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Abstract

In this paper, we consider how to construct best-of-both-worlds linear bandit algo-
rithms that achieve nearly optimal performance for both stochastic and adversarial
environments. For this purpose, we show that a natural approach referred to as
exploration by optimization [Lattimore and Szepesvári, 2020b] works well. Specif-
ically, an algorithm constructed using this approach achieves O(d

√
T log T )-regret

in adversarial environments and O(d
2 log T
∆min

)-regret in stochastic environments.
Symbols d, T and ∆min here represent the dimensionality of the action set, the
time horizon, and the minimum sub-optimality gap, respectively. We also show
that this algorithm has even better theoretical guarantees for important special cases
including the multi-armed bandit problem and multitask bandits.

1 Introduction

The linear bandit problem [Abernethy et al., 2008] is a fundamental sequential decision-making
problem in which a player chooses a d-dimensional vector at from a given action set A ⊆ Rd and
incurs loss ft. The expectation of ft is assumed to be expressed as an inner product of `t and at
with an unknown loss vector `t ∈ Rd in each round t = 1, 2, . . . , T . This paper focuses on the
(expected) regret defined as RT = maxa∗∈AE[

∑T
t=1 〈`t, a− a∗〉]. It is known that the order of

achievable regret can vary greatly depending on the structure of the environment that generates losses.
For example, in stochastic environments, i.e., if the loss vector `t is fixed at `∗ for all t, there exists
an algorithm that achieves regret of O(log T ). By way of contrast, for adversarial environments in
which the loss vector changes arbitrarily, the optimal regret bound is Θ(

√
T ) [Abernethy et al., 2008,

Bubeck et al., 2012]. While this clearly suggests the importance of choosing an algorithm that is
well-suited to the environment, in real-world applications it is often quite difficult, if not virtually
impossible, to know the type of environment in advance.

One promising approach to this difficulty is to apply best-of-both-worlds (BOBW) algorithms [Bubeck
and Slivkins, 2012] that work nearly optimally both for stochastic and adversarial environments. The
first BOBW algorithm for linear bandit problems was proposed by Lee et al. [2021]; it achieves
O(
√
dT log(T ) log(T |A|))-regret in adversarial environments and O(c∗ log(T |A|) log T )-regret in

stochastic environments, where c∗ = c(A, `∗) represents an instance-dependent quantity characteriz-
ing the instance-optimal asymptotic bound for stochastic environments [Lattimore and Szepesvari,
2017]. This algorithm by Lee et al. [2021] also has the notable advantage that these regret guarantees
hold with high probability. On the other hand, their regret bound for stochastic environments includes
an extra log T factor.1 This issue of extra log T factors has been resolved in a recent study by Dann
et al. [2023b]. They have proposed algorithms achieving regret bounds with optimal dependency on
T , which are summarized here in Table 1. Their regret bounds for stochastic environments depend

1As shown in Appendix D by Lee et al. [2021], this extra log T factor is inevitable as long as we pursue
high-probability BOBW regret bounds.
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Table 1: Regret bounds for linear bandits

Reference Adversarial Stochastic

Lattimore and Szepesvari [2017] c∗ log T + o(log T )

Bubeck et al. [2012] O(
√
dT log(|A|))

Lee et al. [2021] O
(√

dT log(T ) log(T |A|)
)

O (c∗ log(T |A|) log T )

Dann et al. [2023b, Cor.7] O
(√

d2T log T
)

O
(
d2 log T
∆min

)
Dann et al. [2023b, Cor.12] O

(√
dT log(|A|)

)
O
(
d log(|A|) log T

∆min

)
[This work, Theorem 1] O

(√
αdT log T

)
O (βd log T )

Table 2: Bounds on parameters α and β

Setting Action set α β

Corollary 1 General A ⊆ Rd O (d) O (d/∆min)
Corollary 2 Multi-armed A = Ad := {e1, . . . , ed} O (1) O (1/∆min)
Corollary 3 Hypercube A = {0, 1}d O (d) O (1/∆min)
Corollary 3 Multitask A = Ad1 × · · · × Adm O (m) O (1/∆min)

on the minimum sub-optimality gap ∆min. Note that we have c∗ ≤ O(d/∆min) [Lee et al., 2021,
Lemma 16] and that this inequality can be arbitrarily loose [Lattimore and Szepesvari, 2017]. The
study by Dann et al. [2023b] involves the proposal of a general reduction technique, which has the
remarkable advantage of being applicable to a variety of sequential decision-making problems in
addition to linear bandit problems, though it does tend to complicate the structure and implementation
of the algorithms.

The main contribution of this paper is to show that BOBW algorithms can be constructed via a
(conceptually) simple approach referred to as exploration by optimization (EXO) [Lattimore and
Szepesvári, 2020b, Lattimore and Gyorgy, 2021, Foster et al., 2022]. In this approach, we update the
reference distribution qt using the exponential weight method and then compute sampling distribution
pt for action at (by modifying qt moderately) and loss estimator gt by solving an optimization
problem so that an upper bound on regret is minimized. As shown by Lattimore and Gyorgy [2021]
and Foster et al. [2022], this natural approach has a connection to both the information ratio [Russo
and Van Roy, 2014] and the decision-estimation coefficient [Foster et al., 2021], and it achieves
nearly optimal worst-case regret bounds for some online decision-making problems. These existing
studies on EXO, however, focus on adversarial environments, and not much has yet been shown
about the potential of its working for stochastic environments. In this paper, we show that the EXO
approach also works for stochastic environments to achieve O(log T )-regret.

The regret bounds with the EXO approach and in existing studies are summarized in Table 1. This
paper shows the regret bounds of O(

√
αdT log T ) in adversarial environments and of O(βd log T ) in

stochastic environments, where α is a parameter that depends on A and β is a parameter depending
on A and `∗. Bounds on α and β shown in this paper are summarized in Table 2. For general action
sets, the EXO approach reproduces the regret bound shown by Dann et al. [2023b, Corollary 7].
Further, for some special cases, such as multi-armed bandits and hypercube linear bandits, it achieves
improved regret bounds that are tight in stochastic regimes parametrized by the sub-optimality gap
∆min.

To show BOBW regret bounds, we consider here the EXO approach combined with the continuous
exponential weights method [Hoeven et al., 2018], in which we update reference distributions qt
over a convex set. In our regret analysis of the exponential weight, the ratio of the variance of the
sampling distribution pt to the variance of qt plays an important role: the larger the former, the better
the guarantee obtained. To show O(log T )-regret bounds for stochastic environments, we exploit
the fact that qt is a log-concave distribution [Lovász and Vempala, 2007]. Intuitively speaking, as
any log-concave distribution has most of its weight concentrated around its mean (see, e.g., [Lovász
and Vempala, 2007, Lemma 5.17]), we may choose sampling distribution pt so that it has a larger
variance than qt which leads to improved regret bounds.
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Our regret analysis uses the self-bounding technique [Wei and Luo, 2018, Zimmert and Seldin, 2021]
to show regret bounds for stochastic environments. One advantage of this technique is that a regret
bound also leads to stochastic environments with adversarial corruptions or corrupted stochastic
environments [Lykouris et al., 2018, Li et al., 2019]. As with existing algorithms based on the
self-bounding technique, our algorithm achieves a regret bound of O(αdT log T +

√
CαdT log T )

for corrupted stochastic environments with the corruption level C ≥ 0. More generally, these regret
bounds are achieved for environments in adversarial regimes with self-bounding constraints [Zimmert
and Seldin, 2021], details of which are provided here in Section 3.

Another contribution of this paper is to establish a connection between the EXO approach and the
SCRiBLe algorithm [Abernethy et al., 2008, 2012] (and its extensions [Dann et al., 2023b, Ito and
Takemura, 2023]). The SCRiBLe algorithm uses a follow-the-regularized-leader (FTRL) method
with self-concordant barrier regularization to select a point in the action set, rather than a probability
distribution. Abernethy et al. [2008] have shown that this approach achieves O(

√
d3T )-regret bounds

for adversarial environments. Recently, Dann et al. [2023b] and Ito and Takemura [2023] have
shown that it can also achieve O(d

3 log T
∆min

)-regret in stochastic environments, through modification of
the sampling distributions and loss estimators. To better understand the connection between these
studies and the EXO approach, we propose a variant that we refer to as mean-oriented EXO and
which includes EXO with the continuous exponential weight method as a special case. Given this
correspondence, existing SCRiBLe-type algorithms can be interpreted as EXO-based methods in
which the optimization is roughly solved with approximation ratios ≥ Ω(d).

The results of this paper establish a connection between the framework of exploration by optimization
and best-of-both-worlds regret guarantees. We would like to emphasize that there is potential to
extend this result to a broader class of sequential decision-making beyond linear bandits, such as
partial monitoring problems and episodic MDPs. In fact, the EXO framework can be applied to a
general model of sequential decision-making with structured observation [Foster et al., 2022] and
is known to have a connection to several key concepts in sequential decision-making, such as the
Decision-Estimation Coefficients [Foster et al., 2021] and information-directed sampling [Lattimore
and Gyorgy, 2021, Russo and Van Roy, 2014], which has been extensively applied to partial mon-
itoring [Lattimore and Szepesvári, 2020b] and linear partial monitoring [Kirschner et al., 2020].
Building further relationships between these generic frameworks and BOBW regret analysis will be
an important topic to work on in the future.

2 Related work

For adversarial linear bandit problems, various approaches have been considered, including algo-
rithms based on self-concordant barriers (SCRiBLe) [Abernethy et al., 2008, 2012, Rakhlin and
Sridharan, 2013], discrete exponential weights (Geometric Hedge) [Dani et al., 2008, Bubeck et al.,
2012, Cesa-Bianchi and Lugosi, 2012], and continuous exponential weights (continuous Geometric
Hedge) [Hazan and Karnin, 2016, Bubeck and Eldan, 2019], all of which can be interpreted as
methods in the FTRL framework. We can see that continuous exponential weight methods can be
interpreted as an FTRL approach with an entropic barrier, a d-self-concordant barrier [Chewi, 2021],
which implies a close relationship between the SCRiBLe algorithm and the continuous Geometric
Hedge, as Bubeck and Eldan [2019] have noted. One key difference lies in how the sampling
distribution pt is chosen; the SCRiBLe algorithm employs a sampling scheme supported on the Dikin
ellipsoid while the continuous Geometric Hedge designs pt by mixing the reference distribution qt
with some exploration basis (e.g., a G-optimal design distribution). As a result of this difference, the
latter can achieve an O(d−1/2)-times better regret bound than the former. Recent studies by Dann
et al. [2023b, Theorem 3] and Ito and Takemura [2023] have proposed new sampling schemes based
on Dikin ellipsoid sampling to achieve BOBW regret bounds. This paper takes these approaches a
step further, determining a sampling distribution itself on the basis of an optimization problem for
minimizing regret, which leads to improved performance.

The self-bounding technique [Wei and Luo, 2018, Zimmert and Seldin, 2021] is known as a promising
approach for designing and analyzing BOBW algorithms. The greatest impetus for the widespread
use of this technique is considered to come from the Tsallis-INF algorithm [Zimmert et al., 2019]
for the multi-armed bandit problem. Since the study on Tsallis-INF, FTRL methods with Tsallis-
entropy regularizer (with some modification) have been used successfully in a variety of sequential
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decision-making problems with limited (structured) observation, including combinatorial semi-
bandits [Zimmert et al., 2019], bandits with switching costs [Rouyer et al., 2021, Amir et al., 2022],
bandits with delayed feedback [Masoudian et al., 2022], online learning with feedback graphs [Erez
and Koren, 2021, Rouyer et al., 2022]. dueling bandits [Saha and Gaillard, 2022], and episodic MDPs
[Jin and Luo, 2020, Jin et al., 2021, Dann et al., 2023a]. On the other hand, a few (rather limited
number of) studies have constructed BOBW algorithms using regularizer functions other than the
Tsallis entropy. For example, Ito [2021] proposed a BOBW multi-armed bandit algorithm by using
log-barrier regularization equipped with adaptive learning rates. More recently, Shannon-entropy
regularization with some specific adjustment methods for learning rates has been shown to provide
BOBW regret guarantees for several problems including online learning with feedback graphs [Ito
et al., 2022b], partial monitoring [Tsuchiya et al., 2023], and linear bandits [Kong et al., 2023]. It
seems that these Shannon-entropy-based methods have the strength of being versatile while these have
the weakness that their regret bounds for stochastic environments include extra O(log T )-factors. The
approach in this paper may appear to be related to the previous studies using the Shannon entropy [Ito
et al., 2022b, Tsuchiya et al., 2023, Kong et al., 2023] as it employs exponential weight methods, but
it is more related to the studies using log-barrier regularization [Ito, 2021]. In fact, both log barriers
and continuous exponential weight can be captured in the category of self-concordant barriers as we
will discuss in Sections 5 and 6. These also have in common the type of regret bounds: O(log T ) in
stochastic environments and O(

√
T log T ) in adversarial environments.

3 Problem setting

In linear bandit problems, the player is given an action set A ⊆ Rd, which is a closed bounded
set of d-dimensional vectors. Without loss of generality, we assume that A spans all vectors in Rd.
In each round t, the environment chooses a loss vector `t ⊆ Rd while the player selects an action
at ∈ A without knowing `t. The player then gets feedback of ft ∈ [−1, 1] that is drawn from a
distribution Mat , where the series of distributions M = (Ma)a∈A is inM`t := {(Ma)a∈A|∀a ∈
A, Ef∼Ma

[f ] = 〈`t, a〉}. The condition that the support of Ma is included in [−1, 1] for all a ∈ A
implies that 〈`t, a〉 ∈ [−1, 1] holds for all a ∈ A and t ∈ [T ]. In other words, it is assumed that
`t ∈ L for any t, where we define L ⊆ Rd by L = {` ∈ Rd | ∀a ∈ A, | 〈`, a〉 | ≤ 1}. The
performance of the player is evaluated by means of regret defined as

RT (a∗) = E

[
T∑
t=1

〈`t, at〉 −
T∑
t=1

〈`t, a∗〉

]
, RT = sup

a∗∈A
RT (a∗). (1)

Regimes of environments In stochastic environments, `t is assumed to be round-invariant, i.e.,
there exists `∗ ∈ L such that `t = `∗ holds for all t. In adversarial environments, `t can be chosen
in an adversarial manner depending on the history so far ((`s, as))

t−1
s=1. Stochastic environments

with adversarial corruptions correspond to an intermediate setting between these two types of
environments. These environments are parametrized by the corruption level C ≥ 0, in which the loss
vectors (`t) are assumed to satisfy E

[∑T
t=1 maxa∈A | 〈`t − `∗, a〉 |

]
≤ C. To capture these settings

of environments, we define an adversarial regime with a (`∗, a∗, C, T )-self-bounding constraint
[Zimmert and Seldin, 2021] in which the environments choose losses so that

RT (a∗) ≥ E

[
T∑
t=1

〈`∗, at − a∗〉

]
− C (2)

holds for any algorithms. This regime includes (corrupted) stochastic environments. In fact, any
corrupted stochastic environments with the true loss `∗ ∈ L and the corruption level C ≥ 0 are
included in an adversarial regime with a (`∗, a∗, C, T )-self-bounding constraint. Our regret analysis
for (corrupted) stochastic environments relies only on the condition of (2), as in some existing studies
[Zimmert and Seldin, 2021, Dann et al., 2023b].

Reduction to convex action set Let X = conv(A) represent the convex hull of A. We may
consider the action set X instead of A, i.e., if we can construct an algorithm AlgX for the problem
with action set X , we can convert it to an algorithm AlgA for the problem with A. In fact, for any
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output a′t ∈ X of AlgX , we can pick at ∈ A so that E[at|a′t] = a′t,
2 When defining at as the output

of AlgA, we have E[ft|a′t] = E[〈`t, at〉 |a′t] = 〈`t, a′t〉, which means that the expectation of the
feedback ft given a′t is indeed a linear function in a′t and that the regret for AlgA coincides with that
for AlgX .

4 Exploration by optimization

4.1 Algorithm framework and regret analysis

Let P(X ) denote the set of all distributions over X . For any distribution p ∈ P(Rd), denote
µ(p) = Ex∼p[x] ∈ Rd, H(p) = Ex∼p[xx

>] ∈ Rd×d, and V (p) = H(p) − µ(p)µ(p)> ∈ Rd×d.
We consider algorithms that choose at following a sampling distribution pt ∈ P(X ) in each round
t. To determine pt, we compute an (approximately) unbiased estimator gt(x; at, ft) of the loss
function 〈`t, x〉. Let G be the set of all estimators g that are linear in the first variable, i.e., G = {g :
X × X × [−1, 1] → R | ∃h : X × [−1, 1] → Rd, g(x; a, f) = 〈h(a, f), x〉}. For any distribution
p ∈ P(X ), let Gu(p) ⊆ G represent the set of all unbiased estimators:

Gu(p) =

{
g ∈ G | ∀` ∈ L,∀x ∈ X ,∀M ∈M`, E

a∼p,f∼Ma

[g(x; a, f)] = 〈`, x〉
}
. (3)

A typical choice of g given p is the estimator defined as follows:

g(x; a, f) = 〈h(a, f), x〉 , where h(a, f) = f · (H(p))−1a, (4)

where H(p) is assumed to be non-singular. This is an unbiased estimator, i.e., g defined by (4) is
an element of Gu. In fact, if M ∈ M`, we have Ea∼p,f∼Ma

[h(a, f)] = Ea∼p[(H(p))−1aa>`] =
(H(p))−1H(p)` = `.

Using {gs}ts=1, we set a reference distribution qt over X by the continuous exponential weights
method as follows: qt(x) ∝ q0(x) exp(−ηt

∑t−1
s=1 gs(x; as, fs)), where q0 is an arbitrary initial

distribution over X and ηt is a learning rate such that η1 ≥ η2 ≥ · · · ≥ ηT > 0. We may
choose ηt depending on the historical actions and observations so far ((as, fs))

t−1
s=1. Let DKL(q′, q)

represent the Kulllback-Leibler divergence of q′ from q. Note that the exponential weights method
can be interpreted as a follow-the-regularized-leader approach over P with the regularizer function
q 7→ DKL(q, a0), i.e., the distribution qt is a solution to the following optimization problem:

qt ∈ arg min
q∈P(X )

{
E
x∼q

[
t−1∑
s=1

gs(x; as, fs)

]
+

1

ηt
DKL(q, q0)

}
. (5)

We may determine the sampling distribution pt on the basis of qt in an arbitrary way. The regret is
then bounded as follows:
Lemma 1. For any distribution p∗ ∈ P(X ) such that DKL(p∗, q0) <∞, the expected value of the
regret RT (a∗) for a∗ ∼ p∗ is bounded by

E

[
T∑
t=1

(
〈`t, µ(pt)− µ(qt)〉+ bias(gt, pt, qt, `t) +

1

ηt
stab(ηtgt(·; at, ft), qt)

)
+
DKL(p∗, q0)

ηT+1

]
,

where bias(g, p, q, `) = sup
a∗∈X ,M∈M`

{
E

a∼p,x∼q,f∼Ma

[〈`, x− a∗〉 − g(a∗; a, f) + g(x; a, f)]

}
,

stab(g, q) = sup
q′∈P(X )

{
E
x∼q

[g(x)]− E
x∼q′

[g(x)]−DKL(q′, q)

}
. (6)

This follows from the standard analysis for exponential update methods or FTRL (see, e.g., [Lattimore
and Szepesvári, 2020a, Exercise 28.12]), and all omitted proofs can be found in the appendix. For the
case of the exponential weights, the stability term stab(g, q) can be bounded as

stab(g, q) ≤ inf
ḡ∈R

E
x∼q

[φ(g(x)− ḡ)] , where φ(y) = exp(−y) + y − 1. (7)

2Such a distribution of at given a′
t can be computed efficiently e.g., by the algorithm given in [Schrijver,

1998, Corollary 14.1g] or [Mirrokni et al., 2017].

5



The bias term bias(g, p, q, `) corresponds to the bias of the estimater g(·; a, f) for the fucntion 〈`, ·〉,
under the condition that a ∼ p, and E[f |a] = 〈a, `〉. We can easily see that g ∈ Gu(p) implies
bias(g, p, q, `) = 0 for all q ∈ P(X ) and ` ∈ L.

For any reference distribution q ∈ P(X ) and learning rate η > 0, we define Λq,η(p, g) by

Λq,η(p, g) = sup
`∈L,M∈M`

{
〈`, µ(p)− µ(q)〉+ bias(g, p, q, `) +

1

η
E

a∼p,f∼Ma

[stab(ηg(·; a, f), q)]

}
.

From Lemma 1, the regret is bounded as

E
a∗∼p∗

[RT (a∗)] ≤ E

[
T∑
t=1

Λqt,ηt(pt, gt) +
1

ηT+1
DKL(p∗, q0)

]
. (8)

In the exploration-by-optimization (EXO) approach [Lattimore and Szepesvári, 2020b, Lattimore and
Gyorgy, 2021], we choose gt and pt so that the value of Λqt,ηt(gt, pt) is as small as possible, i.e., we
consider the following optimization problem:

Minimize Λqt,ηt(p, g) subject to p ∈ P(X ), g ∈ G. (9)

We denote the optimal value of this problem by Λ∗qt,ηt .

Remark 1. In most linear bandit algorithms based on exponential weights [Dani et al., 2008, Bubeck
et al., 2012, Cesa-Bianchi and Lugosi, 2012, Hazan and Karnin, 2016, Besbes et al., 2019], pt is
defined as qt mixed with a small component of exploration basis π0 and gt is given by (4) with p = pt.
The exploration basis π0 here is a distribution over X such that G(π0) := supa∈X a

>H(π0)a is
bounded. It is known that any action set X ⊆ Rd admits an exploration basis π0 such that G(π0) ≤ d,
which is called the G-optimal design or the John’s ellipsoid exploration basis. Given such a π0, we set
pt = (1−γt)qt+γtπ0 with some γt ∈ (0, 1). Under the condition of ηt = Ω(1/d) and γt = Θ(dηt),
we have Λqt,ηt(pt, gt) = O(γt + ηtd) = O(ηtd), which implies that Λ∗q,ηt = O(ηtd) holds for any
q ∈ P(X ). Hence, from (8), if DKL(p∗, q0) ≤ B, by setting ηt = η = Θ(

√
B/(dT )), we obtain

Ea∗∼p∗ [RT (a∗)] = O(
√
BdT ).

4.2 Sufficient condition for best-of-both-worlds regret guarantee

In this section, we show that a certain type of upper bounds on Λ∗q,η that depend on reference
distribution q will lead to best-of-both-worlds regret bounds. In the following, we set the initial
disturibution q0 to be a uniform distribution over X . Denote ∆`∗(x) = 〈`∗, x− a∗〉 for any `∗ ∈ L.
The following lemma provides a sufficient condition for best-of-both-worlds regret guarantees:

Theorem 1. Suppose that there exist α > 0, β > 0 and η0 > 0 such that

Λ∗qt,η ≤ η ·min{α, β ·∆`∗(µ(qt))} (10)

for all t and η ≤ η0. Then, an algorithm based on the EXO approach achieves the following regret
bounds simultaneously: (i) In adversarial environments, we have RT = O

(√
αdT log T + d log T

η0

)
.

(ii) In environments satisfying (2), we have RT = O
((
β + 1

η0

)
d log T +

√
Cβd log T

)
.

In the proof of this theorem, we consider the algorithm that chooses (pt, gt) to be an optimal solution

to (9) and that sets learning rates ηt by ηt = min

{
η0,
√

d log T

α+
∑t−1
s=1 η

−1
s Λ∗qs,ηs

}
. A complete proof is

given in the appendix.

Remark 2. In the implementation of the algorithm, we do not necessarily need to solve the opti-
mization problem (9) exactly. In fact, to achieve the regret upper bounds in Theorem 1, it is sufficient
to compute pt, gt, and zt > 0 that satisfy η−1

t Λqt,ηt(pt, gt) ≤ zt ≤ min{α, β · ∆`∗(µ(qt))}
for some α > 0 and β > 0, under the assumption of ηt ≤ η0. In this case, setting ηt =

min{η0,
√
d log T/

√
α+

∑t−1
s=1 zs} will work.
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4.3 Regret bounds for concrete examples

In this section, we will see how we can bound Λ∗qt,ηt . For q ∈ P(X ), define ω(q), ω′(q) ≥ 0 by

ω(q) = min
p∈P(X ):µ(p)=µ(q)

{H(p)−1 • V (q)}, (11)

ω′(q) = min
p∈P(X ):µ(p)=µ(q)

min{y > 0 | d · V (q) � y ·H(p)}. (12)

Note that ω(q) ≤ ω′(q) holds. In fact, from the definition of ω′(q), there exists p ∈ P(X ) satisfying
µ(p) = µ(q) and d · V (q) � ω′(q) · H(p). For such a distribution p, we have H(p)−1 • V (q) =
tr(H(p)−1/2V (q)H(p)−1/2) ≤ tr(d−1 · ω′(q) · I) = ω′(q), which implies that ω(q) ≤ ω′(q).

Using these, we can construct a bound Λ∗q,η as the following lemma provides:

Lemma 2. Suppose that q is a log-concave distribution. If η ≤ 1/d, we then have Λ∗q,η = O(ηω(q)).
If η ≤ 1, we then have Λ∗q,η = O(ηω′(q)).

Bounds on Λ∗q,η in this lemma can be achieved by p = γp̃+ (1− γ)π0 and g defined by (4), where p̃
is the minimizer on the right-hand side of (11) or (12), π0 is a G-optimal design for X , and some
mixing weight parameter γ ∈ (0, 1). The proof of this lemma is given in the appendix.

General action set We can provide an upper bound on ω(q) by exploiting the property of log-
concave distributions. A distribution q ∈ P(X ) is called a log-concave distribution if it has a
distribution function that is proportional to exp(−h(x)) for some convex function h. Note that the
reference distribution qt is a log-concave function.
Lemma 3. Suppose that q is a log-concave distribution. Let `∗ ∈ L be an arbitrary loss vector such
that a∗ ∈ arg mina∈A 〈`∗, a〉 is unique. Denote ∆`∗,min = mina∈A\{a∗}∆`∗(a). We then have
ω′(q) = O (d ·min {1,∆`∗(µ(q))/∆`∗,min}).

We here provide a proof sketch for this lemma. We consider a distribution p ∈ P(A) of a ∈ A
generated by the following procedure: (i) Pick x ∈ X following q. (ii) Let ξ be an arbitrary distribution
over A such that µ(ξ) = x. In other words, compute ξ : A → R≥0 such that

∑
a′∈A ξ(a

′) = 1 and∑
a′∈A ξ(a

′)a′ = x. (iii) Pick a ∈ A following ξ. It is then clear that µ(p) = µ(q) holds. Further,
it follows from the assumption that q is a log-concave distribution that (1 − p(a∗))u>V (p)u =
Ω(u>V (q)u) holds for any a∗ ∈ A and any u ∈ Rd \ {0}, which implies d · V (q) � O((1 −
p(a∗))d) ·V (p) � O((1−p(a∗))d)H(p). Finally, since we have (1−p(a∗)) ≤ ∆`∗(µ(p))/∆`∗,min,
the bound on ω′(q) in Lemma 3 follows. A full proof can be found in the appendix.

From Lemmas 2 and 3, we obtain the following bounds on α and β:
Corollary 1. For arbitrary action set A, the condition (10) in Theorem 1 holds with α = O(d), β =
O(d/∆`∗,min), and η0 = O(1).

Hence, there exists an algorithm that achieves RT = O(d
√
T log T ) in adversarial environments and

RT = O( d2

∆`∗,min
log T +

√
Cd2

∆`∗,min
log T ) in stochastically constrained adversarial environments.

Multi-armed bandits Suppose a problem setting in which the action set is the canonical bases:
A = Ad := {e1, e2, . . . , ed} = {a ∈ {0, 1}d | ‖a‖1 = 1}. For this action set, we have the following
bound on ω(q):
Lemma 4. If A = Ad, for any log-concave distribution q, ω(q) defined in (11) is bounded as

ω(q) ≤ O
(∑d

i=1 µi(q)(1− µi(q))
)
≤ O (min1≤i≤d{1− µi(q)}).

Let `∗ ∈ L be an a loss vector such that ei∗ ∈ arg min1≤i≤d `
∗
i is unique. We then have

∆`∗(µ) =
∑
i 6=i∗ ∆`∗(ei)µi ≥ ∆`∗,min(1 − µi∗), which, combined with Lemma 4, implies

ω(q) ≤ ∆`∗(µ(q))/∆`∗,min. From this and Lemma 2, we have the following bounds on α and
β:
Corollary 2. For the multi-armed bandit problem A = Ad, the condition (10) in Theorem 1 holds
with α = O(1), β = O(1/∆`∗,min) and η0 = O(1/d).
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Product-space action sets Suppose that A ⊆ Rd is expressed as a product space of m sets,
i.e., A = A(1) × A(2) × · · · × A(m), where A(j) ⊆ Rdj for each j and

∑m
j=1 dj = d. Denote

X (j) = conv(A(j)). This setting is referred to as the multi-task bandit problem [Cesa-Bianchi and
Lugosi, 2012], in which the player chooses a(j)

t ∈ A(j) for each j in parallel, and then gets only
a single feedback corresponding to the sum of the losses for all m actions. For such an action set,
probability distribution qt given by continuous exponential weights can be expressed as a product
measure of m log-concave measures q(j)

t ∈ P(X (j)). In fact, if a probability density function is
expressed as q(x) = c exp(〈ηL, x〉) for some c > 0 η > 0, and L = (L(1), . . . , L(m)) ∈ Rd,
it can be decomposed as q(x) = c exp(

∑m
j=1

〈
ηL(j), x(j)

〉
) =

∏m
j c

(j) exp(
〈
ηL(j), x(j)

〉
) =∏m

j q
(j)(x(j)), where x(j) ∈ X (j) and c(j) =

∫
x∈X (j) exp(

〈
ηL(j), x(j)

〉
)dx. This fact leads to the

following bounds on ω(q) and Λ∗q,η:

Lemma 5. If A = A(1) × · · · × A(m) and q ∈ P(X ) can be expressed as a product measure of
q(j) ∈ P(X (j)) for j = 1, . . . ,m, we have ω(q) ≤

∑m
j=1 ω(q(j)).

Corollary 3. If A = Ad1 × · · · × Adm , the condition (10) in Theorem 1 holds with α = O(m),
β = O(1/∆`∗,min), and η0 = O(1/d). If A = {0, 1}d, the condition (10) in Theorem 1 holds with
α = O(d), β = O(1/∆`∗,min), and η0 = O(1/d).

4.4 Computational complexity

At this time, it is not known if there is an efficient algorithm to solve the optimization problems (9).
However, it is worth noting that the optimization problem corresponding to the right-hand side of
(11) is a convex optimization problem. Further, as the minimum can be achieved by p ∈ P(A), we
can reduce the problem into a convex optimization problem over |A|-dimensional space, which can
be solved efficiently if |A| is not very large.

Note that it is not always necessary to solve the optimization problem (9) exactly, as mentioned in
Remark 2. For example, we can implement an algorithm achieving regret bounds of Corollary 1
given a separation oracle (or equivalently, a linear optimization oracle) for cA, without solving (9)
exactly. Indeed, to achieve the regret bounds of Corollary 1, it suffices to find p and g such that
Λqt,ηt(p, g) is bounded by the RHS of (10). The construction of such p and g is provided in the
proof of Lemmas 2 and 3, which can be performed using a separation oracle for A. In fact, we can
obtain samples from p by using the techniques for log-concave sampling (e.g., [Lovász and Vempala,
2007]) and for computing convex combination expression (cf. Carathéodory’s theorem for convex
hull and [Schrijver, 1998, Corollary 14.1g]). However, the analysis of log-concave sampling and
calculations of H(p) (which is required for constructing g) including consideration of calculation
errors can be highly complicated, and the computational cost can be very large, although on the order
of polynomials (e.g., [Hazan and Karnin, 2016, Corollary 6.2]).

5 Mean-oriented FTRL and SCRiBLe

For linear bandit problems, we have an alternative approach that we referred to as mean-oriented
FTRL, in which we compute a reference mean wt given as follows:

wt ∈ arg min
w∈X

{〈
t−1∑
s=1

hs(as, fs), w

〉
+

1

ηt
ψ(w)

}
, (13)

where hs(as, fs) is an estimator of `s and ψ is a convex regularization function over X such that
minx∈X ψ(x) = 0. Let Dψ(x′, x) denote the Bregman divergence associated with ψ: Dψ(x′, x) =
ψ(x′)− ψ(x)− 〈∇ψ(x), x′ − x〉. This approach ensures the following regret bound:
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Lemma 6. For any point x∗ ∈ X , we have

RT (x∗) ≤ E

[
T∑
t=1

(
〈`t, µ(pt)− wt〉+ bias(ht, pt, wt, `t) +

stabψ(ηtht(at, ft), wt)

ηt

)
+
ψ(x∗)

ηT+1

]
,

where bias(h, p, w, `) = sup
a∗∈X ,M∈M`

{
E

a∼p,f∼Ma

[〈`− h(a, f), w − a∗〉]
}
,

stabψ(ˆ̀, w) = sup
w′∈X

{〈
ˆ̀, w − w′

〉
−Dψ(w′, w)

}
. (14)

One example of linear bandit algorithms based on mean-oriented FTRL is the SCRiBLe algorithm
[Abernethy et al., 2008, 2012], which employs self-concordant barriers as regularizer functions.

We can also consider an EXO approach for mean-oriented FTRL. For any reference point w ∈ X and
learning rate η > 0, define

Λw,η(p, h) = sup
`∈L,M∈M`

{
〈`, µ(p)− w〉+ bias(h, p, w, `) +

1

η
E

a∼p,f∼Ma

[stabψ(ηh(a, f), q)]

}
and Λ∗w,η = infp∈P(X ),ˆ̀:X×R→Rd Λw,η(p, ˆ̀).

This achieves the following BOBW regret bounds, under assumptions on Λ∗w,η:

Lemma 7. Suppose that ψ is a ν-self-concordant barrier. Suppose that there exist α > 0, β > 0 and
η0 > 0 such that

Λ∗wt,η ≤ η ·min{α, β ·∆`∗(wt)} (15)

for all t and η ≤ η0. Then an algorithm based on the EXO approach achieves the following regret
bounds simultaneously: (i) In adversarial environments, we haveRT = O

(√
ανT log T + ν log T

η0

)
.

(ii) In environments satisfying (2), we have RT (a∗) = O
((
β + 1

η0

)
ν log T +

√
Cβν log T

)
.

5.1 Connection to the SCRiBLe algorithm and variants of it

Abernethy et al. [2008, 2012] have proposed a sampling scheme wt 7→ pt supported on the Dikin
ellipsoid, which leads to Λwt,ηt(pt, ht) = O(ηtd

2) with an appropriately defined unbiased estimator
ht. This algorithm referred to as SCRiBLe hence achieves RT = O(

√
d2νT log T ), the adversarial

regret bound in Lemma 7 with α = O(d2). Recent studies by Dann et al. [2023b, Theorem 3]
and Ito and Takemura [2023] have shown that a modified sampling scheme based on the Dikin
ellipsoid sampling achieves Λwt,ηt(pt, ht) = O

(
ηtd

2 ·min{1,∆`∗(wt)/∆`∗,min}
)
. Consequently,

these modified algorithms achieve BOBW regret bounds in Lemma 7 with α = O(d2) and β =
O(d2/∆`∗,min). These results suggest that the following lemma holds:

Lemma 8 ([Dann et al., 2023b, Ito and Takemura, 2023]). If ψ is a self-concordant barrier, (15)
holds with α = O(d2), β = O(d2/∆`∗,min) and η0 = O(1/d).

5.2 Connection to EXO with continuous exponential weights

The entropic barrier is a ν-self-concordant barrier with ν ≤ d [Chewi, 2021], for which a definition
and properties are given, e.g., in [Bubeck and Eldan, 2019]. We can see that mean-oriented EXO with
entropic-barrier regularization coincides with the EXO approach with exponential weights. In fact, if
we compute wt using (13) with ψ the entropic barrier, from the definition of the entropic barrier, wt
is equal to the mean of the distribution qt given by the continuous exponential weights. Given this
correspondence, we can see that bounds on Λ∗wt,η follow immediately from Corollary 1:

Lemma 9. If ψ is the entropic barrier for X , (15) holds with α = O(d), β = O(d/∆`∗,min) and
η0 = O(1).

It is worth noting that these bounds are O(1/d)-times better than the results for Lemma 8 that follow
from previous studies.
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6 Limitations and future work

A limitation of this work is that the regret bounds for (corrupted) stochastic environments require
the assumption that the optimal arm a∗ ∈ arg mina∈A 〈`∗, a〉 is unique. While this assumption
is common in analyses of best-of-both-worlds algorithms based on the self-bounding technique
[Zimmert and Seldin, 2021, Dann et al., 2023b], a limited number of studies on the multi-armed
bandit problem [Ito, 2021, Jin et al., 2023] have removed this uniqueness assumption by careful
analyses of regret bounds for follow-the-regularized-leader methods. As these analyses rely on
structures specific to the multi-armed bandit problems, extending them to other problem settings does
not seem trivial. Extending this analysis technique to linear bandits and removing the uniqueness
assumptions will be an important future challenge.

Another future direction is to work toward a tighter regret bound of O(c∗ log T ) in stochastic
environments while satisfying BOBW regret guarantee, where c∗ is an instance-dependent quantity
that characterizes the optimal asymptotic bound (see, e.g., [Lattimore and Szepesvari, 2017, Corollary
2]). As c∗ ≤ O(d/∆min) [Lee et al., 2021, Lemma 16.] and the gap between these two quantities
can be arbitrarily large [Lattimore and Szepesvari, 2017, Example 4], our bounds depending on
1/∆min can be far from tight. In the multi-armed bandit problem, a special case of linear bandits,
the quantity c∗ can be expressed as c∗ =

∑
a∈A:∆`∗ (a)>0

2
∆`∗ (a) , and known FTRL-type BOBW

algorithms with O(c∗ log T )-regret bounds employs the Tsallis entropy with Θ(1/
√
t)-learning

rates: ψt(w) = −
√
t
∑d
i=1

√
wi [Zimmert and Seldin, 2021] or logarithmic barriers with entry-wise

adaptive learning rates: ψt(w) = −
∑d
i=1

1
ηti

logwi [Ito, 2021, Ito et al., 2022a]. The latter would be
more closely related to our results in this paper as logarithmic barriers are examples of self-concordant
barriers. A major difference between the approach in this paper and the one by Ito [2021] is that
the former only considers regularizer functions expressed as a scalar multiple of a fixed function,
while the latter even changes the shape of regularizer functions for each round. Such a more flexible
adaptive regularization may be necessary for pursuing tighter regret bounds. Another promising
approach is to extend the Tsallis-entropy approach to linear bandits while the connection between
the Tsallis-INF [Zimmert and Seldin, 2021] and this paper may be somewhat tenuous as the Tsallis
entropy is not a self-concordant barrier.
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A Notes on notation and assumption

For any two real vectors x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd, 〈x, y〉 denotes the the
inner product of x and y, i.e., 〈x, y〉 =

∑d
i=1 xiyi. For any real vector x = (x1, . . . , xd) ∈ Rd, let

‖x‖1 denote the L1-norm of x, i.e., ‖x‖1 =
∑d
i=1 |xi|. For any real symmetric matrix X , let tr(X)

denote the trace of X . For any two real symmetric matrices X and Y , we denote X � Y (or Y � X)
if and only if Y −X is a positive semi-definite matrix. For any two real symmetric matrices X and
Y , X • Y denotes the Frobenius inner product of X and Y , i.e., X • Y = tr(AB).

Without loss of generality, we may assume thatA spans all vectors in Rd. Indeed, if not, we can make
A make full-dimensional by ignoring redundant dimensions. Under this assumption, distributions q
given by exponential weight methods have non-singular variance-covariance matrices V (q) (and thus
also H(q)). This fact is used in some places in this paper without notice.

B Omitted proofs

B.1 Lemmas on log-concave distributions

Lemma 10 (Theorem 5.2 in [Lovász and Vempala, 2007]). If X ∈ Rn is a random variable
following a log-concave distribution, for any constant matrix M ∈ Rm×n, MX follows a log-
concave distribution as well.

Lemma 11 (Lemmas 5.4 and 5.5 (a) in [Lovász and Vempala, 2007]). If p is a one-dimensional
log-concave distribution, we have

Pr
X∼α

[X ≤ µ(p)] ≥ 1

e
. (16)

Further, if V (p) = 1, we have

Pr
X∼p

[a ≤ X ≤ b] ≤ |b− a| (17)

for any a, b ∈ R.

Lemma 12. For any one dimensional log-concave distribution p over a one-dimensional segment
[L,R] ⊆ R, we have

V (p) ≤ e2 min
{

(µ(p)− L)2, (R− µ(p))2
}
. (18)

Proof. From Lemma 11, we have

1

e
≤ Pr
X∼p

[X ≤ µ(p)] = Pr
X∼p

[
L√
V (p)

≤ X√
V (p)

≤ µ(p)√
V (p)

]
≤ µ(p)− L√

V (p)
, (19)

where the first and the second inequalities follow from (16) and (17), respectively. We hence have
V (p) ≤ e2(µ(p)−L)2. By considering −X instead of X , we can show V (p) ≤ e2(R− µ(p))2 in a
similar way.

Lemma 13. Suppose φ is defined as in (7). If y follows a log-concave distribution over R and if
s =

√
E[y2] ≤

√
1/2, we have

E[φ(y)] ≤ s2 +
exp(3− s−1)

1− exp(1− s−1)
= O

(
s2
)
. (20)

Proof. See, e.g., the proof of [Ito et al., 2020, Lemma 5].
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B.2 Proof of Lemma 1

Proof. From the definition of the regret, we have

E
a∗∼p∗

[RT (a∗)] = E
a∗∼p∗

[
T∑
t=1

E
a∼pt

[〈`t, a− a∗〉]

]

= E
a∗∼p∗

[
T∑
t=1

(
E
x∼qt

[〈`t, x− a∗〉] + 〈`t, µ(qt)− µ(pt)〉
)]

. (21)

From the definition of bias given in (6), the part of Ex∼qt [〈`t, x− a∗〉] can be bounded as follows:

E
x∼qt

[〈`t, x− a∗〉]

= E
at,ft

[
E
x∼qt

[〈`t, x− a∗〉 − gt(a∗; at, ft) + gt(x; at, ft)] + E
x∼qt

[gt(x; at, ft)− gt(a∗; at, ft)]
]

≤ bias(gt, pt, qt, `t) + E
at,ft

[
E
x∼qt

[gt(x; at, ft)− gt(a∗; at, ft)]
]
. (22)

From this and (21), we have

E
a∗∼p∗

[RT (a∗)] ≤ E

[
T∑
t=1

(〈`t, µ(qt)− µ(pt)〉+ bias(gt, pt, qt, `t))

]

+ E
a∗∼p∗

[
E

[
T∑
t=1

E
x∼qt

[gt(x; at, ft)− gt(a∗; at, ft)]

]]
. (23)

By a standard analysis of the exponential weight method, we have

E
a∗∼p∗

[
T∑
t=1

E
x∼qt

[gt(x; at, ft)− gt(a∗; at, ft)]

]
≤

T∑
t=1

1

ηt
stab(ηtgt(·; at, ft), qt) +

1

ηT+1
DKL(p∗, q0).

(24)

To show (24), we denoteGt(p) = Ea∼p[gt(a; at, ft)] in the following for notational simplicity. From
(5), we have

E
a∗∼p∗

[
T∑
t=1

gt(a
∗; at, ft)

]
+

1

ηT+1
DKL(p∗, q0)

=

T∑
t=1

Gt(p
∗) +

1

ηT+1
DKL(p∗, q0)

≥
T∑
t=1

Gt(qT+1) +
1

ηT+1
DKL(qT+1, q0)

≥
T−1∑
t=1

Gt(qT+1) +
1

ηT
DKL(qT+1, q0) +GT (qT+1)

=

T−1∑
t=1

Gt(qT ) +
1

ηT
DKL(qT , q0) +

1

ηT
DKL(qT+1, qT ) +GT (qT+1)

≥ · · · ≥
T∑
t=1

(
1

ηt
DKL(qt+1, qt) +Gt(qt+1)

)
, (25)

where the first inequality follows from (5) and the second inequality follows from ηT+1 ≤ ηT and
the fact that the values of the KL divergence are nonnegative. The second equality follows from
the definition of qT (x); As qT (x) can be expressed as qT (x) = κT exp(−ηT g̃T (x))q0(x) for some
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κT > 0, where we denote g̃T (x) =
∑T−1
s=1 gs(x; as, fs), we have

T−1∑
t=1

Gt(qT ) +
1

ηT
DKL(qT , q0) = E

a∼qT

[
g̃T (a) +

1

ηT
ln
qT (a)

q0(a)

]
= E
a∼qT

[
g̃T (a) +

1

ηT
(lnκT − ηT g̃T (x))

]
=

lnκT
ηT

(26)

and
T−1∑
t=1

Gt(qT+1) +
1

ηT
DKL(qT+1, q0) = E

a∼qT+1

[
g̃T (a) +

1

ηT
ln
qT+1(a)

q0(a)

]
= E
a∼qT+1

[
g̃T (a) +

1

ηT
ln
qT+1(a)

qT (a)
+

1

ηT
ln
qT (a)

q0(a)

]
= E
a∼qT+1

[
g̃T (a) +

1

ηT
ln
qT+1(a)

qT (a)
+

1

ηT
(lnκT − ηT g̃T (x))

]
=

lnκT
ηT

+
1

ηT
E

a∼qT+1

[
ln
qT+1(a)

qT (a)

]
=

lnκT
ηT

+DKL(qT+1, qT ). (27)

These equalities together imply that the second equality in (25). The last inequality of (25) can be
obtained by applying similar transformations repeatedly. From (25), we have

[LHS of (24)] =

T∑
t=1

(Gt(qt)−Gt(p∗))

≤
T∑
t=1

(
Gt(qt)−Gt(qt+1)− 1

ηt
DKL(qt+1, qt)

)
+

1

ηT+1
DKL(p∗, q0)

≤
T∑
t=1

1

ηt
stab(ηtgt(·; at, ft), qt) +

1

ηT+1
DKL(p∗, q0), (28)

which implies that (24) holds. By combining (23) and (24), we obtain the bound of (6).

B.3 Proof of Theorem 1

Proof. For any a∗ ∈ X , let p∗ be the uniform distribution over {(1 − 1
T )a∗ + 1

T x | x ∈
X}. We then have RT (a∗) ≤ Ea∼p∗ [RT (a)] + 1 and DKL(p∗, q1) ≤ d log T . Define ηt by

ηt = min

{
η0,
√
d log T/

√
α+

∑t−1
s=1 η

−1
s Λ∗qs,ηs

}
. Suppose that pt and gt are chosen so that

Λqt,ηt(pt, gt) = Λ∗qt,ηt . As we have ηt ≤ η0, from the assumption, we have η−1
t Λqt,ηt ≤ α. Hence,

from (8), we have

RT ≤ E

[
T∑
t=1

Λ∗qt,ηt +
d log T

ηT+1

]
+ 1 ≤ E

 T∑
t=1

√
d log Tη−1

t Λ∗qt,ηt√
α+

∑t−1
s=1 η

−1
s Λ∗qs,ηs

+
d log T

ηT+1

+ 1

≤ 3E


√√√√d log T

(
α+

T∑
t=1

η−1
t Λ∗qt,ηt

)+
d log T

η0
+ 1

≤ 3E


√√√√d log T

(
α+ min

{
αT, β

T∑
t=1

∆`∗(µ(qt))

})+
d log T

η0
+ 1 =: R′T , (29)

which implies the regret bound of RT = O
(√

αdT log T + d log T
η0

)
that holds in adversarial en-

vironments. We next show the improved regret bounds for stochastically constrained adversarial
environments. From the definition of Λ, we have

Λ∗qt,ηt = Λqt,ηt(pt, gt) ≥ sup
`∈L
{〈`, µ(pt)− µ(qt)〉} ≥ 〈`∗, µ(qt)− µ(pt)〉 , (30)

15



where the last inequality holds since −`∗ ∈ L for any `∗ ∈ L, which follows from the definition of L.
We then, hence, have

R′′T := E

[
T∑
t=1

∆`∗(µ(qt))

]
= E

[
T∑
t=1

(∆`∗(µ(pt)) + 〈`∗, µ(qt)− µ(pt)〉)

]

≤ E

[
T∑
t=1

∆`∗(µ(pt))

]
+ E

[
T∑
t=1

Λ∗qt,ηt

]
≤ RT + C +R′T ≤ 2R′T + C. (31)

From this, we have

R′T ≤ 3E

[√
d log T (α+ βR′′T )

]
+
d log T

η0
+ 1 ≤ 3E

[√
d log T (α+ β(2R′T + C))

]
+
d log T

η0
+ 1

which implies that RT = O
((
β + 1

η0

)
d log T +

√
Cβd log T

)
holds.

B.4 Proof of Lemma 2

Proof. We first see that Λ∗q,η = O(1) holds for any q ∈ P(X ) and η > 0. In fact, by setting
p = q and letting g ∈ G to be the zero function (g(x; a, f) = 0 for all x, a and f ), we obtain
Λq,η(p, g) = sup`∈L bias(g, p, q, `) = sup`∈L,x∈X ,a∗∈X 〈`, x− a∗〉 ≤ 2.

Let us consider the case in which η ≤ 1/d holds. As Λ∗q,η = O(1) for any η and q, we have
Λ∗q,η = O(ηω(q)) if ηω(q) = Ω(1). In the following, we assume ηω(q) ≤ 1/8. Let p̃ ∈ P(X ) be a
distribution such that µ(p̃) = µ(q) and w(q) = H(p̃)−1 • V (q). Let π0 ∈ P(X ) be a distribution
such that

a>H(π0)−1a ≤ d (32)

holds for any a ∈ A. Note that such a distribution always exists (see, e.g., [Lattimore and Szepesvári,
2020a, Theorem 21.1]). Define p by

p = (1− γ)p̃+ γπ0 (33)

with γ = 4ηω(q) ≤ 1/2. With this p, we define g by (4). Then, as we have bias(g, p, q, `) = 0, we
have

Λq,η(p, g) ≤ sup
`∈A
{〈`, µ(p)− µ(q)〉}+

1

η
sup

f∈[−1,1]

E
a∼p

[stab(ηg(·; a, f), q)]. (34)

As the definition of p implies µ(p) = (1− γ)µ(p̃) + γµ(π0) = (1− γ)µ(q) + γµ(π0), it holds for
any ` ∈ L that

〈`, µ(p)− µ(q)〉 = 〈`, (1− γ)µ(q) + γµ(π0)− µ(q)〉 = γ 〈`, γµ(π0)− µ(q)〉 ≤ 2γ. (35)

Further, from (7) and (4), we have

stab(ηg(·; a, f), q) ≤ E
x∼q

[φ(ηg(x; a, f)− ηg(µ(q); a, f))]

= E
x∼q

[
φ
(
ηf ·

〈
(H(p))−1a, x− µ(q)

〉)]
(36)

for any fixed a ∈ A and f ∈ [−1, 1]. Let r represent the distribution of f ·
〈
(H(p))−1a, x− µ(q)

〉
for x ∼ q with any fixed a ∈ A and f ∈ [−1, 1]. Then, as q is a log-concave distribution, from
Lemma 10, r is a log-concave distribution as well. Further, we have

H(r) = E
y∼r

[y2] = f2 E
x∼q

[(〈
(H(p))−1a, x− µ(q)

〉)2]
= f2a>(H(p))−1 E

x∼q

[
(x− µ(q))(x− µ(q))>

]
(H(p))−1a

= f2a>(H(p))−1V (q)(H(p))−1a ≤ a>(H(p))−1V (q)(H(p))−1a. (37)

Since we have

tr(H(p)−1/2V (q)H(p)−1/2) = V (q) •H(p)−1 = V (q) • ((1− γ)H(p̃) + γH(π0))−1

≤ V (q) • ((1− γ)H(p̃))−1 =
1

1− γ
ω(q), (38)

16



we have

H(p)−1/2V (q)H(p)−1/2 � ω(q)

1− γ
Id (39)

where Id represents the identity matrix of size d. Hence, we have

H(r) ≤ a>(H(p))−1/2

(
ω(q)

1− γ
Id

)
(H(p))−1/2a ≤ ω(q)

1− γ
a>(H(p))−1a

=
ω(q)

1− γ
a>((1− γ)H(p̃) + γH(π0))−1a ≤ ω(q)

1− γ
a>(γH(π0))−1a

=
ω(q)

(1− γ)γ
a>H(π0)−1a ≤ ω(q)d

(1− γ)γ
≤ 2

ω(q)d

γ
=

d

2η
. (40)

This implies that η2H(r) ≤ dη/2 ≤ 1/2. Hence, from Lemma 13, we have

stab(ηg(·; a, f), q) ≤ E
y∼r

[φ(ηy)] = O
(
η2H(r)

)
= O

(
η2a>(H(p))−1V (q)(H(p))−1a

)
. (41)

Hence, we have

sup
f∈[−1,1]

E
a∼p

[stab(ηg(·; a, f), q)] = O

(
η2 E

a∼p

[
a>(H(p))−1V (q)(H(p))−1a

])
= O

(
η2tr

(
E
a∼p

[
aa>

]
(H(p))−1V (q)(H(p))−1

))
= O

(
η2V (q) • (H(p))−1

)
≤ O

(
η2

1− γ
V (q) • (H(p̃))−1

)
= O

(
η2ω(q)

1− γ

)
= O

(
η2ω(q)

)
. (42)

Combining this with (34) and (35), we obtain

Λq,η(p, g) ≤ 2γ +
1

η
sup

f∈[−1,1]

E
a∼p

[stab(ηg(·; a, f), q)] = O (γ + ηω(q)) = O (ηω(q)) , (43)

which implies that Λ∗q,η = O(ηω(q)).

We next consider the case in which η ≤ 1 holds. As we have Λ∗q,η = O(ηω′(q)) if ηω′(q) > 1/8
(since Λ∗q,η = O(1) for any q and η), we assume ηω′(q) ≤ 1/8. We set p by (33) where p̃ is the
minimizer in the right-hand side of (12) and γ = 4ηω′(q) ≤ 1/2. We set g by (4). Then, (34) and
(35) can be shown in a similar way to in the first half of this proof. As we have

dV (q) � ω′(q)H(p̃) � ω′(q)

1− γ
H(p), (44)

we have

H(p)−1/2V (q)H(p)−1/2 � ω′(q)

(1− γ)d
Id. (45)

From this, if we define r in a similar way to in the first half of this proof, we have H(r) ≤ 1/(2η).
We hence have η2H(r) ≤ η/2 ≤ 1/2 under the assumption of η ≤ 1. We can then apply Lemma 13
to obtain the following:

sup
f∈[−1,1]

E
a∼p

[stab(ηg(·; a, f), q)] ≤ O
(

η2

1− γ
V (q) • (H(p̃))−1

)
≤ O

(
η2

1− γ
ω′(q)

d
H(p̃) • (H(p̃))−1

)
= O

(
η2ω′(q)

1− γ

)
= O

(
η2ω′(q)

)
, (46)

where the first inequality follows from a similar argument as in (42). Combining this with (34), (35),
and γ = 4ηω′(q), we obtain Λq,η(p, g) = O(ηω′(q)), which implies Λ∗q,η = O(ηω′(q)).
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B.5 Proof of Lemma 3

Proof of Lemma 3. We will show that
there exists p ∈ P(X ) such that µ(p) = µ(q) and V (q) � z · V (p) (47)

with z = O(1,∆`∗(µ(q))/∆`∗,min). As we have H(p) = V (p) + µ(p)µ(p)> � V (p), (47) leads
to d · V (q) � dz · V (p) � dz ·H(p), which implies ω′(q) ≤ dz. Hence, to prove the lemma, it is
sufficient to show that (47) holds with z = O(1,∆`∗(µ(q))/∆`∗,min). By considering the case of
p = q, we can easily see that (47) holds with z = O(1). for any q. In the following, we show that
(47) holds with z = O

(
∆`∗ (µ(q))
∆`∗,min

)
.

Without loss of generality, we may assume µ(q) = 0, via a variable transformation x← x− µ(q). In
fact, such a transformation preserves V (q) and V (p). For any x ∈ X , there exists ξx = (ξx(a))a∈A ∈
P(A) such that µ(ξx) =

∑
a∈A ξx(a) = x. For any (ξx)x∈X , define p ∈ P(A) by p(a) =

Ex∼q[ξx(a)]. We then have µ(p) = Ea∼p[x] = Ex∼q[Ea∼ξx [a]] = Ex∼q[x] = µ(q) = 0. Fix an
arbitrary non-zero vector u ∈ Rd \ {0} and an arbitrary a∗ ∈ A. Denote ε = 1− Pra∼p[a = a∗].

Set v = u/
√
u>V (q)u. Let pv and qv denote the distributions of 〈v, a〉 for a ∼ p and 〈v, x〉 for

x ∼ q, respectively. We then have V (qv) = v>V (q)v = u>V (q)u/(u>V (q)u) = 1. Without
loss of generality, we assume that 〈v, a∗〉 ≥ 〈v, µ(q)〉 = µ(qv) = 0. (If not, we redefine v =

−u/
√
u>V (q)u.) Since q is a log-concave distribution, from Lemma 10, qv is a log-concave

distribution as well. Hence, from Lemma 11, we have

Pr
X∼qv

[
X ≤ − 1

2e

]
= Pr
X∼qv

[X ≤ 0]− Pr
X∼qv

[
− 1

2e
< X ≤ 0

]
≥ 1

e
− 1

2e
=

1

2e
, (48)

where the inequality follows from (16) and (17).

We hence have

V (pv) = E
a∼p

[(〈v, a〉)2] = E
x∼q

[
E

a∼ξx

[
(〈v, a〉)2

]]
≥ E
x∼q

[
E

a∼ξx

[
(〈v, a〉)2

]
| 〈v, x〉 ≤ − 1

2e

]
· Pr
X∼qv

[
X ≤ − 1

2e

]
≥ 1

2e
· E
x∼q

[
E

a∼ξx

[
(〈v, a〉)2

]
| 〈v, x〉 ≤ − 1

2e

]
, (49)

where the last inequality follows from (48). Suppose 〈v, x〉 ≤ − 1
2e . Since µ(ξx) = x, we have

− 1

2e
≥ 〈v, x〉 = ξx(a∗) 〈v, a∗〉+

∑
a∈A\{a∗}

ξx(a) 〈v, a〉 ≥
∑

a∈A\{a∗}

ξx(a) 〈v, a〉 . (50)

We hence have

E
a∼ξx

[
(〈v, a〉)2

]
≥

∑
a∈A\{a∗}

ξx(a)(〈v, a〉)2 = (1− ξx(a∗))

∑
a∈A\{a∗} ξx(a)(〈v, a〉)2∑

a∈A\{a∗} ξx(a)

≥ (1− ξx(a∗))

(∑
a∈A\{a∗} ξx(a) 〈v, a〉∑

a∈A\{a∗} ξx(a)

)2

=

(∑
a∈A\{a∗} ξx(a) 〈v, a〉

)2

1− ξx(a∗)
≥ 1

4e2(1− ξx(a∗))
,

where the second inequality comes from Jensen’s inequality, and the last inequality follows from (50).
From this and (49), we have

V (pv) ≥
1

8e3
E
x∼q

[
1

1− ξx(a∗)
| 〈v, x〉 ≤ − 1

2e

]
≥ 1

8e3
· 1

Ex∼q
[
1− ξx(a∗)| 〈v, x〉 ≤ − 1

2e

] . (51)

We further have

ε = E
x∼q

[1− ξx(a∗)] ≥ E
x∼q

[
1− ξx(a∗)| 〈v, x〉 ≤ − 1

2e

]
· Pr
x∼q

[
〈v, x〉 ≤ − 1

2e

]
≥ 1

2e
E
x∼q

[
1− ξx(a∗)| 〈v, x〉 ≤ − 1

2e

]
, (52)
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where the last inequality follows from (48). Combining this with (51), we obtain

V (pv) ≥
1

16e4ε
. (53)

As it follows from the definition of v that

V (pv) = v>V (p)v =
u>V (p)u

u>V (q)u
, (54)

we have
16e4ε · u>V (p)u ≥ u>V (q)u. (55)

Since this holds for all u ∈ Rd \ {0}, we have

16e4ε · V (p) � V (q) (56)
Letting a∗ ∈ arg mina∈A 〈`∗, a〉, we obtain

∆`∗(µ(q)) = ∆`∗(µ(p)) =
∑
a∈A

p(a)∆`∗(a)

≥
∑

a∈A\{a∗}

p(a)∆`∗,min = ∆`∗,min · (1− p(a∗)) = ∆`∗,min · ε (57)

Combining this with (56), we obtain

16e4 ∆`∗(µ(q))

∆`∗,min
· V (p) � V (q), (58)

which completes the proof.

B.6 Proof of Lemma 4

Proof. Let q be a log-concave distribution over X = {x ∈ [0, 1]d | ‖x‖1 = 1}. If x =
(x1, . . . , xd) ∼ q, from Lemma 10, xi for each i also follows a log-concave distribution over
[0, 1]. Hence, from Lemma 12, the variance of xi ( i.e., the (i, i) entry of V (q) ) is bounded as

[V (q)]i,i ≤ e2 min{µi(q)2, (1− µi(q))2} ≤ 4e2µi(q)
2(1− µi(q))2 (59)

Consider the distribution p ∈ P(A) such that Pra∼p[a = ei] = µ(q). We then have µi(p) = µi(q)
and that H(p) is a diagonal matrix with diagonal entries (µi(q))

d
i=1. Hence, from (59), we have

V (q) • (H(p))−1 =

d∑
i=1

[V (q)]i,i(µi(q))
−1 ≤ 4e2

d∑
i=1

µi(q)(1− µi(q))2

≤ 4e2
d∑
i=1

µi(q)(1− µi(q)), (60)

which implies that ω(q) = O
(∑d

i=1 µi(q)(1− µi(q))
)

. Further, as we have
∑d
i=1 µi(q) = 1, it

holds for any i∗ ∈ {1, . . . , d} that
d∑
i=1

µi(q)(1− µi(q)) = µi∗(q)(1− µi∗(q)) +
∑
i 6=i∗

µi(q)(1− µi(q))

≤ 1− µi∗(q) +
∑
i6=i∗

µi(q) = 2 (1− µi∗(q)) , (61)

which complete the proof.

B.7 Proof of Corollary 2

Proof. From Lemma 4 and the fact that
∑d
i=1 µi(q) = 1, it is clear that ω(q) = O(1). Let

`∗ ∈ L be an a loss vector such that ei∗ ∈ arg min1≤i≤d `
∗
i is unique. We then have ∆`∗(µ(q)) =∑

i 6=i∗ ∆`∗(ei)µi ≥ ∆`∗,min(1−µi∗(q)). Hence, from Lemma 4, we have ω(q) = O (1− µi∗(q)) ≤
O (∆`∗(µ(q))/∆`∗,min). From this and Lemma 2, (10) holds with α = O(1), β = O( 1

∆`∗,min
), and

η0 = O(1/d).
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B.8 Proof of Lemma 5

Proof. For each j ∈ {1, . . . ,m}, let p(j) ∈ P(X (j)) be such that µ(p(j)) = µ(q(j)) and
ω(q(j)) = V (q(j)) • (H(p(j)))−1. Let p ∈ P(X ) be the product measure of p(1), . . . , p(m). As
p is the product measure of q(1), . . . , q(m), V (q) ∈ Rd×d is a block diagonal matrix with subma-
trices V (q(1)), . . . , V (q(m)). Similarly, H(p) ∈ Rd×d is a block diagonal matrix with submatri-
ces H(p(1)), . . . ,H(p(m)). We hence have V (q) • (H(p))−1 =

∑m
j=1 V (q(j)) • (H(p(j)))−1 =∑m

j=1 ω(q(j)), which implies ω(q) ≤
∑m
j=1 ω(q(j)).

B.9 Proof of Corollary 3

Proof. Suppose A is given by A = Ad1 × · · · × Adm . For any ` = (`(1), `(2), . . . , `(m)) ∈ L
and x = (x(1), x(2), . . . , x(m)) ∈ X , where `(j) ∈ Rdj and x(j) ∈ X (j) for each j, de-
note ∆

(j)

`(j)
(x(j)) =

〈
`(j), x(j)

〉
− mina(j)∈A(j)

〈
`(j), a(j)

〉
=
〈
`(j), x(j) − a∗(j)

〉
. We then have

∆`∗(x) =
∑m
j=1 ∆

(j)

`(j)
(x(j)). Let ` be a loss vector such that a∗ = (a∗(1), a∗(2), . . . , a∗(m)) ∈

arg mina∈A 〈`, a〉 is unique. We then have ∆`,min = min1≤j≤m ∆
(j)

`(j),min
.

If q ∈ X is a product measure of qj ∈ P(X (j)), from Lemmas 4 and 5, we have

ω(q) ≤ O

 d∑
j=1

ω(q(j))

 ≤ O
 m∑
j=1

min

{
1,

∆
(j)

`∗(j)
(µ(q(j)))

∆`∗(j),min

}
≤ O

min

m,
m∑
j=1

∆
(j)

`∗(j)
(µ(q(j)))

∆`∗(j),min


 ≤ O

min

m,
m∑
j=1

∆
(j)

`∗(j)
(µ(q(j)))

∆`∗,min




= O

(
min

{
m,

∆
(j)
`∗ (µ(q))

∆`∗,min

})
. (62)

This means that (10) holds with α = O(m) and β = O( 1
∆`∗,min

).

The case of A = {0, 1}d can be interpreted as a problem instance in which A is a direct product of d
copies of A2. Hence, we can see that (10) holds with α = O(d) and β = O( 1

∆`∗,min
).

B.10 Proof of Lemma 6

Proof. From the definition of the regret, we have

RT (a∗) =

T∑
t=1

E
a∼pt

[〈`t, a− a∗〉]

=

T∑
t=1

(〈`t, wt − a∗〉+ 〈`t, wt − µ(pt)〉) . (63)

From the definition of bias given in (14), the part of 〈`t, wt − a∗〉 can be bounded as follows:
〈`t, wt − a∗〉 = E

at,ft
[〈`t − ht(at, ft), wt − a∗〉+ 〈ht(at, ft), wt − a∗〉]

≤ bias(ht, pt, wt, `t) + E
at,ft

[ht(at, ft), wt − a∗] . (64)

From this and (63), we have

RT (a∗) ≤ E

[
T∑
t=1

(〈`t, wt − µ(pt)〉+ bias(ht, pt, wt, `t)) +

T∑
t=1

〈ht(at, ft), wt − a∗〉

]
. (65)

By a standard analysis of the FTRL framework (see, e.g., [Lattimore and Szepesvári, 2020a, Exercise
28.12]), we have

T∑
t=1

〈ht(at, ft), wt − a∗〉 ≤
T∑
t=1

1

ηt
stabψ(ηtht(at, ft), wt) +

1

ηT+1
ψ(a∗). (66)

20



By combining (65) and (66), we obtain the bound of (14).
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