = 0.

Proof of Theorem C.2. By Proposition C.11, there exists a time step t∗a = Oδ,ℓ(log(η
−1)) which

satisfies:

|st∗a − 1| =
∣∣∣∣ qt∗a
r(pt∗a)

− 1

∣∣∣∣ = Oδ,ϕ(η).

By Lemma C.12, there exists a constant D > 0 which depends on δ, ϕ such that if |st−1| = Oδ,ϕ(η),
then

|st+1 − 1− h(pt+1)η| ≤
(
1 +

2ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η|+Dη2p2t . (19)

Hence, if |st − 1| = Oδ,ϕ(η) and |st − 1− h(pt)η| ≥
(
−ptr(pt)

r′(pt)

)
Dη2, then

|st+1 − 1− h(pt+1)η| ≤
(
1 +

ptr
′(pt)

r(pt)

)
|st − 1− h(pt)η|. (20)

For any t ≤ T , we have qt < 1− δ
2 so that if |st−1| = Oδ,ϕ(η), then r(pt) ≤ (1+Oδ,ϕ(η))qt < 1− δ

4
for small step size η. From Eq. (20) with t = t∗a, we have either

|st∗a − 1− h(pt∗a)η| <
(
−
pt∗ar(pt∗a)

r′(pt∗a)

)
Dη2,

or

|st∗a+1 − 1− h(pt∗a+1)η| ≤

(
1 +

r̂(1− δ
4 )r

′(r̂(1− δ
4 ))

(1− δ
4 )

)
|st∗a − 1− h(pt∗a)η|,

where we used Assumption C.2 (ii) and |pt| > r̂(1− δ
4 ). In the latter case, |st∗a+1 − 1| = Oδ,ϕ(η)

continues to hold and we can again use Eq. (20) with t = t∗a + 1. By repeating the analogous
arguments, we can obtain the time step

ta ≤ t∗a +
log
(
− Dη2

r′′(0)|st∗a−1−h(pt∗a )η|

)
log
(
1 +

r̂(1− δ
4 )r

′(r̂(1− δ
4 ))

(1− δ
4 )

) = Oδ,ℓ(log(η
−1)),

which satisfies: either

|sta − 1− h(pta)η| <
(
−ptar(pta)

r′(pta)

)
Dη2,

or

|sta − 1− h(pta)η| ≤
(
− 1

r′′(0)

)
Dη2 ≤

(
−ptar(pta)

r′(pta)

)
Dη2 ≤

(
−4r(4)

r′(4)

)
Dη2,

where we used |pt| ≤ 4 from Lemma C.6 and − zr(z)
r′(z) ≥ − 1

r′′(0) for any z by Assumption C.2 (iii).
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By Eq. (19), if |st − 1− h(pt)η| ≤
(
− 4r(4)

r′(4)

)
Dη2 is satisfied for any time step t, then

|st+1 − 1− h(pt+1)η| ≤
(
1 +

2ptr
′(pt)

r(pt)

)(
−4r(4)

r′(4)

)
Dη2 +Dη2p2t ≤

(
−4r(4)

r′(4)

)
Dη2,

by |pt| ≤ 4 from Lemma C.6 and Assumption C.2 (iii).

Hence, by induction, we have the desired bound as following: for any t ≥ ta,

|st − 1− h(pt)η| ≤
(
−4r(4)

r′(4)

)
Dη2 = Oδ,ℓ(η

2),

by |pt| ≤ 4 and Assumption C.2 (iii).

C.4 Proof of Theorem C.3

In this subsection, we prove Theorem C.3. We start by proving Lemma C.13 which provides a useful
property of h defined in Theorem C.2.

Lemma C.13. Consider the function h defined in Theorem C.2, given by

h(p) :=

−ϕ(p)2r(p)
pr′(p) if p ̸= 0, and

− 1
r′′(0) if p = 0.

Then, h is a positive, even, and bounded twice continuously differentiable function.

Proof. By Assumption C.1, h is a positive, even function. Moreover, h is continuous since
limp→0 h(p) = − 1

r′′(0) = h(0). Continuous function on a compact domain is bounded, so h

is bounded on the closed interval [−1, 1]. Note that ϕ(p)2 ≤ 1, and
(
− r(p)

pr′(p)

)
is positive, decreasing

function on p > 0 by Assumption C.2 (ii). Hence, h is bounded on [1,∞). Since h is even, h is
bounded on (−∞, 1]. Therefore, h is a bounded on R.

We finally prove that h is twice continuously differentiable. Since r is even and C4 on R, we can
check that for any p ̸= 0,

h′(p) =− 2r(p)2

r′(p)
− ϕ(p)2

p
+

ϕ(p)2r(p)(r′(p) + pr′′(p))

p2r′(p)2
,

and h′(p) = 0. Moreover, for any p ̸= 0,

h′′(p) =− 6r(p) +
2ϕ(p)2

p2
+

ϕ(p)2r′′(p)

pr′(p)
+

ϕ(p)2r(p)r(3)(p)

pr′(p)2

+
2r(p)2(r′(p) + 2pr′′(p))

pr′(p)2
− ϕ(p)2r(p)(2r′(p) + pr′′(p))

p3r′(p)2
− ϕ(p)2r(p)r′′(p)(r′(p) + 2pr′′(p))

p2r′(p)3
,

and

h′′(0) = −1− 2ϕ(3)(0)

3r′′(0)
+

r(4)(0)

3r′′(0)2
.

Since limp→0 h
′′(p) = h′′(0), we can conclude that h is a twice continuously differentiable function.

Now we give the proof of Theorem C.3, restated below for the sake of readability.

Theorem C.3 (EoS regime, Phase II). Under the same settings as in Theorem C.2, there exists a time
step tb = Ω((1− q0)η

−1), such that qtb ≤ 1 and qt > 1 for any t > tb. Moreover, the GD iterates
(pt, qt) converge to the point (0, q∗) such that

q∗ = 1− η

r′′(0)
+Oδ,ϕ(η

2).
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Proof. We first prove that there exists a time step t ≥ 0 such that qt > 1. Assume the contrary that
qt ≤ 1 for all t ≥ 0. Let ta be the time step obtained in Theorem C.2. Then for any t ≥ ta, we have

r(pt) = (1− h(pt)η +Oδ,ϕ(η
2))qt ≤ 1− h(pt)η

2
,

for small step size η. The function g(p) := r(p)− 1+ h(p)η
2 is even, continuous, and has the function

value g(0) = η
2|r′′(0)| > 0. Consequently, there exists a positive constant ϵ > 0 such that g(p) > 0

for all p ∈ (−ϵ, ϵ). Then, we have |pt| ≥ ϵ for all t ≥ ta, since g(pt) ≤ 0. This implies that for any
t ≥ ta, it holds that

qt+1

qt
= (1− ηϕ(pt)

2)−2 ≥ (1− ηϕ(ϵ)2)−2 > 1,

so qt grows exponentially, which results in the existence of a time step t′b ≥ ta such that qt′b > 1, a
contradiction.

Therefore, there exists a time step tb such that qtb ≤ 1 and qt > 1 for any t > tb, i.e., qt jumps across
the value 1. This holds since the sequence (qt) is monotonically increasing. For any t ≤ tb, we have
qt+1 ≤ qt +O(η) by Lemma C.6, and this implies that tb ≥ Ω((1− q0)η

−1), as desired.

Lastly, we prove the convergence of GD iterates (pt, qt). Let t > tb be given. Then, qt ≥ qtb+1 > 1
and it holds that ∣∣∣∣pt+1

pt

∣∣∣∣ = 2r(pt)

qt
− 1 ≤ 2

qtb+1
− 1 < 1.

Hence, |pt| is exponentially decreasing for t > tb. Therefore, pt converges to 0 as t → ∞. Since
the sequence (qt)

∞
t=0 is monotonically increasing and bounded (due to Theorem C.2, it converges.

Suppose that (pt, qt) converges to the point (0, q∗). By Theorem C.2, we can conclude that∣∣∣∣q∗ − 1 +
η

r′′(0)

∣∣∣∣ = Oϕ,ℓ(η
2),

which is the desired bound.

C.5 Proof of Theorem C.4

In this subsection, we prove Theorem C.4. We first prove an important bound on the sharpness value
provided by the Proposition C.14 stated below.
Proposition C.14. For any (x, y) ∈ R2 with r(x) + xr′(x) ≥ 0, the following inequality holds:

(r(x) + xr′(x))y2 ≤ λmax(∇2L(x, y)) ≤ (r(x) + xr′(x))y2 +
4x2r(x)

r(x) + xr′(x)
,

Proof. Let (x, y) ∈ R2 be given. The loss Hessian at (x, y) is

∇2L(x, y) =
[
(ϕ(x)ϕ′′(x) + ϕ′(x)2)y2 2ϕ(x)ϕ′(x)y

2ϕ(x)ϕ′(x)y ϕ(x)2

]
.

Note that the largest absolute value of the eigenvalue of a symmetric matrix equals to its spectral
norm. Since trace of the Hessian, tr(∇2L(x, y)) = (ϕ(x)ϕ′′(x) + ϕ′(x)2)y2 + ϕ(x)2 = (r(x) +
xr′(x))y2 + ϕ(x)2 ≥ 0, is non-negative, the spectral norm of the Hessian ∇2L(x, y) equals to its
largest eigenvalue. Hence, we have

λmax(∇2L(x, y)) = ∥∇2L(x, y)∥2

≥
∥∥∥∥∇2L(x, y) ·

[
1
0

]∥∥∥∥
2

=
[
((ϕ(x)ϕ′′(x) + ϕ′(x)2)y2)2 + (2ϕ(x)ϕ′(x)y)2

] 1
2

≥ (ϕ(x)ϕ′′(x) + ϕ′(x)2)y2

= (r(x) + xr′(x))y2,
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which is the desired lower bound. We also note that for any matrix A, the inequality ∥A∥2 ≤ ∥A∥F
holds, where ∥A∥F is the Frobenius norm. Hence, we have

λmax(∇2L(x, y)) = ∥∇2L(x, y)∥2
≤ ∥∇2L(x, y)∥F

=
[
((ϕ(x)ϕ′′(x) + ϕ′(x)2)y2)2 + 2(2ϕ(x)ϕ′(x)y)2 + ϕ(x)4

] 1
2

=
[
(r(x) + xr′(x))2y4 + 8x2r(x)2y2 + ϕ(x)4

] 1
2

≤

[(
(r(x) + xr′(x))y2 +

4x2r(x)

r(x) + xr′(x)

)2
] 1

2

= (r(x) + xr′(x))y2 +
4x2r(x)

r(x) + xr′(x)
,

which is the desired upper bound.

Now we give the proof of Theorem C.4, restated below for the sake of readability.
Theorem C.4 (progressive sharpening). Under the same setting as in Theorem C.2, let ta denote the
obtained time step. Define the function λ̃ : R>0 → R given by

λ̃(q) :=


(
1 + r̂(q)r′(r̂(q))

q

)
2
η if q ≤ 1, and

2
η otherwise.

Then, the sequence
(
λ̃ (qt)

)∞
t=0

is monotonically increasing. For any t ≥ ta, the sharpness at GD

iterate (xt, yt) closely follows the sequence
(
λ̃ (qt)

)∞
t=0

satisfying the following:

λmax(∇2L(xt, yt)) = λ̃ (qt) +Oϕ(1).

Proof. By Theorem C.2 and since h is a bounded function by Lemma C.13, we have st = 1+Oϕ(η)
for any t ≥ ta. Note that r(pt) = (1 +Oδ,ϕ(η))qt ≥ (1 +Oδ,ϕ(η))q0 ≥ c0 ≥ r(z0) for small step
size η, where z0 = sup{ zr′(z)

r(z) ≥ − 1
2}. Consequently, it holds that 1+ 2ptr

′(pt)
r(pt)

≥ 0, and this implies

1 + ptr
′(pt)

r(pt)
≥ 1

2 . By Proposition C.14, we can bound the sharpness λt := λmax(∇2L(xt, yt)) by(
1 +

ptr
′(pt)

r(pt)

)
2r(pt)

ηqt
≤ λt ≤

(
1 +

ptr
′(pt)

r(pt)

)
2r(pt)

ηqt
+ 4p2t

(
1 +

ptr
′(pt)

r(pt)

)−1

.

By Lemma C.6, |pt| ≤ 4 for any time step t. Moreover, since 1 + ptr
′(pt)

r(pt)
≥ 1

2 holds for any t ≥ ta

with small step size η, we have 4p2t

(
1 + ptr

′(pt)
r(pt)

)−1

= Oϕ(1). Hence, for any t ≥ ta, it holds that

λt =

(
1 +

ptr
′(pt)

r(pt)

)
2r(pt)

ηqt
+Oϕ(1). (21)

For any t ≥ ta, we have st = 1+Oϕ(η) and this implies |s−1
t −1| = Oϕ(η) and |r(pt)−qt| = Oϕ(η).

For any 0 < q < 1, we have

d

dq

(
r̂(q)r′(r̂(q))

q

)
=

r̂′(q)(r′(r̂(q)) + r̂(q)r′′(r̂(q)))

q
− r̂(q)r′(r̂(q))

q2

=
1

q

(
1 +

r̂(q)r′′(r̂(q))

r′(r̂(q))

)
− r̂(q)r′(r̂(q))

q2
,

so that

lim
q→1−

(
d

dq

(
r̂(q)r′(r̂(q))

q

))
= lim

p→0+

(
1 +

pr′′(p)

r′(p)

)
= 2.
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Therefore, d
dq

(
r̂(q)r′(r̂(q))

q

)
is bounded on [ 14 , 1) and Taylor’s theorem gives∣∣∣∣ptr′(pt)r(pt)
− r̂(qt)r

′(r̂(qt))

qt

∣∣∣∣ ≤ Oϕ(|r(pt)− qt|) ≤ Oϕ(η).

for any time step t with qt < 1. Hence, if qt < 1, we have the following bound:∣∣∣∣λ̃(qt)− (1 + ptr
′(pt)

r(pt)

)
2r(pt)

ηqt

∣∣∣∣ ≤ ∣∣∣∣1− s−1
t +

r̂(qt)r
′(r̂(qt))

qt
− ptr

′(pt)

r(pt)

∣∣∣∣ 2η +Oϕ(1) = Oϕ(1),

(22)

where we used prr
′(pt)
qt

= ptr
′(pt)

r(pt)
(1 + Oϕ(η)) = ptr

′(pt)
r(pt)

+ Oϕ(η), since |ptr′(pt)| ≤ r(pt) for
any t ≥ ta. Now let t be any given time step with qt ≥ 1. Then, r(pt) = 1 − Oϕ(η), and since
r(z) = 1 + r′′(0)z2 +Oϕ(z

4) for small z, we have |pt| = Oϕ(
√
η). Hence,∣∣∣∣λ̃(qt)− (1 + ptr

′(pt)

r(pt)

)
2r(pt)

ηqt

∣∣∣∣ ≤ ∣∣∣∣1− s−1
t − ptr

′(pt)

r(pt)

∣∣∣∣ 2η +Oϕ(1) = Oϕ(1), (23)

for any t with qt ≥ 1, where we again used prr
′(pt)
qt

= ptr
′(pt)

r(pt)
(1 +Oϕ(η)) =

ptr
′(pt)

r(pt)
+Oϕ(η). By

Eqs. (21), (22), and (23), we can conclude that for any t ≥ ta, we have∣∣∣λt − λ̃(qt)
∣∣∣ ≤ Oϕ(1),

the desired bound.

Finally, we can easily check that the sequence (λ̃(qt))
∞
t=0 is monotonically increasing, since z 7→

zr′(z)
r(z) is a decreasing function by Assumption C.2 (ii) and the sequence (qt) is monotonically

increasing.
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